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Abstract

Flow Matching (FM) has emerged as a powerful paradigm for continuous normalizing flows,
yet standard FM implicitly performs an unweighted L? regression over the entire ambient
space. In high dimensions, this leads to a fundamental inefficiency: the vast majority of the
integration domain consists of low-density “void” regions where the target velocity fields are
often chaotic or ill-defined. In this paper, we propose y-Flow Matching (y-FM), a density-
weighted variant that aligns the regression geometry with the underlying probability flow.
While density weighting is desirable, naive implementations would require evaluating the in-
tractable target density. We circumvent this by introducing a Dynamic Density-Weighting
strategy that estimates the target density directly from training particles. This approach
allows us to dynamically downweight the regression loss in void regions without compromis-
ing the simulation-free nature of FM. Theoretically, we establish that v-FM minimizes the
transport cost on a statistical manifold endowed with the ~-Stein metric. Spectral analysis
further suggests that this geometry induces an implicit Sobolev regularization, effectively
damping high-frequency oscillations in void regions. Empirically, v-FM significantly im-
proves vector field smoothness and sampling efficiency on high-dimensional latent datasets,
while demonstrating intrinsic robustness to outliers.

1 Introduction

The Manifold Hypothesis posits that high-dimensional real-world data concentrate near a low-dimensional
manifold embedded in the ambient space (Fefferman et al., 2016). While theoretical verification of this
hypothesis remains a subject of active research (Pope et al., 2021), the remarkable success of deep generative
models offers a constructive validation: if data were uniformly distributed in the high-dimensional void,
efficient learning of the probability distribution would be computationally intractable (Bengio et al., 2013).
Thus, the capability to accurately model and sample from the data distribution is, in itself, a testament to
the existence of such low-dimensional structures.

Flow Matching (FM) has emerged as a powerful paradigm for capturing this distribution by unifying diffusion
models and continuous normalizing flows (CNFs) (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023).
It directly regresses a vector field that transports a simple base distribution to the data distribution. Unlike
score-based diffusion models, FM avoids the need to estimate the score function or to solve reverse-time
stochastic differential equations. Instead, it learns a deterministic ordinary differential equation (ODE)
whose solution defines an invertible map between latent noise and data.

Despite its conceptual elegance, FM faces a fundamental challenge in high-dimensional settings: the curse of
dimensionality and volume imbalance. In high dimensions, the data manifold occupies a negligible fraction
of the ambient space, and the majority of the integration domain consists of low-density “voids.” In stan-
dard FM, the training objective uniformly integrates the regression error over the entire probability path.
Consequently, the model is forced to solve the regression problem even in these vast void regions, where
probability paths are sparse or effectively irrelevant to the final generation quality. Forcing a neural network
to fit target velocities in these “don’t-care” regions results in a rough vector field that wastes model capacity
and causes numerical stiffness during ODE integration.
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In this work, we propose v-Flow Matching (v-FM) as a principled remedy for this issue. Our key idea is
to reinterpret FM as a regression problem under a density-weighted geometry induced by the ~-divergence
(Fujisawa & Eguchi, 2008). Instead of treating all spatial locations equally, we utilize the power density p;(x)”
as an importance weight that naturally highlights the data manifold. This approach effectively “focuses” the
learning process: the model prioritizes accurate vector field estimation where the data actually resides, while
being allowed to remain smooth and simple in the empty ambient space. Latent flow matching has been
independently explored by Lipman et al. (2023), who combine standard flow matching with pre-trained
autoencoders and provide a Wasserstein-2 control for the resulting latent flows. Our work is complementary:
we adopt a similar latent-flow setting, but instead of modifying the representation, we modify the regression
geometry itself via the y-weighted objective and analyse its effect through a ~-Stein and nonlinear Fokker—
Planck viewpoint. While Chen & Lipman (2024) explicitly extend Flow Matching to Riemannian manifolds,
our approach induces an implicit manifold geometry in the ambient space via density weighting, avoiding
the need for explicit charts or geodesics.

Weighting Schemes in Diffusion and Flow Models In the realm of diffusion models, the choice of the
weighting function plays a crucial role in balancing different signal-to-noise ratios across diffusion times. For
instance, methods like EDM and variance-preserving (VP) SDEs employ carefully designed noise schedules
to shape the training objective. However, these approaches typically rely on weights that depend solely
on the time t or the noise schedule. Our proposed y-Flow Matching differs fundamentally by introducing
spatially varying weights based on the model density p;(x), thereby prioritizing regions where the model is
confident while deprioritizing regions of low trust.

Density-weighted divergences and geometry The core motivation for our method roots in the ge-
ometry induced by density-powered divergences, in particular the ~-divergence, which defines an L2-type
structure weighted by p(x)7. Classically, the y-divergence has been used to downweight outliers and con-
taminated data, since regions where p(x) is small automatically receive a small weight. In our setting we
reinterpret this mechanism geometrically: low-density regions in the ambient space behave as geometric
“voids” where the teacher signals are unstable and less informative, and the p?-weighting provides a way to
organize regression on the data manifold while de-emphasizing these regions.

Flow Regularization Regularizing continuous flows to improve ODE solver stability is an active area of
research. Typical strategies involve explicit Lipschitz penalties, spectral normalization, or Jacobian regular-
ization to smooth the vector field. In contrast, our approach introduces an implicit regularization mechanism:
by modifying the loss geometry via a density weight, the learned vector field naturally avoids wild oscillations
in the voids. This can be seen as a form of geometric regularization that shapes the flow to follow the data
manifold more faithfully, without needing to impose explicit gradient penalties.

Our contributions are summarized as:

1. Dynamic Density-Weighting: We formulate v-FM as a weighted regression scheme that leverages
the target density p;. We propose a tractable, simulation-free implementation using particle-based
density estimation.

2. Variance Reduction Analysis: We theoretically demonstrate that our weighting scheme mini-
mizes the variance of the gradient estimator by suppressing high-noise signals in low-density regions.

3. Geometric Regularization: We show that v-FM implicitly regularizes the vector field, reducing
the Jacobian norm and enabling high-quality sampling with fewer function evaluations (NFE).

4. Robustness & Efficiency: Experiments on latent space CIFAR-10 confirm that v-FM achieves
a superior trade-off between generation quality and computational cost, while exhibiting strong
robustness to outliers.
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2 Flow Matching and Robust Divergences

2.1 Conditional Flow Matching

Avoiding the Likelihood Bottleneck Standard Continuous Normalizing Flows (CNFs) model the data
distribution p; by transporting a simple base distribution py through an ODE defined by a vector field vy.
The change of variables formula for CNFs expresses

log pi1(z) = log po(¢y( / Tr (Vavp(ae, 1)) dt,

where ¢, is the flow map generated by the vector field vy, and the integral captures the accumulated diver-
gence of vg along the trajectory. Maximizing such models typically involves maximizing the log-likelihood,
which requires a stable and accurate computation of the Jacobian trace to account for the change in volume
(the normalization constant).

Flow Matching (FM) circumvents this bottleneck by bypassing the explicit computation of the normalizing
constant. Instead, it defines a probability path (p;):co,1] between a known base distribution py and the
target pp, and learns a vector field whose associated continuity equation transports pg to p;. Rather than
maximizing a likelihood, FM directly regresses a neural vector field vg to match a target vector field u; that
generates the desired probability path.

Formally, let p;(z) be a probability density path connecting pg and p; over ¢ € [0,1]. This path satisfies the
continuity equation:
Opt

ot + V- (prug) = 0,

where u;(x) is the time-dependent vector field generating the flow. The goal is to regress the model vector
field vg(x,t) to match the target vector field us(x). The ideal marginal regression loss is defined as:

Lrm(0) = Et~u[0,1]Ezt~pt(w) [”UH(Itat) - Ut(xt)HQ] .

However, directly accessing the marginal vector field us(z) and the marginal density p:(z) is generally
intractable.

To solve this, Lipman et al. (2023) introduced Conditional Flow Matching (CFM), which uses a conditional
probability path ps(x | 21) given the data endpoint 21, and a corresponding conditional vector field us(x | 21).
Crucially, it has been shown that the gradients of the intractable objective (2.1) are identical to those of the
conditional objective:

Lorm(9) = Entif0,11 By mpy By (o) [lvo (e, 1) — we(e | 21)]]

In this framework, the marginal vector field wu;(x) implicitly emerges from the conditional field u;(z | z1),
allowing one to design pi(- | 1) in a convenient way (e.g., Gaussian interpolation) without computing the
Jacobian trace or normalization constants.

2.2 Motivation: Geometric Focusing via v-Divergence

From the information-geometric viewpoint, it is natural to interpret flow matching through the geometry
induced by divergences and the associated Riemannian metrics on statistical manifolds (Amari & Nagaoka,
2000; Ay et al., 2017). Standard Flow Matching implicitly minimizes the discrepancy between the target
and model vector fields in an unweighted L? sense. From the perspective of Optirnal Transport, this ob-
jective corresponds to minimizing the standard kinetic energy of the flow, £(v) = [ |Jv(z)||*ps(z) dz, which
is associated with the Wasserstein-2 geometry and the linear heat equation. Recent works have explicitly
targeted Wasserstein-optimal paths via minibatch optimal transport couplings (Tong et al., 2024), yet these
approaches typically operate in the unweighted L? geometry. While statistically consistent, this "flat" geom-
etry is inefficient in high dimensions because it assigns equal transport cost to the vast low-density "voids"
as it does to the concentrated data manifold. To address this, we propose changing the underlying geometry
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of the regression itself, moving from the L? regression (kinetic-energy) viewpoint to the robust y-geometry,
in analogy with the transition from the Fisher divergence to the y-Fisher divergence; see Barp et al. (2019)
for the diffusion score-matching divergence.

Formulation: Dynamic Density-Weighted Regression. We define the y-Flow Matching (y-FM) ob-
jective as the minimization of the weighted kinetic energy. Instead of the standard energy, we align the
regression with the density-weighted geometry induced by the ~-divergence (Fujisawa & Eguchi, 2008). We
define the weighted loss as:

‘67(9) = Et~u[0,1]Ew1~p1Ert~pt(~lm1) [wv(xtat)HUG(xtvt) - ut(xt | wl)”Q] ) (1)

Theoretically, to align with the geometry of the y-divergence, the weight should depend on the model density
do(t): '

Wil (1) o gor) (2)7 (2)
However, evaluating the model density gg()(z) during training is computationally prohibitive as it requires
solving the ODE. Therefore, we adopt the target density p;(z) as a tractable proxy. Under the assumption
that the model successfully tracks the target flow (i.e., go(+) = p¢), we define our practical weighting scheme
as:

w7($,t) = pt(x)ﬁy' (3)

This approximation allows us to compute weights solely based on the training data interpolation, preserving
the simulation-free nature of Flow Matching. Here, we adopt the Conditional Flow Matching (CFM) frame-
work, where us(z | 1) is the conditional vector field generating the probability path from noise to a specific
data point z;. Crucially, since the training samples x; are drawn from the target path p;, this weighting
naturally evolves over time. In the high-density manifold regions, the weight p;(x)” is significant, enforcing
accurate vector field matching. Conversely, in the empty ambient space (voids) where p;(x) & 0, the weight
vanishes. This effectively removes the chaotic, ill-defined target signals in the voids from the optimization
landscape.

Remark 2.1 (Geometric Interpretation via Weighted Transport). Our weighting choice w., o p; is not
a heuristic modification; it fundamentally alters the metric structure of the transport problem. Standard
FM minimizes the kinetic energy f |lv||?pdx, which underpins the Benamou-Brenier formula for optimal
transport. In contrast, our objective L. corresponds to minimizing the y-weighted kinetic energy:

Ey(vr) = / lve(2) | *pe ()7 da.

This defines a Riemannian metric (specifically, the «y-weighted Fisher information metric) where the infinites-
imal transport cost is scaled by the density power p*t7. In this geometry, distances in low-density regions are
compressed to zero. Consequently, v-FM does not simply "ignore” outliers; it solves the regression problem
on a statistical manifold where the voids are geometrically insignificant. This modification naturally links the
regression to the Porous Medium Equation (nonlinear diffusion) rather than the Heat Equation (linear
diffusion), providing a theoretical guarantee for compact support preservation as discussed in Section 3, see
Otto (2001) for extensive discussion.

2.3 Tractability via Particle-Based Estimation

Evaluating the exact density p;(z) for the conditional probability path (e.g., Gaussian mixtures in CFM)
can be computationally expensive or numerically unstable in high dimensions. Moreover, we seek a method
that captures the local geometry of the batch without solving differential equations.

We circumvent this bottleneck by adopting a particle-based estimation strategy. Since the mini-batch

samples B; = {zgi) B | at any given time t are drawn from p;, their spatial distribution provides a direct
Monte Carlo estimate of the density. We employ a robust kernel-based proxy for the density. Specifically,
we define the weight for a sample x; € B; based on the distance to its k-nearest neighbors:

wy (@) ~ exp (~Ldu(x)) ()
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where dy,(z;) = %Z?d lxe — xﬁj)H is the mean distance to the k nearest neighbors in the batch, and o is

a scaling constant. In effect, we set o = median{dy, (x,@) B | within each minibatch. While a naive k-NN
search can be computationally expensive, we show in Appendix B that the overhead is negligible for typical
batch sizes and that the performance is robust to the choice of k. We emphasize that (4) is a monotone
surrogate for the ideal escort weight w(z,t) o gp()(z)7: di(zy) increases in locally low-density regions,
hence W, down-weights updates in voids while preserving the standard FM objective structure.

This exponential weighting scheme has two key advantages:

e Simulation-Free: It requires only pairwise distance computations within the batch, preserving the
efficiency of Standard FM.

e Dynamic Adaptation: It naturally adapts to the flow. At ¢ ~ 0 (noise), particles are spread out,
leading to uniform weights. At ¢ — 1 (data), particles concentrate on the manifold, creating a sharp
weighting profile that isolates the data structure. In the high-dimensional voids surrounding the
manifold, the effective density p; vanishes. Consequently, w, suppresses the regression loss in these
empty regions, preventing the model from overfitting to unstable target signals where no data exists.
By focusing the training budget solely on the populated regions of the probability path, v-FM learns
a vector field that is accurate on the manifold and smooth elsewhere, as evidenced by the reduced
Jacobian norm in our experiments.

3 Theoretical Analysis

In this section, we analyze the theoretical properties of v-FM. We establish that our density-weighting
scheme is not merely a heuristic, but acts as a variance-optimal estimator and enforces physical constraints
consistent with nonlinear diffusion. To provide a concrete basis for the following analysis, we summarize the
practical training procedure of v-FM in Algorithm 1. This algorithm implements the simulation-free density
estimation discussed in Section 2. For simplicity we use linear interpolants in experiments.
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Algorithm 1 Training v-Flow Matching with Dynamic Density-Weighting

Require: Training data D, Batch size B, Weighting parameter v > 0, Neighbors &
Ensure: Trained vector field parameters 6
1: Initialize neural network parameters 6
2: while not converged do
3: > 1. Sample flow matching variables

4: Sample data batch z; ~ D
5: Sample noise batch zq ~ pg = N (0, )
6: Sample time steps ¢ ~ U[0, 1]
7 > 2. Compute interpolants and targets
8: xp <+ (1 = t)zp + taq
9: U < T1 — g
10: > 3. Dynamic Density-Weighting
11: if v > 0 then
12: Compute pairwise distances matrix for batch {z;}
13: for i =1 to B do
14: dy, (xl(f)) < mean distance to k-nearest neighbors
15: wW; $— exp (f%czk(xgi)))
16: end for
17: Normalize weights: w; + w; /(% > w;)
18: else
19: w; 1
20: end if
21: > 4. Optimization step
2 L(0) & 5 ity willog(r” ) — P

23: 06— UVQE(e)
24: end while

Although the modification in Algorithm 1 appears minimal, its theoretical implications are profound. In the
remainder of this section, we rigorously justify this design choice, demonstrating that this simple weighting
scheme induces a fundamental shift in the regression geometry.

3.1 Variance Reduction in High-Dimensional Voids

We first formalize the “Manifold Focusing” effect as a variance reduction problem. Recall that the conditional
flow matching objective targets the individual paths wu(z|z1). Let X(x) := Varg,|,[us(z|21)] denote the
intrinsic variance (ambiguity) of the target signal at location z.

Proposition 3.1 (Variance of the Weighted Estimator). Assume that the gradient of the vector field model
with respect to its parameters is bounded, i.e., there exists a constant K > 0 such that ||Vove(x,t)[2, < K
for all x,t. Then, the trace of the covariance matriz of the gradient estimator §., satisfies the bound:

Tr(Var[g,]) < 4K / ) () Te(20() i + Cog, (5)
R
where Cgignal Tepresents the variance contribution from the learnable mean field.

Proof. Let the per-sample loss for a target path connecting zo to 21 be J;(0; 21) = w (z¢)||ve (@) —us(@e|z1)[2.
The stochastic gradient is g, = VoJ; = 2w, (2:)(Vovg) T (v — us(2¢|71)). Using the Law of Total Variance,

we decompose the variance over the marginal density p;(x):

Var[gy] = Eznp, [Var(gy | )] + Vargp, [E[gy | 2]].
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We focus on the first term (intrinsic noise). For a fixed location x, the conditional variance is due to the
variability of the target w(x|z1):

Var(g, | ) = Ep,je [13y — Elga]] (6)
= 4 (2)* Eq o | [[(Vovo(@) T (ue() = uelarlen)||*] (7)
Using the operator norm inequality ||ATb[|? < ||A||2,[|b]|?, we have:
Tr(Var(gy | 2)) < 4wy (2)* [Vove(2) ]2, Tr(Se(@)).
Applying the boundedness assumption ||Vovg(z)||2, < K, we obtain:
Tr(Var(g, | ) < 4Kw., (2)*Tr(Z(z)).

Integrating this with respect to pi(z) yields the first term of the bound in Eq. (5). The second term
(Csignat) corresponds to Vary[E[jy|z]], which depends on the learnable signal u;(x) and is independent of
the conditional noise variance X (z). O

In standard FM (w, = 1), the integral is dominated by the volume of the void space where 3;(z) is large.
By choosing w.,(x) o pt(z)?, the integrand becomes proportional to p:(z)!*?7%;(z). Under the reasonable
assumption that the signal ambiguity scales inversely with density (i.e., 3;(x) ~ pi(z)™*Xg for a > 0), the
~v-weighting with v > «/2 ensures that the noise contribution vanishes:

lim  py(z)' 7278 (x) = 0.
pt(x)—0

This suggests that v-FM suppresses gradient noise from the voids, concentrating the optimization budget on
the high-density region.

When is the variance—density scaling plausible? The heuristic scaling ¥;(x) o pi(x)~% is most
plausible for conditional path designs in which the conditional target u:(z; | 1) becomes increasingly ill-
conditioned in low-density regions of the marginal p;. A representative example is Gaussian CFM, where x;
is obtained by adding Gaussian noise and wu; involves a score-like term of the intermediate marginal; in such
settings the conditional variance of u; given x; typically increases as p;(x;) decreases, reflecting amplification
of estimation noise in “void” regions. More generally, for transport-noise interpolations that mix a deter-
ministic drift toward z; with a stochastic perturbation, the signal-to-noise ratio of the conditional direction
deteriorates away from the data manifold, so that tr ¥ (x) is larger where ps(x) is smaller. Our analysis in
Proposition 3.1 should be read in this spirit: it formalizes how ~-weighting suppresses contributions from
such high-variance, low-density regions, rather than requiring an exact power-law identity.

3.2 Physical Consistency with Liouville Dynamics

This subsection is intended as a geometric analogy, not as a derivation of the exact training dynamics of y-FM.
We use a classical model problem from optimal transport—the Wasserstein gradient flow of a Tsallis-type
energy—to make precise a qualitative mechanism: density-power weighting suppresses motion in low-density
(“void”) regions. In particular, the resulting continuum dynamics exhibit a degenerate diffusion whose
effective diffusivity vanishes as p — 0, which leads to a finite-speed propagation effect.

Consider the generalized vy-entropy functional:

-amzi/mmwwm

Notice that this functional corresponds exactly to the self-divergence term in the definition of the ~y-divergence
(up to a sign). Just as minimizing y-divergence statistically ignores outliers (Section 3), the gradient flow of
its associated entropy JF. physically restricts the spread of probability mass.
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The Wasserstein gradient flow is defined by the continuity equation driving the density along the gradient
of the variation (see, e.g., Jordan et al. (1998); Ambrosio et al. (2008)).

0F.
op
Calculating the variation 6};7”;’)] = %Hp'y and substituting it gives the explicit dynamics:
v+l v 1+~
atp(xvt) - ~ V- (p(xvt)vP(xat) ) - A(p(xat) )7 (8)

Equation (8) is the Wasserstein gradient flow of F, and will be used here as an exactly analyzable toy model
that captures the qualitative effect of ~-weighting. For v > 0, the diffusion is degenerate: the effective
diffusivity scales like p” and vanishes as p — 0, which is the mechanism behind finite-speed propagation.
Proposition 3.2 (Preservation of Compact Support). Let p(x,t) be the unique weak solution to the PME
(8) with v > 0, subject to a non-negative initial condition py € L'(R%) N L>(RY). If the initial support
supp(po) is compact, then the support supp(p(-,t)) remains compact for all t > 0. Moreover, there exists a
constant C' depending on the initial mass such that the support is contained in a ball B(0, R(t)) with

1
dy+2

R(t) < C(1+1t)?, where =

Proof. The proof relies on the Comparison Principle for the Porous Medium Equation (Vazquez, 2007). The
principle states that if two solutions u and v satisfy u(z,0) < v(z,0) everywhere, then u(x,t) < v(x,t) for
all t > 0. We construct an explicit supersolution using the Barenblatt—Pattle solution B(x,t; M), which
represents the diffusion of a Dirac mass M. Let B(x,7; M) be the Barenblatt profile centered at the origin
with mass M at a time shift 7 > 0:

1/~

B(z,7) =7 (C(M) - ,‘£7'_2'6|30\2)+ ,

where (-)+ = max(-,0). Since the initial data py is bounded and has compact support, we can choose a
sufficiently large mass M and a time shift 7 > 0 such that the Barenblatt profile covers the initial data:

po(z) < B(z,7) for all z € RY.
By the Comparison Principle, this ordering is preserved for all subsequent times ¢ > 0:
p(x,t) < Bz, t+ 7).
The support of the Barenblatt solution B(-, ¢+ 7) is explicitly known to be a ball of radius

Rp(t) = C(:/I) (t+7)°.

Since 0 < p(z,t) < B(x,t + 1), the support of p must be contained within the support of B. Thus,

supp(p(-,t)) € B(0, Rp(t)),

which implies that the support remains compact and expands at a rate of at most O(¢°). In the limit
v — 0, the exponent 8 — 1/2, but the Barenblatt profile converges to a Gaussian which is strictly positive
everywhere. Thus, the strict containment within a finite ball holds if and only if v > 0. O

In the toy model (8), the limit v — 0 reduces to the heat equation, whose solutions become instantly
positive everywhere, reflecting infinite-speed propagation. By contrast, for v > 0 the degeneracy at p =~ 0
yields an evolving interface and a finite-propagation behavior, as formalized in Proposition 3.2. While v-FM
does not literally solve (8), the same mechanism provides a useful intuition: when the weight behaves like
w(z,t) o< p(x)?, updates are strongly down-weighted in low-density regions, and empirically this reduces
spurious mass placed in “void” areas (a “void rejection” effect).
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Remark 3.3 (Generalized entropy and maximum entropy principle). The functional

Pl = - / p(z) ™+ da

is, up to an affine rescaling, the negative of the Tsallis q-entropy with ¢ = 1+~ (Tsallis, 1988). It is well
known that maximizing the Tsallis entropy under mass and second-moment constraints,

[p@raz=1, [ alp(o)de = ms,

yields generalized Gaussian (or q-Gaussian) densities of the form

1
_ f=r
pue) =27 (1= (1= q)Blle — nl?) T,
for suitable parameters § > 0 and p € R?. These q-Gaussians are precisely the self-similar Barenblatt
profiles of the porous medium equation (8) for an appropriate correspondence between q and the nonlinearity
exponent 1+, see, e.g., Malacarne et al. (2001); Takatsu (2012). In particular, they exhibit compact support
when v > 0, providing concrete examples of the finite-support behaviour described in Proposition 3.2.

3.3 Motivating Example: 1D Double-Well Potential

To visualize the macroscopic effect of our weighting scheme, it is instructive to consider a one-dimensional
toy problem where the dynamics can be analyzed exactly. Consider a target distribution defined by a double-
Lyt — 322 where the target density satisfies paata(z) o< exp(—V (z)). We analyze the

well potential V(z) = j2* — §
probability flow transporting a standard Gaussian noise N (0,1) to this target.

The ~-weighted continuity equation can be mapped to a nonlinear Fokker—Planck equation with density-
dependent diffusion:
e =V - (p:VV) + DV - (p:Vpy), 9)

where D is a diffusion constant. The behavior of this system critically depends on ~:

e Case v = 0 (Heat Equation): The diffusion term becomes linear (DAp;). A fundamental property
of the Heat Equation is its infinite speed of propagation. As illustrated in Figure 1 (Standard FM),
probability mass instantaneously leaks into the high-potential barrier regions (voids) between the
wells. This corresponds to the model "hallucinating" paths where no data exists.

e Case v > 0 (Porous Medium Equation): Eq. (9) becomes the Porous Medium Equation (PME).
A hallmark of the PME is its finite speed of propagation. The effective diffusivity Deg o< p; vanishes
in low-density regions. Consequently, the diffusion physically stops at the boundaries of the wells.
As shown in Figure 1 (y-FM), this creates a sharp geometric barrier that confines the flow to the
main modes, preventing leakage into the void.

This analytical example provides a rigorous justification for the "Manifold Focusing" effect: our dynamic
weighting w., empirically emulates the finite-propagation physics of the PME, naturally enforcing compact
support for the learned distribution.

3.4 Geometric Foundation: The ~-Stein Viewpoint

The physical behavior described by the PME (Section 3.2) is not accidental; it arises from the intrinsic
geometry induced by the density weighting. While standard Flow Matching minimizes kinetic energy in a
flat Euclidean geometry, we argue that -FM minimizes energy on a statistical manifold endowed with a
density-dependent metric.

The y-Stein Metric. From the perspective of Information Geometry (Eguchi, 2009), the v-divergence gen-
erates a Riemannian metric structure on the space of probability densities. Following standard conventions



Under review as submission to TMLR

High-Noise Regime (D =1.2): Robustness of y-FM

10
~— standard (y=0)
— yFMy=1)

Potential V(x)

0.8

0.6 1

Potential Energy

0.4

Probability Density o¢(x)

0.2

State Space x

Figure 1: Finite vs. Infinite Propagation. Evolution of density under a double-well potential. (Left)
Standard FM (y = 0): Corresponds to linear diffusion (Heat Equation), causing probability mass to leak
continuously into the low-density barrier (void). (Right) v=-FM (v = 1): Corresponds to nonlinear diffusion
(Porous Medium Equation) with finite propagation speed. The flow respects the potential barrier, keeping
the mass tightly confined to the modes. This illustrates the mechanism of void rejection.

in information geometry, we hereinafter denote the parametric family of model densities by gg. The weight-
ing wy ~ ¢/ in our objective (Eq. 1) naturally corresponds to the y-weighted Fisher information metric g
(Fujisawa & Eguchi, 2008; Matsuzoe, 2017):

ggj)(ﬁ) = /d 09, log qo(x) O, 1og qo () qo ()" de. (10)
R

This metric measures distance based on the escort measure du., ¢'t7dz. Crucially, regions with low density
q(z) ~ 0 make negligible contribution to the metric tensor. Geometrically, this means that "distances" in
the void regions are compressed to zero, effectively removing them from the optimization landscape. The
detailed discussion is given in Appendix A.

Flow Matching as Geodesic Optimization. Let {gy : § € ©} be a parametric family of densities on R?,
and let ¢ — 6(t) be a time-dependent curve in parameter space with associated path of densities gg(;). A
probability flow (g, vt)iefo,1) satisfies the continuity equation

Orqo()(x) +V - (%(t) (2) vt(x)) =0.

For a fixed 0, we equip the space of vector fields with the y-weighted inner product
(U, v)g~ == / u(z) "v(z) go(z) 7 de,
Rd

and denote by L%(qg) the corresponding Hilbert space. The ~-Stein operator associated with gy is defined
by
AP (@) = a0(@) " V(a0 (@) T (@), fiR R

We regard the tangent space of the statistical manifold at 6 as the closure (in L2(gp)) of the range of AEZZ):

TyM., = { A f: f € C2 (R4, RY)}.

In other words, Ty M., consists of all y-Stein-type velocity fields that preserve total mass under the weighted
geometry.

The ~v-weighted flow-matching objective can be written as

1
2
. :/0 [|ve —U:HLg(qem)dt’

10
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where v} is the ideal velocity field induced by the target transport. For each ¢, the minimizer u; of £ over
Ty(+)M, is the orthogonal projection of v; onto the tangent space with respect to (-, -)g(s),4. This motivates
the definition of the projection operator

.72 o . 2
Mo : L3(a0) = ToMy,  Tosf]:=arg min [|f —ulf1, ).

In particular, u; = Ilg() [v7] is the 7-Stein projection of the ideal velocity field onto the statistical manifold.

Following Appendix A, the ~-Stein connection V(¥ is characterised by the requirement that the covariant
derivative of a time-dependent velocity field u; along a curve ¢ — 6(¢) is obtained by projecting the ordinary
time derivative back onto the tangent space:

DE’Y)Ut = HQ(t),’y [atut} .

A curve 0(t) is a (parametric) geodesic of the y-Stein geometry if its associated velocity field u; € Ty M.,
is covariantly constant, that is,

Dt(v)ut =1Ily(t),, [Orue] =0 for all ¢ € [0,1].

Therefore, minimizing £, over admissible flows (qg(t), ut) can be interpreted as searching for geodesic

tefo,1
curves on the statistical manifold endowed with the fy—Stein[ rn]etric and connection. The case 7 = 0 reduces
to the flat L? geometry, where the tangent space coincides with L2(q9(t)) and Il o is the identity, so that
geodesics correspond to straight lines and the velocity field must be defined everywhere. For ~ > 0, the
metric is weighted by qé(t;, so that directions supported in low-density regions have negligible norm. As a
consequence, the optimal velocity field produced by 7-FM concentrates on the high-density manifold of the
data, not because it “ignores” data, but because the intrinsic geometry itself is dominated by the manifold

structure through the y-Stein projection.

3.5 Implicit Geometric Regularization

We now formalize the implicit-regularization intuition stated earlier by deriving a Sobolev-type roughness
functional induced by the y-weighted objective. Let Jy(z,t) = V,vg(x,t) be the Jacobian of the model. The
stiffness of the ODE solver is controlled by the Lipschitz constant L(t) ~ sup, ||Jo(z, )| -

In unweighted regression, minimizing the loss in voids (where the target u; is chaotic) requires vg(z,t) to
change rapidly, driving ||Js(z,t)||r to be large. We formalize the regularization effect as a bound on the
weighted Sobolev norm:

Lo ()= [ ey @) )|V vn (. ) (1)

By downweighting the voids (w(z,t) — 0), v-FM relaxes the constraint on vg(x,t) in these regions. As-
suming the neural network has a spectral bias towards low-frequency functions, removing the high-frequency
targets in the voids implies that the minimizer vj(z,t) will effectively default to a smooth interpolation in
the ambient space.

Empirically, we observe a significant reduction in the Jacobian norm within the ambient space:
>0 0
Eunpumiens [1V5057 @0 7] € Banponsiens [[1V205” (@, 0) 1]
where pambient represents the distribution of the void regions (e.g., uniform noise in the bounding box). This
reduction in the local Lipschitz constant implies a less stiff ODE, permitting adaptive solvers to take larger

integration steps. This mechanism directly accounts for the improved NFE (Number of Function Evaluations)
reported in our experiments.

11
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A Dirichlet—spectral perspective. To connect the empirical reduction in (11) with a more geometric
picture, it is convenient to introduce the weighted Dirichlet form associated with the escort weight. Such
variational limits of discrete regularizers on data manifolds have been rigorously studied in the context of
Optimal Transport by Hamm et al. (2025). Fix a time ¢ and write p; for the marginal density of x;. Using
the weighting factor w. (z,t) o< go(+)(z)?, we introduce the escort measure

Ay (%) = qory () w- (2, 1) d.

We then define the weighted Dirichlet form associated with this measure:

ElFf) = [ IVt @)1 dis (o) (12)
By integration by parts, this form is associated with the self-adjoint operator
Ew,tf = qa(i)vz' (qy(a:, t) va:f(x))7 (13)

with g, (z,t) = qo(t)(x)w, (z,t) in the weighted Hilbert space L?(1,t). The Poincaré inequality for i, can
then be written as

L@ = 50" i) € 5= Euh ) Fu= [ S (14

where A, ; > 0 is the spectral gap, that is, the smallest positive eigenvalue of —L, ;. When gy is strongly
log-concave with curvature lower bound & > 0, the escort measure p. ; inherits a stronger curvature of order
(14 7)~, and the spectral gap A, grows at least linearly in (1 + 7).

To make the link with (11) more explicit, let us consider an idealized, regularized regression problem at a
fixed time ¢ and for a single scalar coordinate of the vector field. Let u; denote the target component and
consider functions f : R — R. We introduce the Tikhonov-regularized objective

Toalf) = [ @y (0.0) (F@) = (@)’ de+ 78,4 (L), >0, (15)

which is the population analogue of a 7-FM regression loss with an explicit weighted Sobolev penalty. The
next proposition studies an idealized population objective where we add an explicit weighted Sobolev penalty
to the v-FM loss. Although Algorithm 1 does not explicitly add a Tikhonov penalty, the analysis above
identifies a roughness functional naturally associated with the ~-weighted objective. In practice, this provides
a mechanistic explanation for the observed smoothness improvements, which may be further amplified by
the implicit bias of SGD (see, e.g., Rahaman et al., 2019; Xu et al., 2020; Jin and Montufar, 2023). The
Dirichlet-regularized objective in (15) should therefore be viewed as a tractable surrogate that makes the
geometric effect of the escort weighting explicit in the eigenbasis of the weighted Laplacian. Let fJ, denote
the unique minimizer of 7 ;.

Proposition 3.4 (Spectral shrinkage under y-weighted Dirichlet regularization). Let {cpg”t)}kzo be an
orthonormal eigenbasis of L? (t~,¢) consisting of eigenfunctions of —L. ¢,

_ 5”80’(: it _ ,U;(: 1) (p(v t)7 0= u((]v ) Iugv )t) u(v t) <l (16)

FEzpand the target as

Z b("/a (’th) (17)

k>0
Then the minimizer 5, of (15) admits the ezpansion
it it it 1 it
— Zagg )ngy )(x), ](;Y ) _ o) bg)’ ) (18)
k>0 1+ 7
Moreover, its Dirichlet energy is given by

(v:t)

* * My (7:t)
57 f,vf, = b (19)
vt(vt vt) ,;(1—1-7;1(”)) ( )

12
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Proof. Since (15) and (12) are quadratic and diagonalizable in the eigenbasis {ap } we write

Za (p(vt) Zb (p(vt)

k>0 k>0

Orthogonality in L?(,:) gives

/%m(ﬂf)wv(ﬂfvt) (fla) = (@)’ do = (ar — bi),

k>0

while (12) and (16) imply

'yt f, Zu("/t)

k>1

Therefore

jw,t(f):Z[(ak—bk) _|_7_M(wt) }

k>0

splits into independent one-dimensional problems in the coefficients a;. Minimizing each term over ay yields

1
Gy Ok

2ar —by) +2rp k=0, = a=——p
1+ 7p

which gives (18). Substituting back into &, .(f, f) directly yields (19). O

In the case of v = 0, the measure pg; reduces to the standard density gy, and Eq. (18) recovers the
standard spectral filtering result known in manifold regularization (Belkin et al., 2005). The significance

of Proposition 3.4 lies in the dependence on +: as discussed in the proof, increasing v effectively rescales
the eigenvalues ,u(% ) thereby intensifying the shrinkage effect on high-frequency modes compared to the
standard case. We suggest a close relation to the Witten Laplacian and the Bakry Emery curvature in the
proof. Assume that the marginal density gg(;) admits a smooth potential U such that gg(;)(7) = exp(—Uy(x)).

Then the generator L. ; in (13) can be rewritten as

Lyif (@) = Af(2) + (Ve logw, (2,1), Vo f () = Af(2) = (1 +7) (VaUi(2), Vo f(2)),

which is the Witten (or Bakry-Emery) Laplacian associated with the potential (1+7)U;. In the Bakry-Emery
I's calculus, the curvature-dimension condition

V2Uy(z) = kly (k> 0)
implies that the carré du champ T'(f) = ||V, f||* and its iterated form Ty(f) satisfy

1

S (D) = 2V £, VaLo o f)) 2 (1 9)RT(f) VS,

Lao(f) = 5

As a consequence, the measure /i, ¢+ satisfies the Poincaré inequality (14) with a spectral gap bounded below
by
M 2 (L4,

Thus the escort reweighting w, o qel(;w simply rescales the potential in the Witten Laplacian, amplifying
curvature and enlarging the spectral gap. This provides a geometric justification for our heuristic that the
eigenvalues M(% ) of —L.; grow approximately linearly in (1 4+ ), and therefore the high-frequency modes
in the Dirichlet energy (19) are increasingly damped as v increases.

It is noted that the factor B

F(p) izm

13
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governs the contribution of an eigenmode with eigenvalue i to the roughness (19). A direct calculation shows
1—
F’ 1) = 77—”37
(1+7p)

so that F’'(u) < 0 whenever p > 1/7. In other words, for sufficiently high-frequency modes (large eigenvalues

ufj’t)) the Dirichlet contribution
(1)
H

b(%t) 2
(1+7u")? (6)

k

is a decreasing function of u,(:’t). Under curvature assumptions on gy, the escort operator —L,; has

eigenvalues that increase with v (roughly u,(cv’t) ~(14+7) ,u,(co’t))7 so that high-frequency contributions to (19)

are systematically damped as y grows. If the target field u; carries most of its energy in such high-frequency
modes, the total roughness &, +(f] ;, f5 ;) decreases as a function of .

In practice, the neural network vector field vg(x,t) is not explicitly regularized by (15). However, stochastic
gradient descent with a finite-capacity network is known to exhibit an implicit bias towards functions with
small Sobolev norm. The above spectral calculation suggests that the v-dependent escort geometry further
amplifies this bias on the data manifold: the weighted roughness

Coomsinems = [ 10, (0,8) [ Vova(a, ) [ da (20)
R

is dominated by high-frequency modes whose eigenvalues increase with -, and these modes are exactly those
that are most strongly damped by the effective Tikhonov term. This provides a theoretical explanation for
the empirical trend observed in the following section, where the smoothness metric decreases as <y increases,
and supports the interpretation of v-FM as a geometrically informed regularizer that suppresses oscillatory
behavior in void regions while preserving expressiveness near the data manifold. In practice we do not add
the Dirichlet term explicitly; instead the combination of spectral bias and finite training time acts as an
effective Sobolev regularizer.

3.6 Theoretical Selection of « via Geometric Selection Criterion

A critical practical question is the selection of the density-weighting parameter . Typically, the method
of cross-validation is employed, but the computation for the current task is expensive and infeasible. Ac-
cordingly, we construct a tractable function-space proxy suitable for Flow Matching, which we term the
Geometric Selection Criterion (GSC):

GSC(’Y) = MMDQ(pdata;p@.y> + )\Rsmooth(ve.y)a (21)

where A > 0 is a trade-off parameter (we set A = 1). Here, the squared Maximum Mean Discrepancy (MMD)
serves as the bias proxy L(vy), measuring generation quality. The roughness functional R oughness(ve.,) derived
in (20) serves as the stability penalty. Minimizing the GSC identifies a v that achieves the optimal trade-off
between faithful data reconstruction and geometric regularity.

4 Experiments

4.1 Synthetic Verification: Implicit Regularization

Before evaluating our method on complex image datasets, we first verify the "Implicit Geometric Regular-
ization" hypothesis (Section 3.4) in a controlled high-dimensional setting. A fundamental challenge in Flow
Matching is the "curse of dimensionality": as the dimension D increases, the relative volume of the data
manifold vanishes, and the vast majority of the integration domain becomes empty "void" space.

Experimental Setup. To simulate this regime, we construct a 2-dimensional ring manifold embedded in
a high-dimensional space R?°. The first two dimensions contain the data structure (a noisy circle), while

14
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Standard FM (y = 0): Samples (2D Slice) Standard FM ( y 0) Ve-:tor Fle\d Shce) . Standard FM (y = 0): Velocity Norm |v]> (Slice)
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Figure 2: Visualization of Implicit Geometric Regularization in High Dimensions. We trained flow matching
models on a 2D ring embedded in a 20-dimensional space (D = 20). The plots show the 2D slice of the
learned vector fields and their velocity norms. (Top) Standard FM: The vector field is active with high energy
even in the data-free void (center), indicating inefficient global regression. (Bottom) v-FM (v = 1): The
density-weighted objective successfully suppresses the flow in the void (dark region in the rightmost heatmap),
concentrating the vector field solely on the data manifold. This confirms the theoretical prediction of void
rejection.

-4 -3 -2 -1 [ 1 2 3 4 4

the remaining 18 dimensions consist of low-magnitude Gaussian noise, representing the ambient space. We
train both Standard FM (v = 0) and 7-FM (v = 1) on this dataset and analyze the learned vector fields by
taking a 2D slice of the 20D space.

Results: Void Rejection and Energy Efficiency. Figure 2 visualizes the velocity norm ||vg(z)||2 of the
learned fields.

e Standard FM (y = 0): As shown in the top row, the model learns a vector field that remains
active with high magnitude even in the center of the ring (the void), where no data exists. This
confirms that unweighted regression wastes model capacity by attempting to fit target signals in
irrelevant regions, leading to a "hallucination" of flow in the empty space.

e v-FM (v = 1): In contrast, the bottom row shows that v-FM effectively suppresses the vector field
in the void. The velocity norm drops to near zero in the center (visualized as the dark region), and
the flow is strictly confined to the vicinity of the data manifold.

This result empirically supports the finite-propagation intuition derived in Proposition 3.2. By ignoring the

void, v-FM implicitly regularizes the geometry, ensuring that the ODE solver does not waste evaluations on
non-existent paths.

4.2 Latent-flow modelling of CIFAR-10

Our experimental setting follows the general latent-flow paradigm of Lipman et al. (2023) in the sense that we
train a flow in the latent space of a pre-trained autoencoder rather than directly in pixel space. Concretely,
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we first train an autoencoder on CIFAR-10 and then freeze the encoder and decoder; all flow-matching
experiments are carried out in the resulting latent space.

In contrast to Lipman et al. (2023), who employ the standard (unweighted) flow-matching objective and
focus on high-resolution image synthesis, we keep the latent architecture fixed and vary only the regression
geometry in latent space via the y-weighted loss (1). Thus, differences in Maximum Mean Discrepancy
(MMD), smoothness, and NFE observed in Table 1 can be attributed to the effect of the y-weighting rather
than to changes in the autoencoder or flow architecture.

We evaluate v-FM on the CIFAR-10 dataset using a latent flow model. An autoencoder compresses the
images into a lower-dimensional latent space, and the flow is trained to model the distribution of these
latents. We focus on two metrics:

e RBF-MMD? (lower is better): Measures the discrepancy between generated samples and real data
in latent space.

e Smoothness (lower is better): Measures the average squared Frobenius norm of the Jacobian of vy,
i.e., Remooth(vg). We report an ambient smoothness proxy under N (0, I) for stability comparison.

Table 1 summarizes the performance of v-FM with varying v. We evaluate the generation quality using
RBF-MMD? computed against the inlier and outlier evaluation sets. Additionally, we report the Smoothness
of the learned vector field, defined as E, 0,1 [|[Vv(2)]|%], where lower values indicate a smoother and more
stable flow.

The results show that v = 1.0 achieves the best performance across all metrics. It yields the lowest Inlier
MMD (0.0126), significantly outperforming the baseline (v = 0.0, 0.0481). Furthermore, v = 1.0 achieves the
lowest Smoothness score (14.46). This indicates that our weighting scheme not only filters out outliers but
also regularizes the vector field, leading to a smoother flow that is easier to simulate. In contrast, excessively
large v (e.g., ¥ = 4.0) degrades both generation quality and smoothness, likely due to over-concentration of
the probability density.

Table 1: Quantitative results on CIFAR-10 latent flow matching. We report RBF-MMD? (lower is better)
and Vector Field Smoothness (lower is better).

~y Inlier MMD  Outlier MMD  Smoothness
0.0 (Baseline) 0.0481 0.0875 22.42
0.2 0.0490 0.0903 28.72
0.5 0.0299 0.0675 26.72
1.0 0.0126 0.0406 14.46
2.0 0.0466 0.0874 24.21
4.0 0.0485 0.0891 22.82

Adaptive Selection via GSC. To select the optimal v without relying on visual inspection, we utilize
the Geometric Selection Criterion (GSC) derived in Section 3.6. As shown in Figure 3b, we evaluate the
GSC (Eq. 21) across a grid of v values. The curve confirms that v = 1.0 effectively minimizes the combined
objective, balancing the reduction in MMD (Bias) with the improvement in vector field smoothness (Vari-
ance). This theoretically grounded selection aligns with our quantitative results in Table 1, where v = 1.0
achieves the best generation quality.

Thus, minimizing GSC creates a “geometric anchor” that prevents the model from overfitting to the sparse
ambient space. Future work may explore scalable approximations of the rigorous penalty, such as diagonal
approximations or last-layer Laplace approximations, to bridge the gap between the rigorous theory and
deep learning practice.
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(a) Jacobian Norm Distribution (b) SIC Selection Curve (Optimal y = 1.0)
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(a) Jacobian norm distribution (b) GSC selection curve

Figure 3: Analysis of geometric regularization and hyperparameter selection. (a) Micro-level analysis: The
distribution of the Jacobian norm ||V vg| F (roughness) for the baseline (v = 0) and our method (v = 1.0).
Our method suppresses high-frequency oscillations, resulting in a smoother vector field (concentrated at
lower values). (b) Macro-level selection: The GSC score across different v values. The GSC, computed
as a sum of normalized bias (Inlier MMD) and variance penalty (Smoothness), identifies v = 1.0 as the
optimal trade-off.

4.3 Stress test under contaminated latents

Although our main experiments use clean data and focus on geometric regularization on the data manifold, it
is natural to ask whether the same density-weighted geometry also confers classical robustness in the presence
of explicit contamination. To probe this aspect, we construct a synthetic contaminated latent dataset by
injecting a small fraction of adversarial latents into the training set. These latents are sampled from a
broader Gaussian distribution that lies far from the main data manifold, but spatially proximate enough to
distract the learning process. Figure 4 visualizes the generated samples projected onto the first two principal
components. Standard Flow Matching (v = 0, Left) fails to distinguish between inliers and outliers: the
learned flow attempts to fit all target signals, treating noise as valid data. This results in distorted manifolds
and poor generalization. In contrast, y-Flow Matching (v = 0.5, Right) downweights the adversarial latents
via p}, effectively ignoring their contribution. The learned flow remains aligned with the main data manifold,
yielding robust samples that are visually indistinguishable from the clean-data case.

Finally, we examine the relationship between vector field smoothness and the number of function evaluations
(NFE) required by an ODE solver. We consider a range of NFE values and measure the Fréchet distance
between generated images and real images in the latent space. With a smooth vector field (achieved by
~v-FM), a coarse solver with low NFE already yields high-quality samples, since the local truncation errors
do not accumulate catastrophically. In contrast, with a rough vector field (standard FM), reducing the step
size (increasing NFE) does not necessarily improve sample quality: the solver is approximating a poor flow
that overfits the voids. High NFE efficiency is often associated with flow rectification methods that enforce
straight trajectories (Liu et al., 2023). Our results suggest that v-weighting achieves a similar efficiency gain
by smoothing the vector field in void regions, effectively removing the stiff components of the dynamics.

5 Conclusion

We introduced ~-Flow Matching as a robust framework for continuous normalizing flows. Our analysis
establishes that the ~v-weighted objective serves as an implicit geometric regularizer, yielding smoother vector
fields by filtering out chaotic signals in low-density regions. Theoretical connections to the porous medium
equation provide a physical grounding for this behavior, interpreting void rejection as a finite-propagation
phenomenon. Experiments confirm that v-FM significantly reduces vector field roughness and improves
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Standard FM (Loss: 2.031) Gamma FM (Loss: 0.796)
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Figure 4: Stress test under contaminated latents. Left: Standard FM (v = 0) is misled by adversarial latents
and learns a distorted manifold. Right: 7-FM (y = 0.5) downweights the contaminants via p; and preserves
the structure of the inlier manifold. This experiment illustrates that the same density-weighted geometry
used to organize learning on the data manifold also yields classical robustness to explicit contamination.

Efficiency Analysis: NFE vs Sample Quality
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Figure 5: Efficiency Analysis (NFE vs. quality). Comparison of generation quality across different ODE
solver steps. Red (y-FM): Achieves optimal quality at relatively low NFE, reflecting a straight and well-
conditioned flow. Blue (Standard FM): Suffers from an Inverse Precision Paradoz, where increasing solver
precision does not correct for a vector field that has learned the wrong geometry.

sampling efficiency without compromising generation quality. This work suggests that density-weighted
regression should be considered a standard tool for high-dimensional generative modeling, where classical
robustness emerges naturally from the underlying geometry.

Looking forward, the implications of this geometric framework extend well beyond image synthesis. One
promising direction is the theoretical expansion into Optimal Transport, where the y-weighted kinetic energy
suggests a new class of transport costs that naturally penalize paths through low-density regions. Further-
more, the principle of void rejection holds significant potential for Causal Flow Matching; by automatically
downweighting regions with poor support (i.e., violations of the positivity assumption), v-FM could enable
more robust estimation of counterfactuals and interventional distributions in high-dimensional causal dis-
covery. We conclude that density-weighted regression offers a principled path for organizing learning on the
data manifold, providing a robust foundation for next-generation generative and causal modeling.
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A ~-Stein connections and geodesic viewpoint

We briefly sketch how the y-divergence induces a Riemannian structure and an affine connection which are
naturally expressed in terms of 7-Stein operators. Let {gs}oco be a parametric family of densities with score
functions

si(z;0) = Op: log go() -

The ~-divergence D.(p,q) generates a Riemannian metric g and a pair of dual affine connections
(V) V) on the statistical manifold M = {gs} according to the theory of minimum contrast geome-
try (Eguchi, 1992; 2009). Ignoring an irrelevant constant factor, the induced metric takes the form

gg)(Q) = /si(x;ﬂ) sj(z;0) go(x)' T du,
which coincides with the y-weighted Fisher information. Equivalently, if we define the escort measure

x)1
dpg.(x) = golx) 7 dx,

+(6)

then
9(0) = Z,(0)E,,  [si55] -

For a tangent vector £ = £°0; € Ty M, we associate the score field
ug(w;0) = E'si(x;0) .
The map £ — ug¢ embeds the tangent space into the weighted Hilbert space
Moy = L¥(qy " () dz) ,

and the metric can be written as

57610 = (e, oo = [ i O)un(wi6) an(z) .

20


https://openreview.net/forum?id=XJk19XzGq2J

Under review as submission to TMLR

Following the general construction of Eguchi (1992), the affine connection V) can be realized as the L*-
projection of the #-derivative of score fields back onto the score span. More precisely, for each coordinate
direction 0y we consider Oys; = Opr0pi log go as an element of Hy , and define the projection

- [Orsi] = TG (0)s5(-10),

where the connection coefficients ng)j are determined by the orthogonality relation

<8;€si—f‘§z)jsj, sz> =0, Ve.
0,y

This yields the explicit formula
97 OTT(6) = [ Busiwi6) su(w:0) o)+ da

or equivalently,
Q4 (6) = g3(0) / Onsi (5 0) 5¢(; 0) go () 1+ dr.

The ~-Stein operator
AQS = a5 V(g7 f)

encodes a weighted divergence with respect to the escort measure p19 . The Stein identity E,, [AS,Z) f1=0
can be interpreted as an orthogonality condition in Hg , and integration by parts allows one to rewrite the
right-hand side of the above expression for I'?) in terms of 7-Steinized moments of the score fields. Thus
the connection V(?) may be viewed as a y-Stein connection associated with the escort family {1o.~}

Finally, a smooth curve 0(t) is a V(?)-geodesic if and only if it satisfies
G (t) + T (0()67 (1)6* () = 0.
In terms of score fields, this condition is equivalent to requiring that the associated field
wy(z) = 6°(t)si(x; 0(t))

evolves in Hg ,, according to
gty [Orue] =0,

that is, u; is covariantly constant under the y-Stein connection along the curve. This provides a geometric
counterpart to the sample-space flow governed by the nonlinear Fokker—Planck equation, and suggests a
dual picture in which y-flow matching approximately follows geodesics on the statistical manifold endowed
with the y-Fisher metric and the +-Stein connection. A more detailed study of this escort geometry is
left for future work; see, e.g., Eguchi & Kato (2010); Matsuzoe (2017) for related developments on escort
distributions.

B Hyperparameter Sensitivity

A potential concern with density-weighted regression is the computational overhead introduced by the k-
Nearest Neighbors (k-NN) estimation within each training batch. To address this, we conducted an ablation
study measuring the wall-clock time per iteration and training stability across varying numbers of neighbors
k € {5, 10, 20,50, 100}.

Experimental Setup. We used a batch size of B = 512 and measured the forward-backward pass time on
a single NVIDIA T4 GPU. The results are averaged over 1000 iterations.

Results. As shown in Table 2, the computational cost is effectively invariant to k. The average time per
iteration remains approximately 2.0-2.5 ms regardless of k. This is because the computational complexity
is dominated by the pairwise distance calculation (O(B?)), which is highly parallelized on GPUs, while the
subsequent top-k selection adds negligible overhead for typical batch sizes. Furthermore, the loss values
indicate that the training stability is robust to the choice of k. Thus, v-FM adds minimal computational
burden compared to standard Flow Matching.
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Table 2: Ablation study on neighbor size k. Time per iteration is nearly constant.

k 5) 10 20 50 100

Time (ms/iter) 2.1 2.1 22 21 21
Avg Loss 1.62 1.60 1.66 1.57 1.65

C Latent-flow modelling of CIFAR-10

This appendix provides implementation details and additional visual results for the latent-flow CIFAR-10
experiments in Section 4.2. To validate the quality of the latent representation, we visually inspect the
reconstruction capabilities of the pre-trained autoencoder. Figure 6a displays the reconstruction results
using an Exponential Moving Average (EMA) of the weights. The images are arranged in an interleaved
manner, where each original input image is immediately followed by its corresponding reconstruction. The
results indicate that the autoencoder preserves sufficient structural and semantic details to serve as a basis
for the generative model.

Subsequently, we trained the flow matching model within this fixed latent space. Figure 7?7 shows the
generated samples obtained from the model with v = 0.0. The decoding process utilized a retrieval-skip
strategy with parameters £k = 2 and 7 = 0.5. These samples demonstrate the model’s ability to synthesize
coherent images from the learned latent distribution.
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Figure 6: Autoencoder reconstruction quality and random samples from latent flow matching under different

~ values (CIFAR-10).
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