
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REFUSION: A DIFFUSION LARGE LANGUAGE MODEL
WITH PARALLEL AUTOREGRESSIVE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive models (ARMs) are hindered by slow sequential inference. While
masked diffusion models (MDMs) offer a parallel alternative, they suffer from
critical drawbacks: high computational overhead from precluding Key-Value (KV)
caching, and incoherent generation arising from learning dependencies over an
intractable space of token combinations. To address these limitations, we introduce
REFUSION, a novel masked diffusion model that achieves superior performance
and efficiency by elevating parallel decoding from the token level to a higher
slot level, where each slot is a fixed-length, contiguous sub-sequence. This is
achieved through an iterative “plan-and-infill” decoding process: a diffusion-based
planning step first identifies a set of weakly dependent slots, and an autoregressive
infilling step then decodes these selected slots in parallel. The slot-based design
simultaneously unlocks full KV cache reuse with a unified causal framework and
reduces the learning complexity from the token combination space to a manageable
slot-level permutation space. Extensive experiments on seven diverse benchmarks
show that REFUSION not only overwhelmingly surpasses prior MDMs with 32%
performance gains and an over 10× speedup on average, but also bridges the
performance gap to strong ARMs while maintaining a 1.4× average speedup.

1 INTRODUCTION

While autoregressive models (ARMs) (Grattafiori et al., 2024; Yang et al., 2025; Jaech et al., 2024)
have achieved impressive progress across a wide range of tasks (Chen et al., 2021; Wei et al., 2022;
Lightman et al., 2023; Li et al., 2024), their inference throughput is fundamentally limited by a
sequential, left-to-right decoding process that precludes parallelization (Chen et al., 2023; Cai et al.,
2024; Zhang et al., 2025). In contrast, masked diffusion models (MDMs) (Nie et al., 2025; Ye et al.,
2025) operate via an iterative denoising process with no fixed generation order. This flexibility yields
two significant advantages. First, it permits parallel decoding by assuming conditional independence
among target tokens: their joint probability, given the context, is assumed to be the product of their
individual marginal probabilities (Li et al., 2023). Second, it offers the potential for the model to
discover better generation orders than the rigid left-to-right trajectory (Kim et al., 2025).

Despite these theoretical advantages, existing MDMs often suffer from two issues: (1) Architec-
tural bottlenecks negate efficiency gains from parallelism. The flexibility of generation orders
necessitates the use of bidirectional attention in MDMs (Vaswani et al., 2017; Devlin et al., 2019), an
architectural choice fundamentally incompatible with Key-Value (KV) caching used in ARMs (Rad-
ford et al., 2018). That is, each decoding iteration forces a full re-computation of the KV states
of the entire context, introducing significant latency and making MDMs significantly slower than
ARMs (Feng et al., 2025). (2) Intractable training complexity hinders coherent parallel gen-
eration. MDMs typically decode multiple tokens with high marginal probabilities in parallel (Nie
et al., 2025). However, the conditional independence assumption frequently fails for these tokens,
particularly for nearby tokens, leading to severe incoherence (Huang et al., 2022; Luxembourg et al.,
2025; Gwak et al., 2025). For example, in a context where both “at once” and “right now” are
valid, an MDM might decode a spurious output “right once” by independently sampling tokens
with high individual marginal probabilities but low joint probability. We attribute this failure to an
immense learning challenge: modeling a data distribution over an exponential space of possible token
combinations is far more demanding than the fixed sequential dependency of ARMs. Consequently,
current MDMs often remain undertrained for reliably identifying conditionally independent tokens.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address these challenges, we introduce REFUSION, a masked diffusion large language model
that elevates the parallel decoding process from the traditional token level to a higher slot level,
progressively denoising slots in parallel from a fully masked sequence. Specifically, we partition the
initially masked sequence into fixed-length, consecutive sub-sequences, i.e., slots, and unfold each
decoding iteration into two synergistic steps: first, a diffusion-based planning step identifies a set of
weakly dependent slots, and second, an autoregressive infilling step decodes these slots in parallel
(Figure 2). This design is guided by a key finding from our pilot study (§4.1): inter-token dependency
is highly localized, decaying significantly with distance. Therefore, serializing adjacent tokens within
a slot directly mitigates the violation of conditional independence for these strongly-coupled tokens.
Furthermore, such a simple design also uniquely achieves two critical benefits simultaneously: (1)
By repositioning newly generated slots (Sahoo et al., 2025) to precede masked ones for the next
decoding iteration, REFUSION naturally accommodates causal attention that allows the KV states of
all previously generated tokens to be seamlessly reused; And (2) it reduces the learning complexity
from an intractable token combination space to a substantially more manageable slot permutation
space. Appendix A.1 compares REFUSION and existing MDMs in detail.

-40 -30 -20 -10 10 20 30 40

-50

-40

-30

-20

-10

10

20

ReFusion
=0.7, k=32

=0.6, k=16

=0.5, k=8

=0.4, k=4

Qwen3

8B

4B

1.7B

0.6B
LLaDA-8B-Instruct

LLaDA w/ Fast-dLLM

LLaDA w/ D2F

Dream-7B-Instruct

Dream w/ Fast-dLLM

Dream w/ D2F

ReFusion left-to-right

 Throughput (tokens/sec)

 pass@1 (%)

Higher Throughput
Higher Performance

Lower Throughput
Higher Performance

Figure 1: Performance-throughput trade-off on
MBPP. We plot pass@1 (%) against throughput
(tokens/sec), with both metrics calculated rela-
tive to the Qwen3-8B baseline at the origin. The
“REFUSION left-to-right” ablation forces serial de-
coding using the REFUSION model. See §5.3 for
details about hyperparameters of REFUSION.

REFUSION’s training process mirrors its infer-
ence dynamics. For each training sequence, we
randomly mask several slots, permute the clean
slots, and reorder the input so that clean slots pre-
cede masked ones. The model is then optimized
with a hybrid objective that cultivates its dual
capabilities: an autoregressive loss on the per-
muted clean slots for sequential generation, and
a denoising loss on the masked slots for context-
aware parallel reconstruction. Unlike traditional
MDMs which learn only from masked positions,
this hybrid objective uses every token for super-
vision, boosting data efficiency.

Our extensive experiments on seven benchmarks
spanning math, code generation, and general-
purpose understanding and reasoning demon-
strate that REFUSION decisively establishes a
new state-of-the-art for MDMs. Compared
to LLaDA (Nie et al., 2025) and Dream (Ye
et al., 2025), REFUSION achieves an average
performance gain of 32% while being over 10×
faster in throughput (tokens/sec). More strik-
ingly, REFUSION consistently challenges and
often surpasses strong ARMs. For instance, it
outperforms Qwen3-8B (Yang et al., 2025) on
GSM8K (Cobbe et al., 2021) and MBPP (Austin
et al., 2021) by 3.2 absolute points while being 1.4× faster on average. This dual advantage in both
performance and speed is further illustrated in Figure 1, where REFUSION (the red line) is the only
method to establish a superior performance-efficiency frontier in the top-right quadrant. It signifi-
cantly outperforms both the Qwen3-series (the blue line) and prior MDM-based methods (lower-left,
implying slower and less effective). Furthermore, our controlled experiments confirm these gains are
driven by our architectural and training innovations, not initialization and data advantages.

Our contributions are summarized as follows:

I. We propose REFUSION, a generative model integrating inter-slot parallel decoding with intra-slot
autoregressive decoding, combining the strengths of autoregREssive and difFUSION-based modeling.

II. To the best of our knowledge, REFUSION is the first MDM that achieves full KV cache reuse of
every decoded token, while maintaining global generation flexibility and tractable training complexity.

III. Extensive experiments on seven diverse benchmarks show that REFUSION not only overwhelm-
ingly surpasses all prior MDMs in both performance and speed, but also bridges the performance gap
to ARMs while maintaining the efficiency advantage.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

MDMs promise to outperform traditional ARMs by offering faster inference through parallel decoding
and potentially superior solutions via flexible generation orders (Kim et al., 2025). Recent MDMs
such as LLaDA (Nie et al., 2025), the first open-source MDM trained from scratch, and Dream (Ye
et al., 2025), initialized from an ARM, have delivered performance on par with ARMs of equivalent
scale across diverse tasks, establishing MDMs as a viable research direction.

Architectural Designs for Efficient MDMs. Standard MDMs’ reliance on bidirectional attention
precludes the use of KV caching. Recent work alleviates this bottleneck through three main strategies.
The first strategy approximates KV cache reuse while retaining bidirectional attention. For instance,
dLLM-Cache (Liu et al., 2025) reuses slow-changing KV states, while sparse-dLLM (Song et al.,
2025) dynamically prunes non-critical KV states. The second strategy mixes bidirectional attention
and causal attention. Models like BD3-LMs (Arriola et al., 2025) and Fast-dLLM (Wu et al., 2025a)
partition the sequence into consecutive blocks, enforcing a left-to-right order between blocks to enable
KV cache reuse, while retaining parallel, bidirectional generation within each block. D2F (Wang et al.,
2025) further parallelizes the generation of succeeding blocks, although performance is limited by the
lack of inter-block lookahead attention. While sharing the concept of a grouped unit, REFUSION’s

“slot” operates fundamentally differently from “block” in these approaches. In the block-based design,
a fixed left-to-right inter-block schedule sacrifices any-order flexibility, while intra-block bidirectional
attention sacrifices KV caching and risks incoherence. In contrast, REFUSION enables both global
any-order generation and full KV cache reuse with a unified causal framework. The final strategy
leverages only causal attention, enabling an exact KV cache. Eso-LMs (Sahoo et al., 2025), for
instance, dynamically reposition newly generated tokens ahead of masked ones at each step to
facilitate caching. However, this strategy introduces an intractable learning objective at a token-level
permutation space, which hinders training and leads to significant performance drops.

Decoding Strategies in MDMs. A crucial aspect of MDM inference is the strategy used to select
which tokens to decode in parallel at each step. Existing approaches generally fall into two categories.
The first class leverages confidence heuristics derived from the model’s own distribution, such
as top token probability (Nie et al., 2025), low entropy (Ben-Hamu et al., 2025), and probability
margins between top candidates (Kim et al., 2025). Some methods further refine these heuristics with
position-aware weights and frequency-based calibration (Huang et al., 2025). While simple, these
methods rely on the often-unreliable assumption that the model’s confidence scores are perfectly
calibrated (Wu et al., 2025a). The second class employs external models for verification, e.g., using a
small ARM to validate and extend the longest acceptable prefix (Hu et al., 2025; Israel et al., 2025),
or using dedicated reward models to guide generation (Gwak et al., 2025). Although effective, these
approaches introduce the overhead of maintaining and querying a separate model. Unlike these
methods, REFUSION adopts a unified inference framework that benefits from the parallel efficiency
of MDMs without sacrificing the quality assurance of ARMs, all within a single architecture.

3 PRELIMINARY

Autoregressive Models. ARMs are a prominent class of generative models that factorize the joint
probability of a sequence x = (x1, . . . , xL) by enforcing a strict left-to-right conditional dependency
using a causal attention mask. This structure leads to a next-token prediction objective, where the
model parameters θ are optimized by minimizing the negative log-likelihood: −

∑L
i=2 logPθ(xi |

x<i). During inference, generation is an inherently sequential process requiring T forward passes to
produce a sequence of length T , resulting in a latency that scales with the sequence length.

Masked Diffusion Models. MDMs represent another class of generative models, operate on a
“mask-and-denoise” principle. During training, each sample x0 = (x1

0, x
2
0, · · · , xL

0) is corrupted
to xt by masking each token with a special token “[MASK]” under probability t ∼ U(0, 1). The
model learns to reconstruct the original context by minimizing the objective: − 1

t

∑L
i=1 1(x

i
t =

[MASK]) logPθ

(
xi
0 | xt

)
. MDM inference proceeds by progressively generating tokens from a

fully masked sequence. It requires fewer forward passes than an ARM thanks to parallel decoding,
but each pass is drastically more expensive due to its incompatibility with KV caching.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ReFusion

ℒ!"# ℒ#$#

Prompt Response

(1) Random Slot Masking

(2) Permutation of Clean Slots

(3) Reorder

Prompt Response
𝑡 = 1…

(1) Slot Planning

(2.1) Verification

(2.2) Completion

Step I: Diffusion-based

Step II: Autoregressive

A
n
Iteration

…

Restore Order

𝑡 = 0
Clean Token

Masked Token

Slot

KV-cached token

Reorder

Forward Pass

TrainingInference

Figure 2: The inference and training process of REFUSION. Inference (Left) proceeds via an iterative
“plan-and-infill” loop at the slot level: A diffusion-based step first plans which slots to generate and
proposes initial drafts, and a parallel autoregressive step then fills them using a verify-and-complete
mechanism. Full KV cache reuse is achieved by reordering generated slots before masked ones after
each iteration. Training (Right) mirrors inference by optimizing a hybrid objective that combines an
autoregressive loss (LARM) on permuted clean slots and a denoising loss (LMDM) on masked slots.

4 METHODOLOGY

Traditional MDMs allow a flexible token-level decoding process during inference. We elevate this
concept to operate on slots, i.e., a fixed-length, non-overlapping sequence of continuous tokens,
denoising them in parallel. Consequently, our approach yields two critical benefits: it enables full
KV cache reuse by arranging newly generated slots before masked ones with a causal framework,
and it substantially reduces training complexity from the token-level combination space to a more
manageable slot-level permutation space. To support non-sequential generation, we build REFUSION
upon a standard causal architecture with a key modification: it accepts an explicit, non-contiguous
list of position IDs. By applying RoPE (Su et al., 2021) to these absolute position IDs, the model can
correctly compute relative distances and attend to all logical predecessors. Figure 2 illustrates the
inference and training process.

4.1 LOCALITY OF INTER-TOKEN DEPENDENCY

-128 -64 -32 -16 -8 -4 -2 -1 1 2 4 8 16 32 64 128
Relative Distance from the Revealed Token

0.00

0.05

0.10

0.15

Je
ns

en
Sh

an
no

n
D

iv
er

ge
nc

e

LLaDA-8B-Instruct

t = 0.8
t = 0.6
t = 0.4
t = 0.2

-128 -64 -32 -16 -8 -4 -2 -1 1 2 4 8 16 32 64 128
Relative Distance from the Revealed Token

0.0

0.1

0.2

0.3

Je
ns

en
Sh

an
no

n
D

iv
er

ge
nc

e

Dream-7B-Instruct

t = 0.8
t = 0.6
t = 0.4
t = 0.2

Figure 3: The locality of inter-token depen-
dency in MDMs, with the sign on the x-axis
denoting the direction from the revealed token
(positive for rightward, negative for leftward).

A cornerstone of REFUSION is the grouping of con-
tiguous tokens into slots for serial generation. This
design is motivated by the critical insight that the
conditional independence assumption is most prone
to failure for nearby tokens, frequently leading to
semantic incoherence (Luxembourg et al., 2025). To
formalize this insight and guide our design, we con-
duct a pilot study to quantitatively investigate how
dependency strength between two tokens correlates
with their relative distance.

Formally, we define the dependency strength between
two tokens, xi

0 and xj
0, in a given context xt, as the

degree to which the presence of xj
0 influences the

model’s prediction of xi
0. In practice, we approximate

this measurement in a pilot study on the GSM8K test

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

set (Cobbe et al., 2021). For a corrupted sequence xt, we first reveal the ground-truth token xj
0 at a

randomly selected masked position j, and then quantify the influence of this reveal on the prediction
at any other masked position i through the Jensen-Shannon (JS) divergence (Manning & Schutze,
1999) between the distributions before and after this reveal, i.e., p(xi

0|xt) and p(xi
0|xt, x

j
0). A higher

divergence implies stronger dependency, with zero divergence indicating conditional independence.
Using both LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025), we plot the averaged JS divergence
against the relative distance between positions i and j in Figure 3. The average JS divergence
consistently decays as the relative distance increases, and this decay is more rapid in denser contexts
(i.e., lower masking ratios t). This result directly motivates us to define a slot as a contiguous token
sequence, thereby grouping strongly correlated tokens for serial decoding within a slot, in contrast to
prior block-based methods that decode nearby tokens within a block in parallel (Arriola et al., 2025).

4.2 SYNERGISTIC DECODING ALGORITHM AT INFERENCE

Armed with the quantitative evidence that inter-token dependency is highly localized, we design
the inference algorithm to explicitly leverage this property. The process iteratively generates a
final response r̃0 from a prompt p0, starting with an initial masked sequence r̃1. This sequence is
partitioned into K consecutive slots of k “[MASK]” tokens each. Each iteration comprises two
synergistic steps: (1) diffusion-based slot planning to identify slots that are strongly dependent on the
context but weakly interdependent; and (2) autoregressive slot infilling to decode them in parallel.

Step I: Diffusion-based Slot Planning. The first step leverages the model’s MDM capability to
plan the next decoding slots. At a timestep t, which is defined as the ratio of remaining masked slots,
we construct the input S̃t by concatenating already-decoded slots (S̃clean

t , in generation order) with
the masked slots (S̃masked

t , in their original positional order). This ordering naturally enables KV
cache reuse. The model then computes a certainty score for each masked slot based on its predictive
distribution. While various heuristics exist for certainty score, we adopt a simple yet effective one:
the probability of the most likely token at the slot’s first position. Finally, a batch of slots with
scores exceeding a threshold τ is selected for subsequent infilling. This strategy identifies slots that
are strongly constrained by the existing context and weakly interdependent (e.g., distinct function
definitions in code generation), making them suitable to parallelize. Furthermore, to accelerate the
subsequent autoregressive generation, we adopt a strategy from speculative decoding (Leviathan
et al., 2023): for each selected slot, we generate a corresponding draft slot by sampling a token from
its distribution at every position, yielding the draft slots S̃draft

t .

Step II: Autoregressive Slot Infilling. The second step efficiently verifies the draft slots S̃draft
t

and completes them using the model’s autoregressive capability: (1) Verification. We concatenate
all draft slots into a single sequence in their original positional order. The model then performs a
single forward pass to compute the probability of each token in the draft sequence, conditioned on
the prompt and the already decoded slots. We first identify the longest prefix of the concatenated
draft where the probabilities of all tokens exceed τ . If this prefix spans one or more complete slots,
we accept these slots wholesale and immediately proceed to the next planning iteration, thereby
bypassing a costly suffix completion. Otherwise, we determine the longest common prefix length that
is successfully verified across all individual draft slots, and truncate each draft slot to this common
length. (2) Completion. The model then completes any truncated slots by autoregressively sampling
the remaining positions in parallel for each slot.

Finally, the newly completed slots are appended to the sequence of decoded slots. Their KV caches are
directly concatenated for future iterations, a valid approximation as the lack of inter-slot conditioning
during parallel generation has minimal impact on final performance (see §5.4). The plan-and-infill
cycle continues until all slots are filled, at which point the final response is constructed by restoring
the original slot order. The decoding process is formalized in Appendix A.2.

4.3 TRAINING OF REFUSION

The training procedure for REFUSION is carefully designed to mirror the dynamics of our two-step
decoding algorithm. This requires a data construction strategy that simulates the non-sequential,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

partially-decoded states encountered during generation, and a hybrid training objective that jointly
optimizes the model’s planning and infilling capabilities.

Training Data Construction. To simulate the partially decoded states encountered during iterative
generation, we introduce a three-step strategy to construct training data from each prompt-response
pair (p0, r0). The response r0 is first partitioned into a sequence of K slots, S0 = [S1

0 , . . . , S
K
0],

each of size k. Then, a corrupted version St is constructed given a masking ratio t ∼ U(0, 1) as
follows: (1) Random slot masking. Analogous to token-level masking in traditional MDMs, we
randomly select and mask ⌊tK⌋ slots from the original sequence S0. Each selected slot is replaced
with a block of k “[MASK]” tokens. (2) Permutation of clean slots. Since the generation order of
slots is dynamically determined, the model must learn to process context in any arbitrary permutation.
To achieve this, we randomly permute the unmasked (clean) slots to form Sclean

t , while keeping
the original relative positions of the masked slots to form Smasked

t . (3) Reorder. The final training
instance St is assembled by concatenating the permuted clean slots followed by the masked slots.

Hybrid Training Objective. To empower our model with the dual capabilities of global planning
and local decoding, we propose a hybrid training objective that learns from every token in the
sequence. This approach also provides a significant benefit of data efficiency, which contrasts with
traditional MDMs where clean tokens only serve as context and provide no direct supervision.

On one hand, the clean slots Sclean
t are trained with a standard ARM loss for next token prediction:

LARM = −E(p0,r0)∼D
t∼U(0,1)

 1

(k − 1) · |Sclean
t |

|Sclean
t |∑
i=1

k∑
j=2

logPθ

(
vi,jt | p0,Sclean

t,<(i,j)

) , (1)

where vi,jt is the j-th token in the i-th clean slot, Sclean
t,<(i,j) is the prefix of the token in Sclean

t .

On the other hand, the masked slots Smasked
t are trained with an MDM objective for denoising:

LMDM = −E(p0,r0)∼D
t∼U(0,1)

 1

k · |Smasked
t |

|Smasked
t |∑
i=1

k∑
j=1

logPθ(v
i,j
0 | p0,Sclean

t ,Smasked
t,⩽(i,j))

 , (2)

where vi,j0 is the ground-truth token from the original response corresponding to the j-th token in the
i-th slot of Smasked

t . The final training objective is a summation of the two losses, balanced by λ:
L = LARM + λLMDM. (3)

We initialize our model Pθ with an off-the-shelf ARM backbone, a strategy validated by prior
work (Gong et al., 2025; Ye et al., 2025). Crucially, all tokens retain their original positional indices
from r0 throughout the process. This allows the model to maintain awareness of the relative positions
among all tokens, ensuring sequence coherence despite the shuffled input order.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Implementation Details. We initialize REFUSION from the Qwen3-8B checkpoint (Yang et al.,
2025) and fine-tune it for 4 epochs on a diverse 3.7M-sample dataset covering mathematics, coding,
and general instruction-following. For inference, we employ a semi-autoregressive remasking
strategy (Nie et al., 2025): the output sequence is partitioned into blocks of size b, which are
decoded serially. Within each block, our plan-and-infill algorithm from §4.2 is applied. Detailed
implementation and hyperparameter specifics are provided in Appendix B.1 and B.2, respectively.

Evaluation Benchmarks and Metrics. To comprehensively evaluate REFUSION, we test its
performance on diverse benchmarks spanning: (1) General-purpose understanding and reasoning:
MMLU-Pro (Wang et al., 2024) and ARC-C (Clark et al., 2018); (2) Mathematical and scientific
problem-solving: GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), and GPQA (Rein
et al., 2024); (3) Code generation: HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021). We
use pass@1 for code generation and accuracy for the others. We further assess inference throughput
using tokens decoded per second (TPS) with a single A100 GPU and a batch size of 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Zero-shot performance and throughput (TPS) comparison on multiple benchmarks. Each
model displays accuracy/pass@1 (top row) and throughput (TPS, bottom row). Within the MDM
category, we highlight the best performance results in bold and underline the second best. An italic
score in the ARM category signifies that it surpasses the best-performing MDM.

Model MMLU-Pro ARC-C GSM8K MATH GPQA HumanEval MBPP Avg.

Autoregressive Model
35.23 82.76 75.13 25.48 29.46 46.34 53.00 49.63Llama-3-8B-Instruct 32.07 44.12 42.81 19.73 42.00 42.26 41.68 37.81
67.25 90.36 81.96 83.28 39.06 87.80 63.80 73.36Qwen3-8B 31.42 42.78 31.20 30.11 30.43 30.95 30.07 32.42

Masked Diffusion Model
35.80 85.58 76.35 38.78 32.37 45.12 25.60 48.51LLaDA-8B-Instruct 18.21 0.03 27.35 23.93 1.99 12.42 2.97 12.41
35.02 82.85 76.27 38.58 28.35 37.80 24.80 46.24LLaDA w/ Fast-dLLM 39.81 0.86 73.07 52.23 17.54 62.52 37.19 40.46
22.84 84.13 39.04 23.68 31.25 36.59 35.20 38.96LLaDA w/ D2F 44.54 3.70 82.59 59.48 23.84 96.90 53.85 52.13

40.05 88.31 76.42 46.60 30.36 56.71 50.40 55.55Dream-7B-Instruct 15.98 0.06 20.30 18.99 1.81 3.51 1.23 8.84
40.36 86.86 75.82 36.76 31.25 56.10 10.60 48.25Dream w/ Fast-dLLM 47.18 1.42 61.49 58.24 22.96 49.73 19.55 37.22
38.26 87.37 47.99 24.60 22.77 46.95 35.00 43.28Dream w/ D2F 60.64 14.82 96.59 81.59 25.20 49.05 53.95 54.55

45.39 89.68 85.60 56.06 35.04 75.61 66.60 64.85REFUSION 39.38 49.25 40.29 42.40 42.23 46.48 45.34 43.62

Baselines. We evaluate REFUSION against three categories of baselines1: (1) ARMs: Llama-3-8B-
Instruct (AI@Meta, 2024) and Qwen3-8B (Yang et al., 2025). (2) MDMs: LLaDA-8B-Instruct (Nie
et al., 2025), and Dream-7B-Instruct (Ye et al., 2025). (3) State-of-the-art MDM acceleration methods:
Fast-dLLM (Wu et al., 2025b) and D2F (Wang et al., 2025). We implement the baseline methods
based on their official hyperparameters.

5.2 MAIN RESULTS

The main results in Table 1 highlight two key findings: (1) REFUSION dominates all MDM
baselines. REFUSION consistently outperforms all MDM baselines across all seven benchmarks,
often by a substantial margin. For instance, on HumanEval, it achieves 75.61% pass@1, surpassing
the next-best MDM (Dream-7B-Instruct) by nearly 19 absolute points. While acceleration methods
like Fast-dLLM and D2F improve throughput at a significant performance cost, REFUSION delivers
both state-of-the-art performance and competitive efficiency, establishing a new frontier for MDMs.
(2) REFUSION challenges strong ARMs. More remarkably, REFUSION challenges and often
surpasses strong ARMs. On GSM8K and MBPP, for example, it outperforms Qwen3-8B by 3
absolute points while delivering a 1.4× speedup. This demonstrates that our non-autoregressive
approach can break the long-standing trade-off between the speed of MDMs and the quality of
ARMs (Feng et al., 2025).

5.3 ANALYSIS OF HYPERPARAMETERS

We examine the key hyperparameters governing the performance-efficiency trade-off in REFUSION:
the verification threshold τ and the slot size k. The threshold τ controls the confidence for both slot
selection (planning) and draft acceptance (infilling), while k defines the granularity of the generation
unit. An analysis of other hyperparameters is shown in Appendix C.2.

As illustrated in Figure 4 (left & middle), these hyperparameters create a predictable trade-off.
(1) Verification threshold τ : Lowering τ boosts throughput (TPS) by enabling more aggressive
parallelism, but at the cost of reduced performance due to lower token reliability. (2) Slot size k:

1We omit BD3-LMs due to its significantly smaller scale (0.2B parameters). However, its decoding strategy
is shared by other baselines like LLaDA and Fast-dLLM, whose performance serves as a proxy.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

-10

-5

0

5

 pass@1 (%)
 Throughput (TPS)

4 8 16 32
Slot Size k

-15

-10

-5

0

5

 pass@1 (%)
 Throughput (TPS)

1 2 3 4 5
Average #TPF

20

40

60

pa
ss

@
1

(%
)

ReFusion
LLaDA-8B-Instruct
Dream-7B-Instruct

0

10

20

5

10

15

20

25

Figure 4: Left & Middle: Impact of key hyperparameters on MBPP (0-shot). The plots show the
change in pass@1 (%) and throughput (TPS) of REFUSION relative to Qwen3-8B (horizontal dashed
lines at zero). When one parameter is varied, others are held at their default values (τ = 0.6, k = 16).
Yellow shaded regions highlight the “sweet spot” where REFUSION surpasses the baseline in both
metrics. Right: pass@1 on MBPP for REFUSION and baseline MDMs over the average number of
tokens generated per forward pass (TPF) under various hyperparameter settings.

Table 2: Controlled comparison of models initialized from Qwen3-8B and trained on 120K subset.

Model MMLU-Pro ARC-C GSM8K MATH GPQA HumanEval MBPP Avg.
52.71 88.65 87.57 67.84 33.26 53.66 59.20 63.27Qwen3-8B 31.32 30.46 31.03 30.73 26.70 30.73 30.16 30.16
5.12 70.65 13.42 1.38 0.00 4.27 6.20 14.43LLaDA 0.26 0.03 1.18 0.20 0.15 0.66 0.42 0.41

38.80 84.64 79.45 49.98 30.36 62.20 52.40 56.83REFUSION 35.36 47.14 39.67 44.85 40.68 39.54 38.64 40.84

Similarly, smaller slot sizes (k) increase TPS by creating more parallelizable units given a fixed full
length, though this speed gain is counteracted by a performance drop.

More importantly, the shape of this trade-off frontier distinguishes REFUSION from prior MDMs.
Figure 4 (right) shows that both LLaDA and Dream suffer a sharp performance decline as parallelism
(TPF) increases2, indicating a failure to uphold the conditional independence assumption when se-
lecting tokens for parallel decoding. In contrast, REFUSION’s curve is substantially flatter, validating
that its training and decoding strategies can more reliably identify conditionally independent tokens.
Expanding on this, Figure 1 presents the complete performance-throughput (TPS) frontier against all
baselines, revealing a critical finding: for every baseline model, there exists at least one REFUSION
configuration that is simultaneously superior in both performance and throughput.

5.4 ABLATION STUDY

Controlled Comparison with the Same Backbone and Data. To isolate the benefits of REFUSION
from data or backbone advantages, we conduct a controlled comparison using a smaller 120K data
subset randomly sampled from the full 3.7M data due to resource constraints. We fine-tune Qwen3-8B,
LLaDA, and REFUSION for 10 epochs using their respective original objectives, with all initialized
from Qwen3-8B. This setup ensures that observed differences are attributable solely to the algorithm
design. Appendix C.1 discusses the scaling property of REFUSION regarding data size.

Results in Table 2 confirm the architectural superiority of REFUSION. LLaDA suffers a catastrophic
performance collapse. In contrast, REFUSION maintains strong performance, even outperforming
Qwen3-8B (120K) by ∼9 points on HumanEval while being 1.3× faster. This result robustly validates
that REFUSION’s architectural innovations are the primary driver of its success, enabling effective
learning even from limited data where standard MDMs fail.

Ablation on KV Cache Reuse. To maximize efficiency, REFUSION directly concatenates the KV
caches of parallel-generated slots, bypassing a costly forward pass that would otherwise be needed
to contextualize them. To quantify the impact of this approximation, we conduct an ablation study
comparing our default model against a variant, “REFUSION w/ KV Re-computation,” which performs
this extra forward pass to ensure full contextualization at the cost of speed.

2We use TPF here, rather than TPS, to isolate the algorithmic trade-off from any system-level overheads.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation regarding our KV cache reuse mechanism. We compare our default REFUSION,
which efficiently reuses KV caches by concatenating them after parallel generation, against a variant
(w/ KV Re-computation) that recomputes caches for full contextualization at a higher cost.

Model MMLU-Pro ARC-C GSM8K MATH GPQA HumanEval MBPP
45.34 89.68 84.91 55.90 35.04 73.78 66.40REFUSION w/ KV Re-computation 34.13 36.21 36.38 37.57 29.96 41.02 40.13
45.39 89.68 85.60 56.06 35.04 75.61 66.60REFUSION 39.38 49.25 40.29 42.40 42.23 46.48 45.34

As shown in Table 3, our default approach is consistently 1.1−1.4× faster across all benchmarks.
Surprisingly, this significant speedup comes at virtually no cost to performance; in fact, accuracy
remains stable and even slightly improves on several benchmarks. We hypothesize this counter-
intuitive benefit arises from a form of implicit regularization: by avoiding over-conditioning on
potentially flawed parallel drafts, our method mitigates error propagation. This result validates
our KV cache reuse strategy not merely as a speed-accuracy trade-off, but as a design choice that
simultaneously enhances efficiency and robustness.

5.5 CASE STUDY

Problem:Write a function to sum all amicable numbers from 1 to a specified number.

ReFusion:

Figure 5: A case study of REFUSION generating a Python
function for an MBPP problem. The code is segmented into
slots of size k = 4. The numbers in the top-left corner
of each slot indicate the generation order, while the color
intensity represents the generation time (darker is earlier).

Figure 5 provides a qualitative under-
standing of how REFUSION solves
a programming problem from the
MBPP benchmark, revealing two key
capabilities: (1) High degree of par-
allelism. The model frequently gener-
ates multiple slots concurrently. For
instance, at iteration 9, it simultane-
ously generates three separate slots,
demonstrating its ability to exploit
parallel decoding opportunities. (2)
Non-linear generation order. The
generation process is markedly non-
linear. For example, the model con-
structs the central “for” loop structure
(iteration 7) before initializing a local
variable “sum = 1” (iteration 8). This
ability to plan and execute in a paral-
lel, non-monotonic fashion allows RE-
FUSION to construct complex, struc-
tured code in a manner that is both
efficient and conceptually closer to hu-
man problem-solving. Appendix C.3 shows the results of baseline models on the same problem.

6 CONCLUSION

In this work, we present REFUSION, a novel generative model that synergizes the strengths of
diffusion-based planning and autoregressive infilling to address the long-standing efficiency and
coherence challenges in traditional MDMs. This unique design enables full KV cache reuse within a
flexible, any-order generation framework, while making the training objective tractable by simplifying
the combinatorial complexity of the generation space. Extensive evaluations across seven benchmarks
show that REFUSION establishes a new state of the art for MDMs. More strikingly, it bridges the
performance gap to strong ARMs, often outperforming them while being significantly faster. Our
work demonstrates that by structuring the parallel generation process, it is possible to achieve the
throughput potential of MDMs without sacrificing generation quality. Future directions include
further scaling of the model and data size, as well as leveraging reinforcement learning to optimize
the model’s planning policy for complex, multi-step reasoning tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experimental results, our training and inference code
is open-sourced in an anonymized repository https://anonymous.4open.science/r/
ICLR2026-ReFusion. The specific settings for training and testing are detailed in §5.1 and
Appendix B.

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlı́ček, Agustı́n Piqueres Lajarı́n, Vaibhav Srivastav,
Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo
Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
Thomas Wolf. Smollm2: When smol goes big – data-centric training of a small language model,
2025. URL https://arxiv.org/abs/2502.02737.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autore-
gressive and diffusion language models. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://arxiv.org/abs/2503.09573.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Heli Ben-Hamu, Itai Gat, Daniel Severo, Niklas Nolte, and Brian Karrer. Accelerated sampling from
masked diffusion models via entropy bounded unmasking. arXiv preprint arXiv:2505.24857, 2025.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Guhao Feng, Yihan Geng, Jian Guan, Wei Wu, Liwei Wang, and Di He. Theoretical benefit and
limitation of diffusion language model. arXiv preprint arXiv:2502.09622, 2025.

10

https://anonymous.4open.science/r/ICLR2026-ReFusion
https://anonymous.4open.science/r/ICLR2026-ReFusion
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2503.09573

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An, Peilin
Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling diffusion language models via
adaptation from autoregressive models. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=j1tSLYKwg8.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daehoon Gwak, Minseo Jung, Junwoo Park, Minho Park, ChaeHun Park, Junha Hyung, and Jaegul
Choo. Reward-weighted sampling: Enhancing non-autoregressive characteristics in masked
diffusion llms. arXiv preprint arXiv:2509.00707, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Zhanqiu Hu, Jian Meng, Yash Akhauri, Mohamed S Abdelfattah, Jae-sun Seo, Zhiru Zhang, and
Udit Gupta. Accelerating diffusion language model inference via efficient kv caching and guided
diffusion. arXiv preprint arXiv:2505.21467, 2025.

Fei Huang, Tianhua Tao, Hao Zhou, Lei Li, and Minlie Huang. On the learning of non-autoregressive
transformers. In International conference on machine learning, pp. 9356–9376. PMLR, 2022.

Pengcheng Huang, Shuhao Liu, Zhenghao Liu, Yukun Yan, Shuo Wang, Zulong Chen, and Tong
Xiao. Pc-sampler: Position-aware calibration of decoding bias in masked diffusion models. arXiv
preprint arXiv:2508.13021, 2025.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang,
J. H. Liu, Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu,
Ge Zhang, Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook for
top-tier code large language models. 2024. URL https://arxiv.org/pdf/2411.04905.

Daniel Israel, Guy Van den Broeck, and Aditya Grover. Accelerating diffusion llms via adaptive
parallel decoding. arXiv preprint arXiv:2506.00413, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham Kakade, and Sitan Chen. Train for the worst, plan
for the best: Understanding token ordering in masked diffusions. arXiv preprint arXiv:2502.06768,
2025.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tülu 3:
Pushing frontiers in open language model post-training. 2024.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

Jia-Nan Li, Quan Tu, Cunli Mao, Zhengtao Yu, Ji-Rong Wen, and Rui Yan. Streamingdialogue:
Prolonged dialogue learning via long context compression with minimal losses. Advances in
Neural Information Processing Systems, 37:86074–86101, 2024.

Yifan Li, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Diffusion models for non-autoregressive
text generation: A survey. arXiv preprint arXiv:2303.06574, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

11

https://openreview.net/forum?id=j1tSLYKwg8
https://arxiv.org/pdf/2411.04905

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang, and
Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching.
arXiv preprint arXiv:2506.06295, 2025.

Omer Luxembourg, Haim Permuter, and Eliya Nachmani. Plan for speed–dilated scheduling for
masked diffusion language models. arXiv preprint arXiv:2506.19037, 2025.

Christopher Manning and Hinrich Schutze. Foundations of statistical natural language processing.
MIT press, 1999.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992,
2025.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing with unsupervised learning. 2018.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,
Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language models. arXiv
preprint arXiv:2506.01928, 2025.

Yuerong Song, Xiaoran Liu, Ruixiao Li, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and
Xipeng Qiu. Sparse-dllm: Accelerating diffusion llms with dynamic cache eviction. arXiv preprint
arXiv:2508.02558, 2025.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with
rotary position embedding, 2021.

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
Gitman. Openmathinstruct-2: Accelerating ai for math with massive open-source instruction data.
arXiv preprint arXiv:2410.01560, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Xu Wang, Chenkai Xu, Yijie Jin, Jiachun Jin, Hao Zhang, and Zhijie Deng. Diffusion llms can do
faster-than-ar inference via discrete diffusion forcing. arXiv preprint arXiv:2508.09192, 2025.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. Advances in Neural Information Processing Systems, 37:
95266–95290, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025a.

12

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding, 2025b. URL https://arxiv.org/abs/2505.22618.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Lingzhe Zhang, Liancheng Fang, Chiming Duan, Minghua He, Leyi Pan, Pei Xiao, Shiyu Huang,
Yunpeng Zhai, Xuming Hu, Philip S Yu, et al. A survey on parallel text generation: From parallel
decoding to diffusion language models. arXiv preprint arXiv:2508.08712, 2025.

13

https://arxiv.org/abs/2505.22618
https://arxiv.org/abs/2505.09388

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Comparison between REFUSION and existing MDMs. L denotes the generation length and
k denotes the block or slot size.

Model Generation Attention Generation Full KV Number of Distinct
Scope Mechanism Order Cache Reuse Masking Patterns

LLaDA Full Sequence Bidirectional Any-Oder ✗
∑L

l=1

(
L
l

)
≈ 2L

Intra-block Bidirectional Any-OrderBD3-LMs Inter-block Causal Left-to-Right ✗ 2k · L
k

Intra-slot Causal Left-to-Right L
k !REFUSION Inter-slot Causal Any-Order ✓

(Lk ! ≪ 2L for large k)

A METHODOLOGICAL DETAILS

A.1 COMPARISON BETWEEN REFUSION AND REPRESENTATIVE MDMS

Table 4 provides a detailed, side-by-side comparison of the architectural and methodological designs
of REFUSION against two representative MDMs, LLaDA (Nie et al., 2025) and BD3-LMs (Arriola
et al., 2025). This comparison highlights how REFUSION uniquely addresses the fundamental
trade-offs between generation flexibility, computational efficiency, and learning complexity.

(1) LLaDA, as a conventional MDM, operates on the entire sequence with a bidirectional attention
mechanism. This grants it maximum flexibility, allowing for a fully unconstrained, any-order genera-
tion process. However, this design choice incurs two significant penalties. First, the bidirectional
attention is fundamentally incompatible with KV caching, resulting in substantial computational
overhead at each decoding step. Second, it must learn dependencies across an exponential space of
possible masking patterns. For a sequence of length L, any given training or inference state is defined
by a subset of tokens that remain masked. Since each of the L positions can be either masked or
unmasked, the model must, in principle, handle any of the 2L possible subsets of visible context3.
This combinatorial space of approximately 2L distinct masking patterns presents an intractable
objective, as the model may not be sufficiently trained on the specific patterns encountered during
inference, leading to incoherent parallel generation.

(2) BD3-LMs attempts to mitigate these issues with a hybrid, block-based approach. It enforces a rigid,
left-to-right generation order between blocks, which enables KV cache reuse across block boundaries.
However, within each block, it retains bidirectional attention and any-order token generation. This
design makes a critical compromise. It sacrifices global generation flexibility for discovering optimal
generation strategies, which is a key theoretical advantage of MDMs. Furthermore, it still faces the
challenges of token-level incoherence and the inability to utilize KV caching for intra-block decoding.

(3) REFUSION introduces a more elegant and unified solution. Generation is structured at the slot
level. Within each slot (intra-slot), generation is autoregressive (left-to-right) under a causal attention
mask, directly addressing the strong local dependencies between adjacent tokens. Between slots
(inter-slot), the model retains the flexibility of any-order generation, enabling it to discover better,
non-linear generation paths than the left-to-right order. Crucially, by reordering generated slots to
always precede masked ones in the input sequence, REFUSION enables full KV cache reuse for
every decoded token, a feature unique among these models. This design simultaneously achieves two
critical goals: it combines global generation flexibility with universal computational efficiency, and it
drastically reduces the learning complexity from an exponential token-level permutation space to a
far more manageable slot-level one (Lk !). For a typical sequence length of L = 4, 096, a slot size of
just k = 8 is sufficient to ensure L

k ! < 2L.

In summary, while prior models are forced to trade flexibility for efficiency or vice versa, REFUSION’s
innovative slot-based framework is the only approach that concurrently offers global any-order
generation, full KV cache reuse, and a tractable training objective.

3Notably, due to the bidirectional attention, the model is invariant to the order in which clean tokens are
revealed. Therefore, the learning complexity is not permutations (L!).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 INFERENCE FORMALIZATION

In this section, we formalize the two-step decoding iteration as follows:

Step I: Diffusion-based Slot Planning. The first step leverages the model’s MDM capability
to plan the next decoding slots. At a timestep t (defined as the ratio of remaining masked slots),
we construct the input S̃t for enabling KV cache by concatenating already-decoded clean slots
(S̃clean

t , in generation order) with the remaining masked slots (S̃masked
t , in their original positional

order). The planning process then generates a draft for all masked slots. This draft serves a dual
purpose: providing a basis for scoring each slot for planning, and acting as a speculative guess for the
subsequent infilling stage (Leviathan et al., 2023). Specifically, for each position j in the i-th slot
of S̃masked

t , a draft token d̃i,jt is sampled from the model’s marginal distribution, conditioned on the
leading context:

d̃i,jt ∼ Pθ(· | p0, S̃clean
t , S̃masked

t,⩽(i,j)), (4)

where S̃masked
t,⩽(i,j) denote the tokens before the position of the target token. This yields a draft version

of the masked slots, denoted as S̃draft
t = {d̃i,jt }. We then quantify the model’s certainty score of i-th

slot S̃i
t in S̃masked

t as the model’s predicted probability of its first token d̃i,1t :

C(S̃i
t) = Pθ(d̃

i,1
t | p0, S̃clean

t , S̃masked
t,⩽(i,1)). (5)

The model then selects a batch of slots with scores exceeding a threshold τ for subsequent infilling.
If no slot meets this criterion, the single slot with the globally highest score is selected instead. This
strategy identifies slots that are strongly constrained by the existing context and weakly interdependent
(e.g., distinct function definitions in code generation), making them suitable to parallelize.

Step II: Autoregressive Slot Infilling. The second step verifies and completes the selected draft
slots using a single autoregressive forward pass. To achieve this, we first concatenate the slots in
their original left-to-right order. The model then calculates the conditional probability of each token,
conditioned on all preceding tokens within the newly formed sequence:

P(d̃i,jt) =

{
Pθ(d̃

i,1
t | p0, S̃clean

t , S̃masked
t,⩽(i,1)), if j = 1

Pθ(d̃
i,j
t | p0, S̃clean

t , S̃draft
t,<(i,j)). if j > 1

(6)

Next, we verify the draft by identifying the longest prefix of the concatenated sequence, with length
l, where every token’s probability exceeds the threshold τ . If the prefix is long enough to form
at least one full slot (i.e., l ⩾ k), we accept the first ⌊l/k⌋ slots and immediately begin a new
planning-infilling iteration, bypassing the costly suffix completion. Otherwise, we find the longest
common prefix length, l′ ⩾ 1, that is successfully verified across all individual draft slots. Each slot
is then truncated to this length l′, and the model proceeds to suffix completion, filling the remaining
empty positions in each slot via parallel autoregressive decoding:

ṽi,jt

{
= d̃i,jt , if j ⩽ l′

∼ Pθ(· | p0, S̃clean
t , ṽi,<j

t), otherwise
(7)

where ṽi,jt is the finally decoded token at the j-th position of the i-th slot. After infilling each selected
slot, the completed slots are moved from S̃masked

t to S̃clean
t . For the subsequent iteration, the KV

caches from these parallel-generated slots are concatenated. While this parallel generation forgoes
intra-batch conditioning, we observe in our experiments that this has a minimal impact on final
performance (see §5.4). This planning-infilling iteration repeats with an updated timestep t until no
masks remain (t = 0), at which point the final response r̃0 is formed by sorting S̃clean

0 back into its
original sequence order.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Hyperparameter settings for different tasks.

Benchmark Generation Length Verification Threshold τ Slot Size k Block Size b

MMLU-Pro 512 0.5 16 128
ARC-C 512 0.4 4 16
GSM8K 512 0.7 16 64
MATH 512 0.6 32 64
GPQA 128 0.6 8 16
HumanEval 512 0.6 16 32
MBPP 512 0.6 16 32

B EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS

Our training data comprises 3.7M samples from MAmmoTH (Yue et al., 2023), OpenMathInstruct-
2 (Toshniwal et al., 2024), OpenCoder (Huang et al., 2024), SmolLM 2 (Allal et al., 2025), and Tulu
3 (Lambert et al., 2024). For OpenMathInstruct-2, we use its 1M open-source version and remove
questions longer than 1,024 tokens as instructed. We use a global batch size of 512, a maximum
sequence length of 4,096, and a learning rate of 2e-5. The training is conducted on 16 nodes, each
with 8 H20 GPUs, and is accelerated using DeepSpeed ZeRO-2 (Rajbhandari et al., 2020) and
Flash-attention-2 (Dao, 2023). We set λ in Eq. 3 to 1. For each training sample, we randomly select a
slot size from {4, 8, 16, 32}.

Existing MDMs decode sequences to a predetermined length. Even when an end-of-sequence (EOS)
token appears early, the model still expends decoding time on all tokens with higher position IDs. To
address this issue, we introduce a mechanism for efficient variable-length generation. Specifically,
during training, we pad shorter sequences in a mini-batch with padding tokens and exclude these
tokens from the loss computation. During inference, upon generating an EOS token, we dynamically
truncate the target length to that token’s position. This prevents the decoding of any tokens with a
higher position ID, thereby reducing redundant computation.

B.2 HYPERPARAMETER SETTING

During REFUSION inference process, three hyperparameters can be adjusted: the verification thresh-
old τ , the slot size k, and the block size b. Table 5 shows the specific settings used in our evaluation.

C EXPERIMENT RESULTS

C.1 SCALING WITH DATA SIZE

120K 1M 2M 3.7M
Data Size

70.0

72.5

75.0

77.5

80.0

82.5

85.0

A
cc

ur
ac

y
(%

)

GSM8K (0-shot)

Accuracy (%)
Throughput (TPS)

120K 1M 2M 3.7M
Data Size

54

56

58

60

62

64

Pa
ss

@
1

(%
)

MBPP (0-shot)

Pass@1 (%)
Throughput (TPS)

30

32

34

36

38

40

Th
ro

ug
hp

ut
 (T

PS
)

30

32

34

36

38

Th
ro

ug
hp

ut
 (T

PS
)

Figure 6: Scaling properties of REFUSION on
GSM8K and MBPP. We plot performance (Accu-
racy/Pass@1, %) and inference throughput (TPS)
as a function of training data size.

To understand the scaling properties of our
model, we investigate the impact of training data
size on REFUSION’s performance and efficiency.
Figure 6 illustrates the results of this analysis on
GSM8K and MBPP, where we train REFUSION
for one epoch on datasets of varying sizes (from
120K to 3.7M samples) and evaluate it using the
same hyperparameters as in Table 5.

The results reveal a clear and positive scaling
trend for both key metrics. Specifically, through-
put (TPS, dashed lines) consistently improves
as the training data size increases. For instance,
on MBPP, throughput rises from approximately
31 TPS with 120K samples to over 36 TPS with

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

3.7M samples. This indicates that as the model is exposed to more diverse data, its internal generation
process becomes more efficient, likely due to a higher confidence and thus a higher acceptance rate
of its parallel drafts, leading to fewer decoding iterations.

Interestingly, the performance scaling (solid lines) is not strictly monotonic, a common phenomenon
when training with a fixed epoch count. On GSM8K, accuracy peaks at 2M samples before slightly
decreasing at 3.7M. A more pronounced effect is seen on MBPP, where the optimal pass@1 score
is achieved with just 1M samples. This behavior highlights a trade-off between data breadth and
training depth under a constrained computational budget: with a fixed one-epoch schedule, training
on a larger dataset potentially leads to under-convergence relative to the dataset’s complexity.

Nevertheless, the consistent rise in throughput coupled with the substantial performance uplift from
the 120K baseline suggests that with an increased computational budget (i.e., more training epochs
on the larger datasets), performance would likely continue to improve, further unlocking the full
potential of our approach.

C.2 ANALYSIS OF BLOCK SIZE

Our inference strategy is compatible with semi-autoregressive remasking (Nie et al., 2025). Specifi-
cally, during inference, the target sequence is partitioned into consecutive blocks of size b. These
blocks are decoded sequentially, while our synergistic decoding algorithm is applied to each block
as a single unit. Notably, the constraint b ⩾ k must be satisfied, where k is the size of a slot, the
fundamental unit for parallel decoding in our method.

Figure 7 illustrates the impact of block size b on our method’s performance and throughput (TPS).
The figure shows that performance degrades as b increases, since generating a larger, more complex
block in any order is inherently more challenging, although we have mitigated this difficulty through
intra-slot serial generation. Throughput (TPS) exhibits a non-monotonic trend, peaking around
b = 64. This non-monotonic trend is due to computational overhead: while a larger b provides
more opportunities for parallelism, it also forces the model to process a longer sequence containing
many “padded” (i.e., yet-to-be-generated) positions. This significantly increases the latency of each
decoding step, which eventually diminishes and then reverses the throughput gains observed with
larger block sizes.

16 32 64 128 256 512
Block Size b

0

1

2

3

4

 p
as

s@
1

(%
)

 pass@1 (%)
 Throughput (TPS)

12

13

14

15

16

 T
hr

ou
gh

pu
t (

TP
S)

Figure 7: Relative change in REFU-
SION’s pass@1 (%) and throughput
(tokens/sec) compared to Qwen3-8B
(horizontal dashed lines at zero) as block
size b varies. The yellow shaded region
highlights the range of b where REFU-
SION surpasses Qwen3-8B.

Although its performance slightly degrades with larger
block sizes, REFUSION’s pass@1 decreases by only ap-
proximately 4% as b increases from 16 to 512. This ro-
bustness to the block size highlights the model’s ability to
leverage strong diffusion-based planning to select the most
appropriate slots for decoding across a wide range. Collec-
tively, these analyses reveal a robust and wide “sweet spot,”
highlighted by the yellow shaded regions in Figures 4 and
7, where REFUSION consistently surpasses the Qwen3-
8B baseline in both performance and throughput (TPS).
This superior operating zone corresponds to a verification
threshold τ ∈ [0.5, 0.9], a slot size k ∈ {16, 32}, and a
block size b ∈ [16, 128].

C.3 CASE STUDY

Table 6 showcases responses to the same MBPP problem
as Figure 5 from different models. REFUSION’s ability
to globally plan the overall structure via a diffusion-based
process while locally infilling details autoregressively results in better-structured, high-quality code,
demonstrating its superiority over existing MDMs.

D LIMITATIONS

A primary limitation of our current framework is the immutability of generated slots. Once the
tokens within a slot are generated via diffusion-based planning and autoregressive infilling, they

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Model responses to the same MBPP problem as Figure 5.

Problem You are an expert Python programmer. Your task is to write a single Python function to solve the
problem described below, and here is your task: Write a function to sum all amicable numbers from 1
to a specified number. Your code should pass these tests:

assert amicable_numbers_sum(999)==504
assert amicable_numbers_sum(9999)==31626
assert amicable_numbers_sum(99)==0

LLaDA-8B-Instruct ✗ def amicable_numbers_sum(limit):
def is_perfect_square(n):

root = int(n**0.5)
return root * root == n

def sum_divisors(n):
total = 0
for i in range(1, n):

if n % i == 0:
total += i

return total

def is_amicable(a, b):
return sum_divisors(a) == b and sum_divisors(b) == a

amicable = set()
for i in range(1, limit + 1):

if is_perfect_square(i):
amicable.add(i)

for j in range(i + 1, limit + 1):
if is_amicable(i, j):

amicable.add(j)

return sum(amicable)

Dream-7B-Instruct ✗ def amicable_numbers_sum(n):
def is_amicable(num):

divisors = 1
for i in range(2, num):

if num % i == 0:
divisors += i
if i != num // i:

divisors += num // i
return divisors == num

total = 0
for i in range(2, n):

if is_amicable(i):
total += i

return total

REFUSION ✓ def amicable_numbers_sum(n):
def sum_of_divisors(num):

sum = 1
for i in range(2, int(num**0.5) + 1):

if num % i == 0:
sum += i + num // i

return sum

amicable_sum = 0
for i in range(2, n + 1):

sum_i = sum_of_divisors(i)
if sum_i != i and sum_of_divisors(sum_i) == i:

amicable_sum += i
return amicable_sum

are considered final and cannot be remasked or refined in future iterations. This design choice,
while simplifying the process, precludes the model from correcting potential errors made within a
completed slot.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A promising direction for future work would be to introduce a re-masking mechanism at the sub-slot
level. For instance, after infilling a slot, the model could verify the generated tokens and preserve only
a high-confidence prefix, while re-masking the lower-quality suffix. This would allow for iterative
refinement but would necessitate a more complex inference logic, potentially involving dynamic
adjustments of slot sizes to handle these newly masked, smaller segments. Developing an efficient
strategy for such dynamic, fine-grained refinement remains a key challenge for future research.

19

	Introduction
	Related Work
	Preliminary
	Methodology
	Locality of Inter-Token Dependency
	Synergistic Decoding Algorithm at Inference
	Training of ReFusion

	Experiments
	Experimental Setup
	Main Results
	Analysis of Hyperparameters
	Ablation Study
	Case study

	Conclusion
	Methodological Details
	Comparison between ReFusion and Representative MDMs
	Inference Formalization

	Experimental Details
	Implementation Details
	Hyperparameter Setting

	Experiment Results
	Scaling with Data Size
	Analysis of Block Size
	Case Study

	Limitations

