
EfficientCAPER: An End-to-End Framework for Fast
and Robust Category-Level Articulated Object Pose

Estimation

Xinyi Yu1, Haonan Jiang1, Li Zhang2, Lin Yuanbo Wu3, Linin Ou1∗, Liu Liu4∗

1 Zhejiang University of Technology, Zhejiang, China
2 University of Science and Technology of China, Hefei, China

3 Swansea University, Swansea, UK
4 Hefei University of Technology, Hefei, China

211122030127@zjut.edu.cn, liuliu@hfut.edu.cn

Abstract

Human life is populated with articulated objects. Pose estimation for category-
level articulated objects is a significant challenge due to their inherent complexity
and diverse kinematic structures. Current methods for this task usually meet the
problems of insufficient consideration of kinematic constraints, self-occlusion,
and optimization requirements. In this paper, we propose EfficientCAPER, an
end-to-end Category-level Articulated object Pose EstimatoR, eliminating the need
for optimization functions as post-processing and utilizing the kinematic structure
for joint-centric pose modeling, thus enhancing the efficiency and applicability.
Given a partial point cloud as input, the EfficientCAPER firstly estimates the pose
for the free part of an articulated object using decoupled rotation representation.
Next, we canonicalize the input point cloud to estimate constrained parts’ poses by
predicting the joint parameters and states as replacements. Evaluations on three
diverse datasets, ArtImage, ReArtMix, and RobotArm, show EfficientCAPER’s
effectiveness and generalization ability to real-world scenarios. The framework
exhibits excellent static pose estimation performance for articulated objects, con-
tributing to the advancement of category-level pose estimation. Codes will be made
publicly available.

1 Introduction

Articulated objects are everywhere in our daily lives, from small items like eyeglasses to larger entities
like dishwashers. Unlike rigid objects, which are treated as single entities in three-dimensional space,
articulated objects are made up of several movable rigid parts connected by joints, following a specific
kinematic structure. Estimating the 6D pose—meaning the 3D rotation and translation for each rigid
part from visual observation of an articulated object is a fundamental challenge in computer vision.
This task is crucial for various applications in robotics [1], augmented reality [2], virtual reality [3],
and 3D scene understanding [4].

Generally, compared to instance-level 6D pose estimation [5, 6, 7], category-level pose estimation
requires machines to understand the 3D rotation, 3D translation, and 3D scale of unseen objects,
using only semantic category prior.

In recent years, there has been a growing interest in the task of category-level articulated object
pose estimation [8, 9, 10, 11]. Representative methods such as Normalized Object Coordinate Space
(NOCS) and its variants [12, 13] have emerged as leading approaches. These methods introduce
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intra-class or intra-part representations for each rigid part in canonical space and recover the object
poses by estimating these representations. This approach has become the mainstream paradigm for
investigating category-level articulated objects. However, this solution faces several challenges:

(1) Most of them adopt a part-centric approach for pose modeling, where each part’s pose is estimated
independently, disregarding the constraints imposed by the kinematic structure. (2) They often
struggle with self-occlusion cases, especially where smaller parts are obscured by larger parts
from certain camera perspectives. (3) The introduced intra-class or intra-part representations are
often intermediate, requiring additional optimization to obtain the final poses, which can be time-
consuming.

In fact, all the rigid parts of an articulated object can be categorized into two groups: free parts,
which can move into any rotational and translational target (e.g., the main body of a cabinet) without
kinematic constraints (with an articulated object containing only one free part), and constrained parts,
which can rotate or translate along a pre-defined joint (e.g., cabinet doors or drawers) following
physically reasonable kinematic laws (with any number of constrained parts in an articulated ob-
ject). Building on this insight, we propose a joint-centric articulation pose modeling mechanism
that establishes part-joint pairs. This approach allows learning each part’s pose as a joint state
representation, which is easier for a neural network to learn compared to direct 6D pose regression or
intra-class/intra-part representation. Furthermore, this joint state representation significantly improves
visually occluded part pose estimation, as even a few visible points can robustly contribute to joint
state prediction.

In this paper, within the joint-centric pose modeling mechanism, we propose EfficientCAPER, a
novel end-to-end Efficient Category-level Articulated object Pose EstimatoR. EfficientCAPER breaks
down pose estimation into two stages: estimating the pose of the free part and the constrained parts,
without the need for intermediate variable estimation or optimization procedures. This departure from
traditional approaches, such as A-NCSH [8] and OMAD [14], eliminates the reliance on intermediate
steps that recover pose using optimistic equations or retrieval methods.

Specifically, in the first stage, we utilize a decomposition strategy to represent the rotation matrix, as
described in [15]. This strategy enables us to estimate confidence-aware rotation vectors using a hybrid
feature extraction encoder (HS-encoder [16]), which effectively extracts essential geometric features
and relationships. In the second stage, we predict joint states, joint parameters, and the 3D scale of
each part instead of using intermediate representations. By integrating these stages, EfficientCAPER
achieves comprehensive category-level pose estimation for articulated objects, providing a streamlined
and efficient approach. We evaluate our EfficientCAPER on three datasets including the synthetic
dataset ArtImage [14], and the semi-synthetic dataset ReArtMix [13]. We also infer the model on a
RobotArm dataset [13] that contains much more diverse and complex scenes, which demonstrates
that EfficientCAPER has the generalization ability to real-world scenarios. Through these extensive
experiments, we provide evidence of the EfficientCAPER’s superior performance in static pose
estimation of articulated objects. In summary, our main contributions are as follows:

• We proposed EfficientCAPER, an end-to-end framework for estimating category-level
articulated object 6D pose efficiently and robustly without any optimization or other post-
processing.

• Our EfficientCAPER solves articulation pose estimation by two stages that firstly estimates
the pose of the free part with decoupled rotation representation and secondly predicts joint
states as pose replacement. We name this process as joint-centric pose modeling.

• The efficiency and robustness of the EfficientCAPER are demonstrated through the eval-
uation of either synthetic or real-world articulated object benchmarks. The sufficient
experiments show the dramatic performance improvement and generalization capacity of
our method.

2 Related Work

2.1 Rigid Objects Pose Estimation

Rigid object pose estimation has been a significant research area in computer vision, with numerous
approaches proposed to tackle this challenging problem. Traditional methods often rely on template-
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based methods [17, 18] or feature-based techniques such as SIFT [19] and SURF [20]. However,
these methods are sensitive to occlusions and variations in illumination. Recent advancements in deep
learning have revolutionized rigid object pose estimation. Techniques employing convolutional neural
networks (CNNs) have shown remarkable performance improvements. For instance, [21] proposed a
method based on a CNN architecture that directly regresses 6-DoF poses from RGB images. While
considerable progress has been made in rigid object pose estimation, the extension to category-level
pose estimation remains relatively unexplored. Category-level pose estimation aims to estimate the
pose of objects belonging to specific categories, despite the intra-category variations. NOCS [12] is
the first method for category-level pose estimation by matching per-pixel correspondences between
the observed point cloud and the estimated normalized canonical coordinates. [22] utilize variational
auto-encoder to capture both pose-independent and pose-dependent features to directly predict the
6D pose. Given a single scene image, SAR-Net [23] proposed a method that relies on the shape
information from the depth (D) channel, without using external real pose-annotated training data.
GPV-Pose [24] presents geometric-pose consistency terms and point-wise bounding box voting with
backbone 3D-GC [25]. Based on GPV-Pose, HS-Pose [16] proposed a network structure named
HS-layer that extends 3D-GC to extract hybrid scope latent features from point cloud data. Due to
HS-layer’s ability to perceive both local and global geometric information and its robustness to noise,
we have chosen the HS-Encoder as our backbone.

2.2 Category-level Articulation Pose Estimation

Articulation pose estimation has been a topic of significant interest in computer vision and robotics.
In addition to the definition of rigid object pose estimation, articulated objects consist of a finite
number of rigid parts that are interconnected through various types of joints. For articulation pose
estimation, we need per-part 6D pose as estimated results. Recent advancements in deep learning have
led to significant progress in articulation pose estimation. Convolutional neural networks (CNNs)
have been particularly successful in learning complex spatial relationships and patterns from raw
data. For instance, [26] proposed a method based on a multi-stage CNN architecture for human pose
estimation, achieving state-of-the-art accuracy on benchmark datasets such as MPII Human Pose and
COCO. Similarly, [27] introduced a pose estimation framework using graph convolutional networks
(GCNs) to model the spatial dependencies between body joints, demonstrating robust performance
under occlusions and challenging poses. While existing research has focused on articulation pose
estimation for a specific instance and lacks practicality on articulation.

Category-level articulation pose estimation aims at predicting the pose of previously unseen articulated
objects. Li et al. first propose A-NCSH [8], which extends the notation of normalized coordinates [12]
into articulation. [13] introduce the concept of part pairs to investigate previously unseen instances
by extending the setting of A-NCSH to real-world scenarios while studying articulated objects. In
addition, Xue et al. first [14] presents utilizing key points as a method for articulation modeling,
aiming to enhance the speed of inference while maintaining accurate pose estimation. Recently,
[11] proposed a novel category-level pose estimation framework based on reinforcement learning.
However, these methods are limited by the accuracy of the kinematic model and may struggle with
real-world variability and occlusions.

3 Problem Statement

To achieve an end-to-end category-level articulated object pose estimation framework, our core idea
is to introduce a two-stage end-to-end pose estimator EfficientCAPER without any post-processing
or optimization operation. Given a 3D observed object point cloud P ∈ R3 with K rigid parts, our
EfficientCAPER network performs predictions under unknown CAD models for (1) per-point part
segmentation δ, (2) 3D rotation Rfree and 3D translation tfree for free part, in where the 3D rotation
is encoded as a decoupled rotation representation (3) 3D rotation R

(k)
cons and per-part 3D translation

t
(k)
cons for each constrained part, which are represented as joint state θ(k)

cons. (4) 3D scale for free part
sfree and constrained parts s(k)cons. In total, the rotation, translation and scale together constitute an
articulation pose estimation result {R(k), t(k), s(k)}Kk=1, where {R(k)}Kk=1 = {Rfree, {R(k)

cons}Kk=2},
{t(k)}Kk=1 = {tfree, {t(k)cons}Kk=2} and {s(k)}Kk=1 = {sfree, {s(k)cons}Kk=2}, where we assume that there
is only one free part in an articulated object and the corresponding index is 1.
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Figure 1: The EfficientCAPER architecture. Taking the partial point cloud of an articulated object as input,
our network estimates the pose of the free part using HS-Encoder as the backbone and decoupled rotation as
representation. In the second stage, we canonicalize the input point cloud and predict per-part scale, segmentation,
joint parameters, and joint states, where the latter two are used to recover the constrained parts’ poses.

4 Method

4.1 Overview

We present the overall pipeline of EfficientCAPER in Figure 1. Given the point cloud of an articulated
object, our approach estimates the pose of its parts through two stages. First, we estimate the pose of
a free part, and then we recover the poses of constrained parts based on joint state estimation and
kinematic constraints. In the initial stage, we extract hybrid-scope features from the input point cloud
using an HS-Encoder [16]. These features, along with the point cloud, are inputted into one trans-
decoder and two rot-decoders to estimate the free part’s translation and confidence-aware rotation
vectors. Moving to the second stage, we canonicalize the input point cloud using the estimated
pose of the free part, which improves the robustness of the estimation process. We then use another
HS-Encoder to extract hybrid-scope features, which are fed into four subbranches for joint stage
estimation, joint parameters estimation, scale estimation, and part segmentation respectively. Finally,
the poses of the constrained parts are calculated based on the joint state and the free part’s pose.
Note that the input point cloud can be obtained from an RGB image and a depth image through
back-projection.

4.2 Joint-Centric Articulation Pose Modeling

As discussed above, most of the articulation pose estimation methods adopt a part-centric pose
modeling strategy that might ignore the effect of kinematic structure and also suffer from the self-
occlusion problem. In this paper, we take a joint-centric perspective to investigate articulated objects,
which regards the pose estimation task as a joint state prediction task. In this way, the motion of each
constrained part corresponds to the joint state changing.

We consider two groups of rigid parts in an articulated object: the free part and the constrained part,
where the former can move arbitrarily in three-dimensional space and the latter can move along
the corresponding joint constrained by the kinematic structure. The constrained part’s motion is
determined by the joint type. Following the articulation setting in A-NCSH [8] and OMAD [14], we
consider two types of joints: (1) Revolute joint that allows the rotational motion in the articulated
object. The joint state θr is denoted by the relative rotation angle compared to the rest state, and
the joint parameters can be defined as ϕr = (ur, qr), where ur represents the direction of the joint
axis and qr represents the pivot point position of joint axis in the canonical coordinate space. (2)
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Prismatic joint that allows the constrained part to move along the joint direction. The joint state θp is
denoted by the relative distance compared to the rest state, and the joint parameters can be defined as
ϕp = (up), where up represents the direction of the joint axis. By defining the joint-centric pose
modeling method, we can correspond part to joint one by one, and the total articulated object poses
for all the K parts can be represented by a sequence of joint states Θ = {θ(k)}Kk=2 of constrained
parts and the pose {Rfree, tfree} of free part. The definitions of free part and constrained part are
illustrated in Figure 2.

Free part Constrained part

Free part can move freely in three-

dimensional space

Constrained part can move along the 

corresponding joint constrained by

the kinematic structure. 

Revolute joint Prismatic joint 

Figure 2: Free part and Constrained part in ar-
ticulated objects. These two kinds of parts are
connected by joints.

Figure 3: Rotation decoupled strategies. We select
the corresponding two axes according to the sym-
metry priors.

4.3 Free Part Pose Estimation with Decoupled Rotation

In our EfficientCAPER, the input of the network is a partial point cloud of an articulated object
P ∈ RN×3. In the first stage, we aim to estimate the pose {Rfree, tfree} for free part, and here we
describe the rotation Rfree and translation tfree estimation separately.

Rotation Estimation. The GPV-Pose [24] was proposed to estimate the 6D pose with the rigid
object point cloud input. When transferring into the free part pose estimation, we input the point cloud
from all the rigid parts rather than only the free part’s point cloud, since (1) the part segmentation
is not required as a prerequisite task that further improves the efficiency of our method. (2) other
constrained parts can provide auxiliary information for estimating the pose of the free part with strong
symmetry. Specifically, given the point cloud P ∈ RN×3, we build an encoder-decoder architecture
which includes an HS-Encoder with four HS-layers and rot decoder with four 1-D convolution
layers. We can extract the feature of each HS-layer after encoding, and we performed a max pooling
operation on the point cloud dimension of the last layer’s output to get a global feature that contains
global information. We concatenate the global feature with the output of each HS layer as the ultimate
output of the encoder. The Rfree can be decomposed into three direction vectors: x, y, and z, we
select two of them for different objects to help the network learn shape prior better. As shown in
Figure 3, we choose y-axis and z-axis direction vectors since the laptop is symmetric about the yOz
plane. Similarly, we choose the x-axis and z-axis direction for the box. Inspired by [24], an attempt
is made to estimate a confidence value for each vector to enhance the robustness during the recovery
of the final 3D rotation. For the decoding process, we decode the ultimate feature to get two vectors,
then we normalize them to get predicted plane normals and implement a softmax operation to get
confidence for each predicted normal.

Translation Estimation. Regarding the translation t, we firstly zero-center the input point cloud
P by reducing the mean of point cloud P̃ . Next, we build a similar decoder consisting of 1-D
convolution layers. Inspired by [15], we estimate the residual between the mean value of P and the
ground truth of translation. The translation feature is formed by concatenating the output of every
HS-layer and zero-center point cloud, and we can finally get residual translation t∗free through the
translation decoder. The final translation of free part tfree can be obtained by tfree = t∗free + P̃ . Finally,
the 6D pose of the free part is the constitution of rotation and translation Tfree = {Rfree, tfree}.
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4.4 Articulation Pose Canonicalization

Before the second stage of estimating poses for constrained parts, we canonicalize the input point
cloud with the predicted free part’s pose Tfree. This operation provides the following benefits: (1)
the joint state estimation task in camera space can be transformed into a "pseudo-canonical" space,
which is more suitable for neural network learning. (2) the canonicalization process applied to the
point cloud can effectively eliminate the effects of different joint configurations in the movable rigid
parts, it allows the canonicalized point cloud to provide both a shape prior and a kinematic prior that
make a significant contribution to regress joint states.

In articulated pose canonicalization module, the canonicalized point cloud P̂ is computed as the
product of the inverse transformation Tfree and the point cloud P (k):

P̂(k) = (Tfree)
−1P(k) = (Rfree)

−1(P(k) − tfree) (1)

By canonicalizing the input point cloud, the regressing model in stage two will take the canonicalized
point cloud as input to estimate joint states, the neural network would increase sensitivity to parameters
and states of joint and could considerably enhance regression performance.

4.5 Constrained Part Pose Estimation with Joint State Replacement

At the second stage of our EfficientCAPER, we predict the pose for constrained parts {R(k)
cons}Kk=2 as

well as scales {s(k)cons}Kk=2, labels δ and joint parameters (u(k), q(k))Kk=2. To this end, we also build
the encoder-decoder architecture network whose parameters are partly shared with that at the first
stage. Specifically, we employ the HS-Encoder same as the first stage, and design four decoders.
Each layer in the decoder consists of a 1-D convolution, batch normalization, and dropout operation.
We use the ReLU activation function for the final output of the layer. At the end of the network, we
build four parallel branches for estimating joint parameters, joint states, per-part scales, and part
labels respectively.

Joint Parameter Branch. In order to recover per-part pose for the constrained part, it is required
to estimate the joint parameters (u, q). Refer to A-NCSH [8] that predicts the joint parameters in
normalized coordinate space, our EfficientCAPER predicts them in the articulation canonicalized
space. To be specific, the joint parameter branch involves three heads: (1) joint direction head that
regresses the joint direction u for both revolute and prismatic joints. (2) offset head that predicts
the projected distance oi from each canonicalized point p̃i to the joint (u, q). (3) heatmap head that
predicts the score hi of the possibility of pi voting into the joint. In this way, the joint parameters
(u, q) can be obtained by a voting scheme:

u =
1

N

N∑
i

ui (2)

q =
1

N

N∑
i

hi(qi + oi) (3)

Note that when estimating the parameters for prismatic joint, we only use joint direction head since q
is not defined in prismatic motion.

Joint State Branch. For estimating the poses of the constrained parts, we build a prediction
branch that predicts the joint state θ(k) as pose replacement. The joint state branch ends with a 1-D
convolution layer that outputs the final result containing K − 1 channels corresponding to K − 1
constrained parts in an articulated object. During inference for revolute joint, given the predicted
joint parameters ϕ(k)

r = (u
(k)
r , q

(k)
r ) and joint states θ(k)

r , we utilize the extended Rodrigues rotation
formula to convert the joint state into a matrix R

(k)
cons for k-th part:

R
′(k)
cons = cosθ(k)

r U (k)
r + (1− cosθ(k)

r )(U (k)
r ·Q(k)

r )Q(k)
r ) + sinθ(k)

r (Q(k)
r )∧ (4)
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where Q
(r)
r represents a skew-symmetric matrix composed of pivot point position q

(k)
r , U (k)

r repre-
sents the normalized direction of the joint axis u(k)

r . Here the R
′(k)
cons is a matrix of size 4× 3 and we

stack it with the row [0, 0, 0, 1] appended at the end to get relative homogeneous matrix T
(′k)
cons as k-th

constrained part’s pose.

In terms of prismatic joint, given joint parameters (u(k)
p ) and predicted joint state θ(′k)

p , we can also
get relative homogeneous matrix as pose for k-th part:

T (′k)
cons =

[
I θ(k)

p u
(k)
p

0 1

]
(5)

where I indicates the identity matrix. Finally, we can calculate the poses of constrained parts by
T

(k)
cons = TfreeT

′(k)
cons .

Part Scale Branch. To predict the scale s(k) for all the parts of an articulated object, we employ the
regression scheme in the part scale branch that predicts the residual size s∗(k) = s(k) − s̃(k) where
s̃(k) is defined as the predefined mean size of k-th part. Therefore, the final scales are determined by
s(k) = s∗(k) + s̃(k).

4.6 Multi-Task Loss Function

We utilize multi-task loss functions to train our EfficientCAPER network. In the free part pose
estimation stage, we first design the L1 loss function to supervise the (rm, rn) vector and translation
t regression:

Lrot = ∥rm − r̂m∥1 + ∥rn − r̂n∥1 ,Ltrans =
∥∥t− t̂

∥∥
1

(6)

where m,n represent the possible selected directions of normals. To train the confidence score c that
is used for (rm, rn) voting, the loss function Lconf is defined as:

Lconf =
∑

i∈{m,n}
j∈{1,2}

∥∥cj − exp(−k1|ri − r̂i|2)
∥∥
1

(7)

where k1 is a factor = −13.7 which follows the same setting in GPV-Pose[24]. Regarding the
constrained part pose estimation stage, we utilize four loss functions to supervise the joint parameter,
joint state, part scale, and part segmentation branches. Firstly for joint parameter branch, the loss
function Lpara aims to optimize the projection distance from predicted joint location q̂(k) to joint
(u(k), q(k)):

Lloc =
1

K − 1

K∑
k=2

Proj(q̂(k),u(k), q(k)) (8)

and we use the L1 loss to supervise the joint direction Ldir. In terms of the joint state branch, since
the joint states in the annotation can be positive or negative, directly regressing these joint states is
quite difficult. So we design the joint state loss function Lstat with a positive penalty factor α = 20:

Lstat =


1

K−1

K∑
k=2

∥θ(k) − θ̂
(k)

∥1, ifθ(k)θ̂
(k)

> 0

1
K−1

K∑
k=2

α∥θ(k) − θ̂
(k)

∥1, ifθ(k)θ̂
(k)

< 0

(9)

In this loss function, when the joint state of the k-th joint is opposite to the ground truth in annotation,
we apply a penalty factor α to the loss of that particular joint which encourages the neural network to
learn more correctly. Next, we employ L1 loss for part scale branch Lsca and Cross-Entropy loss for
part segmentation branch Lseg. Finally, the total training losses L1 for stage one and L2 for stage
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two are both the weighted sum of the losses from free part pose estimation and constrained part pose
estimation modules:

L1 = λrotLrot + λtransLtrans + λconfLconf (10)
L2 = λlocLloc + λdirLdir + λstatLstat + λscaLsca + λsegLseg (11)

where the weight multiplication factors λrot, λtrans, λconf , λloc, λdir, λstat, λsca, λseg are set to be
8.0, 10.0, 1.0, 1.0, 1.0, 6.0, 1.0, 0.1. The optimal hyper-parameters are mined by cross-validation
method.

5 Experiments

5.1 Experimental Settings

Datasets. We evaluate EfficientCAPER on three datasets: ArtImage [14], ReArtMix [13], and
RobotArm [13]. First, ArtImage is a synthetic articulated object estimating dataset with the objects
from PartNetMobility. This dataset contains five categories of articulated objects: Laptop, Eyeglasses,
Dishwasher, Scissors, and Drawer. Next, our method has also been evaluated on a semi-synthetic
dataset ReArtMix for articulated object estimating tasks. To validate the generality of our method in
real-world scenarios, we finally train and test on the 7-part RobotArm dataset.

Metrics and Implementation Details. To validate the performance of the EfficientCAPER, we
adopt degree error(◦) for 3D rotation, distance error(m) for 3D translation, 3D IOU(%) for scale, and
per image inference time for estimating speed. During the data pre-processing, input point clouds are
sampled into 1,024 points as the network inputs. We have adopted the Ranger optimizer and the "flat
and anneal" learning rate strategy. The learning rate remains 10−4 in stage "flat". The total training
epoch is 250 for stage one and 200 for stage two. We put two trained models in the same script
for inference to directly obtain per-part pose. All the experiments are implemented on an NVIDIA
GeForce RTX 3090 GPU with 24GB memory.

Table 1: Comparison with state-of-the-arts on the ArtImage dataset. We validate our EfficientCAPER on
categories Laptop, Eyeglasses, Dishwasher, Scissors and Drawer that contains 2, 3, 2, 2, 4 parts respectively. ↓
means the lower the better and ↑ means the upper the better.

Category Method Per-part Pose Inference Time per Image (s) ↓Rotation Error (◦) ↓ Translation Error (m) ↓ 3D IOU (%) ↑

Laptop

A-NCSH [8] 5.3, 5.4 0.054, 0.043 56.7, 40.2 9.0
OMAD [14] 5.4, 4.3 0.062, 0.061 43.5, 24.1 1.6
ArtPERL [11] 4.9, 4.7 0.053, 0.066 64.6, 50.4 0.9
EfficientCAPER 3.5, 4.0 0.065, 0.071 88.2, 87.9 0.02

Eyeglasses

A-NCSH [8] 3.7, 22.3, 23.2 0.049, 0.313, 0.324 52.5, 40.2, 39.6 11.9
OMAD [14] 4.9, 7.5, 7.5 0.062, 0.103, 0.324 22.8, 20.5, 21.4 2.5
ArtPERL [11] 4.1, 6.2, 6.0 0.047, 0.095, 0.091 58.6, 46.5, 51.7 1.0
EfficientCAPER 3.1, 7.2, 5.8 0.038, 0.109, 0.089 91.8, 82.3, 84.3 0.02

Dishwasher

A-NCSH [8] 4.0, 4.8 0.059, 0.123 84.3, 56.2 5.5
OMAD [14] 6.0, 6.2 0.104, 0.142 66.5, 38.9 1.6
ArtPERL [11] 3.9, 4.3 0.055, 0.079 89.3, 67.6 0.9
EfficientCAPER 2.5, 3.1 0.052, 0.085 91.2, 83.9 0.02

Scissors

A-NCSH [8] 2,0, 2.9 0.035, 0.025 46.5, 44.8 6.5
OMAD [14] 3.9, 3.4 0.048, 0.039 35.6, 34.5 1.7
ArtPERL [11] 2.2, 2.6 0.031, 0.042 40.9, 46.3 0.8
EfficientCAPER 5.0, 5.1 0.048, 0.099 74.2, 69.2 0.02

Drawer

A-NCSH [8] 2.8, 3.5, 3.9, 2.9 0.045, 0.155, 0.157, 0.075 90.2, 81.5, 78.4, 82.7 16.5
OMAD [14] 4.4, 4.4, 4.4, 4.4 0.111, 0.143, 0.144, 0.115 75.8, 73.4, 70.2, 71.3 1.9
ArtPERL [11] 3.5, 3.5, 3.5, 3.5 0.061, 0.112, 0.121, 0.104 84.8, 78.6, 79.0, 81.2 1.1
EfficientCAPER 2.0, 2.0, 2.0, 2.0 0.041, 0.086, 0.090, 0.080 93.2, 87.1, 87.1, 88.4 0.02

5.2 Experiments on ArtImage Dataset

We report the results of EfficientCAPER evaluated on the synthetic dataset containing the articulated
objects from PartNet-Mobility in Table 1. As it can be seen, EfficientCAPER achieves optimal
or suboptimal results on rotation error in most categories. We can see that the high estimating
performance with only 2.0◦, 2.6◦ on rotation error for category Dishwasher. This can be explained by
that our joint-centric representation for articulation indicates a significant weakening of the impact of
self-occlusion. For category Drawer, our method achieves excellent performance with only 0.041m,
0.086m, 0.090m, and 0.080m on translation error. This can be attributed to the framework’s accurate

8



Figure 4: Qualitative results on ArtImage(top), ReArtMix(bottom left) and RobotArm(bottom right).

estimation for state and orientation of the prismatic joint. Obviously, our proposed method can predict
3D scale very well. In terms of inference time, many previous methods typically predict the NOCS
coordinate for each observed point and rely on the Umeyama algorithm and the RANSAC method
for pose recovery [12, 8], our method can regress the pose without any algorithmic optimization or
retrieval method. EfficientCAPER achieves real-time prediction at a speed of approximately 50 FPS.
Qualitative Results are shown in Figure 4.

5.3 Ablation Study

Effect of Articulation Pose Canonicalization. We investigate the effect of canonical point cloud
for estimating joint states and 3D scale where we experiment on ArtImage and Table 2 illustrates
the results. Note that we show joint state error and 3D scale score here since the articulation pose
canonicalization module is only employed in the second stage of our EfficientCAPER. Here our
3D IoU calculation method is as follows: After predicting the length, width, and height of each
part, we construct the predicted 3D bounding box and the ground truth 3D bounding box centered
at [0,0,0]. We then calculate the 3D scale score between the two bounding boxes. It is obvious that
canonicalization of point cloud proposed by us can improve estimating performance a lot since the
network can be more sensitive to kinematic prior and shape prior in the canonical coordinate system.

Table 2: Experiments on the effect of articulation pose
canonicalization (indicated as APC here) module.

Category APC Joint State Error 3D Scale Score(%)

Laptop 3. 5◦ 83.8, 84.6
✓ 1.8◦ 86.2, 86.8

Eyeglasses 7.8◦, 8.3◦ 64.3, 54.8, 53.3
✓ 5.0◦, 3.7◦ 68.9, 58.1, 55.2

Dishwasher 2.4◦ 26.2, 59.6
✓ 1.8◦ 30.2, 66.2

Scissors 3.5◦ 57.2, 56.0
✓ 2.2◦ 56.5, 49.7

Drawer 0.098m, 0.101m, 0.070m 58.9, 57.5, 64.7, 65.2
✓ 0.075m, 0.076m, 0.050m 71.3, 59.4, 66.5, 68.4

Table 3: Pose errors for ‘Drawer’ category with vary-
ing occlusion levels.

Occlusion Level Rotation Error(◦) Translation Error(m)
0%-40% 1.2 0.057
40%-80% 1.3 0.062

80%-100% 1.3 0.095

Self-Occlusion Analysis. To further investigate the robustness under self-occlusion of our Efficient-
CAPER, we split the test samples of category Drawer into three subsets based on occlusion level since
self-occlusion problems are more common in drawers. The occlusion level is defined as the visible
ratio of the points compared to the whole part points, which is similar to A-NCSH [8]. In detail,
there are three subsets with various visibility in this experiment: (0%, 40%), (40%, 80%) and (80%,
100%). Here we use mean rotation error and mean translation error that uniformly evaluate the pose
estimation performance. Table 3 shows the experimental result. With an increasing occlusion level,
rotation error remains essentially unchanged thanks to our joint-centric method. Our method achieves
a small translation error for occlusion level rates up to 80%, even in extreme cases with occlusion
rates ranging from 80% to 100%, our method still yields a favorable result with a translation error
of 0.095m. Therefore, it can be concluded that our method works well in solving the self-occlusion
problem. More ablation study can be found in Section A.5.1.
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5.4 Generalization Capacity

Experiments on Semi-Synthetic Scenarios. First, we assess our method for the estimation of
articulated object poses using the dataset known as ReArtMix, which incorporates semi-synthetic
scenarios. The detailed results are shown in Table 4. Compared to the baseline, our method shows
excellent performance on ReArtMix, obtaining better rotation estimation on all categories. We can
see that the accurate translation estimation with only 0.003m, 0.005m on translation error for category
Cutter. The qualitative results are shown in Figure 4.

Experiments on Real-world Scenarios. To investigate the performance in real-world scenarios,
we also conduct training and evaluation of EfficientCAPER using the 7-part RobotArm dataset. It is
important to acknowledge that the robot arm accumulates errors from the first part to the end effector
due to the multi-depth structure of the robot arm instance, the results in Table 5 show that our method
performs well with objects with diverse structures. More qualitative results are shown in Section A.6.

Table 4: Pose estimation results on ReArtMix dataset.

Category Method Per-part Pose
Rotation Error (◦) Translation Error (m) 3D IOU(%)

Box ReArtNet [13] 3.4, 3.6 0.025, 0.034 52.1, 49.3
EfficientCAPER 0.9, 1.7 0.004, 0.015 96.4, 88.9

Stapler ReArtNet [13] 4.9, 6.3 0.032, 0.030 40.1, 35.6
EfficientCAPER 0.9, 1.6 0.006, 0.019 93.8, 84.5

Cutter ReArtNet [13] 3.0, 3.2 0.016, 0.017 35.5, 34.2
EfficientCAPER 1.6, 1.6 0.003, 0.004 96.2, 95.7

Scissors ReArtNet [13] 5.6, 5.3 0.011, 0.013 26.3, 24.3
EfficientCAPER 2.3, 4.8 0.006, 0.015 93.1, 87.1

Drawer ReArtNet [13] 3.1, 3.2 0.021, 0.019 51.5, 50.2
EfficientCAPER 0.7, 0.7 0.006, 0.007 95.3, 94.2

Table 5: Pose estimation results on 7-part RobotArm dataset

Per-part Rotation Error (◦)
Part ID 1 2 3 4 5 6 7

A-NCSH [8] 7.8 7.9 10.3 10.5 11.2 16.4 23.5
EfficientCAPER 0.04 5.9 7.6 7.3 7.7 11.6 14.6

Per-part Translation Error (m)
Part ID 1 2 3 4 5 6 7

A-NCSH [8] 0.012 0.044 0.067 0.066 0.079 0.236 0.403
EfficientCAPER 0.014 0.020 0.048 0.049 0.126 0.124 0.304

6 Conclusion

In this paper, we propose an end-to-end approach, namely EfficientCAPER, for solving fast and
robust category-level articulated object pose estimation problems. We formulate this task as a
two-stage framework for the free part and constrained part pose estimation separately that utilizes
joint-centric pose modeling to split a whole articulated object into two groups of parts. Experiments
demonstrate that EfficientCAPER can obtain state-of-the-art estimating performance on various
datasets and scenarios, with strong robustness in severe self-occlusion scenes. Future works will
focus on investigating the articulated objects with various kinematic structures in the same category
or cross-category setting.
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A Appendix / supplemental material

A.1 Overview

In the appendix, we present additional information and experiments of EfficientCAPER. An overview
of our supplementary material goes as follows: Firstly, we discuss the limitations of the work in
Section A.2. Then, we explain how we choose baseline and introduce more details of the network in
Section A.3. In addition, we describe our training and inference strategies detailedly in Section A.4.
To demonstrate the benefits of our approach, we have also provided some additional experimental
results in Section A.5. Lastly, qualitative results on three datasets are shown in Section A.6.

A.2 Limitations

Through analysis of the experimental results, our method heavily relies on free part pose estimation
accuracy. Considering limited by the small size of the dataset and the relatively simple structures
in current dataset, our method’s superiority may not be fully realized. However, EfficientCAPER is
robust to objects that have diverse structures such as robot-arm in the RobotArm dataset.

A.3 The Choice of Baseline

A.3.1 GPV-Pose

For free part pose estimation, we can treat it as a category-level rigid pose estimation task. We follow
GPV-Pose [24] since its good utilization of geometric information, showing good performance and
robustness to this task. Apart from rotation matrix decomposition and residual translation prediction,
there are two other branches to supervise the pose: symmetric reconstruction and bounding box
voting. All classes in ArtImage are symmetric about the yoz plane, so we choose the y-axis and z-axis
so that the symmetric reconstruction module can supervise the estimation of the plane normals in
these two directions. Unlike GPV-Pose, we only supervise the rotation in bounding box voting. Apart
from the aforementioned aspects, the design of the loss function and the selection of hyper-parameters
for these two modules are consistent with GPV-Pose.

A.3.2 HS-Pose

HS-Pose [16] proposed the HS-layer which extends from 3D-GC, can better perceive local and global
geometric structure, encode translation and scale information. Due to the superiority of HS-layer, we
have replaced 3D-GC with the HS-Encoder. We need to choose the essential hyper-parameters. The
support number for the graph convolution network is 7 and the neighbor number for RF-F and ORL
is 20.

A.4 Training and Inference Protocol

Training. In our approach, we train on each object category separately, and the entire training
process is divided into two stages. In the first stage, we feed a partial point cloud to the HS-Econder
to predict the pose of the free part. In the second stage, we need to utilize the pose of the free part
to canonicalize the input point cloud, i.e. transforming the point cloud from the camera view to a
"pseudo-canonical" view. "Pseudo" means the pose contains errors, the canonical space in this case is
not standard. We have designed a special noise addition strategy to implement the training of the
second stage. First, we can separately calculate the average rotation error and average translation
error by evaluating the pose results of stage one. Then, we add noise to the gt pose to make the noisy
pose have approximately the same rotation error and translation error compared to the ground truth.
We use the noisy pose to canonicalize the point cloud and we feed the canonical point cloud to the
other HS-Encoder for training the model of stage two.

Inference. After training, we can separately obtain the best-performing models from stage one
and stage two respectively. We integrate the two stages into a single inference script. First, we feed
the point cloud to the model of stage one to get the pose of the free part. Then we use the pose to
canonicalize the point cloud to get the canonical point cloud. In stage two, we input the canonical
point cloud to the trained model, the model will output joint state estimation, joint parameters
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estimation, 3D scale estimation, and part segmentation. Finally, the poses of the constrained parts are
calculated based on the joint state, joint parameters, and the free part’s pose. As discussed above, we
can directly output the pose and 3D scale of every part.

A.5 Experiments

A.5.1 Ablation Study

Single Free Part Input v.s. Whole Object Input. We have conducted an additional set of
experiments to validate the assistance of constrained part information in estimating the free part pose.
Results are shown in Table 6. We can see that rotation error decreases when we use constrained
parts because the neural network can learn better through a more comprehensive point cloud with
a particularly significant increase of 90% in the category Dishwasher. However, we get a passable
result on increased translation error since the original position of the free part may move after adding
the constrained part. Overall, it is necessary to feed point clouds of all parts of articulation because it
allows our two-stage network to simultaneously output the poses of all parts with just a single input.

Table 6: Experiments comparing single free part as input between both free part and constrained parts
as input. Note that we only investigate this analysis in the first stage of our EfficientCAPER.

Category Input Parts Rotation Error(◦) Translation Error(m)

Laptop free 3.2 0.059
free+constrained 2.3 0.061

Eyeglasses free 3.4 0.053
free+constrained 2.3 0.037

Dishwasher free 20.4 0.057
free+constrained 2.0 0.053

Scissors free 5.0 0.043
free+constrained 5.0 0.048

Drawer free 3.4 0.049
free+constrained 1.2 0.043

A.5.2 Detiled Results

Joint Parameters Estimation Results. In stage two, we also design a branch to estimate the
parameters of the axes. All the joint parameters are evaluated in canonical space. For each revolute
joint, we use mean angle error to evaluate the orientation of the joint axis, and use mean distance
error to evaluate the distance between the predicted axis position and the gt axis position. For each
prismatic joint, we compute the orientation error of the translation axis. The results are shown in
Table 7, Table 8 and Table 9. For orientation, our EfficientCAPER can obtain good performance on
all classes. For location, it is obvious that our method can still achieve satisfactory results on three
datasets.

Table 7: Experiments estimating joint parameters in
the canonical space on ArtImage.

Category Joint Parameter
Angle Error (◦) Distance Error (m)

Laptop 0.00 0.037
Eyeglasses 0.00, 0.67 0.031, 0.024
Dishwasher 0.00 0.033

Scissors 0.00 0.097
Drawer 0.04, 0.09, 0.00 -, -, -

Table 8: Experiments estimating joint parameters in
the canonical space on ReArtMix.

Category Joint Parameter
Angle Error (◦) Distance Error (m)

Box 0.43 0.011
Stapler 0.63 0.012
Cutter 0.48 -

Scissors 0.80 0.005
Drawer 0.11 -

Part Segmentation Results. In stage two, our model can output part segmentation results which
is an optional branch. We conduct two sets of experiments on part segmentation in both camera
view and canonical view, and we calculate the mean IOU of all parts. The results shown in Table
10 demonstrate that our framework can achieve performance with an IOU greater than 90% on four
categories of objects. It is proved that articulation pose canonicalization can also improve the part
segmentation performance.
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Table 9: Experiments estimating joint parameters in the canonical space on 7-part RobotArm dataset

Joint Parameter
Joint ID 1 2 3 4 5 6

Angle Error (◦) 0.005 0.008 0.019 0.114 0.018 0.012
Distance Error (m) 0.012 0.013 0.014 0.028 0.023 0.038

Table 10: Part Segmentation results. APC means articulation pose canonicalization module.
Category APC Mean IOU(%)

Laptop 94.3
✓ 95.0

Eyeglasses 88.3
✓ 90.1

Dishwasher 96.7
✓ 97.7

Scissors 88.47
✓ 77.5

Drawer 79.4
✓ 92.3

A.6 Qualitative Results

In this section, we show more qualitative results on ArtImage [14], ReArtMix [13], and RobotArm
[13] datasets. In Figure 5, we show the visualizations of Ground Truth, A-NCSH and our method on
ArtImage. It can be observed that compared to A-NCSH, our method is capable of better predicting
the 3D bounding boxes of each part of the object in camera space and gets very close results to
the Ground Truth on Laptop, Dishwasher and Drawer. Figure 6 and Figure 7 are the results from
ReArtMix and RobotArm. From these results, it can be seen that our method can accurately estimate
the pose and 3D scale even in some severe self-occlusion views.

A.7 Ethics Statement and Boarder Impact

Our method has the potential to develop the home-assisting robot, thus contributing to social welfare.
We evaluate our method in synthesized or human-collected datasets, which may introduce data bias.
However, similar studies also have such general concerns. We do not see any possible major harm in
our study.
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Figure 5: Qualitative results on the ArtImage dataset. We show five categories from ArtImage. The baseline is
A-NCSH [8].
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Figure 6: Qualitative results on the ReArtMix dataset.

Figure 7: Qualitative results on the RobotArm dataset.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section A.2.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We will open-source the checkpoints and all implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will open-source the dataset and code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 5.1, we provide the setting of experiments. We describe the training
and inference protocols in Section A.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The effect of random seed could almost be negligible since we set the same
initiation seed during experiments. Reproducibility can be guaranteed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Section. 5.1, we describe the computer resources we used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics, the discussion is presented in
Section A.7.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our work has no negative societal impacts, the discussion is presented in
Section A.7.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the datasets we used are publicly available datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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