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Abstract
Large language models (LLMs) have shown001
remarkable promise in simulating human lan-002
guage use and behavior. In this study, we delve003
into the intersection of persona variables and004
the capability of LLMs to simulate different005
perspectives. We find that persona variables006
can explain <10% variance in annotations in007
existing subjective NLP datasets. Nonetheless,008
incorporating them via prompting in LLMs pro-009
vides modest improvement. Persona prompting010
is most effective on data samples where dis-011
agreements among annotators are frequent yet012
confined to a limited range. A linear correlation013
exists: the more persona variables influence hu-014
man annotations, the better LLMs predictions015
are using persona prompting. However, when016
the utility of persona variables is low (i.e., ex-017
plaining <10% of human annotations), persona018
prompting has little effect. Most subjective019
NLP datasets fall into this category, casting020
doubt on simulating diverse perspectives in the021
current NLP landscape.022

1 Introduction023

Annotation questions such as “how do you feel024

emotionally after reading this text” are subjec-025

tive - there are rarely definitive right or wrong an-026

swers (Ovesdotter Alm, 2011). This subjectivity is027

increasingly being recognized within the NLP com-028

munity. Subjective NLP tasks are typically charac-029

terized by low inter-annotator agreement, making030

label aggregation inappropriate (Ovesdotter Alm,031

2011; Plank, 2022; Cabitza et al., 2023). Previous032

research has established the significant influence of033

sociodemographic variables on the annotations of034

these tasks (Sap et al., 2022; Santy et al., 2023; Pei035

and Jurgens, 2023, inter alia).036

One approach to model these persona variables1037

is to use LLMs. LLMs have been effectively uti-038

1In our work, we adopt a broad definition of persona vari-
ables to include not only demographic and social variables but
also other variables that could help describe a persona, such
as variables relating to attitudes, behaviors, lived experiences,

lized for role-playing and simulating human behav- 039

ior, primarily by defining the persona of interest 040

within the prompt (Aher et al., 2023; Horton, 2023; 041

Kovač et al., 2023; Argyle et al., 2023). Their suc- 042

cess has even spurred debates on whether LLMs 043

could replace human subjects (Dillion et al., 2023; 044

Grossmann et al., 2023). However, there are also 045

concerns about such “persona prompting” method- 046

ology (Figure 1) (Beck et al., 2023), citing ecolog- 047

ical fallacy (Orlikowski et al., 2023), and LLMs’ 048

susceptibility to caricatures (Cheng et al., 2023), 049

misportrayal and erasure of subgroup heterogene- 050

ity (Wang et al., 2024). 051

Existing studies have often sought to measure the 052

effects of individual persona variables, overlook- 053

ing a holistic analysis of the potential explanatory 054

power of persona variables on annotation variance. 055

It is then hard to contextualize the models’ ability 056

to utilize persona information. Furthermore, the in- 057

fluence of persona variables is often conflated with 058

that of text samples (Figure 1), making it difficult 059

to understand the true capacity of LLMs to simu- 060

late personas. To address these issues, our research 061

explores the following questions: 062

RQ1: How much variance in human annotation 063

could persona variables explain? Understanding 064

this will help us assess the overall influence of per- 065

sona variables on human annotation, providing con- 066

text to our subsequent investigations. We find that 067

persona variables explain relatively little variance 068

(<10%) for many NLP tasks (Section 3). 069

RQ2: Can incorporating persona variables via 070

prompting improve LLMs’ predictions? Building 071

on our findings from RQ1, we assess how much 072

the explained variance by persona variables trans- 073

lates into prediction gains in LLMs. We find that in 074

three of four datasets, incorporating persona vari- 075

ables provides a modest improvement (Section 4). 076

RQ3: For what types of samples is persona prompt- 077

and values. It is worth noting that most NLP datasets have no
information of any kind available about the annotators.
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You race is White. Your gender is male.
Generally speaking, you consider yourself
politically liberal. The highest degree or

level of school that you have completed is
high school degree. Based on your

experience, toxic posts or comments are
very frequently a problem.

How toxic do you personally find this comment? "Who the hell you here to dictate him what to do what
not to? Glue to your own business..."

You race is Black. Your gender is female.
Generally speaking, you consider yourself

politically conservative. The highest
degree or level of school that you have

completed is master's degree. Based on
your experience, toxic posts or comments

are occasionally a problem.

Persona Variables

Text Sample

LLMs

+ +

??
Figure 1: Illustration of persona prompting. We prepend the persona information of an annotator before the text
sample and task description to investigate the capacity of LLMs to simulate diverse perspectives in subjective NLP
tasks.

ing most useful? To delve deeper into the utility of078

persona prompting, we examine its impact across079

sample types. We identify that most gains occur080

in samples characterized by frequent annotator dis-081

agreements within a relatively narrow range, sug-082

gesting that models can adjust their annotation to083

suit the persona, though not drastically (Section 5).084

RQ4: How well can LLMs simulate personas with085

controlled text randomness and varied persona utili-086

ties? This setting isolates the evaluation of persona087

simulation evaluation from the variance in text, al-088

lowing us to fully understand the capacity of LLMs089

in simulating personas with when persona variables090

matter to a varying degree. We find a linear rela-091

tionship: the more persona factors influence human092

response, the better LLMs predictions are using093

persona prompting. Larger, fine-tuned models per-094

form best and can explain up to 81% of variance095

found in human responses. However, when the util-096

ity of persona variables is low, persona prompting097

has little effect. Regrettably, most subjective NLP098

datasets fall into this category, casting doubt on the099

efficacy of persona prompting in the current NLP100

context (Section 6).101

2 Related Work 102

2.1 The Relationship between Persona 103

Variables and Annotation Outcome 104

The role of persona variables, such as demograph- 105

ics and lived experiences, in influencing annota- 106

tions in NLP tasks is well established. Many stud- 107

ies have highlighted how persona variables affect 108

tasks like hate speech detection (Kumar et al., 2021; 109

Sap et al., 2022; Pei and Jurgens, 2023; Santy et al., 110

2023; Hettiachchi et al., 2023; Lee et al., 2023), 111

sentiment analysis (Ding et al., 2022; Biester et al.), 112

and irony detection (Frenda et al., 2023). While 113

these studies shed light on the subjectivity of NLP 114

annotations in many tasks, they often stop short of 115

a holistic account of the explanatory power of per- 116

sona variables on annotation variance. By contrast, 117

in social science, the impact of persona variables on 118

attitude are long studied and quantified (Bobo and 119

Licari, 1989; Bartels, 2002). In our work, we ana- 120

lyze the utility of the persona variables in explain- 121

ing annotation outcomes across subjective NLP 122

tasks. 123

2.2 Modeling Persona Variables and LLM for 124

Simulation 125

Several works in NLP have sought to account 126

for the differences between individual annota- 127

tors or the group-level attributes of annotators 128

through adding individual (group) specific lay- 129
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ers (Mostafazadeh Davani et al., 2022; Gordon130

et al., 2022; Fleisig et al., 2023; Orlikowski et al.,131

2023, inter alia), or via prompting (Beck et al.,132

2023). Results from these studies have been mixed,133

with some work indicating success using group-134

level persona variables (Gordon et al., 2022; Fleisig135

et al., 2023), while others cast doubt on the effec-136

tiveness of such methods (Orlikowski et al., 2023;137

Cheng et al., 2023; Beck et al., 2023). Simultane-138

ously, in the social sciences, a multitude of studies139

have been employing use persona prompts in LLMs140

to simulate human behavior (Horton, 2023; Argyle141

et al., 2023; Kim and Lee, 2023; Törnberg et al.,142

2023), while others have pointed out the lack of143

fidelity and diversity in such simulations (Bisbee144

et al., 2023; Park et al., 2024; Wang et al., 2024;145

Taubenfeld et al., 2024).146

Our work builds on the uncertainty raised by147

these mixed results, focusing on the potential of148

persona prompting with LLMs for simulating dif-149

ferent perspectives in NLP tasks, which is currently150

understudied. Furthermore, our work aims to iso-151

late the evaluation of persona prompting from the152

impact of text samples in the modeling process,153

a separation that has not been much explored in154

previous studies.155

2.3 Persona Prompting and AI Alignment156

Apart from the research focused on incorporating157

demographic factors into NLP models and using158

LLMs for simulations, another line of studies has159

examined persona prompting in the context of AI160

alignment (Santurkar et al., 2023; Durmus et al.,161

2023). These studies have employed LLMs to an-162

swer multiple-choice survey questions concerning163

societal values and attitudes, comparing the LLM-164

generated answer distribution with actual human165

response distribution derived from survey data rep-166

resenting diverse demographic groups. In contrast167

to these studies, our work aims to explore the ef-168

ficacy of LLMs in leveraging persona variables169

to inform task predictions, rather than the degree170

to which LLM responses mirror those of specific171

demographic groups.172

3 RQ1: How much variance in human173

annotation could persona variables174

explain?175

Methodology Given the relative gap in literature176

in a holistic understanding of the impact of persona177

variables on annotation variance, we investigate178

to what extent persona variables explain human 179

annotation variance. This analysis would provide 180

valuable context to any modeling exercise of incor- 181

porating persona variables. 182

We employ a mixed-effect linear regression 183

model2 to assess how much variance in annotation 184

can be explained by persona variables (fixed effect), 185

while controlling for the text-specific variability in 186

the text sample (random effect) by fitting a random 187

intercept for each text. Using a mixed-effect lin- 188

ear regression allows us to separate the impact of 189

persona variables from the inherent variation of the 190

text being annotated. We evaluate 10 subjective 191

NLP datasets which provide unaggregated anno- 192

tations and persona variables of their annotators. 193

We also consider the presidential vote question in 194

the ANES 2012 public opinion survey (ANES), in 195

which every human subject answers the same ques- 196

tion and therefore does not require a text random 197

effect, for comparison. 198

Results We show a comparison of the tasks, 199

sources of data, annotation methods, sizes, types of 200

persona information included, and the regression 201

R2 values in Table 1. 202

We observe that the datasets mostly come from 203

social media sources and annotations are collected 204

through crowd-sourcing. They vary substantially 205

in size, persona variables provided and R2 val- 206

ues. While persona variables (fixed effect) do 207

significantly explain some variance in annotation 208

outcomes, they account for just 1.4%-10.6% of 209

the total variance (Marginal R2), even when con- 210

trolling for text variation. Conversely, variabil- 211

ity inherent to individual texts (random effect) 212

can explain up to 70% of the total variance, i.e. 213

∼ (Conditional R2 − Marginal R2). For compari- 214

son, in the ANES dataset, persona variables explain 215

more than 70% human response variance. 216

The marginal R2 values provide a baseline indi- 217

cation of the variance in annotations that persona 218

variables could explain. The regression model as- 219

sumes a linear relationship between persona vari- 220

ables and annotation and does not consider any 221

interaction between the persona variables. There- 222

fore, while it is straightforward and interpretable, 223

for LLMs, it should be considered a weak baseline. 224

Acknowledging that a substantial portion of vari- 225

ance remains unexplained (25%-70%) by either 226

the text or persona variables across all tasks consid- 227

2In R notation, annotation ∼ persona
variables + (1 | text_id)
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Task Dataset Data Source Annotation Size Persona
Variables

R2
Cond. R2

Marg.

Toxicity Detection annWithAttitudes
(Sap et al., 2022)

Twitter 5-point
MTurk

N=626
A=5.5a

U.S.

Basic
Attitude

0.611 0.045

Offensiveness Rating POPQUORN
(Pei and Jurgens, 2023)

Reddit 5-point
Prolific

N=1,500
A=8.7
U.S.

Basic 0.319 0.029

Politeness Rating POPQUORN
(Pei and Jurgens, 2023)

Email 5-point
Prolific

N=3,718
A=6.7
U.S.

Basic 0.454 0.014

Toxicity Detection Kumar et al. (2021) Twitter
Reddit
4chan

5-point
MTurk

N=106,035
A=5.1
U.S.

Basic
Attitude
Behavior

0.349 0.106

Sentiment Analysis Diaz et al. (2018) Twitter 5-point N=14,071
A=4.2
U.S.

Basic
Attitude

0.329 0.036

Social Acceptability Social-Chem-101
(Forbes et al., 2020)

Reddit 5-point
MTurk

N=9,740
A=6.1

Mostly U.S.

Basic 0.432 0.097

Social Acceptability NLPositionalityb

(Santy et al., 2023)
Reddit 5-point

Opt-in volunteer
N=291
A=50.2

87 countries

Basic 0.513 0.005

Toxicity Detection NLPositionalityb

(Santy et al., 2023)
Twitter 3-point

Opt-in volunteer
N=299
A=29.6

87 countries

Basic 0.432 0.017

Social Bias SBIC
(Sap et al., 2020)

Twitter
Reddit

Gab
Stormfront

3-point
MTurk

N=35,504
A=3.2

U.S. and Canada

Basic 0.758 0.031

Irony Detection EPIC
(Frenda et al., 2023)

Twitter
Reddit

Binary
Prolific

N=2,994
A=4.7

IE, UK, US, IN, AU

Basic 0.289 0.091

Presidential Vote ANES 2012 Survey Binary
Face-to-face

A=2,728c

U.S.
Basic

Attitude
Behavior

- 0.719

a Another phase of this dataset has 600+ annotators labeling a total of 15 tweets.
b We consider the action acceptability, to be in line with the NLPositionality dataset. As it is a volunteer-annotated dataset, substantial persona

information is unavailable.
c After filtering out participants with missing attributes.

Table 1: An overview of datasets with unaggregated annotations and persona information. This table compares
the tasks, sources of data, annotation methods, sizes, types of persona information included, and to what degree
the persona variables can explain the variance of annotations in each dataset. The “Size” column specifies the
number of text samples (N ) and the average number of annotators per sample (A), alongside the geographical
location of the annotators. The “Persona Variables” column indicates the available persona categories: “Basic” for
standard demographics like gender and age, “Attitude” for annotators’ personal views, and “Behavior” for actions
such as media consumption habits. The conditional (R2

Cond.) and marginal (R2
Marg.) R-squared values are reported

from regression models that predict the annotations based on persona variables, while accounting for text-specific
variability (using a random effect for each text).

ered is crucial. This unexplained variance could be228

attributed to theoretically measurable persona fac-229

tors such as personality traits and complex moral230

and political beliefs, which are not currently col-231

lected in existing datasets. Additionally, it could232

be due to hard-to-measure factors like the anno-233

tators’ lived experiences, interpersonal dynamics,234

and other personal variables.235

The elevated R2 value in the ANES dataset may236

be attributed to the escalating degree of polariza-237

tion in U.S. politics in recent years. This rise in238

polarization has lead to more predictable voting 239

patterns (Pew Research Center, 2014) and the in- 240

creasing tendency of U.S. voters to behave in a 241

manner consistent with their in-groups (Graham 242

and Haidt, 2010). 243

In contrast, tasks such as assessing the hateful- 244

ness of a tweet offer more room for personal inter- 245

pretation, leading to diverse opinions. Thus, per- 246

sona factors may account for a lesser portion of the 247

variance in annotation for such tasks. 248
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4 RQ2: Can incorporating persona249

variables via prompting improve LLMs’250

predictions?251

Methodology Since persona variables can ex-252

plain a small but significant amount of human anno-253

tation variations, we then explore whether persona254

prompting would improve LLM’s predictions.255

As depicted in Figure 1, we prepend each text256

sample with persona variables in a zero-shot257

prompting setup. We prompt the LLMs twice: once258

with persona variables, and once without, to zero-259

shot predict individual annotations on Annotator-260

withAttitude (Sap et al., 2022), Kumar et al. (2021),261

EPIC (Frenda et al., 2023) and the politeness rat-262

ing task in POPQUORN (Pei and Jurgens, 2023).263

We preserve the original language of the persona264

descriptions to the extent possible, adopt a multiple-265

choice format, include a description of the question266

and the answer choices, and predict only the next267

token as the model’s response, as done in prior268

work (Santurkar et al., 2023; Durmus et al., 2023).269

Due to cost constraints, we sample 600 instances270

from each dataset. The details of the prompt format271

are provided in the Section B.272

We additionally perform a set of robustness ex-273

periments by swapping the order of persona vari-274

ables in the prompt or paragraphing the language275

used to describe each persona variables and repeat276

the experiments on Kumar et al. (2021). The de-277

tailed setting can be found in Section C.278

To evaluate, we compare model predictions with279

individual human annotations using R2 value, Co-280

hen’s Kappa (Cohen, 1960), mean absolute error281

(MAE) for multi-class classification or F1 score282

for binary classification. Our focus is on observing283

the performance change before and after persona284

prompting, rather than the absolute performance of285

each model.286

Result We show the results in Table 2. The first287

row shows the “Target” R2 values, which refer288

to the conditional (and marginal) R2 value of the289

mixed-effect regression on the sampled data com-290

puted as in Table 1, while the R2 in subsequent291

rows are from a fixed-effect linear regression pre-292

dicting the human annotation with model predic-293

tions3. While these two R2 values cannot be com-294

pared directly, the “Target” R2 gives context to the295

fixed-effect R2 values. As the 7b and 13b models296

exhibit much weaker performance, we only feature297

3in R notation, annotation ∼ prediction

results from 70b models in the main text, while the 298

results from smaller models are included in Table 299

3. 300

On average, among the 6 models considered, per- 301

sona prompting shows varying levels of improve- 302

ment on 3/4 datasets. However, the improvement 303

in terms of R2 is small compared to the target R2. 304

For instance, in EPIC, where persona variables 305

could explain up to 9% of annotation variance, per- 306

sona prompting only provides 1% gain on average. 307

The effectiveness of persona prompting also varies 308

across models: for each dataset, persona prompting 309

improves the performance of some models but not 310

others, echoing the results in Beck et al. (2023). 311

We note that overall, with and without persona 312

prompting, GPT-4 consistently outperforms all 313

other models in every task. Tulu-2 models out- 314

perform Llama-2 with performance on par with 315

GPT-3.5. The Llama-2 models are, on the other 316

hand, much more sensitive to persona variables, ar- 317

guably to an excessive degree. For example, on An- 318

notatorwithAttitudes, persona prompting improves 319

the R2 by as much as 0.23 even though persona 320

variables only has a marginal Target R2 of 0.03. 321

We show the robustness experiment result in Table 322

5. The model performances are consistent across 323

variations in the ordering and language use of the 324

persona variables. 325

5 RQ3: For what types of samples is 326

persona prompting most useful? 327

Methodology To better understand persona 328

prompting as a technique, we aim to investigate its 329

effectiveness on data samples with varying degrees 330

of annotation entropy and standard deviation. We 331

focus on Kumar et al. (2021), as persona variables 332

play a relatively more important role in explaining 333

annotation variances in this dataset. 334

We create a new subsample of the dataset based 335

on four categories: low entropy-low standard de- 336

viation (most annotators agree with one another 337

and the magnitude of the disagreement is small, 338

e.g. 1,1,1,1,2); low entropy-high standard devi- 339

ation (e.g. 0,4,4,4,0), high entropy-low standard 340

deviation (e.g. 1,1,2,2,3) and high entropy-high 341

standard deviation (e.g. 0,1,2,3,4). The low/high 342

division is based on the medians for entropy and 343

standard deviation. 344

Then, we further stratify samples from each cate- 345

gory into four bins according to their average anno- 346

tation value. We then randomly sample 150 from 347
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Model annwAttitudes Kumar et al. (2021) EPIC POPQUORN-P

R2 ↑ κ ↑ MAE ↓ R2 ↑ κ ↑ MAE ↓ R2 ↑ κ ↑ F1 ↑ R2 ↑ κ ↑ MAE ↓

Target 0.64 (0.03) - - 0.42 (0.20) - - 0.28 (0.09) - - 0.47 (0.03) - -

GPT-4-0613 0.56 0.42 0.70 0.16 0.24 0.87 0.03 0.12 0.52 0.34 0.22 0.89
+Persona 0.53 0.40 0.74 0.12 0.20 0.90 0.05 0.20 0.58 0.33 0.22 0.90

GPT-3.5-Turbo-0613 0.53 0.29 0.80 0.12 0.17 1.12 0.04 0.18 0.59 0.28 0.09 1.07
+Persona 0.49 0.31 0.82 0.12 0.15 0.97 0.03 0.14 0.54 0.28 0.14 1.14

Llama-2-70b 0.17 0.14 1.70 0.01 0.04 1.51 0.00 0.00 0.24 0.24 0.13 1.42
+Persona 0.40 0.30 0.91 0.03 0.05 1.01 0.00 0.00 0.24 0.21 0.17 1.10

Llama-2-70b-chat 0.39 0.13 1.33 0.11 0.07 1.70 0.00 0.05 0.49 0.32 0.15 1.00
+Persona 0.42 0.15 1.22 0.10 -0.01 1.45 0.02 0.14 0.56 0.31 0.14 0.90

Tulu-2-70b 0.49 0.29 0.90 0.16 0.13 1.09 0.05 0.20 0.59 0.34 0.20 0.89
+Persona 0.49 0.26 0.88 0.14 0.16 0.90 0.07 0.27 0.63 0.31 0.16 0.92

Tulu-2-dpo-70b 0.51 0.35 0.84 0.15 0.15 1.16 0.03 0.14 0.54 0.35 0.21 0.83
+Persona 0.51 0.30 0.84 0.15 0.20 0.92 0.04 0.18 0.58 0.33 0.19 0.87

Avg. ∆ 0.03 0.02 -0.14 -0.01 -0.01 -0.23 0.01 0.04 0.03 -0.02 0.00 -0.04

Table 2: Comparison of performance across LLMs in estimating individual annotations, with and without the
inclusion of persona variables. Performance is measured using R2, Cohen’s Kappa (κ), Mean Absolute Error (MAE)
and F1 score.

each bin, culminating in a total of 600 samples per348

category. This approach is implemented to mitigate349

extreme class imbalances within certain categories.350

For instance, the low entropy-low standard devia-351

tion category would predominantly include sam-352

ples with a rating of 0 (Not at all toxic). We then353

run the LLMs twice, once with persona prompt-354

ing, once without, in the same setting as described355

in Section 4, on Llama-2-70b, Llama-2-70b-chat,356

Tulu-2-70b, and Tulu-2-dpo-70b.357

Result We show in Figure 2a the mean improve-358

ment in MAE between models with and without359

persona prompting, averaged across the four mod-360

els, in each of the four categories, with darker color361

indicating a greater degree of improvement in pre-362

dictions when persona prompting is used. To re-363

duce the possibility of finding a dataset-specific364

effect, we also repeat the same experiment on365

POPQUORN-Politeness dataset (Pei and Jurgens,366

2023), and show the same plot Figure 2b.367

Our findings indicate that including persona368

information leads to only slight changes in the369

model’s predictions for data with low entropy. This370

is as expected - with or without persona prompt-371

ing, a capable LLM should already capture the372

consensus among annotators if there is one, thus373

only necessitating minor adjustments to individual374

predictions.375

On the contrary, we observe larger shifts in pre-376

diction when annotations have high entropy but377

low standard deviation. These instances often in-378

volve substantial disagreement among individuals,379

though within a small margin. The integration of380

persona variables may then enhance the model’s 381

ability to refine its predictions. An example in this 382

would be a prediction transition from 3 (without 383

persona variables) to 4 (with persona variables). 384

However, when both entropy and standard de- 385

viation are high, the task of adjusting predictions 386

based on persona information becomes consider- 387

ably more challenging, as this would require signif- 388

icant shifts in the predicted values from the “mean” 389

level, when no persona variables are provided. For 390

instance, imagine a case where a prediction needs 391

to change from 0 (without persona variables) to 4 392

(with persona variables). 393

6 RQ4: How well can LLMs simulate 394

personas with controlled text 395

randomness and varied persona 396

utilities? 397

Motivation Within the context of NLP annota- 398

tion, both the text sample and the persona variables 399

may vary across instances (Figure 1). Both fac- 400

tors, along with their interactions, could potentially 401

influence model predictions. To understand the 402

models’ capacity for simulating different perspec- 403

tives with persona prompting, we designed a case 404

study that minimizes the impact of the text sample. 405

Methodology We use the ANES dataset (ANES), 406

a comprehensive U.S. national-level election sur- 407

vey, as a data source for this section. This dataset 408

offers a wealth of persona variables from a large 409

sample of survey respondents. From the perspec- 410

tive of NLP annotation, surveys can be seen as hav- 411

ing a large number of individuals (typically >1,000) 412
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Figure 2: Mean improvement in MAE with persona prompting across four 70b models in annotations characterized
by low/high entropy and standard deviation, with darker colors denoting more substantial improvement in predic-
tions.

annotating a small number of sentences, each rep-413

resenting a survey question. One key difference414

is that the survey questions, carefully crafted and415

tested by seasoned professionals, are designed to416

eliminate ambiguity common in social media-based417

NLP text annotation datasets. Therefore, by run-418

ning experiments on the ANES dataset, we can419

minimize the impact of the randomness in the text420

samples.421

We select a number of questions from ANES422

2012 as the text sample, or the questions to be423

predicted, using a fixed set of persona variables.424

We ensure that these questions have varying pre-425

dictability from persona variables, indicated by R2426

values. Further details of the dependent and inde-427

pendent variables considered are included in Sec-428

tion D. After filtering out respondents who did not429

answer some of the questions of interest, we arrive430

at a sample size of 2,372 human respondents and431

42 questions. We then run the LLMs with persona432

prompting.433

We perform a robustness check with the pres-434

idential vote prediction question from ANES by435

swapping the order of persona variables in the436

prompt or paragraphing the language used to de-437

scribe each persona variables. The detailed setting438

can be found in Section C.439

Result We visualize the relationship between the440

predicted and target R2 values in Figure 3 of Tulu-441

2-70b-dpo and Llama-2-7b-chat. The results for442

other models are provided in the Figure 4. Each443

point in the scatter plot represents an experiment444

result, where the x-coordinate signifies the target445

R2 and the y-coordinate denotes the predicted R2.446

The line Y = X is also included to represent the447

maximum possible performance, where predicted448

R2 equals target R2. We additionally fit a linear 449

regression line to the data points and show the fitted 450

equation and R2 in the figure. 451

Our results show a positive correlation between 452

the target and predicted R2 values - the higher the 453

target R2 value, the higher the predicted R2. Tulu- 454

2-70b-dpo, one of the best-performing models on 455

the 70b scale, can capture 81% of the target R2. 456

However, it still fails to utilize the persona informa- 457

tion effectively when target R2 is low, especially 458

when R2 < 0.1. The other 70b models, except 459

for the base model Llama-2-70b (Figure 4), have 460

largely the same simulation capabilities, while the 461

smaller models (7b and 13b) do much worse. 462

Considering that most existing NLP datasets, as 463

discussed in Section 1, have marginal R2 < 0.1, 464

we argue that persona prompting cannot reliably 465

simulate different perspectives within existing 466

NLP tasks. This finding may explain the modest or 467

non-existent gain of persona prompting observed 468

earlier in Section 2 and in Beck et al. (2023). 469

We propose two potential explanations as to why 470

LLMs, however powerful they are in other tasks, 471

may be deficient in simulating diverse perspectives: 472

1) The persona variables typically accessible 473

to researchers are group-level, while people form 474

their identity based on both individual and group- 475

level characteristics (Marsden and Pröbster, 2019). 476

Therefore, there could be an inherent mismatch 477

between the group-level variables we provide and 478

individual perspectives we aim to simulate. 479

2) LLM generations can be understood as simu- 480

lating the medium of a group, rather than individu- 481

als (West et al., 2023). Therefore, LLMs can have 482

the tendency to represent a group as a monolith in 483

simulation (Wang et al., 2024). While using more 484

fine-grained group-level persona variables may in 485
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Figure 3: Comparison of predicted R2 and target R2. Each point in the X-Y plane represents an experimental result
with persona prompting, where the x-coordinate signifies the target R2 and the y-coordinate denotes the predicted
R2. We then fit a linear regression line and also plot the theoretical maximum performance line y = x in the same
figure.

theory bring us closer to individual ratings, it re-486

mains to be seen whether this could lead to true487

individualization in practice.488

We show the robustness experiment result in489

Table 5. The model performances are consistent490

across variations in the ordering and language use491

of the persona variables.492

7 Conclusion and Recommendation493

Our study reveals that persona variables account494

for less than 10% of variance in human annota-495

tions across most NLP datasets we considered. The496

use of persona prompting offers modest and incon-497

sistent improvements across different tasks. The498

improvement is most produced in cases where the499

annotators largely disagree but only by a small500

margin (high entropy, low standard deviation). By501

running a case study with opinion survey data, we502

uncovered a linear relationship between target and503

predicted R2 values. Alarmingly, when the target504

R2 value falls below 0.1, the predicted R2 often505

drops to zero. This could explain the small and506

inconsistent improvements observed in NLP tasks507

with persona prompting, as existing datasets often508

have R2 values smaller than 0.1.509

Given these insights, we have the following rec-510

ommendations:511

1) Exercise Caution in LLM Simulation Work512

in NLP Settings In light of our findings, we ad-513

vise caution for researchers intending to use LLMs 514

to simulate text annotations from different per- 515

spectives. Unvalidated, zero-shot simulations with 516

LLMs may not yield reliable results. 517

2) Implement More Strategic Dataset Design: 518

As persona variables in existing datasets account 519

for only 10% of human annotation variation, de- 520

liberate and strategic dataset design is imperative 521

for advancing human-centric NLP research. One 522

approach could be to be more conscientious about 523

the persona variables collected in future datasets 524

and include more nuanced and target questions that 525

probe individual-level characteristics such as atti- 526

tudes and behaviors, as exemplified by Kumar et al. 527

(2021), which as a result has a relatively high target 528

R2. However, this approach is not without chal- 529

lenges, including ethical concerns as well as receiv- 530

ing intentionally inaccurate responses to sensitive 531

demographic questions in crowdsourcing (Huang 532

et al., 2023). Furthermore, we call for the expan- 533

sion of dataset collection efforts to include more 534

diverse cultural perspectives, noting the scarcity of 535

datasets that include annotator persona information 536

from non-U.S. contexts, not to mention a multilin- 537

gual one. 538

8 Limitations 539

While we exerted considerable effort to include 540

a diverse range of datasets, the vast majority of 541

8



available datasets with persona information from542

annotators have been collected in the U.S., fea-543

turing persona questions primarily relevant to this544

particular context. Consequently, we can only spec-545

ulate about the effectiveness of persona prompt-546

ing for questions that are specifically tailored to547

other countries. Furthermore, to the best of our548

knowledge, we have not identified any datasets549

that include annotator persona variables in a lan-550

guage other than English. Considering that even the551

most sophisticated LLMs still exhibit significant552

performance disparities between English and non-553

English languages (Ahuja et al., 2023), it is highly554

probable that the ability of LLMs to simulate dif-555

ferent perspectives based on persona information556

is considerably weaker in non-English languages.557

Additionally, many terms used to denote identities558

are deeply rooted in specific cultural and societal559

contexts, which cannot be readily translated into560

other languages. Thus, it is crucial to evaluate the561

simulation capabilities of an LLM independently562

for each language, without translation.563

The zero-shot simulation ability of LLMs largely564

depends on their extensive training data, essentially565

a compressed digital snapshot of the internet. How-566

ever, previous studies have indicated that the pre-567

training corpora used by LLMs are riddled with568

various social biases (Gao et al., 2020; Dodge et al.,569

2021; Bailey et al., 2022; Hu et al., 2023, inter alia).570

Consequently, LLM simulations could potentially571

be tainted by biases and stereotypes, among other572

issues.573

We did not carry out extensive prompt engineer-574

ing due to computational limitations and the tar-575

geted scope of our study. Instead, we presented576

the same prompts with persona information using577

language that closely mirrors how questions were578

asked of human participants. We believe this con-579

stitutes a fair setting for comparing LLMs. Ad-580

ditionally, we conducted a robustness check and581

found little variation for different persona variable582

orders and the exact wordings used to describe each583

variable (Section C).584

9 Ethical Considerations585

We utilize persona variables from publicly available586

datasets, which have been anonymized prior to their587

release. Therefore, no human participants were in-588

volved or personal data collected in this study. The589

research acknowledges the potential risks associ-590

ated with the use of LLMs for simulation purposes,591

including issues such as identity fraud and manipu- 592

lation. We sternly denounce such nefarious applica- 593

tions of this technology. We also acknowledge the 594

concerns related to categorizing individuals into 595

different demographic groups. However, we ar- 596

gue that our study merely utilizes existing datasets 597

and does not involve any original data collection. 598

Furthermore, the categorizations employed within 599

these datasets adhere to established best practices, 600

such as those used by the U.S. Census Bureau, 601

thereby ensuring their appropriateness. In addition, 602

the use of these demographic categories is only 603

aimed at understanding and demonstrating the po- 604

tential for LLMs to simulate diverse perspectives. 605
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A Implementation Detail885

We run all experiments on a NVIDIA A100-886

SXM-80GB cluster. The OpenAI models are887

called through the OpenAI API in Python4.888

Due to resource constraint, inference with open-889

source models are with 4-bit quantization with890

QLora (Dettmers et al., 2023) implemented in891

bitsandbytes5 in the Transformers library (Wolf892

et al., 2020). For the Llama-2 models, we directly893

prepend the persona prompts. For Llama-2-chat,894

Tulu-2, and Tulu-2-dpo models, we apply the per-895

sona prompts in the system variable. All regres-896

sions are performed in R. For the mixed-effect re-897

gressions, we use the performance library (Lüdecke898

et al., 2021) which implements the method pro-899

posed by Nakagawa and Schielzeth (2013) to ob-900

tain R2 values.901

B Prompt Template902

AnnwAttitudes903

**Your Profile**: You race/ethnicity is904
%s. Your gender identity is %s. You905
are %s years old. In terms of your906
political orientation, on a five-907
point Likert scale of -1 (Strongly908
liberal) to 1 (Strongly conservative909
), you are %s.910

4https://github.com/openai/openai-python
5https://github.com/TimDettmers/bitsandbytes

**Question**: How toxic/hateful/ 911
disrespectful or offensive does this 912
post seem to you? (Note: The 913

purpose is to understand how 914
disrespect/offense can show up in 915
language, not making statements 916
about the actual content of the 917
posts.) "%s" 918

(A) not offensive at all 919
(B) mildly inappropriate 920
(C) somewhat offensive 921
(D) moderately offensive 922
(E) very offensive 923
**Answer**: ( 924

Kumar et al. (2021) 925

**Your Profile**: You race is %s. Your 926
gender is %s. You %s describe 927
yourself as transgender. You 928
consider yourself to be %s. You are 929
%s years old. The highest degree or 930
level of school that you have 931
completed is %s. Religion is %s in 932
your life. Generally speaking, you 933
consider yourself politically %s. 934
You %s a parent. You %s use social 935
networking sites (Facebook, Twitter) 936
. You %s use video sites (YouTube, 937
Twitch). You %s use news sites (CNN, 938
Fox, NYT, WSJ). You %s use 939

community forums (Reddit, Craigslist 940
, 4chan). In general, you rate the 941
impact of technology on p e o p l e s 942
lives as %s. Based on your 943
experience, toxic posts or comments 944
are %s. 945

**Question**: How toxic do you 946
personally find this comment? "%s" 947

(A) Extremely toxic 948
(B) Very toxic 949
(C) Moderately toxic 950
(D) Slightly toxic 951
(E) Not at all toxic 952
**Answer**: ( 953

EPIC 954

**Your Profile**: You ethnicity is %s. 955
Your gender is %s. You are %s years 956
old. Your country of birth is %s. 957
Your country of residence is %s. You 958
are a national of %s. You %s a 959

student. You are %s. 960
Irony is a figurative language device 961

that conveys the opposite of literal 962
meaning, profiling intentionally a 963

secondary or extended meaning. 964
For instance, 965
message: "if ur homeless u probably 966

wouldn’t have a phone." 967
reply: "Yes, and all your belongings 968

would be in a handkerchief tied at 969
the end of a stick." --> irony: yes 970

message: "if ur homeless u probably 971
wouldn’t have a phone." 972

reply: "Yes, you’re right."--> irony: 973
yes 974

**Question**: Is the reply ironic in the 975
following message and reply pair? 976

message: "%s" 977
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reply: "%s"978
(A) Ironic979
(B) Not ironic980
**Answer**: (981

POPQUORN-P982

**Your Profile**: In terms of race or983
ethnicity, you are %s. You are a %s.984
You are %s years old. Occupation-985

wise, you are %s. Your education986
level is %s.987

**Question**: Consider you read this988
email from a colleague, how polite989
do you think it is?990

**Email:**: "%s"991
(A) not polite at all992
(B) barely polite993
(C) somewhat polite994
(D) moderately polite995
(E) very polite996
**Answer**: (997

C Robustness Test998

For Kumar et al. (2021) and ANES, we perform a999

set of robustness checks. Specifically, we swap the1000

order of the persona variables in the prompt five1001

times (Order 1-5) or use GPT-4 to come up with five1002

different paraphrases of the prompt template that1003

are meant to have the same semantics (Semantics1004

1-5). The results are shown in Table 5. While there1005

are variations between each Order or Semantics1006

setting, the variations are very small.1007

D More Details on Section 61008

We include a list of the independent variables we1009

considered in Section 6 as well as the associated1010

R2 in Table 4. Interested readers could refer to the1011

ANES documentation to find out the exact survey1012

questions asked in these variables. The persona1013

template used is:1014

**It is 2012. Your Profile**: Racially,1015
you are %s. You are a %s. You are %s1016
years old. Ideologically, you are %1017

s. Politically, you are %s. It makes1018
you feel %s when you see the1019

American flag flying. You %s. You1020
are %s interested in politics and1021
public affairs.1022
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Model annwAttitudes Kumar et al. (2021) EPIC POPQUORN-P

R2 ↑ κ ↑ MAE ↓ R2 ↑ κ ↑ MAE ↓ R2 ↑ κ ↑ F1 ↑ R2 ↑ κ ↑ MAE ↓

Target 0.64 (0.03) - - 0.42 (0.20) - - 0.28 (0.09) - - 0.47 (0.03) - -

GPT-4-0613 0.56 0.42 0.70 0.16 0.24 0.87 0.03 0.12 0.52 0.34 0.22 0.89
+Persona 0.53 0.40 0.74 0.12 0.20 0.90 0.05 0.20 0.58 0.33 0.22 0.90

GPT-3.5-Turbo-0613 0.53 0.29 0.80 0.12 0.17 1.12 0.04 0.18 0.59 0.28 0.09 1.07
+Persona 0.49 0.31 0.82 0.12 0.15 0.97 0.03 0.14 0.54 0.28 0.14 1.14

Llama-2-7b 0.07 -0.02 1.56 0.01 -0.01 2.91 -0.00 0.00 0.25 0.08 -0.04 1.21
+Persona 0.08 0.02 1.64 0.00 -0.01 1.08 0.00 0.02 0.29 0.04 -0.04 1.15

Llama-2-13b 0.11 0.07 1.50 0.00 0.00 2.91 -0.00 0.01 0.44 0.12 0.08 1.51
+Persona 0.02 0.04 1.55 0.00 -0.01 1.78 0.00 0.07 0.53 0.16 0.10 1.35

Llama-2-70b 0.17 0.14 1.70 0.01 0.04 1.51 0.00 0.00 0.24 0.24 0.13 1.42
+Persona 0.40 0.30 0.91 0.03 0.05 1.01 0.00 0.00 0.24 0.21 0.17 1.10

Llama-2-7b-chat 0.25 0.01 1.43 0.00 -0.04 2.03 0.00 0.00 0.41 0.18 0.02 1.07
+Persona 0.32 0.01 1.41 -0.00 -0.00 1.44 -0.00 0.02 0.47 0.10 0.00 1.06

Llama-2-13b-chat 0.29 0.03 1.39 0.07 -0.01 1.84 0.00 0.00 0.41 0.07 0.01 1.06
+Persona 0.17 0.02 1.44 0.03 -0.00 1.46 0.00 0.00 0.41 0.06 0.02 1.01

Llama-2-70b-chat 0.39 0.13 1.33 0.11 0.07 1.70 0.00 0.05 0.49 0.32 0.15 1.00
+Persona 0.42 0.15 1.22 0.10 -0.01 1.45 0.02 0.14 0.56 0.31 0.14 0.90

Tulu-2-7b 0.33 0.04 1.37 0.02 -0.01 2.63 -0.00 0.00 0.25 0.06 0.06 1.10
+Persona 0.35 0.06 1.37 0.01 -0.08 1.31 0.00 0.01 0.27 0.08 0.05 1.07

Tulu-2-13b 0.36 0.12 1.45 0.09 0.05 2.16 0.03 0.15 0.56 0.26 0.07 1.35
+Persona 0.33 0.10 1.34 0.11 0.06 1.42 0.03 0.14 0.52 0.27 0.14 1.02

Tulu-2-70b 0.49 0.29 0.90 0.16 0.13 1.09 0.05 0.20 0.59 0.34 0.20 0.89
+Persona 0.49 0.26 0.88 0.14 0.16 0.90 0.07 0.27 0.63 0.31 0.16 0.92

Tulu-2-dpo-7b 0.38 0.08 1.34 0.04 0.06 1.81 0.00 0.02 0.29 0.08 0.07 1.26
+Persona 0.39 0.09 1.38 0.03 -0.02 1.20 0.01 0.02 0.28 0.08 0.06 1.26

Tulu-2-dpo-13b 0.33 0.13 1.47 0.11 0.07 1.85 0.01 0.11 0.55 0.29 0.11 1.21
+Persona 0.34 0.13 1.28 0.10 0.10 1.32 0.03 0.17 0.57 0.28 0.18 0.93

Tulu-2-dpo-70b 0.51 0.35 0.84 0.15 0.15 1.16 0.03 0.14 0.54 0.35 0.21 0.83
+Persona 0.51 0.30 0.84 0.15 0.20 0.92 0.04 0.18 0.58 0.33 0.19 0.87

Avg. ∆ 0.00 0.01 -0.07 -0.01 -0.01 -0.60 0.01 0.03 0.02 -0.01 0.01 -0.08

Table 3: Comparison of performance across LLMs in estimating individual annotations, with and without persona
prompting. Performance is measured using R2 for regression annotation prediction, Cohen’s Kappa (κ), and Mean
Absolute Error (MAE).
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Figure 4: Comparison of predicted R2 and target R2. Each point in the X-Y plane represents an experimental result
with persona prompting. We then fit a linear regression line and also plot the theoretical maximum performance line
y = x in the same figure.
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Variable Target R2

aidblack_self 0.35
ecblame_dem 0.43
ecblame_fmpr 0.51
effic_undstd 0.23
ecblame_pres 0.61
egal_toofar 0.34
gayrt_adopt 0.24
gayrt_marry 0.33
govrole_big 0.43
ident_amerid 0.35
immig_checks 0.22
interest_following 0.27
nonmain_bias 0.28
presapp_econ 0.66
presapp_foreign 0.58
prmedia_attvnews 0.28
ptywom_bettrpty 0.42
relig_pray 0.40
resent_deserve 0.39
spsrvpr_ssself 0.48
trad_famval 0.33

Table 4: List of variables considered for the experiment
and the associated Target R2 in Section 6.

Model annwAttitudes ANES

R2 ↑ κ ↑ MAE ↓ R2 ↑ κ ↑ F1↑

Target 0.64 (0.03) - - 0.50 - -

Llama-2-70b 0.01 0.04 1.51 0.00 0.00 0.00
+Persona (Default) 0.03 0.05 1.01 0.33 0.19 0.26
Order-1 0.03 0.03 1.03 0.36 0.19 0.26
Order-2 0.03 0.04 1.01 0.32 0.18 0.26
Order-3 0.04 0.08 1.00 0.29 0.18 0.26
Order-4 0.03 0.05 1.01 0.28 0.18 0.26
Order-5 0.04 0.12 0.97 0.39 0.19 0.26
Semantics-1 0.01 0.00 1.05 0.30 0.19 0.26
Semantics-2 0.01 0.02 1.04 0.36 0.20 0.27
Semantics-3 0.01 0.00 1.05 0.31 0.19 0.26
Semantics-4 0.01 0.01 1.05 0.28 0.18 0.25
Semantics-5 0.03 0.03 1.02 0.29 0.18 0.26

Llama-2-70b-chat 0.11 0.07 1.70 0.00 0.00 0.00
+Persona (Default) 0.10 -0.01 1.45 0.30 0.19 0.26
Order-1 0.11 -0.01 1.49 0.34 0.20 0.26
Order-2 0.10 -0.01 1.46 0.34 0.20 0.26
Order-3 0.12 -0.01 1.45 0.29 0.18 0.26
Order-4 0.10 0.00 1.44 0.28 0.18 0.26
Order-5 0.11 0.00 1.46 0.39 0.21 0.27
Semantics-1 0.10 -0.01 1.45 0.27 0.18 0.25
Semantics-2 0.11 -0.01 1.46 0.28 0.18 0.26
Semantics-3 0.11 -0.01 1.43 0.27 0.18 0.25
Semantics-4 0.10 -0.00 1.40 0.28 0.18 0.25
Semantics-5 0.11 -0.01 1.44 0.30 0.19 0.26

Tulu-2-70b 0.16 0.13 1.09 0.00 0.00 0.00
+Persona (Default) 0.14 0.16 0.90 0.35 0.19 0.26
Order-1 0.13 0.16 0.92 0.33 0.18 0.26
Order-2 0.14 0.17 0.90 0.33 0.18 0.26
Order-3 0.14 0.14 0.94 0.35 0.19 0.26
Order-4 0.12 0.15 0.92 0.38 0.20 0.27
Order-5 0.13 0.13 0.94 0.34 0.18 0.26
Semantics-1 0.12 0.15 0.92 0.39 0.20 0.27
Semantics-2 0.12 0.16 0.93 0.42 0.22 0.27
Semantics-3 0.14 0.15 0.93 0.36 0.19 0.26
Semantics-4 0.13 0.14 0.92 0.38 0.21 0.27
Semantics-5 0.13 0.15 0.92 0.37 0.19 0.26

Tulu-2-dpo-70b 0.15 0.15 1.16 0.00 0.00 0.00
+Persona (Default) 0.15 0.20 0.92 0.36 0.20 0.27
Order-1 0.15 0.21 0.92 0.34 0.19 0.26
Order-2 0.15 0.20 0.92 0.35 0.19 0.26
Order-3 0.16 0.18 0.94 0.36 0.20 0.27
Order-4 0.16 0.22 0.90 0.34 0.20 0.26
Order-5 0.17 0.20 0.94 0.35 0.18 0.26
Semantics-1 0.15 0.20 0.91 0.37 0.21 0.27
Semantics-2 0.16 0.21 0.95 0.38 0.21 0.27
Semantics-3 0.16 0.20 0.94 0.37 0.20 0.27
Semantics-4 0.16 0.20 0.91 0.31 0.19 0.26
Semantics-5 0.15 0.20 0.93 0.38 0.21 0.27

Table 5: Robustness test of LLMs in terms of swapping
order of persona variables and paraphrase the text de-
scription of persona variables. Performance is measured
using R2 for regression annotation prediction, Cohen’s
Kappa (κ), Mean Absolute Error (MAE) and F1 score.
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