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ABSTRACT

Molecular representation learning (MRL) has become pivotal in leveraging lim-
ited supervised data for applications such as drug discovery and material design.
While early MRL methods relied on 1D sequences and 2D graphs, recent advance-
ments have incorporated 3D conformational information, focusing predominantly
on atomic interactions within 3D space. However, we argue that the space be-
yond atoms is also crucial for MRL, which is overlooked by prior models. To
address this, we propose a novel transformer-based framework, dubbed Space-
Former, which incorporates additional 3D space beyond atoms to enhance molec-
ular representation ability. SpaceFormer introduces three key components: (1)
Precision-Preserved Gridding, which discretizes continuous 3D space into grid
cells while preserving precision; (2) Grid Sampling, which employs an impor-
tance sampling strategy to improve efficiency; and (3) Linear-Complexity 3D Po-
sitional Encoding, which extends Rotary Positional Encoding to 3D space to cap-
ture pairwise directions and utilizes random Fourier features to efficiently encode
pairwise distances. Extensive experiments show that SpaceFormer significantly
outperforms previous 3D MRL models across various tasks, validating the benefit
of leveraging the additional 3D space beyond atoms in MRL models.

1 INTRODUCTION

Molecular representation learning (MRL), or molecular pretraining, has been a key area of research
for its crucial role in utilizing limited supervised data, particularly in real-world applications such
as drug design and material discovery (Gilmer et al., 2017; Rong et al., 2020). The evolution of this
field has progressed from 1D sequences (Xu et al., 2017; Wang et al., 2019; Heller et al., 2015) and
2D graphs (Hu et al., 2019; Rong et al., 2020; Li et al., 2021; Wang et al., 2022b) to 3D conforma-
tions (Stärk et al., 2022; Zhou et al., 2023), incorporating increasingly rich physical information and
achieving superior performance. In all these prior 3D MRL models, atoms play a central role. More
specifically, these models take the types and 3D positions of atoms (or atom tuples) as inputs and
focus on modeling atomic interactions within 3D space, using graph neural networks or transformers
(Zhou et al., 2023; Feng et al., 2023; Wang et al., 2023; Cui et al., 2024; Yang et al., 2024).

While this atom-based MRL approach appears straightforward, we argue that it has an inherent
limitation: it ignores the spaces beyond atoms. While it might seem intuitive to assume that these
empty spaces contain no valuable information and are therefore less relevant, this assumption may
overlook significant physical facts. In the theory of microscopic physics, the space beyond atoms is
not truly empty; it is occupied by electrons, various electromagnetic fields, and quantum phenomena
(Atkins & Friedman, 2011; Zee, 2010; Weinberg, 1995). Moreover, in many computational simu-
lation methods used in physics, it is essential to consider the entire 3D space, not just the positions
of atoms. For instance, electronic density distributions and potential fields are all functions of the
entire 3D space (Atkins & Friedman, 2011; Parr et al., 1979; Szabo & Ostlund, 2012).

This fact inspires us to ask the following question:
Will leveraging the 3D space beyond atoms improve molecular representation learning?

In this paper, we provide an affirmative answer to the above question by introducing a novel
transformer-based MRL framework called SpaceFormer, illustrated in Fig. 1. Unlike previous 3D
MRL approaches that focus solely on atomic positions, SpaceFormer incorporates the space beyond
atoms. To achieve this, SpaceFormer features three key components for efficient and effective 3D
space processing:
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Figure 1: Overview of the SpaceFormer framework. This figure illustrates the model using a 2D
plane for simplicity, while SpaceFormer actually operates in 3D space. Unlike previous 3D MRL
models that focus solely on atomic positions, SpaceFormer integrates the space beyond atoms. It
begins by discretizing the 3D cuboid around the molecules into grid cells. To enhance efficiency,
a grid sampling strategy is applied to reduce the number of input cells. Despite the discretization,
precise atomic positions are retained by incorporating in-cell positions as additional input features.
Moreover, SpaceFormer utilizes 3D Directional Positional Encoding with RoPE (3D Directional PE
with RoPE) and 3D Distance Positional Encoding with Random Fourier Features (3D Distance PE
with RFF) to effectively encode pairwise positional relationships in 3D space.

1. Precision-Preserved Gridding: To efficiently process the continuous 3D space, we discretize it
into a grid composed of two types of cells: atom cells and non-atom cells. To mitigate the precision
loss associated with discretization, in-cell positions are additionally utilized for atom cells.
2. Grid Sampling. Even with grid discretization, the entire grid remains too large for efficient
processing. To address this, we propose an importance sampling strategy for non-atom cells, which
enhances efficiency without compromising accuracy.
3. Linear-Complexity 3D Positional Encoding: We extend Rotary Positional Encoding (RoPE) (Su
et al., 2024) to 3D continuous space to efficiently capture pairwise directional information. Addi-
tionally, we use random Fourier features to approximate Gaussian kernels (Rahimi & Recht, 2007)
on pairwise distances, enabling efficient encoding of radial distance information.

With these three key components, SpaceFormer efficiently and effectively processes discretized grid
cells. Extensive experiments demonstrate its superior performance compared to previous 3D MRL
models across a variety of downstream tasks. Ablation studies further validate that each component
plays a critical role in enhancing SpaceFormer’s performance and efficiency. Additionally, we ex-
tend the Uni-Mol (Zhou et al., 2023) baseline by incorporating empty points, revealing that empty
space can also benefit atom-based models. However, compared to SpaceFormer, the performance
gains are significantly smaller, and Uni-Mol struggles with the efficient handling of large number of
empty points. Together, these findings underscore the effectiveness of leveraging 3D space beyond
atomic positions and highlight the superior performance of the proposed SpaceFormer.

2 RELATED WORK

Molecular Representation Learning Molecular representation learning has explored various
modalities, resulting in diverse methods utilizing different molecular information. Some approaches
use 1D sequences, such as SMILES-BERT (Wang et al., 2019) and Xu et al. (2017). Others fo-
cus on 2D topologies; for example, MolCLR (Wang et al., 2022b), MolGNet (Li et al., 2021), Hu
et al. (2019), GROVER (Rong et al., 2020). Some works further improve 2D MRL models addi-
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tionally with 3D information, such as GEM (Fang et al., 2022), 3D-Infomax (Stärk et al., 2022),
MoleBLEND (Yu et al., 2024), GraphMVP (Liu et al., 2021) and Transformer-M (Luo et al., 2022).

Recently, starting with Noisy Nodes (Zaidi et al., 2022) and Uni-Mol (Zhou et al., 2023), pure
3D MRL models have demonstrated superior performance across various tasks. Building on their
success, recent works (Feng et al., 2023; Wang et al., 2023; Cui et al., 2024; Yang et al., 2024) have
further explored the potential of 3D MRL models. While most of these efforts focus on designing
new pre-training tasks based on 3D atomic positions, SpaceFormer takes a different approach by
leveraging the additional empty space beyond atoms.

Apart from 3D MRL, several other domains also focus on 3D conformations, such as deep potential
models (Schütt et al., 2017; Thomas et al., 2018; Gasteiger et al., 2020; 2021; Liu et al., 2022; Wang
et al., 2022a; Jiao et al., 2023), protein folding (Jumper et al., 2021; Abramson et al., 2024), and 3D
conformation generation (Shi et al., 2021; Zhu et al., 2022b; Xu et al., 2022; 2021). However, these
works are less directly related to this paper.

Enhancing Model Performance with Additional Tokens Though counterintuitive, the use of
seemingly meaningless additional tokens has been shown to improve model performance in both
language and vision tasks. For instance, Darcet et al. (2023) introduced register tokens into the
input sequence of vision transformers, helping to mitigate artifacts and enhance performance across
multiple tasks. Similarly, Pfau et al. (2024) demonstrated that using dot tokens (“...”) as chain-of-
thought prompts can boost large language model performance.

The concept of leveraging empty space in SpaceFormer is related to these methods but is grounded
in physical principles. In particular, unlike the repeated, seemingly meaningless tokens in (Darcet
et al., 2023) and (Pfau et al., 2024), SpaceFormer incorporates empty cells (non-atom cells) with
distinct 3D positions, reflecting the true physical distribution of 3D space.

Virtual Points As Intermediate Representation In the domain of point cloud, virtual points have
been proposed as intermediate representations. For example, Wu et al. (2023); Yin et al. (2021) con-
vert 2D camera images into 3D virtual points, which are then fused with 3D LiDAR points to create
a unified input representation. Similarly, Zhu et al. (2022a) introduce sparse virtual points to align
and fuse features from 2D camera images and 3D LiDAR data, effectively addressing the resolu-
tion disparity between the sensors. Numerous studies (Song et al., 2023a;b; Mahmoud et al., 2023)
have further advanced this direction, utilizing virtual points as a bridge to align and fuse data from
heterogeneous sensors. In contrast, molecular representation learning (MRL) tasks primarily focus
on predicting molecular properties, where intermediate representations for merging heterogeneous
data sources are not inherently required. Our study in Sec.4.4 demonstrates that simply adding vir-
tual points to existing atom-based MRL models provides limited performance improvement. The
contribution of SpaceFormer lies in identifying this gap and proposing a framework that effectively
leverages empty space information, addressing an overlooked aspect of MRL.

3 SPACEFORMER

To evaluate whether incorporating the 3D space beyond atoms enhances molecular representation
learning (MRL), we present SpaceFormer, a novel transformer-based MRL framework that expands
beyond atomic positions. The primary challenge in this approach lies in achieving efficient im-
plementation, since the 3D space contains an infinite number of points. To address the challenge,
a common solution is grid discretization, which divides the space into discrete cells, allowing the
model to process only this finite number of cells. However, this solution suffers from several draw-
backs. First, even with coarse discretization, the number of cells grows cubically, which may hinder
the efficiency of model training. Second, discretization can lead to a loss of precision, particularly
when encoding precise atomic positions, which may negatively impact model performance.

To address these challenges, SpaceFormer incorporates 3 key components to enhance both efficiency
and performance, as described below.

3.1 PRECISION-PRESERVED GRIDDING

In this subsection, we describe the details of grid discretization used in SpaceFormer, focusing on
three key aspects.

3
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The Effective Cuboid for Gridding. We aim to ensure the cuboid fully encompasses the entire
molecule while minimizing its volume as much as possible. To achieve this, we apply Principal
Component Analysis (PCA) to the atomic positions to compute the three orthogonal axes according
to the eigenvectors, forming a right-handed, normalized coordinate system. The atomic coordinates
are then transformed into this new system, and the cuboid is defined by the circumscribed rectangular
cuboid of the atoms.

The Edge Length of Grid Cells. To simplify processing, we ensure that each grid cell contains
at most one atom, by setting a sufficiently small cell edge length. Specifically, the cell edge length
cl must satisfy cl <

d̂√
3

, where d̂ represents the minimum Gaussian distance between any pair of

atoms. Given that this paper primarily focuses on small organic molecules, d̂ is approximately 0.96Å
corresponding to the O-H bond length.

Preserving Atomic Precise Positions after Gridding. Since each grid cell contains at most one
atom, the cells can be categorized as either atom cells or non-atom cells. For a non-atom cell, the
cell center represents its 3D position, while for an atom cell, the precise positions of the atoms are
used to define the 3D position. In both cases, let ci ∈ R3 denote the 3D position of the i-th cell,
where ci represents the cell center for non-atom cells, and the precise atomic position for atom cells.

This position ci is used in two ways. First, it is used in global 3D positional encoding, which is
detailed in Sec. 3.3. Second, it is used to compute in-cell positional features, which along with
the cell type will serve as input to the SpaceFormer. Formally, the input feature for the i-th cell
is defined as ai = {ti, e0i , e1i , e2i }, where ti, e

0
i , e

1
i , e

2
i ∈ N represent the cell type and the in-

cell positions along the three axes, respectively. The cell type ti corresponds to the atom type
for atom cells, and a special type tnull for non-atom cells. The in-cell position ei is calculated
and discretized from position ci, by ei =

⌊
ci mod cl

cm

⌋
, where cl is the cell edge length and cm

is the hyper-parameter for discretization, which is set to a very small value. As a result, each ei
is an integer value ranging from 0 to cl

cm
. Finally, we convert the discrete input features ai into

continuous feature representations by summing the corresponding embedding layers, denoted as
xi =

∑3
t=0 Embedt(at

i), where Embedt(·) represents the embedding function that maps discrete
inputs to continuous representations, and xi is the resulting input embedding for the i-th cell.

To summarize, by leveraging the above approaches, SpaceFormer achieves efficient grid discretiza-
tion while preserving atomic precision.

3.2 GRID SAMPLING

Despite the efficient grid discretization described above, the number of grid cells remains too large
for effective processing. For instance, in widely used organic molecule datasets like ZINC (Sterling
& Irwin, 2015), the average number of cells is approximately 6,000, which makes the O(n2) com-
plexity of vanilla transformer models both computationally expensive and memory intensive. To
address this challenge, we incorporate FlashAttention (Dao et al., 2022), which avoids the O(n2)
peak memory cost of vanilla attention, allowing for more efficient handling of larger number of cells.
Additionally, we propose a sampling strategy to drastically reduce the number of non-atom cells.

Specifically, in microscopic physics, regions close to atoms exhibit higher electron density, with
the density varying significantly within these regions. Consequently, computational simulations
often apply fine-graining to regions near atoms to capture these dynamic variations more accurately,
while coarse-graining is commonly used in regions farther from atoms to reduce computational cost.
Inspired by this approach, we propose a sampling strategy based on the distance to atom cells.

Formally, for the i-th non-atom cell, its sampling probability is calculated as follows:
di = min

j
({∥ci − cj∥2 | j ∈ Satom}) , i ∈ Snon atom,

pi =
exp(−di/τ)∑

k∈Snon atom
exp(−dk/τ)

,
(1)

where τ > 0 is the temperature for sampling, Satom is the set of atom cells, and Snon atom is the set of
non-atom cells. Based on the sampling probability pi, we sample m× 100% of the non-atom cells,
where m ∈ [0, 1] is a pre-defined hyper-parameter. We also perform extensive ablation studies on
this sampling strategy in Sec. 4.
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3.3 LINEAR-COMPLEXITY 3D POSITIONAL ENCODING

Positional encoding is critical in both transformer-based models and 3D MRL models. However,
existing methods from these models cannot be directly applied to SpaceFormer. First, the default
positional encoding in transformers is typically discrete, such as sequence order in language models,
while the cell positions ci in SpaceFormer are continuous. Second, in 3D MRL models, SE(3)-
invariant positional encoding (Zhou et al., 2023), often based on pairwise Gaussian distances, can
be effective but are computationally inefficient because it has a memory cost of O(n2) and is im-
practical for handling large number of grid cells.

To address these challenges, we propose an efficient positional encoding method tailored to continu-
ous 3D coordinates by focusing on encoding pairwise positional information of grid cells. Given two
3D points, A and B, with coordinates cA and cB , respectively, their pairwise positional information
is represented as A⃗B = cB − cA. Based on this, we propose two linear-complexity 3D positional
encodings: the first directly encodes A⃗B, capturing directional information through raw positional
deltas and retaining dependency on the coordinate system; the second encodes the pairwise distance
∥A⃗B∥2, which is invariant to the coordinate system.
3D Directional Positional Encoding with RoPE In transformer models, several types of posi-
tional encodings are commonly used (Vaswani, 2017; Dufter et al., 2022). Recently, Rotary Posi-
tional Encoding (RoPE) has become the default due to its linear-complexity in encoding relative
positions. In SpaceFormer, we extend RoPE to 3D continuous space to encode directional informa-
tion (A⃗B), capturing pairwise directional relationships across all three axes among cell positions.

The key idea behind RoPE is to apply a set of 2D rotation matrices to the Query and Key in the atten-
tion module, with angles dependent on positions. After performing the Query-Key dot product, the
relative position between them is encoded. Formally, for an attention head with hidden dimension
dh, the i-th Query vector qi ∈ Rdh is split into dh/2 tensors of length 2, with qi,l ∈ R2 representing
the l-th tensor. Similarly, kj,l ∈ R2 represents the l-th tensor of the j-th Key. Then, during the dot
product in the attention module, we compute:

qi,lRl(i)(kj,lRl(j))
T = qi,lRl(i)Rl(j)

TkT
j,l = qi,lRl(i− j)kT

j,l, (2)

where Rl(i) ∈ R2×2 is the l-th 2D rotation matrix, with the angle depending on position i. Due
to the group property of rotation matrices, we have Rl(i)Rl(j)

T = Rl(i − j), thus encoding the
relative position i− j.

To effectively extend RoPE to 3D continuous space, we adapt its rotation matrices to handle con-
tinuous positions. Specifically, the rotation matrix Rl(·) is designed to accept continuous inputs.
Moreover, since there are multiple rotation matrices, we partition them across the three axes in 3D
space. We divide the dh/2 matrices into 3 sets, each with cr = ⌊dh/6⌋ matrices, corresponding to
the 3 axes. The resulting rotation matrices are:

{R0(c
0
i ), . . . ,Rcr−1(c

0
i ),Rcr (c

1
i ), . . . ,Rcr×2−1(c

1
i ),Rcr×2(c

2
i ), . . . ,Rcr×3−1(c

2
i )}. (3)

If dh is not divisible by 6, the remaining dh/2 − cr × 3 matrices will be identity matrices. In
summary, this extended RoPE retains linear complexity and encodes relative continuous positions
independently along each of the three axes, effectively capturing pairwise directional information
in 3D space.
3D Distance Positional Encoding with RFF While the above RoPE-based encoding captures di-
rectional information, it inherently depends on the coordinate system. Although PCA is used to
establish a coordinate system during gridding, it cannot always guarantee a unique solution, par-
ticularly in the presence of symmetry in molecular data. To address this, we additionally encode
the pairwise distance (∥A⃗B∥2), which is invariant to the coordinate system, offering a more stable
representation of pairwise positional information.

However, directly encoding pairwise distances results in a high memory cost of O(n2). To over-
come this, following Rahimi & Recht (2007), we propose using random Fourier features (RFF) to
approximate the Gaussian kernel on pairwise distances with linear complexity:

exp (−∥ci − cj∥2

2σ2
) ≈ z(ci)z(cj)

T ,

z(ci) =

√
2

dh
cos(ci

ω

σ
+ b), ω ∈ R3×dh ∼ N (0, I), b ∈ Rdh ∼ U([0, 2π)dh),

(4)
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where σ controls the shape of the Gaussian, ω is sampled from standard normal distribution, and b
is sampled from a uniform distribution over [0, 2π)dh .

The random Fourier features are then combined with the Query and Key after applying the RoPE:

qi = f(qi, z(ci)) kj = f(kj , z(cj)), (5)

where f represents the combination function, which can be either addition or concatenation to in-
corporate z(ci)z(cj)

T through the dot-product in the attention module. Addition is simple and
efficient, though it introduces extra noise terms in the attention, such as qiz(cj)

T . Concatenation
avoids these noise terms but is less efficient as it doubles the dimensionality of the dot-product from
dh to 2dh. In our early experiments, we observed no significant performance difference between the
two methods, so we opted for the more efficient addition as the combination function.

3.4 OVERALL FRAMEWORK

Combining the above components, we outline the overall framework of SpaceFormer, as shown in
Fig. 1. In summary, SpaceFormer is highly efficient: it utilizes grid discretization with importance
sampling strategy, to convert infinite 3D continuous space into a manageable number of grid cells,
and addresses the O(n2) bottleneck in Transformers using FlashAttention and linear-complexity 3D
positional encoding. In terms of effectiveness, SpaceFormer retains in-cell positions as input fea-
tures, selectively samples important non-atom cells, and accurately captures pairwise 3D positional
information through the proposed positional encoding.

4 EXPERIMENTS

To comprehensively evaluate SpaceFormer’s performance, we first conduct unsupervised pretraining
on large-scale unlabeled data, following previous works. The pre-trained model is then fine-tuned on
various tasks with limited labeled data. Extensive ablation studies are also performed to assess the
contribution of each component. Additionally, we present an in-depth comparison with atom-based
models that also incorporate empty space to provide deeper insights into why SpaceFormer works.

4.1 SETTINGS

Pre-training Settings To further reduce training costs, we employ the Masked Auto-Encoder
(MAE) pretraining strategy (He et al., 2022), which reduces the number of cells used during pre-
training. Specifically, MAE is an encoder-decoder architecture where the encoder processes only
unmasked inputs (e.g., 70% of the cells). The decoder then attempts to predict the types and in-
cell positions of the masked cells based on the encoder’s outputs. This approach is highly efficient
because (1) the encoder processes only a subset of cells, and (2) although the decoder processes
all cells, it is significantly smaller than the encoder. Furthermore, only the encoder is used during
downstream task fine-tuning.

For a fair comparison, we use the same pretraining dataset as the previous work Uni-Mol (Zhou
et al., 2023), which includes a total of 19 million molecules. Details of the pre-training settings are
provided in Table 7 in the Appendix. For grid sampling, we set the sampling ratio m to 0.1 and the
sampling temperature τ to 1.0 by default unless otherwise specified. This configuration results in
a model with approximately 58.7 million parameters (55.1M in the encoder) and requires about 32
hours of training using 8 NVIDIA RTX 4090 GPUs.

Baseline Models Our primary baseline is Uni-Mol (Zhou et al., 2023), a recent 3D MRL model
that achieved state-of-the-art performance on most molecular property prediction tasks. Addi-
tionally, SpaceFormer uses the same pretraining dataset as Uni-Mol, enabling an apple-to-apple
comparison. We also include Mol-AE (Yang et al., 2024), which extends Uni-Mol with MAE
pretraining strategy. Furthermore, for a more comprehensive comparison, we further include two
2D graph-based MRL models: GROVER (Rong et al., 2020) and GEM (Fang et al., 2022).

Downstream Tasks Most prior works use MoleculeNet (Wu et al., 2018) for downstream task
evaluation. However, recent studies (Walters, 2023) have identified several limitations within the
MoleculeNet dataset, including the presence of invalid structures, inconsistent chemical representa-
tions, and data curation errors. Additionally, (Sun et al., 2022) has shown that MoleculeNet fails to
adequately distinguish the performance of different molecular pretraining models. To address these
issues, we developed a new benchmark framework to comprehensively evaluate MRL models.

6
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Table 1: Performance on molecular computational property prediction tasks. The best results are
highlighted in bold, and the second-best results are underlined.

Model mu ↓ alpha ↓ R2 ↓ ZPVE ↓ Cv ↓ HOMO ↓ LUMO ↓ GAP ↓
(D) (Bohr3) (Bohr2) (Hartree) (cal/(mol*K)) (Hartree) (Hartree) (Hartree)

In-Distribution Split

GROVER 0.6505 0.7330 42.0297 0.0006 0.2290 0.0052 0.0055 0.0079
± 1.7e-2 ± 4.1e-2 ± 8.2e0 ± 5e-5 ± 2e-2 ± 5.3e-4 ± 4.7e-4 ± 1.5e-3

GEM 0.5480 0.3881 25.9474 0.0003 0.1514 0.0039 0.0041 0.0057
± 3.6e-3 ± 2.8e-3 ± 1.8e-1 ± 8e-5 ± 7.6e-4 ± 8e-5 ± 2e-5 ± 4e-5

Uni-Mol 0.1552 0.1675 2.4775 0.0003 0.0742 0.0019 0.0018 0.0029
± 2.9e-3 ± 1.4e-2 ± 1.7e-1 ± 5e-5 ± 2.7e-3 ± 2e-5 ± 2e-5 ± 4e-5

Mol-AE 0.1583 0.1697 2.8530 0.0010 0.0843 0.0020 0.0030 0.0040
± 4e-3 ± 1.2e-2 ± 5.4e-1 ± 8e-5 ± 1.2e-2 ± 8e-5 ± 8e-5 ± 8e-5

SpaceFormer 0.0552 0.1445 1.7169 0.0001 0.0585 0.0016 0.0015 0.0026
± 3.6e-4 ± 2.4e-3 ± 3.3e-2 ± 1.4e-5 ± 7.4e-4 ± 1.1e-5 ± 1.3e-5 ± 2e-5

Out-of-Distribution Split

GROVER 0.5062 0.6456 46.2615 0.0008 0.2527 0.0069 0.0050 0.0069
± 2.5e-3 ± 1.2e-1 ± 4.9e0 ± 1.4e-4 ± 1.4e-2 ± 5.9e-4 ± 4.2e-4 ± 5.9e-4

GEM 0.4433 0.3577 30.8420 0.0003 0.1540 0.0041 0.0042 0.0061
± 9.6e-3 ± 5.1e-3 ± 1.8e-1 ± 8e-5 ± 4.2e-3 ± 5e-5 ± 1e-5 ± 1.1e-4

Uni-Mol 0.1430 0.1761 3.8530 0.0004 0.0914 0.0020 0.0024 0.0034
± 1.7e-3 ± 4.1e-3 ± 4.4e-1 ± 5e-5 ± 1.9e-3 ± 7e-5 ± 9e-5 ± 1e-5

Mol-AE 0.1457 0.1947 4.6540 0.0020 0.0830 0.0023 0.0033 0.0047
± 1.3e-3 ± 3.5e-2 ± 6.1e-1 ± 8e-5 ± 2.9e-3 ± 4.7e-4 ± 4.7e-4 ± 4.7e-4

SpaceFormer 0.0493 0.1425 2.8363 0.0003 0.0675 0.0017 0.0019 0.0031
± 1.3e-3 ± 3.1e-3 ± 2.8e-2 ± 1.3e-5 ± 1.4e-3 ± 1.3e-5 ± 3.3e-5 ± 3.1e-5

Our benchmark comprises two categories of tasks: molecular computational properties and molec-
ular experimental properties. For computational properties, we sampled a 40K subset from the
QM9 dataset (Ramakrishnan et al., 2014) and selected 8 representative properties. This sampling
approach allows us to assess model performance on limited labeled data. For experimental proper-
ties, we selected the BBBP and BACE datasets from MoleculeNet, ensuring that all duplicate and
structurally invalid molecules were excluded. Additionally, we employed the HLM, MDR1-MDCK
ER (MME), and Solubility (Solu) datasets from the Biogen ADME dataset (Fang et al., 2023). A
detailed description of these tasks is provided in Table 9 in the Appendix. In all tasks, datasets
were split into training, validation, and test sets in an 8:1:1 ratio. We applied two splitting methods:
(1) In-Distribution Split, where the sets are randomly partitioned, and (2) Out-of-Distribution Split,
where the sets are divided based on fingerprint similarity. This resulted in 26 tasks, allowing for a
thorough evaluation of MRL models. The hyper-parameter search space is consistent across all tasks
and baseline models (see Table 8 in the Appendix). Each set of hyper-parameters is trained 3 times
using different random seeds, with the mean and standard deviation recorded. For all experiments,
the checkpoint with the best validation loss is selected, and the corresponding test set results are
reported.

4.2 OVERALL RESULTS

Tables 1 and 2 present the overall comparison results for computational and experimental properties,
respectively. The results clearly demonstrate SpaceFormer’s superior performance. It ranks first in
22 out of 26 tasks and top two in 24 out of 26 tasks. SpaceFormer significantly outperforms all
baselines in computational properties, with particularly strong results in the mu, R2, and ZPVE tasks,
where it surpasses the second-best models by an order of magnitude. Although it does not achieve
the best results in a few experimental properties, the performance gap is minimal. In summary, by
leveraging 3D space beyond atomic positions, SpaceFormer consistently outperforms previous MRL
models across the comprehensive benchmark.
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Table 2: Performance on molecular experimental property prediction tasks. The best results are
highlighted in bold, and the second-best results are underlined.

Model HLM ↓ MME ↓ Solu ↓ BBBP ↑ BACE ↑ HLM ↓ MME ↓ Solu ↓ BBBP ↑ BACE ↑
In-Distribution Split Out-of-Distribution Split

GROVER 0.4190 0.5362 0.4304 0.9210 0.9137 0.4667 0.4884 0.3466 0.8567 0.5084
± 3.2e-2 ± 4.9e-2 ± 2.4e-2 ± 8.5e-3 ± 1.1e-2 ± 2.2e-2 ± 3.9e-2 ± 3.8e-2 ± 4e-2 ± 2.8e-2

GEM 0.3013 0.3088 0.3511 0.9314 0.9406 0.3240 0.3110 0.3190 0.9024 0.6054
± 7.9e-3 ± 1.6e-3 ± 4.8e-3 ± 4.1e-3 ± 3.6e-3 ± 7.1e-3 ± 2.2e-3 ± 9e-3 ± 2.3e-2 ± 1.2e-2

Uni-Mol 0.2725 0.3033 0.3243 0.9397 0.9317 0.3026 0.2727 0.3295 0.8851 0.6793
± 6.2e-3 ± 1e-2 ± 1.6e-2 ± 1.1e-2 ± 1.3e-2 ± 6.5e-3 ± 1.2e-2 ± 1e-2 ± 2e-2 ± 3.3e-2

Mol-AE 0.2727 0.3000 0.3233 0.9366 0.9509 0.2843 0.2930 0.2983 0.9082 0.6406
± 4.6e-3 ± 6.7e-3 ± 5.6e-3 ± 6.5e-3 ± 3.2e-3 ± 4.7e-4 ± 2e-2 ± 2.3e-2 ± 5.7e-2 ± 2e-2

SpaceFormer 0.2774 0.2901 0.3320 0.9403 0.9523 0.2807 0.2794 0.2972 0.9099 0.6732
± 3e-3 ± 2.7e-3 ± 1.1e-2 ± 4.7e-3 ± 7.6e-3 ± 1.5e-3 ± 3.2e-3 ± 6.9e-3 ± 2e-2 ± 1.6e-2

Table 3: Ablation studies on PCA and in-cell position.

No. PCA in-cell pos. R2 ↓ ZPVE ↓ Cv ↓ HOMO ↓ pre-training cost

1 ✓ ✓ 2.8363 0.0003 0.0675 0.0017 32h
2 ✗ ✓ 3.3088 0.0004 0.0708 0.0018 35h
3 ✓ ✗ 5.8696 0.0004 0.0822 0.0020 32h

4.3 ABLATION STUDIES

In this subsection, we conduct a series of experiments to evaluate the proposed components of
SpaceFormer. We choose the R2, ZPVE, Cv, and HOMO properties with the Out-of-Distribution
Split for all ablation experiments.

Gridding As discussed in Sec 3.1, SpaceFormer integrates several techniques for efficient grid
discretization while maintaining atomic precision. We focus on evaluating two key components:
PCA for determining a minimal bounding cuboid for grid discretization, and in-cell positions to
preserve atomic precision. The results, summarized in Table 3, lead to the following observations:
1. Impact of PCA: Comparing No. 1 and 2, we observe that omitting PCA significantly degrades
the performance of SpaceFormer and slows training by approximately 10%. This suggests that PCA
not only enhances model accuracy but also reduces training costs.
2. Impact of In-Cell Position: Comparing No. 1 and 3, we see that using in-cell positions leads
to better performance. This demonstrates that incorporating in-cell positions effectively preserves
atomic precision and contributes to superior performance.

Grid Sampling As discussed in Sec 3.2, we propose a sampling strategy for non-atom cells to
further reduce training costs. In this ablation study, we conduct a series of experiments to evaluate
the efficiency and performance of different sampling strategies. Specifically, we test various impor-
tance sampling strategies with different ratios (m) and temperatures (τ ), as well as several random
sampling baselines. Additionally, we include two extreme cases: the atom-only model (m = 0.0)
and the full-grid model (m = 1.0), to better assess the impact of non-atom cells. The results are
summarized in Table 4, leading to the following conclusions:

1. Atom-Only Model (No. 1): This model performs the worst, demonstrating that non-atom cells,
i.e., empty space, significantly contribute to improved model performance. This finding strongly
supports the motivation behind our approach.

2. Full-Grid Model (No. 2): While this model shows strong performance, particularly for the
HOMO property, its high computational cost renders it impractical for real-world applications.

3. Default Strategy (No. 4): The default sampling strategy used in SpaceFormer achieves the best
balance between performance and efficiency. It is approximately 12 times faster than the full-grid
model (No. 2), while delivering comparable performance.

4. Random Sampling Strategy (No. 6, 10, and 14-16): For random sampling, performance improves
with a higher sampling ratio (m), but this also linearly increases training cost.
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Table 4: Ablation studies on Grid Sampling. m represents the sampling ratio of non-atom cells and
τ represents the temperature for sampling. τ = ‘-’ denotes the random sampling.

No. m τ R2 ↓ ZPVE ↓ Cv ↓ HOMO ↓ pre-training cost avg. #cells

1 0.0 N/A 3.5404 0.0004 0.0876 0.0025 12h 0.1K
2 1.0 N/A 2.8513 0.0004 0.0709 0.0015 389h 6.3K

3 0.1 0.5 2.8806 0.0004 0.0670 0.0017 32h 0.8K
4 0.1 1.0 2.8363 0.0003 0.0675 0.0017 32h 0.8K
5 0.1 2.0 3.0776 0.0005 0.0746 0.0017 32h 0.8K
6 0.1 - 2.8610 0.0005 0.0791 0.0018 32h 0.8K

7 0.2 0.5 2.9148 0.0004 0.0713 0.0017 51h 1.4K
8 0.2 1.0 3.2265 0.0004 0.0739 0.0016 51h 1.4K
9 0.2 2.0 3.2225 0.0004 0.0710 0.0016 51h 1.4K

10 0.2 - 2.8431 0.0004 0.0725 0.0017 51h 1.4K

11 0.4 0.5 3.2063 0.0007 0.0964 0.0017 103h 2.6k
12 0.4 1.0 3.6570 0.0006 0.0893 0.0018 103h 2.6K
13 0.4 2.0 2.9222 0.0004 0.0707 0.0016 103h 2.6K
14 0.4 - 2.9135 0.0004 0.0665 0.0016 103h 2.6K

15 0.6 - 2.9166 0.0004 0.0749 0.0017 193h 3.9K
16 0.8 - 2.8709 0.0003 0.0792 0.0016 300h 5.1K

Table 5: Ablation studies on 3D positional encoding.

No. 3D Directional PE with RoPE 3D Distance PE with RFF R2 ↓ ZPVE ↓ Cv ↓ HOMO ↓
1 ✓ ✓ 2.8363 0.0003 0.0675 0.0017
2 ✓ ✗ 3.4905 0.0004 0.0696 0.0017
3 ✗ ✗ 3.7104 0.0004 0.1407 0.0022

5. Importance Sampling (No. 3–6 and No. 7–10): At smaller sampling ratios, the proposed impor-
tance sampling strategy based on eq.(4) outperforms random sampling, demonstrating its effective-
ness in maintaining performance while improving efficiency.

6. However, at larger sampling ratios (No. 11-14), the importance sampling strategy cannot help to
improve the performance. This is expected, as larger sampling ratios tend to include more grid cells
near atoms, reducing the necessity of importance sampling strategy.

3D Positional Encoding As detailed in Sec 3.3, we introduce two 3D positional encoding meth-
ods: 3D Directional Positional Encoding with RoPE (3D Directional PE with RoPE) and 3D Dis-
tance Positional Encoding with RFF (3D Distance PE with RFF). To evaluate their contributions
to the final performance, we design two ablation models: one using only 3D Directional PE with
RoPE (No. 2), and another excluding both proposed encodings (No. 3). In the latter, positional
information is incorporated by simply adding the linear projection of the 3D position (ci) to the
input embeddings (xi). The results in Table 5 clearly demonstrate that the proposed 3D positional
encodings significantly enhance model performance.

4.4 IN-DEPTH COMPARISON WITH ATOM-BASED MRL MODELS

Previous experiments demonstrate the efficiency and effectiveness of SpaceFormer, but a key ques-
tion remains: can incorporating empty space also enhance atom-based MRL models? To investigate
this, we extend the strongest baseline, Uni-Mol, by incorporating randomly sampled empty points.
Unlike SpaceFormer’s grid discretization, the extended Uni-Mol samples points from continuous
3D space rather than grid cell centers. We evaluate various configurations with different numbers of
sampled points/cells, as summarized in Table 6. For a fair comparison, we use the random sampling
strategy for both Uni-Mol and SpaceFormer. The results lead to the following conclusions:

1. Baseline Comparison (No. 1 vs. No. 8): When excluding empty points/cells, the performance of
Uni-Mol and SpaceFormer is comparable, indicating a similar baseline capability.
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Table 6: Comparison with extended Uni-Mol using randomly sampled empty points. For fairness,
SpaceFormer also uses random sampling strategy. As SpaceFormer samples a fraction of the entire
grid, the number of sampled cells is not fixed, and the average number of sampled cells (marked
with “*”) is reported.

No. Model # Empty Points R2 ↓ ZPVE ↓ Cv ↓ HOMO ↓ pre-training cost

1 Uni-Mol 0 3.8530 0.0004 0.0914 0.0020 11h
2 Uni-Mol 10 3.0506 0.0004 0.0820 0.0019 12h
3 Uni-Mol 25 3.1586 0.0004 0.0886 0.0020 13h
4 Uni-Mol 50 3.0141 0.0004 0.0973 0.0019 13h
5 Uni-Mol 100 3.3509 0.0006 0.1114 0.0020 17h
6 Uni-Mol 200 3.8193 0.0005 0.1145 0.0020 35h
7 Uni-Mol 400 4.3522 0.0004 0.1337 0.0023 96h

8 SpaceFormer 0 3.5404 0.0004 0.0876 0.0025 12h
9 SpaceFormer 50* 3.6770 0.0004 0.0805 0.0025 13h

10 SpaceFormer 100* 3.3996 0.0004 0.0777 0.0024 17h
11 SpaceFormer 200* 3.2388 0.0004 0.0787 0.0024 19h
12 SpaceFormer 700* 2.8610 0.0005 0.0791 0.0018 32h
13 SpaceFormer 1300* 2.8431 0.0004 0.0725 0.0017 51h
14 SpaceFormer 1500* 2.9135 0.0004 0.0665 0.0016 103h

2. Impact of Empty Space on Uni-Mol: Incorporating a small number of empty points improves
Uni-Mol’s performance (No. 2 and 3 vs. No. 1), suggesting that even a limited representation of
empty space can enhance the model performance.

3. Diminishing Returns for Uni-Mol: Increasing the number of empty points beyond a certain
threshold does not yield further improvement (No. 3-7). This indicates that Uni-Mol struggles to
utilize additional empty points effectively.

4. SpaceFormer’s Scalability: In contrast, SpaceFormer continues to benefit from additional empty
cells, with performance improving consistently as the number of empty cells increases (No. 8-14).

5. Efficiency of SpaceFormer: SpaceFormer scales much more efficiently with empty cells. While
Uni-Mol’s computational cost increases quadratically with more empty points (No. 1-7), Space-
Former scales linearly (No. 8-14). For example, within 100 hours, SpaceFormer can process 1,500
cells, whereas Uni-Mol can only handle 400 points.

In summary, while incorporating empty space provides modest improvements to atom-based models
like Uni-Mol, these gains are limited and come at a high computational cost. In contrast, Space-
Former not only handles empty cells more efficiently but also achieves significantly better perfor-
mance as the number of empty cells increases.

5 CONCLUSION

In this paper, we introduce SpaceFormer, a novel MRL framework that incorporates the 3D space
beyond atomic positions to enhance molecular representation. To efficiently and effectively process
3D space, SpaceFormer leverages three key components: (1) Precision-Preserved Gridding, which
discretizes continuous 3D space into a grid while maintaining atomic precision; (2) Grid Sampling,
which improves efficiency by sampling grid cells without compromising accuracy; and (3) Linear-
Complexity 3D Positional Encoding, which encodes pairwise positional information efficiently in
3D space. Extensive experiments validate the effectiveness and efficiency of SpaceFormer across
various tasks.

Future research could explore two key areas: (1) investigating the theoretical foundations behind
the effectiveness of incorporating empty space in MRL, as this work primarily provides empirical
evidence, and (2) extending SpaceFormer to larger systems, such as proteins and complexes.
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A EXPERIMENT DETAILS

The pretraining settings are detailed in Table 7, the downstream finetuning settings in Table 8, and
the downstream tasks in Table 9.

Table 7: Pre-training Settings

Hyper-parameters Value

Peak learning rate 1e-4
LR scheduler Linear
Warmup ratio 0.01
Total updates 1M

Batch size 128
Residual dropout 0.1
Attention dropout 0.1

Embedding dropout 0.1
Encoder layers 16

Encoder attention heads 8
Encoder embedding dim 512

Encoder FFN dim 2048
MAE-Decoder layers 4

MAE-Decoder attention heads 4
MAE-Decoder embedding dim 256

MAE-Decoder FFN dim 1024
Adam (β1, β2) (0.9, 0.99)
Gradient clip 1.0
Mask ratio 0.3

Cell edge length cl 0.49Å
cm for in-cell position discretization 0.01Å

Table 8: Fine-tuning Settings

Hyper-parameters Value

Peak learning rate [5e-5, 1e-4]
Batch size [32, 64]

Epochs 200
Pooler dropout [0.0, 0.1]
Warmup ratio 0.06

B ADDITIONAL COMPARISON WITH NEURAL POTENTIAL MODELS

As requested by the peer reviewers, we further compare SpaceFormer with neural potential models.
Specifically, we use SchNet (Schütt et al., 2017) and PaiNN (Schütt et al., 2021) as baselines for
benchmarking molecular property prediction and energy/force prediction tasks. All experiments are
conducted using the same downstream hyperparameter settings described in Sec. 4.1.

For the molecular property prediction tasks, as presented in Table 10, SpaceFormer consistently
outperforms both SchNet and PaiNN, demonstrating its superior predictive capabilities.

For the energy and force prediction tasks, evaluations were conducted on a subsampled version of
QM7-X (Hoja et al., 2021). To investigate the models’ few-shot learning capabilities, we randomly
sampled training subsets containing 1k, 5k, 10k, and 20k samples, resulting in four separate experi-
ments. All experiments utilized the same validation and test datasets, each containing 5k randomly
sampled examples. All models were trained using energy loss only, with force errors computed
as the gradients of the predicted energy with respect to atomic positions. The results, shown in
Table 11, clearly demonstrate that SpaceFormer outperforms SchNet and PaiNN across all subset
sizes.
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Table 9: Summary information of the downstream datasets

Category Task Task type Metrics # Samples Describe

Computational
Properties

mu Regression MAE 40,000
The measure of the molecule’s
permanent electric dipole moment

alpha Regression MAE 40,000
The static polarizability of a
molecule

R2 Regression MAE 40,000
The expectation value of the
square of the electronic distance
from the nucleus

ZPVE Regression MAE 40,000
The energy associated with the vi-
brational motion of atoms in a
molecule at absolute zero temper-
ature.

Cv Regression MAE 40,000
The amount of heat needed to raise
the temperature of a given amount
of substance by one degree Celsius
at constant volume

HOMO Regression MAE 40,000
The highest energy molecular or-
bital that is occupied by electrons

LUMO Regression MAE 40,000
The lowest energy molecular or-
bital that is not occupied by elec-
trons

GAP Regression MAE 40,000
The energy difference between the
HOMO and LUMO

Experimental
Properties

HLM Regression MAE 3,087 Human liver microsome stability
MME Regression MAE 2,642 MDRR1-MDCK efflux ratio
Solu Regression MAE 2,713 Aqueous solubility

BBBP Classification AUC 1,965 Blood-brain barrier penetration

BACE Classification AUC 1,513
Binding results of human BACE-1
inhibitors

Table 10: Performance on molecular property prediction tasks with Out-of-Distribution split. The
best results are highlighted in bold, and the second-best results are underlined.

Model mu ↓ alpha ↓ Cv ↓ HOMO ↓ LUMO ↓ GAP ↓ HLM ↓ MME ↓ Solu ↓
(D) (Bohr3) (cal/(mol*K)) (Hartree) (Hartree) (Hartree)

SchNet 0.1554 0.1816 0.0671 0.0032 0.0028 0.0045 0.3863 0.3831 0.4419
± 1.2e-3 ± 2.6e-3 ± 2.1e-3 ± 4.3e-5 ± 6.2e-5 ± 8.8e-5 ± 2.2e-2 ± 2.2e-2 ± 1e-2

PaiNN 0.0752 0.1518 0.0524 0.0028 0.0023 0.0040 0.3762 0.3539 0.4095
± 1.8e-3 ± 2.1e-2 ± 1.6e-3 ± 1.2e-5 ± 7.5e-5 ± 9.2e-5 ± 6.8e-3 ± 1.3e-2 ± 1.9e-2

SpaceFormer 0.0493 0.1425 0.0675 0.0017 0.0019 0.0031 0.2807 0.2794 0.2972
± 1.3e-3 ± 3.1e-3 ± 1.4e-3 ± 1.3e-5 ± 3.3e-5 ± 3.1e-5 ± 1.5e-3 ± 3.2e-3 ± 6.9e-3

C DETAILS ABOUT 3D DIRECTIONAL POSITIONAL ENCODING WITH ROPE

To make it easier to understand, we have added more details of 3D Directional Positional Encoding
with RoPE here.

In 1D case, such as natural language processing, given two tokens located at positions xi and xj ,
the original RoPE mechanism is designed to capture their relative position xj − xi. This concept is
straightforward and widely accepted.

Next, we extend this concept to 2D. Given two points in 2D space with positions (xi, yi) and
(xj , yj), the goal is to encode their positional differences xj − xi and yj − yi. 2D RoPE achieves
this by encoding each positional difference independently. Specifically, in the context of multi-head
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Table 11: Performance on molecular energy prediction tasks with QM7-X dataset. The best results
are highlighted in bold, and the second-best results are underlined.

Model # Training Samples Energy MAE (eV) ↓ Force MAE (eV/Å) ↓
SchNet 1k 0.5403 ± 0.0103 0.8995 ± 0.0191
PaiNN 1k 0.4064 ± 0.0061 0.7425 ± 0.0213
SpaceFormer 1k 0.3841 ± 0.0310 0.5990 ± 0.0253

SchNet 5k 0.2459 ± 0.0013 0.5683 ± 0.0086
PaiNN 5k 0.1839 ± 0.0016 0.4166 ± 0.0042
SpaceFormer 5k 0.1449 ± 0.0015 0.3025 ± 0.0004

SchNet 10k 0.1825 ± 0.0039 0.4494 ± 0.0089
PaiNN 10k 0.1444 ± 0.0015 0.3386 ± 0.0036
SpaceFormer 10k 0.1061 ± 0.0004 0.2360 ± 0.0008

SchNet 20k 0.1435 ± 0.0018 0.3627 ± 0.0059
PaiNN 20k 0.1057 ± 0.0013 0.2602 ± 0.0015
SpaceFormer 20k 0.0789 ± 0.0006 0.1829 ± 0.0013

attention, half of the attention heads are assigned to encode xj − xi, and the other half to encode
yj − yi.

Similarly, this concept extends naturally to 3D: we encode the relative positional differences along
all three axes (xj − xi, yj − yi, zj − zi) by dividing the attention heads into three sets. Each set is
dedicated to encoding the positional difference along one axis. This ensures that 3D RoPE directly
encodes relative positions in 3D space, without involving any 2D projections or rotations.

From the above explanation, it is clear that the key to 3D RoPE is using three independent sets of
1D RoPE to encode relative positions along the three axes.

D ADDITIONAL ABLATION STUDIES ON PCA

To demonstrate the contribution of PCA to the final performance, we show additional ablation ex-
perimental results in Table 12.

From the results, it is clear that PCA does not significantly contribute to the final performance, while
the proposed positional encoding techniques (RoPE and RFF) play a much larger role in improving
the final performance.

The results clearly demonstrate that SpaceFormer achieves strong performance even without PCA
and under randomly rotated 3D inputs. In our implementation, a unique random rotation is applied
at each epoch, exposing the model to a broader variety of orientations over time. This enhances its
ability to generalize across different coordinate systems and confirms that the performance improve-
ment is not due to PCA. Instead, the model effectively learns arbitrary 3D directions rather than
relying on ”memorizing geometries in PCA frames.”

Specifically, random rotations expose the model to a diverse range of coordinate systems with vary-
ing orientations, enabling more comprehensive learning. Without random rotations, certain coor-
dinate systems may be underrepresented during training, potentially degrading performance during
inference on less common orientations. Random rotations ensure a more uniform distribution of co-
ordinate systems, thereby improving robustness. In the main text, we primarily use PCA instead of
random rotations to reduce the molecular space requiring processing and to enhance computational
efficiency.
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Table 12: Ablation studies on PCA and random rotation.

No. PCA RoPE RFF Random Rotation R2 ↓ ZPVE ↓ CV ↓ HOMO ↓
1 ✓ ✓ ✓ ✗ 2.8363 0.00028366 0.0675 0.001687503
2 ✗ ✓ ✓ ✗ 3.3088 0.00040852 0.0708 0.00175726
3 ✓ ✗ ✗ ✗ 3.7104 0.000449727 0.1407 0.002166273
4 ✗ ✓ ✓ ✓ 2.9840 0.00032006 0.0674 0.00147432
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