
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REFUSION: A DIFFUSION LARGE LANGUAGE MODEL
WITH PARALLEL AUTOREGRESSIVE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive models (ARMs) are hindered by slow sequential inference. While
masked diffusion models (MDMs) offer a parallel alternative, they suffer from
critical drawbacks: high computational overhead from precluding Key-Value (KV)
caching, and incoherent generation arising from learning dependencies over an
intractable space of token combinations. To address these limitations, we introduce
REFUSION, a novel masked diffusion model that achieves superior performance
and efficiency by elevating parallel decoding from the token level to a higher
slot level, where each slot is a fixed-length, contiguous sub-sequence. This is
achieved through an iterative “plan-and-infill” decoding process: a diffusion-based
planning step first identifies a set of weakly dependent slots, and an autoregressive
infilling step then decodes these selected slots in parallel. The slot-based design
simultaneously unlocks full KV cache reuse with a unified causal framework and
reduces the learning complexity from the token combination space to a manageable
slot-level permutation space. Extensive experiments on seven diverse benchmarks
show that REFUSION not only overwhelmingly surpasses prior MDMs with 32%
performance gains and an over 10× speedup on average, but also bridges the
performance gap to strong ARMs while maintaining a 1.4× average speedup.

1 INTRODUCTION

While autoregressive models (ARMs) (Grattafiori et al., 2024; Yang et al., 2025; Jaech et al., 2024)
have achieved impressive progress across a wide range of tasks (Chen et al., 2021; Wei et al., 2022;
Lightman et al., 2023; Li et al., 2024), their inference throughput is fundamentally limited by a
sequential, left-to-right decoding process that precludes parallelization (Chen et al., 2023; Cai et al.,
2024; Zhang et al., 2025). In contrast, masked diffusion models (MDMs) (Nie et al., 2025; Ye et al.,
2025) operate via an iterative denoising process with no fixed generation order. This flexibility yields
two significant advantages. First, it permits parallel decoding by assuming conditional independence
among target tokens: their joint probability, given the context, is assumed to be the product of their
individual marginal probabilities (Li et al., 2023). Second, it offers the potential for the model to
discover better generation orders than the rigid left-to-right trajectory (Kim et al., 2025).

Despite these theoretical advantages, existing MDMs often suffer from two issues: (1) Architec-
tural bottlenecks negate efficiency gains from parallelism. The flexibility of generation orders
necessitates the use of bidirectional attention in MDMs (Vaswani et al., 2017; Devlin et al., 2019), an
architectural choice fundamentally incompatible with Key-Value (KV) caching used in ARMs (Rad-
ford et al., 2018). That is, each decoding iteration forces a full re-computation of the KV states
of the entire context, introducing significant latency and making MDMs significantly slower than
ARMs (Feng et al., 2025). (2) Intractable training complexity hinders coherent parallel gen-
eration. MDMs typically decode multiple tokens with high marginal probabilities in parallel (Nie
et al., 2025). However, the conditional independence assumption frequently fails for these tokens,
particularly for nearby tokens, leading to severe incoherence (Huang et al., 2022; Luxembourg et al.,
2025; Gwak et al., 2025). For example, in a context where both “at once” and “right now” are
valid, an MDM might decode a spurious output “right once” by independently sampling tokens
with high individual marginal probabilities but low joint probability. We attribute this failure to an
immense learning challenge: modeling a data distribution over an exponential space of possible token
combinations is far more demanding than the fixed sequential dependency of ARMs. Consequently,
current MDMs often remain undertrained for reliably identifying conditionally independent tokens.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address these challenges, we introduce REFUSION, a masked diffusion large language model
that elevates the parallel decoding process from the traditional token level to a higher slot level,
progressively denoising slots in parallel from a fully masked sequence. Specifically, we partition the
initially masked sequence into fixed-length, consecutive sub-sequences, i.e., slots, and unfold each
decoding iteration into two synergistic steps: first, a diffusion-based planning step identifies a set of
weakly dependent slots, and second, an autoregressive infilling step decodes these slots in parallel
(Figure 2). This design is guided by a key finding from our pilot study (§4.1): inter-token dependency
is highly localized, decaying significantly with distance. Therefore, serializing adjacent tokens within
a slot directly mitigates the violation of conditional independence for these strongly-coupled tokens.
Furthermore, such a simple design also uniquely achieves two critical benefits simultaneously: (1)
By repositioning newly generated slots (Sahoo et al., 2025) to precede masked ones for the next
decoding iteration, REFUSION naturally accommodates causal attention that allows the KV states of
all previously generated tokens to be seamlessly reused; And (2) it reduces the learning complexity
from an intractable token combination space to a substantially more manageable slot permutation
space. Appendix A.1 compares REFUSION and existing MDMs in detail.

-40 -30 -20 -10 10 20 30 40

-50

-40

-30

-20

-10

10

20

ReFusion
=0.7, k=32

=0.6, k=16

=0.5, k=8

=0.4, k=4

Qwen3

8B

4B

1.7B

0.6B
LLaDA-8B-Instruct

LLaDA w/ Fast-dLLM

LLaDA w/ D2F

Dream-7B-Instruct

Dream w/ Fast-dLLM

Dream w/ D2F

ReFusion left-to-right

 Throughput (tokens/sec)

 pass@1 (%)

Higher Throughput
Higher Performance

Lower Throughput
Higher Performance

Figure 1: Performance-throughput trade-off on
MBPP. We plot pass@1 (%) against throughput
(tokens/sec), with both metrics calculated rela-
tive to the Qwen3-8B baseline at the origin. The
“REFUSION left-to-right” ablation forces serial de-
coding using the REFUSION model. See §5.3 for
details about hyperparameters of REFUSION.

REFUSION’s training process mirrors its infer-
ence dynamics. For each training sequence, we
randomly mask several slots, permute the clean
slots, and reorder the input so that clean slots pre-
cede masked ones. The model is then optimized
with a hybrid objective that cultivates its dual
capabilities: an autoregressive loss on the per-
muted clean slots for sequential generation, and
a denoising loss on the masked slots for context-
aware parallel reconstruction. Unlike traditional
MDMs which learn only from masked positions,
this hybrid objective uses every token for super-
vision, boosting data efficiency.

Our extensive experiments on seven benchmarks
spanning math, code generation, and general-
purpose understanding and reasoning demon-
strate that REFUSION decisively establishes a
new state-of-the-art for MDMs. Compared
to LLaDA (Nie et al., 2025) and Dream (Ye
et al., 2025), REFUSION achieves an average
performance gain of 32% while being over 10×
faster in throughput (tokens/sec). More strik-
ingly, REFUSION consistently challenges and
often surpasses strong ARMs. For instance, it
outperforms Qwen3-8B (Yang et al., 2025) on
GSM8K (Cobbe et al., 2021) and MBPP (Austin
et al., 2021) by 3.2 absolute points while being 1.4× faster on average. This dual advantage in both
performance and speed is further illustrated in Figure 1, where REFUSION (the red line) is the only
method to establish a superior performance-efficiency frontier in the top-right quadrant. It signifi-
cantly outperforms both the Qwen3-series (the blue line) and prior MDM-based methods (lower-left,
implying slower and less effective). Furthermore, our controlled experiments confirm these gains are
driven by our architectural and training innovations, not initialization and data advantages.

Our contributions are summarized as follows:

I. We propose REFUSION, a generative model integrating inter-slot parallel decoding with intra-slot
autoregressive decoding, combining the strengths of autoregREssive and difFUSION-based modeling.

II. To the best of our knowledge, REFUSION is the first MDM that achieves full KV cache reuse of
every decoded token, while maintaining global generation flexibility and tractable training complexity.

III. Extensive experiments on seven diverse benchmarks show that REFUSION not only overwhelm-
ingly surpasses all prior MDMs in both performance and speed, but also bridges the performance gap
to ARMs while maintaining the efficiency advantage.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

MDMs promise to outperform traditional ARMs by offering faster inference through parallel decoding
and potentially superior solutions via flexible generation orders (Kim et al., 2025). Recent MDMs
such as LLaDA (Nie et al., 2025), the first open-source MDM trained from scratch, and Dream (Ye
et al., 2025), initialized from an ARM, have delivered performance on par with ARMs of equivalent
scale across diverse tasks, establishing MDMs as a viable research direction.

Architectural Designs for Efficient MDMs. Standard MDMs’ reliance on bidirectional attention
precludes the use of KV caching. Recent work alleviates this bottleneck through three main strategies.
The first strategy approximates KV cache reuse while retaining bidirectional attention. For instance,
dLLM-Cache (Liu et al., 2025) reuses slow-changing KV states, while sparse-dLLM (Song et al.,
2025) dynamically prunes non-critical KV states. The second strategy mixes bidirectional attention
and causal attention. Models like BD3-LMs (Arriola et al., 2025) and Fast-dLLM (Wu et al., 2025b)
partition the sequence into consecutive blocks, enforcing a left-to-right order between blocks to enable
KV cache reuse, while retaining parallel, bidirectional generation within each block. D2F (Wang et al.,
2025) further parallelizes the generation of succeeding blocks, although performance is limited by the
lack of inter-block lookahead attention. While sharing the concept of a grouped unit, REFUSION’s

“slot” operates fundamentally differently from “block” in these approaches. In the block-based design,
a fixed left-to-right inter-block schedule sacrifices any-order flexibility, while intra-block bidirectional
attention sacrifices KV caching and risks incoherence. In contrast, REFUSION enables both global
any-order generation and full KV cache reuse with a unified causal framework. The final strategy
leverages only causal attention, enabling an exact KV cache. Eso-LMs (Sahoo et al., 2025), for
instance, dynamically reposition newly generated tokens ahead of masked ones at each step to
facilitate caching. However, this strategy introduces an intractable learning objective at a token-level
permutation space, which hinders training and leads to significant performance drops.

Decoding Strategies in MDMs. A crucial aspect of MDM inference is the strategy used to select
which tokens to decode in parallel at each step. Existing approaches generally fall into two categories.
The first class leverages confidence heuristics derived from the model’s own distribution, such
as top token probability (Nie et al., 2025), low entropy (Ben-Hamu et al., 2025), and probability
margins between top candidates (Kim et al., 2025). Some methods further refine these heuristics with
position-aware weights and frequency-based calibration (Huang et al., 2025). While simple, these
methods rely on the often-unreliable assumption that the model’s confidence scores are perfectly
calibrated (Wu et al., 2025b). The second class employs external models for verification, e.g., using a
small ARM to validate and extend the longest acceptable prefix (Hu et al., 2025; Israel et al., 2025),
or using dedicated reward models to guide generation (Gwak et al., 2025). Although effective, these
approaches introduce the overhead of maintaining and querying a separate model. Unlike these
methods, REFUSION adopts a unified inference framework that benefits from the parallel efficiency
of MDMs without sacrificing the quality assurance of ARMs, all within a single architecture.

3 PRELIMINARY

Autoregressive Models. ARMs are a prominent class of generative models that factorize the joint
probability of a sequence x = (x1, . . . , xL) by enforcing a strict left-to-right conditional dependency
using a causal attention mask. This structure leads to a next-token prediction objective, where the
model parameters θ are optimized by minimizing the negative log-likelihood: −

∑L
i=2 logPθ(xi |

x<i). During inference, generation is an inherently sequential process requiring T forward passes to
produce a sequence of length T , resulting in a latency that scales with the sequence length.

Masked Diffusion Models. MDMs represent another class of generative models, operate on a
“mask-and-denoise” principle. During training, each sample x0 = (x1

0, x
2
0, · · · , xL

0) is corrupted
to xt by masking each token with a special token “[MASK]” under probability t ∼ U(0, 1). The
model learns to reconstruct the original context by minimizing the objective: − 1

t

∑L
i=1 1(x

i
t =

[MASK]) logPθ

(
xi
0 | xt

)
. MDM inference proceeds by progressively generating tokens from a

fully masked sequence. It requires fewer forward passes than an ARM thanks to parallel decoding,
but each pass is drastically more expensive due to its incompatibility with KV caching.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ReFusion

ℒ!"# ℒ#$#

Prompt Response

(1) Random Slot Masking

(2) Permutation of Clean Slots

(3) Reorder

Prompt Response
𝑡 = 1…

(1) Slot Planning

(2.1) Verification

(2.2) Completion

Step I: Diffusion-based

Step II: Autoregressive

A
n
Iteration

…

Restore Order

𝑡 = 0
Clean Token

Masked Token

Slot

KV-cached token

Reorder

Forward Pass

TrainingInference

Figure 2: The inference and training process of REFUSION. Inference (Left) proceeds via an iterative
“plan-and-infill” loop at the slot level: A diffusion-based step first plans which slots to generate and
proposes initial drafts, and a parallel autoregressive step then fills them using a verify-and-complete
mechanism. Full KV cache reuse is achieved by reordering generated slots before masked ones after
each iteration. Training (Right) mirrors inference by optimizing a hybrid objective that combines an
autoregressive loss (LARM) on permuted clean slots and a denoising loss (LMDM) on masked slots.

4 METHODOLOGY

Traditional MDMs allow a flexible token-level decoding process during inference. We elevate this
concept to operate on slots, i.e., a fixed-length, non-overlapping sequence of continuous tokens,
denoising them in parallel. It yields two critical benefits: it enables full KV cache reuse by arranging
newly generated slots before masked ones with a causal framework, and it substantially reduces train-
ing complexity from the token-level combination space to a more manageable slot-level permutation
space. To support non-sequential generation, we build REFUSION upon a standard causal architecture
with a key modification: it accepts an explicit, non-contiguous list of position IDs. By applying RoPE
(Su et al., 2021) to these absolute position IDs, the model can correctly compute relative distances
and attend to all logical predecessors. Figure 2 illustrates the inference and training process.

4.1 LOCALITY OF INTER-TOKEN DEPENDENCY

-128 -64 -32 -16 -8 -4 -2 -1 1 2 4 8 16 32 64 128
Relative Distance from the Revealed Token

0.00

0.05

0.10

0.15

Je
ns

en
Sh

an
no

n
D

iv
er

ge
nc

e

LLaDA-8B-Instruct

t = 0.8
t = 0.6
t = 0.4
t = 0.2

-128 -64 -32 -16 -8 -4 -2 -1 1 2 4 8 16 32 64 128
Relative Distance from the Revealed Token

0.0

0.1

0.2

0.3

Je
ns

en
Sh

an
no

n
D

iv
er

ge
nc

e

Dream-7B-Instruct

t = 0.8
t = 0.6
t = 0.4
t = 0.2

Figure 3: The locality of inter-token depen-
dency in MDMs, with the sign on the x-axis
denoting the direction from the revealed token
(positive for rightward, negative for leftward).

A cornerstone of REFUSION is the grouping of con-
tiguous tokens into slots for serial generation. This
design is motivated by the critical insight that the
conditional independence assumption is most prone
to failure for nearby tokens, frequently leading to
semantic incoherence (Luxembourg et al., 2025). To
formalize this insight and guide our design, we con-
duct a pilot study to quantitatively investigate how
dependency strength between two tokens correlates
with their relative distance.

Formally, we define the dependency strength between
two tokens, xi

0 and xj
0, in a given context xt, as the

degree to which the presence of xj
0 influences the

model’s prediction of xi
0. In practice, we approximate

this measurement in a pilot study on the GSM8K test
set (Cobbe et al., 2021). For a corrupted sequence xt, we first reveal the ground-truth token xj

0 at a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

randomly selected masked position j, and then quantify the influence of this reveal on the prediction
at any other masked position i through the Jensen-Shannon (JS) divergence (Manning & Schutze,
1999) between the distributions before and after this reveal, i.e., p(xi

0|xt) and p(xi
0|xt, x

j
0). A higher

divergence implies stronger dependency, with zero divergence indicating conditional independence.
Using both LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025), we plot the averaged JS divergence
against the relative distance between positions i and j in Figure 3. The average JS divergence
consistently decays as the relative distance increases, and this decay is more rapid in denser contexts
(i.e., lower masking ratios t). This result directly motivates us to define a slot as a contiguous token
sequence, thereby grouping strongly correlated tokens for serial decoding within a slot, in contrast to
prior block-based methods that decode nearby tokens within a block in parallel (Arriola et al., 2025).

4.2 SYNERGISTIC DECODING ALGORITHM AT INFERENCE

Armed with the quantitative evidence that inter-token dependency is highly localized, we design
the inference algorithm to explicitly leverage this property. The process iteratively generates a
final response r̃0 from a prompt p0, starting with an initial masked sequence r̃1. This sequence is
partitioned into K consecutive slots of k “[MASK]” tokens each. Each iteration comprises two
synergistic steps: (1) diffusion-based slot planning to identify slots that are strongly dependent on the
context but weakly interdependent; and (2) autoregressive slot infilling to decode them in parallel.

Step I: Diffusion-based Slot Planning. The first step leverages the model’s MDM capability to
plan the next decoding slots. At a timestep t, which is defined as the ratio of remaining masked slots,
we construct the input S̃t by concatenating already-decoded slots (S̃clean

t , in generation order) with
the masked slots (S̃masked

t , in their original positional order). This ordering naturally enables KV
cache reuse. The model then computes a certainty score for each masked slot based on its predictive
distribution. While various heuristics exist for certainty score, we adopt a simple yet effective one:
the probability of the most likely token at the slot’s first position (Appendix C.2 compares against
alternatives). Finally, a batch of slots with scores exceeding a threshold τ is selected for subsequent
infilling. This strategy identifies slots that are strongly constrained by the existing context and
weakly interdependent (e.g., distinct function definitions in code generation), making them suitable to
parallelize. Furthermore, to accelerate the subsequent autoregressive generation, we adopt a strategy
from speculative decoding (Leviathan et al., 2023): for each selected slot, we generate a draft slot by
sampling a token from its distribution at every position, yielding the draft slots S̃draft

t .

Step II: Autoregressive Slot Infilling. The second step efficiently verifies the draft slots S̃draft
t and

completes them using the model’s autoregressive capability: (1) Verification. We concatenate all
draft slots into a sequence in their original positional order. The model then performs one forward pass
to compute the probability of each token in the sequence, conditioned on the prompt and the already
decoded slots. We identify the longest prefix of the concatenated draft where the probabilities of all
tokens exceed τ . If this prefix spans one or more complete slots, we accept these slots wholesale and
immediately proceed to the next planning iteration, thereby bypassing suffix completion. Otherwise,
we determine the longest common prefix length that is successfully verified across all individual draft
slots, and truncate each draft slot to this common length. (2) Completion. The model then completes
any truncated slots by autoregressively sampling the remaining positions in parallel for each slot.

Finally, the newly completed slots are appended to the sequence of decoded slots. Their KV caches are
directly concatenated for future iterations, a valid approximation as the lack of inter-slot conditioning
during parallel generation has minimal impact on final performance (see §5.4). The plan-and-infill
cycle continues until all slots are filled, at which point the final response is constructed by restoring
the original slot order. The decoding process is formalized in Appendix A.2. We also quantify the
substantial contribution of confidence-based parallelism to throughput in Appendix C.5.

4.3 TRAINING OF REFUSION

The training procedure for REFUSION is carefully designed to mirror the dynamics of our two-step
decoding algorithm. This requires a data construction strategy that simulates the non-sequential,
partially-decoded states encountered during generation, and a hybrid training objective that jointly
optimizes the model’s planning and infilling capabilities.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Training Data Construction. To simulate the partially decoded states encountered during iterative
generation, we introduce a three-step strategy to construct training data from each prompt-response
pair (p0, r0). The response r0 is first partitioned into a sequence of K slots, S0 = [S1

0 , . . . , S
K
0],

each of size k. Then, a corrupted version St is constructed given a masking ratio t ∼ U(0, 1) as
follows: (1) Random slot masking. Analogous to token-level masking in traditional MDMs, we
randomly select and mask ⌊tK⌋ slots from the original sequence S0. Each selected slot is replaced
with a block of k “[MASK]” tokens. (2) Permutation of clean slots. Since the generation order of
slots is dynamically determined, the model must learn to process context in any arbitrary permutation.
To achieve this, we randomly permute the unmasked (clean) slots to form Sclean

t , while keeping
the original relative positions of the masked slots to form Smasked

t . (3) Reorder. The final training
instance St is assembled by concatenating the permuted clean slots followed by the masked slots.

Hybrid Training Objective. To empower our model with the dual capabilities of global planning
and local decoding, we propose a hybrid training objective that learns from every token in the
sequence. This approach also provides a significant benefit of data efficiency, which contrasts with
traditional MDMs where clean tokens only serve as context and provide no direct supervision.

On one hand, the clean slots Sclean
t are trained with a standard ARM loss for next token prediction:

LARM = −E(p0,r0)∼D
t∼U(0,1)

 1

(k − 1) · |Sclean
t |

|Sclean
t |∑
i=1

k∑
j=2

logPθ

(
vi,jt | p0,Sclean

t,<(i,j)

) , (1)

where vi,jt is the j-th token in the i-th clean slot, Sclean
t,<(i,j) is the prefix of the token in Sclean

t .

On the other hand, the masked slots Smasked
t are trained with an MDM objective for denoising1:

LMDM = −E(p0,r0)∼D
t∼U(0,1)

 1

k · |Smasked
t |

|Smasked
t |∑
i=1

k∑
j=1

logPθ(v
i,j
0 | p0,Sclean

t ,Smasked
t,⩽(i,j))

 , (2)

where vi,j0 is the ground-truth token from the original response corresponding to the j-th token in the
i-th slot of Smasked

t . The final training objective is a summation of the two losses, balanced by λ:
L = LARM + λLMDM. (3)

We initialize our model Pθ with an off-the-shelf ARM backbone, a strategy validated by prior
work (Gong et al., 2025; Ye et al., 2025). Crucially, all tokens retain their original positional indices
from r0 throughout the process. This allows the model to maintain awareness of the relative positions
among all tokens, ensuring sequence coherence despite the shuffled input order.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Implementation Details. We initialize REFUSION from the Qwen3-8B checkpoint (Yang et al.,
2025) and fine-tune it for 4 epochs on a diverse 3.7M-sample (∼1.22B-tokens) dataset covering math-
ematics, coding, and general instruction-following. For inference, we employ a semi-autoregressive
remasking strategy (Nie et al., 2025): the output sequence is partitioned into blocks of size b, which
are decoded serially. Within each block, our plan-and-infill algorithm from §4.2 is applied. Detailed
implementation and hyperparameter specifics are provided in Appendix B.1 and B.2, respectively.

Evaluation Benchmarks and Metrics. We evaluate REFUSION on diverse benchmarks span-
ning: (1) General-purpose understanding and reasoning: MMLU-Pro (Wang et al., 2024) and
ARC-C (Clark et al., 2018); (2) Mathematical and scientific problem-solving: GSM8K (Cobbe
et al., 2021), MATH (Hendrycks et al., 2021), and GPQA (Rein et al., 2024); (3) Code generation:
HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021). We use pass@1 for code generation
and accuracy for the others. We assess inference throughput using tokens decoded per second (TPS)
with a single A100 GPU and a batch size of 1.

1Our per-token normalization, 1

k·|Smasked
t | , implicitly includes the 1

t
weighting since |Smasked

t | ≈ tK, where
K is the total number of slots.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Zero-shot performance and throughput (TPS) comparison on multiple benchmarks. Each
model displays accuracy/pass@1 (top row) and throughput (TPS, bottom row). Within the MDM
category, we highlight the best performance results in bold and underline the second best. An italic
score in the ARM category signifies that it surpasses the best-performing MDM.

Model MMLU-Pro ARC-C GSM8K MATH GPQA HumanEval MBPP Avg.

Autoregressive Model
35.23 82.76 75.13 25.48 29.46 46.34 53.00 49.63Llama-3-8B-Instruct 32.07 44.12 42.81 19.73 42.00 42.26 41.68 37.81
67.25 90.36 81.96 83.28 39.06 87.80 63.80 73.36Qwen3-8B 31.42 42.78 31.20 30.11 30.43 30.95 30.07 32.42

Masked Diffusion Model
35.80 85.58 76.35 38.78 32.37 45.12 25.60 48.51LLaDA-8B-Instruct 18.21 0.03 27.35 23.93 1.99 12.42 2.97 12.41
35.02 82.85 76.27 38.58 28.35 37.80 24.80 46.24LLaDA w/ Fast-dLLM 39.81 0.86 73.07 52.23 17.54 62.52 37.19 40.46
22.84 84.13 39.04 23.68 31.25 36.59 35.20 38.96LLaDA w/ D2F 44.54 3.70 82.59 59.48 23.84 96.90 53.85 52.13

40.05 88.31 76.42 46.60 30.36 56.71 50.40 55.55Dream-7B-Instruct 15.98 0.06 20.30 18.99 1.81 3.51 1.23 8.84
40.36 86.86 75.82 36.76 31.25 56.10 10.60 48.25Dream w/ Fast-dLLM 47.18 1.42 61.49 58.24 22.96 49.73 19.55 37.22
38.26 87.37 47.99 24.60 22.77 46.95 35.00 43.28Dream w/ D2F 60.64 14.82 96.59 81.59 25.20 49.05 53.95 54.55

45.39 89.68 85.60 56.06 35.04 75.61 66.60 64.85REFUSION 39.38 49.25 40.29 42.40 42.23 46.48 45.34 43.62

Baselines. We compare REFUSION with: (1) ARMs: Llama-3-8B-Instruct (AI@Meta, 2024) and
Qwen3-8B (Yang et al., 2025). (2) MDMs: LLaDA-8B-Instruct (Nie et al., 2025), and Dream-7B-
Instruct (Ye et al., 2025). (3) State-of-the-art MDM acceleration methods: Fast-dLLM (Wu et al.,
2025c) and D2F (Wang et al., 2025). We implement the baselines based on official hyperparameters.

5.2 MAIN RESULTS

The main results in Table 1 show: (1) REFUSION dominates all MDM baselines. REFUSION
consistently outperforms all MDM baselines across all seven benchmarks, often by a substantial
margin. For instance, on HumanEval, it achieves 75.61% pass@1, surpassing the next-best MDM
(Dream-7B-Instruct) by nearly 19 absolute points. While acceleration methods like Fast-dLLM and
D2F2 improve throughput at a significant performance cost, REFUSION delivers both state-of-the-art
performance and competitive efficiency, establishing a new frontier for MDMs. (2) REFUSION
challenges strong ARMs. More remarkably, REFUSION challenges and often surpasses strong
ARMs. On GSM8K and MBPP, for example, it outperforms Qwen3-8B by 3 absolute points while
delivering a 1.4× speedup. This demonstrates that our non-autoregressive approach can break the
long-standing trade-off between the speed of MDMs and the quality of ARMs (Feng et al., 2025).

5.3 ANALYSIS OF HYPERPARAMETERS

We examine the key hyperparameters governing the performance-efficiency trade-off in REFUSION:
the verification threshold τ and the slot size k. The threshold τ controls the confidence for both slot
selection (planning) and draft acceptance (infilling), while k defines the granularity of the generation
unit. An analysis of other hyperparameters is shown in Appendix C.4.

As illustrated in Figure 4 (left & middle), these hyperparameters create a predictable trade-off.
(1) Verification threshold τ : Lowering τ boosts throughput (TPS) by enabling more aggressive
parallelism, but at the cost of reduced performance due to lower token reliability. (2) Slot size k:
Similarly, smaller slot sizes (k) increase TPS by creating more parallelizable units given a fixed full
length, though this speed gain is counteracted by a performance drop.

2D2F’s low TPS on ARC-C stems from a mismatch between its fixed 32-token block size and the task’s short
answers (avg. 1∼3 tokens). The latency of generating a full block is incurred for only a few valid tokens.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

-10

-5

0

5

 pass@1 (%)
 Throughput (TPS)

4 8 16 32
Slot Size k

-15

-10

-5

0

5

 pass@1 (%)
 Throughput (TPS)

1 2 3 4 5
Average #TPF

20

40

60

pa
ss

@
1

(%
)

ReFusion
LLaDA-8B-Instruct
Dream-7B-Instruct

0

10

20

5

10

15

20

25

Figure 4: Left & Middle: Impact of key hyperparameters on MBPP (0-shot). The plots show the
change in pass@1 (%) and throughput (TPS) of REFUSION relative to Qwen3-8B (horizontal dashed
lines at zero). When one parameter is varied, others are held at their default values (τ = 0.6, k = 16).
Yellow shaded regions highlight the “sweet spot” where REFUSION surpasses the baseline in both
metrics. Right: pass@1 on MBPP for REFUSION and baseline MDMs over the average number of
tokens generated per forward pass (TPF) under various hyperparameter settings.

Table 2: Controlled comparison of models initialized from Qwen3-8B and trained on 120K subset.
Model MMLU-Pro ARC-C GSM8K MATH GPQA HumanEval MBPP Avg.

52.71 88.65 87.57 67.84 33.26 53.66 59.20 63.27Qwen3-8B (Retrained) 31.32 30.46 31.03 30.73 26.70 30.73 30.16 30.16
5.12 70.65 13.42 1.38 0.00 4.27 6.20 14.43LLaDA (Retrained) 0.26 0.03 1.18 0.20 0.15 0.66 0.42 0.41

38.80 84.64 79.45 49.98 30.36 62.20 52.40 56.83REFUSION (Retrained) 35.36 47.14 39.67 44.85 40.68 39.54 38.64 40.84

More importantly, the shape of this trade-off frontier distinguishes REFUSION from prior MDMs.
Figure 4 (right) shows that both LLaDA and Dream suffer a sharp performance decline as parallelism
(TPF) increases3, indicating a failure to uphold the conditional independence assumption when se-
lecting tokens for parallel decoding. In contrast, REFUSION’s curve is substantially flatter, validating
that its training and decoding strategies can more reliably identify conditionally independent tokens.
Expanding on this, Figure 1 presents the complete performance-throughput (TPS) frontier against all
baselines, revealing a critical finding: for every baseline model, there exists at least one REFUSION
configuration that is simultaneously superior in both performance and throughput.

We would like to emphasize that the hyperparameters (λ in Eq. 3, τ , and k) do not pose a significant
tuning burden. First, τ and k are standard concepts in the field of MDMs (Arriola et al., 2025; Nie
et al., 2025; Wu et al., 2025b; Wang et al., 2025; Wu et al., 2025a), while the loss-balancing parameter
λ required no tuning (fixed at 1). Second, our analysis in Figure 4 confirms high robustness, revealing
a wide “sweet spot” (e.g., τ ∈ [0.5, 0.9], k ∈ {16, 32}) that offers a generalizable starting point. This
hyperparameter complexity is thus comparable to standard ARMs, which also depend on tuning
inference parameters like temperature and top-p.

5.4 ABLATION STUDY

Controlled Comparison with the Same Backbone and Data. To isolate the benefits of REFUSION
from data or backbone advantages, we conduct a controlled comparison using a smaller 120K data
subset randomly sampled from the full 3.7M data due to resource constraints. We fine-tune Qwen3-8B,
LLaDA, and REFUSION for 10 epochs using their respective original objectives, with all initialized
from Qwen3-8B. This setup ensures that observed differences are attributable solely to the algorithm
design. Appendix C.3 discusses the scaling property of REFUSION regarding data size.

Results in Table 2 confirm the architectural superiority of REFUSION. LLaDA suffers a catastrophic
performance collapse4. While the already highly-optimized Qwen3-8B baseline understandably
degrades when retrained on our smaller, open-source dataset, REFUSION still outperforms it by
∼9 points on HumanEval while being 1.3× faster. This result robustly validates that REFUSION’s

3We use TPF here, rather than TPS, to isolate the algorithmic trade-off from any system-level overheads.
4The low TPS for LLaDA in this experiment is due to the fair-comparison re-implementation on the Qwen3-

8B backbone, which is computationally heavier (36 layers, ∼152K vocab) than LLaDA’s original architecture
(32 layers, ∼126K vocab).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Controlled comparison with Dream-7B-Instruct on its native Qwen2.5-7B backbone.
Model MMLU-Pro ARC-C GSM8K MATH GPQA HumanEval MBPP Avg.

40.05 88.31 76.42 46.60 30.36 56.71 50.40 55.55Dream-7B-Instruct 15.98 0.06 20.30 18.99 1.81 3.51 1.23 8.84
34.51 83.11 79.38 46.38 31.47 69.51 60.00 57.77REFUSION (Retrained) 50.93 46.49 41.15 45.69 20.90 65.57 58.49 47.03

Table 4: Ablation regarding our KV cache reuse mechanism. We compare our default REFUSION,
which efficiently reuses KV caches by concatenating them after parallel generation, against a variant
(w/ KV Re-computation) that recomputes caches for full contextualization at a higher cost.

Model MMLU-Pro ARC-C GSM8K MATH GPQA HumanEval MBPP
45.34 89.68 84.91 55.90 35.04 73.78 66.40REFUSION w/ KV Re-computation 34.13 36.21 36.38 37.57 29.96 41.02 40.13
45.39 89.68 85.60 56.06 35.04 75.61 66.60REFUSION 39.38 49.25 40.29 42.40 42.23 46.48 45.34

architectural innovations are the primary driver of its success, enabling effective learning even from
limited data where standard MDMs fail.

Furthermore, we conducted a controlled comparison with Dream-7B-Instruct. Since its training
code is not open-sourced, we could not re-train it on Qwen3. Instead, we train a REFUSION
variant on Dream’s original Qwen2.5-7B backbone. It is crucial to note the significant disparity in
training resources: Dream benefited from massive pre-training (146.5M samples) plus SFT (1.8M
samples), whereas our REFUSION variant was only fine-tuned (3.7M samples) without any pre-
training. Despite the pre-training disadvantage, Table 3 shows that REFUSION still achieves a 2.22%
average performance gain and a massive 5.32× speedup over Dream. REFUSION significantly
excels on reasoning and coding tasks (GSM8K, HumanEval, MBPP). Its lower performance on
knowledge-intensive tasks (MMLU-Pro, ARC-C) is expected, as it skipped the pre-training stage
that Dream utilized for knowledge injection. These results collectively confirm that REFUSION’s
architectural advantages are robust across different base models and training setups.

Ablation on KV Cache Reuse. To maximize efficiency, REFUSION directly concatenates the KV
caches of parallel-generated slots, bypassing a costly forward pass that would otherwise be needed
to contextualize them. To quantify the impact of this approximation, we conduct an ablation study
comparing our default model against a variant, “REFUSION w/ KV Re-computation,” which performs
this extra forward pass to ensure full contextualization at the cost of speed.

As shown in Table 4, our default approach is consistently 1.1−1.4× faster across all benchmarks.
Surprisingly, this significant speedup comes at virtually no cost to performance; in fact, accuracy
remains stable and even slightly improves on several benchmarks. We hypothesize this counter-
intuitive benefit arises from a form of implicit regularization: by avoiding over-conditioning on
potentially flawed parallel drafts, our method mitigates error propagation. This result validates
our KV cache reuse strategy not merely as a speed-accuracy trade-off, but as a design choice that
simultaneously enhances efficiency and robustness.

5.5 DIRECT COMPARISON WITH BD3-LM

To further contextualize the advantages of our approach, we conduct a direct comparison against BD3-
LM (Arriola et al., 2025), a representative block-based MDM. While the performance of baselines
like LLaDA (Nie et al., 2025) in our main results already serves as a strong proxy for the limitations
of block-based designs, this head-to-head experiment provides direct empirical validation. We ensure
a strictly controlled setting by training both REFUSION and BD3-LM from the Qwen3-8B backbone
on our 120K data subset for 10 epochs. Table 5 presents the performance-throughput frontier on
MBPP as parallelism (measured in average tokens per forward pass, #TPF) increases.

The results in Table 5 clearly demonstrate REFUSION’s superiority. As parallelism increases,
REFUSION maintains high performance with a gentle degradation curve while consistently achieving
higher throughput. In stark contrast, BD3-LM suffers a precipitous performance collapse, with its

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Performance-throughput frontier comparison with BD3-LM on MBPP (0-shot). Each cell
shows pass@1 (left) and TPS (right, in parentheses) at varying levels of parallelism (#TPF).

Average #TPF 1 2 3
REFUSION 56.80 (25.83) 56.00 (36.66) 47.40 (42.08)
BD3-LM 51.60 (16.18) 30.20 (29.31) 16.00 (37.96)

pass@1 score plummeting from 51.6% to just 16.0%. This underscores a fundamental weakness of
the block-based design: its reliance on intra-block bidirectional attention hinders both generation
coherence (leading to the performance collapse) and full KV-caching (reflected in lower TPS).
REFUSION’s unified causal framework directly overcomes these issues, validating its architectural
advantage.

5.6 CASE STUDY

Problem:Write a function to sum all amicable numbers from 1 to a specified number.

ReFusion:

Figure 5: A case study of REFUSION generating a Python
function for an MBPP problem. The code is segmented into
slots of size k = 4. The numbers in the top-left corner of
each slot indicate the generation order. The token color indi-
cates the generation source: orange denotes diffusion-based
generation, while Black denotes autoregressive generation.

Figure 5 provides a qualitative under-
standing of how REFUSION solves
a programming problem from the
MBPP benchmark, revealing two key
capabilities: (1) High degree of
parallelism. The model frequently
generates multiple slots concurrently.
For instance, at iteration 9, it si-
multaneously generates three sepa-
rate slots. This parallel decoding ca-
pability, combined with leveraging
speculative decoding to retain multi-
ple diffusion-based generated tokens
at once, delivers significant acceler-
ation. (2) Non-linear generation
order. The generation process is
markedly non-linear. For example,
the model constructs the central “for”
loop structure (iteration 7) before ini-
tializing a local variable “sum = 1” (it-
eration 8). This ability to plan and
execute in a parallel, non-monotonic
fashion allows REFUSION to construct complex, structured code in a manner that is both efficient and
conceptually closer to human problem-solving. Appendix D.1 shows the results of baseline models
on the same problem. Furthermore, to facilitate understanding, we provide a detailed visualization of
the decoding process in Appendix D.2.

6 CONCLUSION

In this work, we present REFUSION, a novel generative model that synergizes the strengths of
diffusion-based planning and autoregressive infilling to address the long-standing efficiency and
coherence challenges in traditional MDMs. This unique design enables full KV cache reuse within a
flexible, any-order generation framework, while making the training objective tractable by simplifying
the combinatorial complexity of the generation space. Extensive evaluations across seven benchmarks
show that REFUSION establishes a new state of the art for MDMs. More strikingly, it bridges the
performance gap to strong ARMs, often outperforming them while being significantly faster. Our
work demonstrates that by structuring the parallel generation process, it is possible to achieve the
throughput potential of MDMs without sacrificing generation quality. Future directions include
further scaling of the model and data size, as well as leveraging reinforcement learning to optimize
the model’s planning policy for complex, multi-step reasoning tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experimental results, our training and inference code
is open-sourced in an anonymized repository https://anonymous.4open.science/r/
ICLR2026-ReFusion. The specific settings for training and testing are detailed in §5.1 and
Appendix B.

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlı́ček, Agustı́n Piqueres Lajarı́n, Vaibhav Srivastav,
Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo
Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
Thomas Wolf. Smollm2: When smol goes big – data-centric training of a small language model,
2025. URL https://arxiv.org/abs/2502.02737.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autore-
gressive and diffusion language models. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://arxiv.org/abs/2503.09573.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Heli Ben-Hamu, Itai Gat, Daniel Severo, Niklas Nolte, and Brian Karrer. Accelerated sampling from
masked diffusion models via entropy bounded unmasking. arXiv preprint arXiv:2505.24857, 2025.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Guhao Feng, Yihan Geng, Jian Guan, Wei Wu, Liwei Wang, and Di He. Theoretical benefit and
limitation of diffusion language model. arXiv preprint arXiv:2502.09622, 2025.

11

https://anonymous.4open.science/r/ICLR2026-ReFusion
https://anonymous.4open.science/r/ICLR2026-ReFusion
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2503.09573

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An, Peilin
Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling diffusion language models via
adaptation from autoregressive models. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=j1tSLYKwg8.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daehoon Gwak, Minseo Jung, Junwoo Park, Minho Park, ChaeHun Park, Junha Hyung, and Jaegul
Choo. Reward-weighted sampling: Enhancing non-autoregressive characteristics in masked
diffusion llms. arXiv preprint arXiv:2509.00707, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Zhanqiu Hu, Jian Meng, Yash Akhauri, Mohamed S Abdelfattah, Jae-sun Seo, Zhiru Zhang, and
Udit Gupta. Accelerating diffusion language model inference via efficient kv caching and guided
diffusion. arXiv preprint arXiv:2505.21467, 2025.

Fei Huang, Tianhua Tao, Hao Zhou, Lei Li, and Minlie Huang. On the learning of non-autoregressive
transformers. In International conference on machine learning, pp. 9356–9376. PMLR, 2022.

Pengcheng Huang, Shuhao Liu, Zhenghao Liu, Yukun Yan, Shuo Wang, Zulong Chen, and Tong
Xiao. Pc-sampler: Position-aware calibration of decoding bias in masked diffusion models. arXiv
preprint arXiv:2508.13021, 2025.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang,
J. H. Liu, Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu,
Ge Zhang, Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook for
top-tier code large language models. 2024. URL https://arxiv.org/pdf/2411.04905.

Daniel Israel, Guy Van den Broeck, and Aditya Grover. Accelerating diffusion llms via adaptive
parallel decoding. arXiv preprint arXiv:2506.00413, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham Kakade, and Sitan Chen. Train for the worst, plan
for the best: Understanding token ordering in masked diffusions. arXiv preprint arXiv:2502.06768,
2025.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tülu 3:
Pushing frontiers in open language model post-training. 2024.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

Jia-Nan Li, Quan Tu, Cunli Mao, Zhengtao Yu, Ji-Rong Wen, and Rui Yan. Streamingdialogue:
Prolonged dialogue learning via long context compression with minimal losses. Advances in
Neural Information Processing Systems, 37:86074–86101, 2024.

Yifan Li, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Diffusion models for non-autoregressive
text generation: A survey. arXiv preprint arXiv:2303.06574, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

12

https://openreview.net/forum?id=j1tSLYKwg8
https://arxiv.org/pdf/2411.04905

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang, and
Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching.
arXiv preprint arXiv:2506.06295, 2025.

Omer Luxembourg, Haim Permuter, and Eliya Nachmani. Plan for speed–dilated scheduling for
masked diffusion language models. arXiv preprint arXiv:2506.19037, 2025.

Christopher Manning and Hinrich Schutze. Foundations of statistical natural language processing.
MIT press, 1999.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992,
2025.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing with unsupervised learning. 2018.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,
Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language models. arXiv
preprint arXiv:2506.01928, 2025.

Yuerong Song, Xiaoran Liu, Ruixiao Li, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and
Xipeng Qiu. Sparse-dllm: Accelerating diffusion llms with dynamic cache eviction. arXiv preprint
arXiv:2508.02558, 2025.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with
rotary position embedding, 2021.

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
Gitman. Openmathinstruct-2: Accelerating ai for math with massive open-source instruction data.
arXiv preprint arXiv:2410.01560, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Xu Wang, Chenkai Xu, Yijie Jin, Jiachun Jin, Hao Zhang, and Zhijie Deng. Diffusion llms can do
faster-than-ar inference via discrete diffusion forcing. arXiv preprint arXiv:2508.09192, 2025.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. Advances in Neural Information Processing Systems, 37:
95266–95290, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Chengyue Wu, Hao Zhang, Shuchen Xue, Shizhe Diao, Yonggan Fu, Zhijian Liu, Pavlo Molchanov,
Ping Luo, Song Han, and Enze Xie. Fast-dllm v2: Efficient block-diffusion llm, 2025a. URL
https://arxiv.org/abs/2509.26328.

13

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2509.26328

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025b.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding, 2025c. URL https://arxiv.org/abs/2505.22618.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Lingzhe Zhang, Liancheng Fang, Chiming Duan, Minghua He, Leyi Pan, Pei Xiao, Shiyu Huang,
Yunpeng Zhai, Xuming Hu, Philip S Yu, et al. A survey on parallel text generation: From parallel
decoding to diffusion language models. arXiv preprint arXiv:2508.08712, 2025.

14

https://arxiv.org/abs/2505.22618
https://arxiv.org/abs/2505.09388

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Comparison between REFUSION and existing MDMs. L denotes the generation length and
k denotes the block or slot size.

Model Generation Attention Generation Full KV Number of Distinct
Scope Mechanism Order Cache Reuse Masking Patterns

LLaDA Full Sequence Bidirectional Any-Oder ✗
∑L

l=1

(
L
l

)
≈ 2L

Intra-block Bidirectional Any-OrderBD3-LMs Inter-block Causal Left-to-Right ✗ 2k · L
k

Intra-slot Causal Left-to-Right L
k !REFUSION Inter-slot Causal Any-Order ✓

(Lk ! ≪ 2L for large k)

A METHODOLOGICAL DETAILS

A.1 COMPARISON BETWEEN REFUSION AND REPRESENTATIVE MDMS

Table 6 provides a detailed, side-by-side comparison of the architectural and methodological designs
of REFUSION against two representative MDMs, LLaDA (Nie et al., 2025) and BD3-LMs (Arriola
et al., 2025). This comparison highlights how REFUSION uniquely addresses the fundamental
trade-offs between generation flexibility, computational efficiency, and learning complexity.

(1) LLaDA, as a conventional MDM, operates on the entire sequence with a bidirectional attention
mechanism. This grants it maximum flexibility, allowing for a fully unconstrained, any-order genera-
tion process. However, this design choice incurs two significant penalties. First, the bidirectional
attention is fundamentally incompatible with KV caching, resulting in substantial computational
overhead at each decoding step. Second, it must learn dependencies across an exponential space of
possible masking patterns. For a sequence of length L, any given training or inference state is defined
by a subset of tokens that remain masked. Since each of the L positions can be either masked or
unmasked, the model must, in principle, handle any of the 2L possible subsets of visible context5.
This combinatorial space of approximately 2L distinct masking patterns presents an intractable
objective, as the model may not be sufficiently trained on the specific patterns encountered during
inference, leading to incoherent parallel generation.

(2) BD3-LMs attempts to mitigate these issues with a hybrid, block-based approach. It enforces a rigid,
left-to-right generation order between blocks, which enables KV cache reuse across block boundaries.
However, within each block, it retains bidirectional attention and any-order token generation. This
design makes a critical compromise. It sacrifices global generation flexibility for discovering optimal
generation strategies, which is a key theoretical advantage of MDMs. Furthermore, it still faces the
challenges of token-level incoherence and the inability to utilize KV caching for intra-block decoding.

(3) REFUSION introduces a more elegant and unified solution. Generation is structured at the slot
level. Within each slot (intra-slot), generation is autoregressive (left-to-right) under a causal attention
mask, directly addressing the strong local dependencies between adjacent tokens. Between slots
(inter-slot), the model retains the flexibility of any-order generation, enabling it to discover better,
non-linear generation paths than the left-to-right order. Crucially, by reordering generated slots to
always precede masked ones in the input sequence, REFUSION enables full KV cache reuse for
every decoded token, a feature unique among these models. This design simultaneously achieves two
critical goals: it combines global generation flexibility with universal computational efficiency, and it
drastically reduces the learning complexity from an exponential token-level permutation space to a
far more manageable slot-level one (Lk !). For a typical sequence length of L = 4, 096, a slot size of
just k = 8 is sufficient to ensure L

k ! < 2L.

In summary, while prior models are forced to trade flexibility for efficiency or vice versa, REFUSION’s
innovative slot-based framework is the only approach that concurrently offers global any-order
generation, full KV cache reuse, and a tractable training objective.

5Notably, due to the bidirectional attention, the model is invariant to the order in which clean tokens are
revealed. Therefore, the learning complexity is not permutations (L!).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2 INFERENCE FORMALIZATION

In this section, we formalize the two-step decoding iteration as follows:

Step I: Diffusion-based Slot Planning. The first step leverages the model’s MDM capability
to plan the next decoding slots. At a timestep t (defined as the ratio of remaining masked slots),
we construct the input S̃t for enabling KV cache by concatenating already-decoded clean slots
(S̃clean

t , in generation order) with the remaining masked slots (S̃masked
t , in their original positional

order). The planning process then generates a draft for all masked slots. This draft serves a dual
purpose: providing a basis for scoring each slot for planning, and acting as a speculative guess for the
subsequent infilling stage (Leviathan et al., 2023). Specifically, for each position j in the i-th slot
of S̃masked

t , a draft token d̃i,jt is sampled from the model’s marginal distribution, conditioned on the
leading context:

d̃i,jt ∼ Pθ(· | p0, S̃clean
t , S̃masked

t,⩽(i,j)), (4)

where S̃masked
t,⩽(i,j) denote the tokens before the position of the target token. This yields a draft version

of the masked slots, denoted as S̃draft
t = {d̃i,jt }. We then quantify the model’s certainty score of i-th

slot S̃i
t in S̃masked

t as the model’s predicted probability of its first token d̃i,1t :

C(S̃i
t) = Pθ(d̃

i,1
t | p0, S̃clean

t , S̃masked
t,⩽(i,1)). (5)

The model then selects a batch of slots with scores exceeding a threshold τ for subsequent infilling.
If no slot meets this criterion, the single slot with the globally highest score is selected instead. This
strategy identifies slots that are strongly constrained by the existing context and weakly interdependent
(e.g., distinct function definitions in code generation), making them suitable to parallelize.

Step II: Autoregressive Slot Infilling. The second step verifies and completes the selected draft
slots using a single autoregressive forward pass. To achieve this, we first concatenate the slots in
their original left-to-right order. The model then calculates the conditional probability of each token,
conditioned on all preceding tokens within the newly formed sequence:

P(d̃i,jt) =

{
Pθ(d̃

i,1
t | p0, S̃clean

t , S̃masked
t,⩽(i,1)), if j = 1

Pθ(d̃
i,j
t | p0, S̃clean

t , S̃draft
t,<(i,j)). if j > 1

(6)

Next, we verify the draft by identifying the longest prefix of the concatenated sequence, with length
l, where every token’s probability exceeds the threshold τ . If the prefix is long enough to form
at least one full slot (i.e., l ⩾ k), we accept the first ⌊l/k⌋ slots and immediately begin a new
planning-infilling iteration, bypassing the costly suffix completion. Otherwise, we find the longest
common prefix length, l′ ⩾ 1, that is successfully verified across all individual draft slots. Each slot
is then truncated to this length l′, and the model proceeds to suffix completion, filling the remaining
empty positions in each slot via parallel autoregressive decoding:

ṽi,jt

{
= d̃i,jt , if j ⩽ l′

∼ Pθ(· | p0, S̃clean
t , ṽi,<j

t), otherwise
(7)

where ṽi,jt is the finally decoded token at the j-th position of the i-th slot. After infilling each selected
slot, the completed slots are moved from S̃masked

t to S̃clean
t . For the subsequent iteration, the KV

caches from these parallel-generated slots are concatenated. While this parallel generation forgoes
intra-batch conditioning, we observe in our experiments that this has a minimal impact on final
performance (see §5.4). This planning-infilling iteration repeats with an updated timestep t until no
masks remain (t = 0), at which point the final response r̃0 is formed by sorting S̃clean

0 back into its
original sequence order.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Hyperparameter settings for different tasks.

Benchmark Generation Length Verification Threshold τ Slot Size k Block Size b

MMLU-Pro 512 0.5 16 128
ARC-C 512 0.4 4 16
GSM8K 512 0.7 16 64
MATH 512 0.6 32 64
GPQA 128 0.6 8 16
HumanEval 512 0.6 16 32
MBPP 512 0.6 16 32

B EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS

Our training data comprises 3.7M samples from MAmmoTH (Yue et al., 2023), OpenMathInstruct-
2 (Toshniwal et al., 2024), OpenCoder (Huang et al., 2024), SmolLM 2 (Allal et al., 2025), and Tulu
3 (Lambert et al., 2024). For OpenMathInstruct-2, we use its 1M open-source version and remove
questions longer than 1,024 tokens as instructed. We use a global batch size of 512, a maximum
sequence length of 4,096, and a learning rate of 2e-5. The training is conducted on 16 nodes, each
with 8 H20 GPUs, and is accelerated using DeepSpeed ZeRO-2 (Rajbhandari et al., 2020) and
Flash-attention-2 (Dao, 2023). The total training cost was approximately 10.68K H20 GPU-hours.
We set λ in Eq. 3 to 1. For each training sample, we randomly select a slot size from {4, 8, 16, 32}.

Existing MDMs decode sequences to a predetermined length. Even when an end-of-sequence (EOS)
token appears early, the model still expends decoding time on all tokens with higher position IDs. To
address this issue, we introduce a mechanism for efficient variable-length generation. Specifically,
during training, we pad shorter sequences in a mini-batch with padding tokens and exclude these
tokens from the loss computation. During inference, upon generating an EOS token, we dynamically
truncate the target length to that token’s position. This prevents the decoding of any tokens with a
higher position ID, thereby reducing redundant computation.

B.2 HYPERPARAMETER SETTING

During REFUSION inference process, three hyperparameters can be adjusted: the verification thresh-
old τ , the slot size k, and the block size b. Table 7 shows the specific settings used in our evaluation.

C EXPERIMENT RESULTS

C.1 ANALYSIS OF GENERATION LENGTH AND LATENCY

To ensure that REFUSION’s superior performance is not merely an artifact of generating more tokens
than baselines, we present a direct comparison of the average generated token length and total
inference latency for representative tasks. The results, shown in Table 8, address the hypothesis that
quality gains might stem from quantity.

The data clearly demonstrates that REFUSION’s generated outputs are consistently and significantly
shorter than those of the ARM baseline (Qwen3-8B) and are either shorter or comparable in length to
other MDMs. For instance, on MMLU-Pro, REFUSION generates only 128 tokens, roughly 5× fewer
than Qwen3-8B, while achieving superior performance. This directly refutes the hypothesis that our
model’s quality gains are achieved by generating longer sequences.

Furthermore, the table highlights REFUSION’s dramatic efficiency advantage, with measured la-
tency being substantially lower across all tasks. These results confirm that REFUSION’s superior
performance-efficiency profile is a direct result of its methodological innovations, enabling it to
produce concise and high-quality responses with minimal latency.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Comparison of average generated length and total latency (in seconds) across key benchmarks.
For each model, the cell shows generated length, with the measured latency in parentheses.

Model MMLU-Pro GSM8K MBPP
Qwen3-8B 654 (20.82s) 300 (9.63s) 53 (1.74s)
LLaDA-8B-Instruct 251 (13.81s) 247 (9.02s) 82 (27.65s)
Dream-7B-Instruct 211 (13.23s) 223 (10.99s) 45 (36.26s)
REFUSION 128 (3.25s) 148 (3.66s) 46 (1.01s)

Table 9: Comparison of certainty score heuristics on zero-shot performance. “Prob. of First Token”
is our default method used in Table 1. “Mean Prob. of Slot” is the alternative. Results are highly
comparable, validating our design choice.

Method MMLU-Pro ARC-C GSM8K MATH GPQA HumanEval MBPP
Prob. of First Token 45.39 89.68 85.60 56.06 35.04 75.61 66.60
Mean Prob. of Slot 45.18 89.68 85.14 56.14 33.71 77.44 67.80

C.2 ANALYSIS OF CERTAINTY SCORE HEURISTIC

A key design choice in our slot planning step is the metric used to compute the certainty score, which
determines which slots are selected for parallel generation. In our default implementation, as described
in Section A.2, we use the probability of the most likely token at the slot’s first position. This choice
is motivated by our two-step “plan-and-infill” decoding process. The diffusion-based planning step
primarily aims to identify valid starting points for parallel generation. The subsequent autoregressive
infilling step is then responsible for coherently completing the rest of the slot, conditioned on this
first token. Therefore, the confidence of the initial token serves as an efficient and effective proxy for
the overall viability of initiating the slot’s generation.

An alternative and intuitive approach is to use the mean probability of the most likely tokens across
all positions within a draft slot. To evaluate this alternative, we conducted a comparative experiment.
As shown in Table 9, the performance of the two methods is highly comparable across all seven
benchmarks. While using the mean probability yields a slight improvement on HumanEval (+1.83)
and MBPP (+1.20), our default first-token-based method performs slightly better on MMLU-Pro,
GSM8K, and GPQA. This indicates that both metrics are effective and likely select a significantly
overlapping set of high-confidence slots for parallel decoding. Given this parity and the slightly
simpler computation of the first-token probability, we retain it as our default method, validating our
design choice.

C.3 SCALING WITH DATA SIZE

120K 1M 2M 3.7M 14M
Data Size

70.0

72.5

75.0

77.5

80.0

82.5

85.0

A
cc

ur
ac

y
(%

)

GSM8K (0-shot)

Accuracy (%)
Throughput (TPS)

120K 1M 2M 3.7M 14M
Data Size

54

56

58

60

62

64

Pa
ss

@
1

(%
)

MBPP (0-shot)

Pass@1 (%)
Throughput (TPS)

30

32

34

36

38

40

Th
ro

ug
hp

ut
 (T

PS
)

30

32

34

36

38

40

Th
ro

ug
hp

ut
 (T

PS
)

Figure 6: Scaling properties of REFUSION on
GSM8K and MBPP. We plot performance (Accu-
racy/Pass@1, %) and inference throughput (TPS)
as a function of training data size.

To understand the scaling properties of our
model, we investigate the impact of training data
size on REFUSION’s performance and efficiency.
To this end, we collected additional, publicly
available data to expand our training set to 14M
samples. Figure 6 illustrates the results of this
analysis on GSM8K and MBPP, where we train
REFUSION for one epoch on datasets of varying
sizes (from 120K to 14M samples) and evaluate
it using the same hyperparameters as in Table 7.

The results reveal a clear and positive scaling
trend for both key metrics. Specifically, through-
put (TPS, dashed lines) consistently improves
as the training data size increases. For instance,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

on MBPP, throughput rises from approximately 31 TPS with 120K samples to over 36 TPS with
3.7M samples, and further to nearly 40 TPS with 14M samples. This indicates that as the model is
exposed to more diverse data, its internal generation process becomes more efficient, likely due to a
higher confidence and thus a higher acceptance rate of its parallel drafts, leading to fewer decoding
iterations.

Interestingly, the performance scaling (solid lines) is not strictly monotonic, a common phenomenon
when training with a fixed epoch count. On GSM8K, accuracy peaks at 2M samples before slightly
decreasing at 3.7M. A more pronounced effect is seen on MBPP, where the optimal pass@1 score
is achieved with just 1M samples. This behavior highlights a trade-off between data breadth and
training depth under a constrained computational budget: with a fixed one-epoch schedule, training
on a larger dataset potentially leads to under-convergence relative to the dataset’s complexity.

Nevertheless, the consistent rise in throughput coupled with the substantial performance uplift from
the 120K baseline suggests that with an increased computational budget (i.e., more training epochs
on the larger datasets), performance would likely continue to improve, further unlocking the full
potential of our approach.

C.4 ANALYSIS OF BLOCK SIZE

16 32 64 128 256 512
Block Size b

0

1

2

3

4

 p
as

s@
1

(%
)

 pass@1 (%)
 Throughput (TPS)

12

13

14

15

16

 T
hr

ou
gh

pu
t (

TP
S)

Figure 7: Relative change in REFU-
SION’s pass@1 (%) and throughput
(tokens/sec) compared to Qwen3-8B
(horizontal dashed lines at zero) as block
size b varies. The yellow shaded region
highlights the range of b where REFU-
SION surpasses Qwen3-8B.

Our inference strategy is compatible with semi-
autoregressive remasking (Nie et al., 2025). Specifically,
during inference, the target sequence is partitioned into
consecutive blocks of size b. These blocks are decoded
sequentially, while our synergistic decoding algorithm is
applied to each block as a single unit. Notably, the con-
straint b ⩾ k must be satisfied, where k is the size of a slot,
the fundamental unit for parallel decoding in our method.

Figure 7 illustrates the impact of block size b on our
method’s performance and throughput (TPS). The figure
shows that performance degrades as b increases, since
generating a larger, more complex block in any order
is inherently more challenging, although we have miti-
gated this difficulty through intra-slot serial generation.
Throughput (TPS) exhibits a non-monotonic trend, peak-
ing around b = 64. This non-monotonic trend is due to
computational overhead: while a larger b provides more
opportunities for parallelism, it also forces the model to
process a longer sequence containing many “padded” (i.e.,
yet-to-be-generated) positions. This significantly increases the latency of each decoding step, which
eventually diminishes and then reverses the throughput gains observed with larger block sizes.

Although its performance slightly degrades with larger block sizes, REFUSION’s pass@1 decreases
by only approximately 4% as b increases from 16 to 512. This robustness to the block size highlights
the model’s ability to leverage strong diffusion-based planning to select the most appropriate slots
for decoding across a wide range. Collectively, these analyses reveal a robust and wide “sweet spot,”
highlighted by the yellow shaded regions in Figures 4 and 7, where REFUSION consistently surpasses
the Qwen3-8B baseline in both performance and throughput (TPS). This superior operating zone
corresponds to a verification threshold τ ∈ [0.5, 0.9], a slot size k ∈ {16, 32}, and a block size
b ∈ [16, 128].

C.5 ABLATION OF CONFIDENCE-AWARE PARALLELISM

REFUSION already integrates representative MDMs acceleration techniques such as confidence-aware
parallelism (Wu et al., 2025c) as a core component of its inference strategy. This is manifested
in two key stages: (1) In the Diffusion-based Slot Planning phase: We select only those slots
whose certainty scores exceed the confidence threshold τ . This ensures that only high-probability
slots are considered for parallel generation. (2) In the Autoregressive Slot Infilling phase: During

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: Ablation study on the impact of confidence-aware parallelism. Each cell shows accuracy/-
pass@1 (left) and throughput in TPS (right, in parentheses).

Method GSM8K (0-shot) MBPP (0-shot) MMLU-Pro (0-shot)
w/ confidence-aware parallelism 85.60 (40.29) 66.60 (45.34) 45.39 (39.38)
w/o confidence-aware parallelism 85.75 (28.95) 68.20 (25.19) 46.15 (28.93)

speculative decoding, we accept the longest prefix of the concatenated draft where the probabilities
of all tokens exceed the same threshold τ . This avoids generating low-confidence continuations.

To ablate the impact of this integrated mechanism, we compare our default model against a variant
where confidence-aware parallelism is disabled (i.e., always selecting a fixed number of slots with the
highest scores, and disabling speculative decoding). As shown in Table 10, incorporating confidence-
aware parallelism yields a substantial ∼1.5× speedup across all tasks, with only a negligible
performance drop (0.84% on average). This demonstrates that confidence-aware parallelism is a
critical and effective component of REFUSION’s efficiency.

D CASE STUDY

D.1 CODE GENERATION CASE STUDY

Table 11 showcases responses to the same MBPP problem as Figure 5 from different models.
REFUSION’s ability to globally plan the overall structure via a diffusion-based process while locally
infilling details autoregressively results in better-structured, high-quality code, demonstrating its
superiority over existing MDMs.

D.2 STEP-BY-STEP VISUALIZATION OF INFERENCE

In order to facilitate the understanding of our inference method, we show a step-by-step decoding
process in Figure 8. Specifically, our inference process progressively generates the response through
an iterative “plan-and-infill” mechanism.

The model maintains token-wise causal attention throughout the entire process. Each decoding
iteration operates as a two-stage cycle: First, the planning stage predicts drafts for all masked
slots in parallel and selects a subset of high-quality slots based on confidence scores. Second, the
infilling stage treats the selected slots as a batch and completes them autoregressively to ensure local
coherence.

To enable full KV cache reuse, the newly decoded slots are physically moved to the front of the
remaining masked slots after infilling. Crucially, while the tokens’ physical position may change due
to this repositioning, their position IDs remain invariant, always corresponding to their indices in
the correct ground-truth sequence. By utilizing these consistent position IDs with RoPE (Su et al.,
2021), the model accurately perceives the relative positions of all tokens, even when the input buffer
is reordered.

E LIMITATIONS

A primary limitation of our current framework is the immutability of generated slots. Once the
tokens within a slot are generated via diffusion-based planning and autoregressive infilling, they
are considered final and cannot be remasked or refined in future iterations. This design choice,
while simplifying the process, precludes the model from correcting potential errors made within a
completed slot.

A promising direction for future work would be to introduce a re-masking mechanism at the sub-slot
level. For instance, after infilling a slot, the model could verify the generated tokens and preserve only
a high-confidence prefix, while re-masking the lower-quality suffix. This would allow for iterative

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 11: Model responses to the same MBPP problem as Figure 5.

Problem You are an expert Python programmer. Your task is to write a single Python function to solve the
problem described below, and here is your task: Write a function to sum all amicable numbers from 1
to a specified number. Your code should pass these tests:

assert amicable_numbers_sum(999)==504
assert amicable_numbers_sum(9999)==31626
assert amicable_numbers_sum(99)==0

LLaDA-8B-Instruct ✗ def amicable_numbers_sum(limit):
def is_perfect_square(n):

root = int(n**0.5)
return root * root == n

def sum_divisors(n):
total = 0
for i in range(1, n):

if n % i == 0:
total += i

return total

def is_amicable(a, b):
return sum_divisors(a) == b and sum_divisors(b) == a

amicable = set()
for i in range(1, limit + 1):

if is_perfect_square(i):
amicable.add(i)

for j in range(i + 1, limit + 1):
if is_amicable(i, j):

amicable.add(j)

return sum(amicable)

Dream-7B-Instruct ✗ def amicable_numbers_sum(n):
def is_amicable(num):

divisors = 1
for i in range(2, num):

if num % i == 0:
divisors += i
if i != num // i:

divisors += num // i
return divisors == num

total = 0
for i in range(2, n):

if is_amicable(i):
total += i

return total

REFUSION ✓ def amicable_numbers_sum(n):
def sum_of_divisors(num):

sum = 1
for i in range(2, int(num**0.5) + 1):

if num % i == 0:
sum += i + num // i

return sum

amicable_sum = 0
for i in range(2, n + 1):

sum_i = sum_of_divisors(i)
if sum_i != i and sum_of_divisors(sum_i) == i:

amicable_sum += i
return amicable_sum

refinement but would necessitate a more complex inference logic, potentially involving dynamic
adjustments of slot sizes to handle these newly masked, smaller segments. Developing an efficient
strategy for such dynamic, fine-grained refinement remains a key challenge for future research.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Answer

Position ID
𝑡 = 0

(1) Slot Planning

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
catchesA bird is you a \n a a a a a a a a a a a

(2) Slot Infilling

3 4 5
catches

3
catches the

43
catches the worm

0 1 2 6 7 8 9 10 11 12 13 14 15 16 17
Answer

Position ID 543
catches the worm

Step 1

(1) Slot Planning

0 1 2 6 7 8 9 10 11 12 13 14 15 16 17
The is \n a should you a work start a a a a

(2) Slot Infilling

Step 2

543
catches the worm bird \n

543
catches the worm

543
catches the worm

543
catches the worm

0
The

9
should

12
work

543
catches the worm

543
catches the worm

543
catches the worm

0
The

9
should

12
work

1
early

10
start

13
as

543
catches the worm

543
catches the worm

543
catches the worm

0
The

9
should

12
work

1
early

10
start

13
as

2
bird

11
your

14
soon

6 7 8 15 16 17
Answer

Position ID 543
catches the worm

0
The

1
early

2
bird

9
should

10
start

11
your

12
work

13
as

14
soon

(1) Slot Planning

(2) Slot Infilling

Step 3

6 7 8 15 16 17
Answer

Position ID 543
catches the worm

0
The

1
early

2
bird

9
should

10
start

11
your

12
work

13
as

14
soon

6 7 8543
catches the worm

0
The

1
early

2
bird

9
should

10
start

11
your

12
work

13
as

14
soon

15 16 17
as possible !which means that

543
catches the worm

0
The

1
early

2
bird

9
should

10
start

11
your

12
work

13
as

14
soon

543
catches the worm

0
The

1
early

2
bird

9
should

10
start

11
your

12
work

13
as

14
soon

6
which

15
as

7
means

16
possible

8
you

17
.

which means you as possible .

Answer
Position ID 0

The

1
early

2
bird

543
catches the worm

6 7 8
which means you

9
should

10
start

11
your

12
work

13
as

14
soon

15 16 17
as possible . 𝑡 = 1

Prompt What does the proverb "the early bird catches the worm" mean?

Masked token

KV-cached token

Forward pass

Rule-based high-quality slot selection

Note: Slot size 𝑘 = 3. The prompt KV cache is
fixed at the sequence start (no shifting) and is
omitted from later steps for visual clarity.

Figure 8: Visualization of the REFUSION inference mechanism.

F THE USE OF LARGE LANGUAGE MODELS

In the interest of complete transparency, we wish to clarify the use of AI assistance in the preparation
of this manuscript. The core research ideas, including the conception of the REFUSION model, the
design of the training and inference algorithms, all experimental setups, and the analysis of the results
were developed exclusively by the human authors. We utilized a Large Language Model for the
limited purpose of linguistic refinement. This involved polishing certain sentences and paragraphs to
improve grammatical correctness, clarity, and overall flow. This usage was restricted to editing and
did not extend to research ideation, content generation, or experimental analysis.

22

	Introduction
	Related Work
	Preliminary
	Methodology
	Locality of Inter-Token Dependency
	Synergistic Decoding Algorithm at Inference
	Training of ReFusion

	Experiments
	Experimental Setup
	Main Results
	Analysis of Hyperparameters
	Ablation Study
	Direct Comparison with BD3-LM
	Case study

	Conclusion
	Methodological Details
	Comparison between ReFusion and Representative MDMs
	Inference Formalization

	Experimental Details
	Implementation Details
	Hyperparameter Setting

	Experiment Results
	Analysis of Generation Length and Latency
	Analysis OF Certainty Score Heuristic
	Scaling with Data Size
	Analysis of Block Size
	Ablation of Confidence-Aware Parallelism

	Case Study
	Code Generation Case Study
	Step-by-Step Visualization of Inference

	Limitations
	The Use of Large Language Models

