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ABSTRACT

Autoregressive models (ARMs) are hindered by slow sequential inference. While
masked diffusion models (MDMs) offer a parallel alternative, they suffer from
critical drawbacks: high computational overhead from precluding Key-Value (KV)
caching, and incoherent generation arising from learning dependencies over an
intractable space of token combinations. To address these limitations, we introduce
REFUSION, a novel masked diffusion model that achieves superior performance
and efficiency by elevating parallel decoding from the token level to a higher
slot level, where each slot is a fixed-length, contiguous sub-sequence. This is
achieved through an iterative “plan-and-infill” decoding process: a diffusion-based
planning step first identifies a set of weakly dependent slots, and an autoregressive
infilling step then decodes these selected slots in parallel. The slot-based design
simultaneously unlocks full KV cache reuse with a unified causal framework and
reduces the learning complexity from the token combination space to a manageable
slot-level permutation space. Extensive experiments on seven diverse benchmarks
show that REFUSION not only overwhelmingly surpasses prior MDMs with 32%
performance gains and an over 10× speedup on average, but also bridges the
performance gap to strong ARMs while maintaining a 1.4× average speedup.

1 INTRODUCTION

While autoregressive models (ARMs) (Grattafiori et al., 2024; Yang et al., 2025; Jaech et al., 2024)
have achieved impressive progress across a wide range of tasks (Chen et al., 2021; Wei et al., 2022;
Lightman et al., 2023; Li et al., 2024), their inference throughput is fundamentally limited by a
sequential, left-to-right decoding process that precludes parallelization (Chen et al., 2023; Cai et al.,
2024; Zhang et al., 2025). In contrast, masked diffusion models (MDMs) (Nie et al., 2025; Ye et al.,
2025) operate via an iterative denoising process with no fixed generation order. This flexibility yields
two significant advantages. First, it permits parallel decoding by assuming conditional independence
among target tokens: their joint probability, given the context, is assumed to be the product of their
individual marginal probabilities (Li et al., 2023). Second, it offers the potential for the model to
discover better generation orders than the rigid left-to-right trajectory (Kim et al., 2025).

Despite these theoretical advantages, existing MDMs often suffer from two issues: (1) Architec-
tural bottlenecks negate efficiency gains from parallelism. The flexibility of generation orders
necessitates the use of bidirectional attention in MDMs (Vaswani et al., 2017; Devlin et al., 2019), an
architectural choice fundamentally incompatible with Key-Value (KV) caching used in ARMs (Rad-
ford et al., 2018). That is, each decoding iteration forces a full re-computation of the KV states
of the entire context, introducing significant latency and making MDMs significantly slower than
ARMs (Feng et al., 2025). (2) Intractable training complexity hinders coherent parallel gen-
eration. MDMs typically decode multiple tokens with high marginal probabilities in parallel (Nie
et al., 2025). However, the conditional independence assumption frequently fails for these tokens,
particularly for nearby tokens, leading to severe incoherence (Huang et al., 2022; Luxembourg et al.,
2025; Gwak et al., 2025). For example, in a context where both “at once” and “right now” are
valid, an MDM might decode a spurious output “right once” by independently sampling tokens
with high individual marginal probabilities but low joint probability. We attribute this failure to an
immense learning challenge: modeling a data distribution over an exponential space of possible token
combinations is far more demanding than the fixed sequential dependency of ARMs. Consequently,
current MDMs often remain undertrained for reliably identifying conditionally independent tokens.
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To address these challenges, we introduce REFUSION, a masked diffusion large language model
that elevates the parallel decoding process from the traditional token level to a higher slot level,
progressively denoising slots in parallel from a fully masked sequence. Specifically, we partition the
initially masked sequence into fixed-length, consecutive sub-sequences, i.e., slots, and unfold each
decoding iteration into two synergistic steps: first, a diffusion-based planning step identifies a set of
weakly dependent slots, and second, an autoregressive infilling step decodes these slots in parallel
(Figure 2). This design is guided by a key finding from our pilot study (§4.1): inter-token dependency
is highly localized, decaying significantly with distance. Therefore, serializing adjacent tokens within
a slot directly mitigates the violation of conditional independence for these strongly-coupled tokens.
Furthermore, such a simple design also uniquely achieves two critical benefits simultaneously: (1)
By repositioning newly generated slots (Sahoo et al., 2025) to precede masked ones for the next
decoding iteration, REFUSION naturally accommodates causal attention that allows the KV states of
all previously generated tokens to be seamlessly reused; And (2) it reduces the learning complexity
from an intractable token combination space to a substantially more manageable slot permutation
space. Appendix A.1 compares REFUSION and existing MDMs in detail.
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Figure 1: Performance-throughput trade-off on
MBPP. We plot pass@1 (%) against throughput
(tokens/sec), with both metrics calculated rela-
tive to the Qwen3-8B baseline at the origin. The
“REFUSION left-to-right” ablation forces serial de-
coding using the REFUSION model. See §5.3 for
details about hyperparameters of REFUSION.

REFUSION’s training process mirrors its infer-
ence dynamics. For each training sequence, we
randomly mask several slots, permute the clean
slots, and reorder the input so that clean slots pre-
cede masked ones. The model is then optimized
with a hybrid objective that cultivates its dual
capabilities: an autoregressive loss on the per-
muted clean slots for sequential generation, and
a denoising loss on the masked slots for context-
aware parallel reconstruction. Unlike traditional
MDMs which learn only from masked positions,
this hybrid objective uses every token for super-
vision, boosting data efficiency.

Our extensive experiments on seven benchmarks
spanning math, code generation, and general-
purpose understanding and reasoning demon-
strate that REFUSION decisively establishes a
new state-of-the-art for MDMs. Compared
to LLaDA (Nie et al., 2025) and Dream (Ye
et al., 2025), REFUSION achieves an average
performance gain of 32% while being over 10×
faster in throughput (tokens/sec). More strik-
ingly, REFUSION consistently challenges and
often surpasses strong ARMs. For instance, it
outperforms Qwen3-8B (Yang et al., 2025) on
GSM8K (Cobbe et al., 2021) and MBPP (Austin
et al., 2021) by 3.2 absolute points while being 1.4× faster on average. This dual advantage in both
performance and speed is further illustrated in Figure 1, where REFUSION (the red line) is the only
method to establish a superior performance-efficiency frontier in the top-right quadrant. It signifi-
cantly outperforms both the Qwen3-series (the blue line) and prior MDM-based methods (lower-left,
implying slower and less effective). Furthermore, our controlled experiments confirm these gains are
driven by our architectural and training innovations, not initialization and data advantages.

Our contributions are summarized as follows:

I. We propose REFUSION, a generative model integrating inter-slot parallel decoding with intra-slot
autoregressive decoding, combining the strengths of autoregREssive and difFUSION-based modeling.

II. To the best of our knowledge, REFUSION is the first MDM that achieves full KV cache reuse of
every decoded token, while maintaining global generation flexibility and tractable training complexity.

III. Extensive experiments on seven diverse benchmarks show that REFUSION not only overwhelm-
ingly surpasses all prior MDMs in both performance and speed, but also bridges the performance gap
to ARMs while maintaining the efficiency advantage.
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2 RELATED WORK

MDMs promise to outperform traditional ARMs by offering faster inference through parallel decoding
and potentially superior solutions via flexible generation orders (Kim et al., 2025). Recent MDMs
such as LLaDA (Nie et al., 2025), the first open-source MDM trained from scratch, and Dream (Ye
et al., 2025), initialized from an ARM, have delivered performance on par with ARMs of equivalent
scale across diverse tasks, establishing MDMs as a viable research direction.

Architectural Designs for Efficient MDMs. Standard MDMs’ reliance on bidirectional attention
precludes the use of KV caching. Recent work alleviates this bottleneck through three main strategies.
The first strategy approximates KV cache reuse while retaining bidirectional attention. For instance,
dLLM-Cache (Liu et al., 2025) reuses slow-changing KV states, while sparse-dLLM (Song et al.,
2025) dynamically prunes non-critical KV states. The second strategy mixes bidirectional attention
and causal attention. Models like BD3-LMs (Arriola et al., 2025) and Fast-dLLM (Wu et al., 2025b)
partition the sequence into consecutive blocks, enforcing a left-to-right order between blocks to enable
KV cache reuse, while retaining parallel, bidirectional generation within each block. D2F (Wang et al.,
2025) further parallelizes the generation of succeeding blocks, although performance is limited by the
lack of inter-block lookahead attention. While sharing the concept of a grouped unit, REFUSION’s

“slot” operates fundamentally differently from “block” in these approaches. In the block-based design,
a fixed left-to-right inter-block schedule sacrifices any-order flexibility, while intra-block bidirectional
attention sacrifices KV caching and risks incoherence. In contrast, REFUSION enables both global
any-order generation and full KV cache reuse with a unified causal framework. The final strategy
leverages only causal attention, enabling an exact KV cache. Eso-LMs (Sahoo et al., 2025), for
instance, dynamically reposition newly generated tokens ahead of masked ones at each step to
facilitate caching. However, this strategy introduces an intractable learning objective at a token-level
permutation space, which hinders training and leads to significant performance drops.

Decoding Strategies in MDMs. A crucial aspect of MDM inference is the strategy used to select
which tokens to decode in parallel at each step. Existing approaches generally fall into two categories.
The first class leverages confidence heuristics derived from the model’s own distribution, such
as top token probability (Nie et al., 2025), low entropy (Ben-Hamu et al., 2025), and probability
margins between top candidates (Kim et al., 2025). Some methods further refine these heuristics with
position-aware weights and frequency-based calibration (Huang et al., 2025). While simple, these
methods rely on the often-unreliable assumption that the model’s confidence scores are perfectly
calibrated (Wu et al., 2025b). The second class employs external models for verification, e.g., using a
small ARM to validate and extend the longest acceptable prefix (Hu et al., 2025; Israel et al., 2025),
or using dedicated reward models to guide generation (Gwak et al., 2025). Although effective, these
approaches introduce the overhead of maintaining and querying a separate model. Unlike these
methods, REFUSION adopts a unified inference framework that benefits from the parallel efficiency
of MDMs without sacrificing the quality assurance of ARMs, all within a single architecture.

3 PRELIMINARY

Autoregressive Models. ARMs are a prominent class of generative models that factorize the joint
probability of a sequence x = (x1, . . . , xL) by enforcing a strict left-to-right conditional dependency
using a causal attention mask. This structure leads to a next-token prediction objective, where the
model parameters θ are optimized by minimizing the negative log-likelihood: −

∑L
i=2 logPθ(xi |

x<i). During inference, generation is an inherently sequential process requiring T forward passes to
produce a sequence of length T , resulting in a latency that scales with the sequence length.

Masked Diffusion Models. MDMs represent another class of generative models, operate on a
“mask-and-denoise” principle. During training, each sample x0 = (x1

0, x
2
0, · · · , xL

0 ) is corrupted
to xt by masking each token with a special token “[MASK]” under probability t ∼ U(0, 1). The
model learns to reconstruct the original context by minimizing the objective: − 1

t

∑L
i=1 1(x

i
t =

[MASK]) logPθ

(
xi
0 | xt

)
. MDM inference proceeds by progressively generating tokens from a

fully masked sequence. It requires fewer forward passes than an ARM thanks to parallel decoding,
but each pass is drastically more expensive due to its incompatibility with KV caching.
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Figure 2: The inference and training process of REFUSION. Inference (Left) proceeds via an iterative
“plan-and-infill” loop at the slot level: A diffusion-based step first plans which slots to generate and
proposes initial drafts, and a parallel autoregressive step then fills them using a verify-and-complete
mechanism. Full KV cache reuse is achieved by reordering generated slots before masked ones after
each iteration. Training (Right) mirrors inference by optimizing a hybrid objective that combines an
autoregressive loss (LARM) on permuted clean slots and a denoising loss (LMDM) on masked slots.

4 METHODOLOGY

Traditional MDMs allow a flexible token-level decoding process during inference. We elevate this
concept to operate on slots, i.e., a fixed-length, non-overlapping sequence of continuous tokens,
denoising them in parallel. It yields two critical benefits: it enables full KV cache reuse by arranging
newly generated slots before masked ones with a causal framework, and it substantially reduces train-
ing complexity from the token-level combination space to a more manageable slot-level permutation
space. To support non-sequential generation, we build REFUSION upon a standard causal architecture
with a key modification: it accepts an explicit, non-contiguous list of position IDs. By applying RoPE
(Su et al., 2021) to these absolute position IDs, the model can correctly compute relative distances
and attend to all logical predecessors. Figure 2 illustrates the inference and training process.

4.1 LOCALITY OF INTER-TOKEN DEPENDENCY
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Figure 3: The locality of inter-token depen-
dency in MDMs, with the sign on the x-axis
denoting the direction from the revealed token
(positive for rightward, negative for leftward).

A cornerstone of REFUSION is the grouping of con-
tiguous tokens into slots for serial generation. This
design is motivated by the critical insight that the
conditional independence assumption is most prone
to failure for nearby tokens, frequently leading to
semantic incoherence (Luxembourg et al., 2025). To
formalize this insight and guide our design, we con-
duct a pilot study to quantitatively investigate how
dependency strength between two tokens correlates
with their relative distance.

Formally, we define the dependency strength between
two tokens, xi

0 and xj
0, in a given context xt, as the

degree to which the presence of xj
0 influences the

model’s prediction of xi
0. In practice, we approximate

this measurement in a pilot study on the GSM8K test
set (Cobbe et al., 2021). For a corrupted sequence xt, we first reveal the ground-truth token xj

0 at a
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randomly selected masked position j, and then quantify the influence of this reveal on the prediction
at any other masked position i through the Jensen-Shannon (JS) divergence (Manning & Schutze,
1999) between the distributions before and after this reveal, i.e., p(xi

0|xt) and p(xi
0|xt, x

j
0). A higher

divergence implies stronger dependency, with zero divergence indicating conditional independence.
Using both LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025), we plot the averaged JS divergence
against the relative distance between positions i and j in Figure 3. The average JS divergence
consistently decays as the relative distance increases, and this decay is more rapid in denser contexts
(i.e., lower masking ratios t). This result directly motivates us to define a slot as a contiguous token
sequence, thereby grouping strongly correlated tokens for serial decoding within a slot, in contrast to
prior block-based methods that decode nearby tokens within a block in parallel (Arriola et al., 2025).

4.2 SYNERGISTIC DECODING ALGORITHM AT INFERENCE

Armed with the quantitative evidence that inter-token dependency is highly localized, we design
the inference algorithm to explicitly leverage this property. The process iteratively generates a
final response r̃0 from a prompt p0, starting with an initial masked sequence r̃1. This sequence is
partitioned into K consecutive slots of k “[MASK]” tokens each. Each iteration comprises two
synergistic steps: (1) diffusion-based slot planning to identify slots that are strongly dependent on the
context but weakly interdependent; and (2) autoregressive slot infilling to decode them in parallel.

Step I: Diffusion-based Slot Planning. The first step leverages the model’s MDM capability to
plan the next decoding slots. At a timestep t, which is defined as the ratio of remaining masked slots,
we construct the input S̃t by concatenating already-decoded slots (S̃clean

t , in generation order) with
the masked slots (S̃masked

t , in their original positional order). This ordering naturally enables KV
cache reuse. The model then computes a certainty score for each masked slot based on its predictive
distribution. While various heuristics exist for certainty score, we adopt a simple yet effective one:
the probability of the most likely token at the slot’s first position (Appendix C.2 compares against
alternatives). Finally, a batch of slots with scores exceeding a threshold τ is selected for subsequent
infilling. This strategy identifies slots that are strongly constrained by the existing context and
weakly interdependent (e.g., distinct function definitions in code generation), making them suitable to
parallelize. Furthermore, to accelerate the subsequent autoregressive generation, we adopt a strategy
from speculative decoding (Leviathan et al., 2023): for each selected slot, we generate a draft slot by
sampling a token from its distribution at every position, yielding the draft slots S̃draft

t .

Step II: Autoregressive Slot Infilling. The second step efficiently verifies the draft slots S̃draft
t and

completes them using the model’s autoregressive capability: (1) Verification. We concatenate all
draft slots into a sequence in their original positional order. The model then performs one forward pass
to compute the probability of each token in the sequence, conditioned on the prompt and the already
decoded slots. We identify the longest prefix of the concatenated draft where the probabilities of all
tokens exceed τ . If this prefix spans one or more complete slots, we accept these slots wholesale and
immediately proceed to the next planning iteration, thereby bypassing suffix completion. Otherwise,
we determine the longest common prefix length that is successfully verified across all individual draft
slots, and truncate each draft slot to this common length. (2) Completion. The model then completes
any truncated slots by autoregressively sampling the remaining positions in parallel for each slot.

Finally, the newly completed slots are appended to the sequence of decoded slots. Their KV caches are
directly concatenated for future iterations, a valid approximation as the lack of inter-slot conditioning
during parallel generation has minimal impact on final performance (see §5.4). The plan-and-infill
cycle continues until all slots are filled, at which point the final response is constructed by restoring
the original slot order. The decoding process is formalized in Appendix A.2. We also quantify the
substantial contribution of confidence-based parallelism to throughput in Appendix C.5.

4.3 TRAINING OF REFUSION

The training procedure for REFUSION is carefully designed to mirror the dynamics of our two-step
decoding algorithm. This requires a data construction strategy that simulates the non-sequential,
partially-decoded states encountered during generation, and a hybrid training objective that jointly
optimizes the model’s planning and infilling capabilities.
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Training Data Construction. To simulate the partially decoded states encountered during iterative
generation, we introduce a three-step strategy to construct training data from each prompt-response
pair (p0, r0). The response r0 is first partitioned into a sequence of K slots, S0 = [S1

0 , . . . , S
K
0 ],

each of size k. Then, a corrupted version St is constructed given a masking ratio t ∼ U(0, 1) as
follows: (1) Random slot masking. Analogous to token-level masking in traditional MDMs, we
randomly select and mask ⌊tK⌋ slots from the original sequence S0. Each selected slot is replaced
with a block of k “[MASK]” tokens. (2) Permutation of clean slots. Since the generation order of
slots is dynamically determined, the model must learn to process context in any arbitrary permutation.
To achieve this, we randomly permute the unmasked (clean) slots to form Sclean

t , while keeping
the original relative positions of the masked slots to form Smasked

t . (3) Reorder. The final training
instance St is assembled by concatenating the permuted clean slots followed by the masked slots.

Hybrid Training Objective. To empower our model with the dual capabilities of global planning
and local decoding, we propose a hybrid training objective that learns from every token in the
sequence. This approach also provides a significant benefit of data efficiency, which contrasts with
traditional MDMs where clean tokens only serve as context and provide no direct supervision.

On one hand, the clean slots Sclean
t are trained with a standard ARM loss for next token prediction:

LARM = −E(p0,r0)∼D
t∼U(0,1)

 1

(k − 1) · |Sclean
t |

|Sclean
t |∑
i=1

k∑
j=2

logPθ

(
vi,jt | p0,Sclean

t,<(i,j)

) , (1)

where vi,jt is the j-th token in the i-th clean slot, Sclean
t,<(i,j) is the prefix of the token in Sclean

t .

On the other hand, the masked slots Smasked
t are trained with an MDM objective for denoising1:

LMDM = −E(p0,r0)∼D
t∼U(0,1)

 1

k · |Smasked
t |

|Smasked
t |∑
i=1

k∑
j=1

logPθ(v
i,j
0 | p0,Sclean

t ,Smasked
t,⩽(i,j))

 , (2)

where vi,j0 is the ground-truth token from the original response corresponding to the j-th token in the
i-th slot of Smasked

t . The final training objective is a summation of the two losses, balanced by λ:
L = LARM + λLMDM. (3)

We initialize our model Pθ with an off-the-shelf ARM backbone, a strategy validated by prior
work (Gong et al., 2025; Ye et al., 2025). Crucially, all tokens retain their original positional indices
from r0 throughout the process. This allows the model to maintain awareness of the relative positions
among all tokens, ensuring sequence coherence despite the shuffled input order.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Implementation Details. We initialize REFUSION from the Qwen3-8B checkpoint (Yang et al.,
2025) and fine-tune it for 4 epochs on a diverse 3.7M-sample (∼1.22B-tokens) dataset covering math-
ematics, coding, and general instruction-following. For inference, we employ a semi-autoregressive
remasking strategy (Nie et al., 2025): the output sequence is partitioned into blocks of size b, which
are decoded serially. Within each block, our plan-and-infill algorithm from §4.2 is applied. Detailed
implementation and hyperparameter specifics are provided in Appendix B.1 and B.2, respectively.

Evaluation Benchmarks and Metrics. We evaluate REFUSION on diverse benchmarks span-
ning: (1) General-purpose understanding and reasoning: MMLU-Pro (Wang et al., 2024) and
ARC-C (Clark et al., 2018); (2) Mathematical and scientific problem-solving: GSM8K (Cobbe
et al., 2021), MATH (Hendrycks et al., 2021), and GPQA (Rein et al., 2024); (3) Code generation:
HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021). We use pass@1 for code generation
and accuracy for the others. We assess inference throughput using tokens decoded per second (TPS)
with a single A100 GPU and a batch size of 1.

1Our per-token normalization, 1

k·|Smasked
t | , implicitly includes the 1

t
weighting since |Smasked

t | ≈ tK, where
K is the total number of slots.
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Table 1: Zero-shot performance and throughput (TPS) comparison on multiple benchmarks. Each
model displays accuracy/pass@1 (top row) and throughput (TPS, bottom row). Within the MDM
category, we highlight the best performance results in bold and underline the second best. An italic
score in the ARM category signifies that it surpasses the best-performing MDM.

Model MMLU-Pro ARC-C GSM8K MATH GPQA HumanEval MBPP Avg.

Autoregressive Model
35.23 82.76 75.13 25.48 29.46 46.34 53.00 49.63Llama-3-8B-Instruct 32.07 44.12 42.81 19.73 42.00 42.26 41.68 37.81
67.25 90.36 81.96 83.28 39.06 87.80 63.80 73.36Qwen3-8B 31.42 42.78 31.20 30.11 30.43 30.95 30.07 32.42

Masked Diffusion Model
35.80 85.58 76.35 38.78 32.37 45.12 25.60 48.51LLaDA-8B-Instruct 18.21 0.03 27.35 23.93 1.99 12.42 2.97 12.41
35.02 82.85 76.27 38.58 28.35 37.80 24.80 46.24LLaDA w/ Fast-dLLM 39.81 0.86 73.07 52.23 17.54 62.52 37.19 40.46
22.84 84.13 39.04 23.68 31.25 36.59 35.20 38.96LLaDA w/ D2F 44.54 3.70 82.59 59.48 23.84 96.90 53.85 52.13

40.05 88.31 76.42 46.60 30.36 56.71 50.40 55.55Dream-7B-Instruct 15.98 0.06 20.30 18.99 1.81 3.51 1.23 8.84
40.36 86.86 75.82 36.76 31.25 56.10 10.60 48.25Dream w/ Fast-dLLM 47.18 1.42 61.49 58.24 22.96 49.73 19.55 37.22
38.26 87.37 47.99 24.60 22.77 46.95 35.00 43.28Dream w/ D2F 60.64 14.82 96.59 81.59 25.20 49.05 53.95 54.55

45.39 89.68 85.60 56.06 35.04 75.61 66.60 64.85REFUSION 39.38 49.25 40.29 42.40 42.23 46.48 45.34 43.62

Baselines. We compare REFUSION with: (1) ARMs: Llama-3-8B-Instruct (AI@Meta, 2024) and
Qwen3-8B (Yang et al., 2025). (2) MDMs: LLaDA-8B-Instruct (Nie et al., 2025), and Dream-7B-
Instruct (Ye et al., 2025). (3) State-of-the-art MDM acceleration methods: Fast-dLLM (Wu et al.,
2025c) and D2F (Wang et al., 2025). We implement the baselines based on official hyperparameters.

5.2 MAIN RESULTS

The main results in Table 1 show: (1) REFUSION dominates all MDM baselines. REFUSION
consistently outperforms all MDM baselines across all seven benchmarks, often by a substantial
margin. For instance, on HumanEval, it achieves 75.61% pass@1, surpassing the next-best MDM
(Dream-7B-Instruct) by nearly 19 absolute points. While acceleration methods like Fast-dLLM and
D2F2 improve throughput at a significant performance cost, REFUSION delivers both state-of-the-art
performance and competitive efficiency, establishing a new frontier for MDMs. (2) REFUSION
challenges strong ARMs. More remarkably, REFUSION challenges and often surpasses strong
ARMs. On GSM8K and MBPP, for example, it outperforms Qwen3-8B by 3 absolute points while
delivering a 1.4× speedup. This demonstrates that our non-autoregressive approach can break the
long-standing trade-off between the speed of MDMs and the quality of ARMs (Feng et al., 2025).

5.3 ANALYSIS OF HYPERPARAMETERS

We examine the key hyperparameters governing the performance-efficiency trade-off in REFUSION:
the verification threshold τ and the slot size k. The threshold τ controls the confidence for both slot
selection (planning) and draft acceptance (infilling), while k defines the granularity of the generation
unit. An analysis of other hyperparameters is shown in Appendix C.4.

As illustrated in Figure 4 (left & middle), these hyperparameters create a predictable trade-off.
(1) Verification threshold τ : Lowering τ boosts throughput (TPS) by enabling more aggressive
parallelism, but at the cost of reduced performance due to lower token reliability. (2) Slot size k:
Similarly, smaller slot sizes (k) increase TPS by creating more parallelizable units given a fixed full
length, though this speed gain is counteracted by a performance drop.

2D2F’s low TPS on ARC-C stems from a mismatch between its fixed 32-token block size and the task’s short
answers (avg. 1∼3 tokens). The latency of generating a full block is incurred for only a few valid tokens.
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Figure 4: Left & Middle: Impact of key hyperparameters on MBPP (0-shot). The plots show the
change in pass@1 (%) and throughput (TPS) of REFUSION relative to Qwen3-8B (horizontal dashed
lines at zero). When one parameter is varied, others are held at their default values (τ = 0.6, k = 16).
Yellow shaded regions highlight the “sweet spot” where REFUSION surpasses the baseline in both
metrics. Right: pass@1 on MBPP for REFUSION and baseline MDMs over the average number of
tokens generated per forward pass (TPF) under various hyperparameter settings.

Table 2: Controlled comparison of models initialized from Qwen3-8B and trained on 120K subset.
Model MMLU-Pro ARC-C GSM8K MATH GPQA HumanEval MBPP Avg.

52.71 88.65 87.57 67.84 33.26 53.66 59.20 63.27Qwen3-8B (Retrained) 31.32 30.46 31.03 30.73 26.70 30.73 30.16 30.16
5.12 70.65 13.42 1.38 0.00 4.27 6.20 14.43LLaDA (Retrained) 0.26 0.03 1.18 0.20 0.15 0.66 0.42 0.41

38.80 84.64 79.45 49.98 30.36 62.20 52.40 56.83REFUSION (Retrained) 35.36 47.14 39.67 44.85 40.68 39.54 38.64 40.84

More importantly, the shape of this trade-off frontier distinguishes REFUSION from prior MDMs.
Figure 4 (right) shows that both LLaDA and Dream suffer a sharp performance decline as parallelism
(TPF) increases3, indicating a failure to uphold the conditional independence assumption when se-
lecting tokens for parallel decoding. In contrast, REFUSION’s curve is substantially flatter, validating
that its training and decoding strategies can more reliably identify conditionally independent tokens.
Expanding on this, Figure 1 presents the complete performance-throughput (TPS) frontier against all
baselines, revealing a critical finding: for every baseline model, there exists at least one REFUSION
configuration that is simultaneously superior in both performance and throughput.

We would like to emphasize that the hyperparameters (λ in Eq. 3, τ , and k) do not pose a significant
tuning burden. First, τ and k are standard concepts in the field of MDMs (Arriola et al., 2025; Nie
et al., 2025; Wu et al., 2025b; Wang et al., 2025; Wu et al., 2025a), while the loss-balancing parameter
λ required no tuning (fixed at 1). Second, our analysis in Figure 4 confirms high robustness, revealing
a wide “sweet spot” (e.g., τ ∈ [0.5, 0.9], k ∈ {16, 32}) that offers a generalizable starting point. This
hyperparameter complexity is thus comparable to standard ARMs, which also depend on tuning
inference parameters like temperature and top-p.

5.4 ABLATION STUDY

Controlled Comparison with the Same Backbone and Data. To isolate the benefits of REFUSION
from data or backbone advantages, we conduct a controlled comparison using a smaller 120K data
subset randomly sampled from the full 3.7M data due to resource constraints. We fine-tune Qwen3-8B,
LLaDA, and REFUSION for 10 epochs using their respective original objectives, with all initialized
from Qwen3-8B. This setup ensures that observed differences are attributable solely to the algorithm
design. Appendix C.3 discusses the scaling property of REFUSION regarding data size.

Results in Table 2 confirm the architectural superiority of REFUSION. LLaDA suffers a catastrophic
performance collapse4. While the already highly-optimized Qwen3-8B baseline understandably
degrades when retrained on our smaller, open-source dataset, REFUSION still outperforms it by
∼9 points on HumanEval while being 1.3× faster. This result robustly validates that REFUSION’s

3We use TPF here, rather than TPS, to isolate the algorithmic trade-off from any system-level overheads.
4The low TPS for LLaDA in this experiment is due to the fair-comparison re-implementation on the Qwen3-

8B backbone, which is computationally heavier (36 layers, ∼152K vocab) than LLaDA’s original architecture
(32 layers, ∼126K vocab).
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Table 3: Controlled comparison with Dream-7B-Instruct on its native Qwen2.5-7B backbone.
Model MMLU-Pro ARC-C GSM8K MATH GPQA HumanEval MBPP Avg.

40.05 88.31 76.42 46.60 30.36 56.71 50.40 55.55Dream-7B-Instruct 15.98 0.06 20.30 18.99 1.81 3.51 1.23 8.84
34.51 83.11 79.38 46.38 31.47 69.51 60.00 57.77REFUSION (Retrained) 50.93 46.49 41.15 45.69 20.90 65.57 58.49 47.03

Table 4: Ablation regarding our KV cache reuse mechanism. We compare our default REFUSION,
which efficiently reuses KV caches by concatenating them after parallel generation, against a variant
(w/ KV Re-computation) that recomputes caches for full contextualization at a higher cost.

Model MMLU-Pro ARC-C GSM8K MATH GPQA HumanEval MBPP
45.34 89.68 84.91 55.90 35.04 73.78 66.40REFUSION w/ KV Re-computation 34.13 36.21 36.38 37.57 29.96 41.02 40.13
45.39 89.68 85.60 56.06 35.04 75.61 66.60REFUSION 39.38 49.25 40.29 42.40 42.23 46.48 45.34

architectural innovations are the primary driver of its success, enabling effective learning even from
limited data where standard MDMs fail.

Furthermore, we conducted a controlled comparison with Dream-7B-Instruct. Since its training
code is not open-sourced, we could not re-train it on Qwen3. Instead, we train a REFUSION
variant on Dream’s original Qwen2.5-7B backbone. It is crucial to note the significant disparity in
training resources: Dream benefited from massive pre-training (146.5M samples) plus SFT (1.8M
samples), whereas our REFUSION variant was only fine-tuned (3.7M samples) without any pre-
training. Despite the pre-training disadvantage, Table 3 shows that REFUSION still achieves a 2.22%
average performance gain and a massive 5.32× speedup over Dream. REFUSION significantly
excels on reasoning and coding tasks (GSM8K, HumanEval, MBPP). Its lower performance on
knowledge-intensive tasks (MMLU-Pro, ARC-C) is expected, as it skipped the pre-training stage
that Dream utilized for knowledge injection. These results collectively confirm that REFUSION’s
architectural advantages are robust across different base models and training setups.

Ablation on KV Cache Reuse. To maximize efficiency, REFUSION directly concatenates the KV
caches of parallel-generated slots, bypassing a costly forward pass that would otherwise be needed
to contextualize them. To quantify the impact of this approximation, we conduct an ablation study
comparing our default model against a variant, “REFUSION w/ KV Re-computation,” which performs
this extra forward pass to ensure full contextualization at the cost of speed.

As shown in Table 4, our default approach is consistently 1.1−1.4× faster across all benchmarks.
Surprisingly, this significant speedup comes at virtually no cost to performance; in fact, accuracy
remains stable and even slightly improves on several benchmarks. We hypothesize this counter-
intuitive benefit arises from a form of implicit regularization: by avoiding over-conditioning on
potentially flawed parallel drafts, our method mitigates error propagation. This result validates
our KV cache reuse strategy not merely as a speed-accuracy trade-off, but as a design choice that
simultaneously enhances efficiency and robustness.

5.5 DIRECT COMPARISON WITH BD3-LM

To further contextualize the advantages of our approach, we conduct a direct comparison against BD3-
LM (Arriola et al., 2025), a representative block-based MDM. While the performance of baselines
like LLaDA (Nie et al., 2025) in our main results already serves as a strong proxy for the limitations
of block-based designs, this head-to-head experiment provides direct empirical validation. We ensure
a strictly controlled setting by training both REFUSION and BD3-LM from the Qwen3-8B backbone
on our 120K data subset for 10 epochs. Table 5 presents the performance-throughput frontier on
MBPP as parallelism (measured in average tokens per forward pass, #TPF) increases.

The results in Table 5 clearly demonstrate REFUSION’s superiority. As parallelism increases,
REFUSION maintains high performance with a gentle degradation curve while consistently achieving
higher throughput. In stark contrast, BD3-LM suffers a precipitous performance collapse, with its
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Table 5: Performance-throughput frontier comparison with BD3-LM on MBPP (0-shot). Each cell
shows pass@1 (left) and TPS (right, in parentheses) at varying levels of parallelism (#TPF).

Average #TPF 1 2 3
REFUSION 56.80 (25.83) 56.00 (36.66) 47.40 (42.08)
BD3-LM 51.60 (16.18) 30.20 (29.31) 16.00 (37.96)

pass@1 score plummeting from 51.6% to just 16.0%. This underscores a fundamental weakness of
the block-based design: its reliance on intra-block bidirectional attention hinders both generation
coherence (leading to the performance collapse) and full KV-caching (reflected in lower TPS).
REFUSION’s unified causal framework directly overcomes these issues, validating its architectural
advantage.

5.6 CASE STUDY

Problem:Write a function to sum all amicable numbers from 1 to a specified number.

ReFusion:

Figure 5: A case study of REFUSION generating a Python
function for an MBPP problem. The code is segmented into
slots of size k = 4. The numbers in the top-left corner of
each slot indicate the generation order. The token color indi-
cates the generation source: orange denotes diffusion-based
generation, while Black denotes autoregressive generation.

Figure 5 provides a qualitative under-
standing of how REFUSION solves
a programming problem from the
MBPP benchmark, revealing two key
capabilities: (1) High degree of
parallelism. The model frequently
generates multiple slots concurrently.
For instance, at iteration 9, it si-
multaneously generates three sepa-
rate slots. This parallel decoding ca-
pability, combined with leveraging
speculative decoding to retain multi-
ple diffusion-based generated tokens
at once, delivers significant acceler-
ation. (2) Non-linear generation
order. The generation process is
markedly non-linear. For example,
the model constructs the central “for”
loop structure (iteration 7) before ini-
tializing a local variable “sum = 1” (it-
eration 8). This ability to plan and
execute in a parallel, non-monotonic
fashion allows REFUSION to construct complex, structured code in a manner that is both efficient and
conceptually closer to human problem-solving. Appendix D.1 shows the results of baseline models
on the same problem. Furthermore, to facilitate understanding, we provide a detailed visualization of
the decoding process in Appendix D.2.

6 CONCLUSION

In this work, we present REFUSION, a novel generative model that synergizes the strengths of
diffusion-based planning and autoregressive infilling to address the long-standing efficiency and
coherence challenges in traditional MDMs. This unique design enables full KV cache reuse within a
flexible, any-order generation framework, while making the training objective tractable by simplifying
the combinatorial complexity of the generation space. Extensive evaluations across seven benchmarks
show that REFUSION establishes a new state of the art for MDMs. More strikingly, it bridges the
performance gap to strong ARMs, often outperforming them while being significantly faster. Our
work demonstrates that by structuring the parallel generation process, it is possible to achieve the
throughput potential of MDMs without sacrificing generation quality. Future directions include
further scaling of the model and data size, as well as leveraging reinforcement learning to optimize
the model’s planning policy for complex, multi-step reasoning tasks.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experimental results, our training and inference code
is open-sourced in an anonymized repository https://anonymous.4open.science/r/
ICLR2026-ReFusion. The specific settings for training and testing are detailed in §5.1 and
Appendix B.
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Table 6: Comparison between REFUSION and existing MDMs. L denotes the generation length and
k denotes the block or slot size.

Model Generation Attention Generation Full KV Number of Distinct
Scope Mechanism Order Cache Reuse Masking Patterns

LLaDA Full Sequence Bidirectional Any-Oder ✗
∑L

l=1

(
L
l

)
≈ 2L

Intra-block Bidirectional Any-OrderBD3-LMs Inter-block Causal Left-to-Right ✗ 2k · L
k

Intra-slot Causal Left-to-Right L
k !REFUSION Inter-slot Causal Any-Order ✓

(Lk ! ≪ 2L for large k)

A METHODOLOGICAL DETAILS

A.1 COMPARISON BETWEEN REFUSION AND REPRESENTATIVE MDMS

Table 6 provides a detailed, side-by-side comparison of the architectural and methodological designs
of REFUSION against two representative MDMs, LLaDA (Nie et al., 2025) and BD3-LMs (Arriola
et al., 2025). This comparison highlights how REFUSION uniquely addresses the fundamental
trade-offs between generation flexibility, computational efficiency, and learning complexity.

(1) LLaDA, as a conventional MDM, operates on the entire sequence with a bidirectional attention
mechanism. This grants it maximum flexibility, allowing for a fully unconstrained, any-order genera-
tion process. However, this design choice incurs two significant penalties. First, the bidirectional
attention is fundamentally incompatible with KV caching, resulting in substantial computational
overhead at each decoding step. Second, it must learn dependencies across an exponential space of
possible masking patterns. For a sequence of length L, any given training or inference state is defined
by a subset of tokens that remain masked. Since each of the L positions can be either masked or
unmasked, the model must, in principle, handle any of the 2L possible subsets of visible context5.
This combinatorial space of approximately 2L distinct masking patterns presents an intractable
objective, as the model may not be sufficiently trained on the specific patterns encountered during
inference, leading to incoherent parallel generation.

(2) BD3-LMs attempts to mitigate these issues with a hybrid, block-based approach. It enforces a rigid,
left-to-right generation order between blocks, which enables KV cache reuse across block boundaries.
However, within each block, it retains bidirectional attention and any-order token generation. This
design makes a critical compromise. It sacrifices global generation flexibility for discovering optimal
generation strategies, which is a key theoretical advantage of MDMs. Furthermore, it still faces the
challenges of token-level incoherence and the inability to utilize KV caching for intra-block decoding.

(3) REFUSION introduces a more elegant and unified solution. Generation is structured at the slot
level. Within each slot (intra-slot), generation is autoregressive (left-to-right) under a causal attention
mask, directly addressing the strong local dependencies between adjacent tokens. Between slots
(inter-slot), the model retains the flexibility of any-order generation, enabling it to discover better,
non-linear generation paths than the left-to-right order. Crucially, by reordering generated slots to
always precede masked ones in the input sequence, REFUSION enables full KV cache reuse for
every decoded token, a feature unique among these models. This design simultaneously achieves two
critical goals: it combines global generation flexibility with universal computational efficiency, and it
drastically reduces the learning complexity from an exponential token-level permutation space to a
far more manageable slot-level one (Lk !). For a typical sequence length of L = 4, 096, a slot size of
just k = 8 is sufficient to ensure L

k ! < 2L.

In summary, while prior models are forced to trade flexibility for efficiency or vice versa, REFUSION’s
innovative slot-based framework is the only approach that concurrently offers global any-order
generation, full KV cache reuse, and a tractable training objective.

5Notably, due to the bidirectional attention, the model is invariant to the order in which clean tokens are
revealed. Therefore, the learning complexity is not permutations (L!).
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A.2 INFERENCE FORMALIZATION

In this section, we formalize the two-step decoding iteration as follows:

Step I: Diffusion-based Slot Planning. The first step leverages the model’s MDM capability
to plan the next decoding slots. At a timestep t (defined as the ratio of remaining masked slots),
we construct the input S̃t for enabling KV cache by concatenating already-decoded clean slots
(S̃clean

t , in generation order) with the remaining masked slots (S̃masked
t , in their original positional

order). The planning process then generates a draft for all masked slots. This draft serves a dual
purpose: providing a basis for scoring each slot for planning, and acting as a speculative guess for the
subsequent infilling stage (Leviathan et al., 2023). Specifically, for each position j in the i-th slot
of S̃masked

t , a draft token d̃i,jt is sampled from the model’s marginal distribution, conditioned on the
leading context:

d̃i,jt ∼ Pθ(· | p0, S̃clean
t , S̃masked

t,⩽(i,j)), (4)

where S̃masked
t,⩽(i,j) denote the tokens before the position of the target token. This yields a draft version

of the masked slots, denoted as S̃draft
t = {d̃i,jt }. We then quantify the model’s certainty score of i-th

slot S̃i
t in S̃masked

t as the model’s predicted probability of its first token d̃i,1t :

C(S̃i
t) = Pθ(d̃

i,1
t | p0, S̃clean

t , S̃masked
t,⩽(i,1)). (5)

The model then selects a batch of slots with scores exceeding a threshold τ for subsequent infilling.
If no slot meets this criterion, the single slot with the globally highest score is selected instead. This
strategy identifies slots that are strongly constrained by the existing context and weakly interdependent
(e.g., distinct function definitions in code generation), making them suitable to parallelize.

Step II: Autoregressive Slot Infilling. The second step verifies and completes the selected draft
slots using a single autoregressive forward pass. To achieve this, we first concatenate the slots in
their original left-to-right order. The model then calculates the conditional probability of each token,
conditioned on all preceding tokens within the newly formed sequence:

P(d̃i,jt ) =

{
Pθ(d̃

i,1
t | p0, S̃clean

t , S̃masked
t,⩽(i,1)), if j = 1

Pθ(d̃
i,j
t | p0, S̃clean

t , S̃draft
t,<(i,j)). if j > 1

(6)

Next, we verify the draft by identifying the longest prefix of the concatenated sequence, with length
l, where every token’s probability exceeds the threshold τ . If the prefix is long enough to form
at least one full slot (i.e., l ⩾ k), we accept the first ⌊l/k⌋ slots and immediately begin a new
planning-infilling iteration, bypassing the costly suffix completion. Otherwise, we find the longest
common prefix length, l′ ⩾ 1, that is successfully verified across all individual draft slots. Each slot
is then truncated to this length l′, and the model proceeds to suffix completion, filling the remaining
empty positions in each slot via parallel autoregressive decoding:

ṽi,jt

{
= d̃i,jt , if j ⩽ l′

∼ Pθ(· | p0, S̃clean
t , ṽi,<j

t ), otherwise
(7)

where ṽi,jt is the finally decoded token at the j-th position of the i-th slot. After infilling each selected
slot, the completed slots are moved from S̃masked

t to S̃clean
t . For the subsequent iteration, the KV

caches from these parallel-generated slots are concatenated. While this parallel generation forgoes
intra-batch conditioning, we observe in our experiments that this has a minimal impact on final
performance (see §5.4). This planning-infilling iteration repeats with an updated timestep t until no
masks remain (t = 0), at which point the final response r̃0 is formed by sorting S̃clean

0 back into its
original sequence order.
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Table 7: Hyperparameter settings for different tasks.

Benchmark Generation Length Verification Threshold τ Slot Size k Block Size b

MMLU-Pro 512 0.5 16 128
ARC-C 512 0.4 4 16
GSM8K 512 0.7 16 64
MATH 512 0.6 32 64
GPQA 128 0.6 8 16
HumanEval 512 0.6 16 32
MBPP 512 0.6 16 32

B EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS

Our training data comprises 3.7M samples from MAmmoTH (Yue et al., 2023), OpenMathInstruct-
2 (Toshniwal et al., 2024), OpenCoder (Huang et al., 2024), SmolLM 2 (Allal et al., 2025), and Tulu
3 (Lambert et al., 2024). For OpenMathInstruct-2, we use its 1M open-source version and remove
questions longer than 1,024 tokens as instructed. We use a global batch size of 512, a maximum
sequence length of 4,096, and a learning rate of 2e-5. The training is conducted on 16 nodes, each
with 8 H20 GPUs, and is accelerated using DeepSpeed ZeRO-2 (Rajbhandari et al., 2020) and
Flash-attention-2 (Dao, 2023). The total training cost was approximately 10.68K H20 GPU-hours.
We set λ in Eq. 3 to 1. For each training sample, we randomly select a slot size from {4, 8, 16, 32}.

Existing MDMs decode sequences to a predetermined length. Even when an end-of-sequence (EOS)
token appears early, the model still expends decoding time on all tokens with higher position IDs. To
address this issue, we introduce a mechanism for efficient variable-length generation. Specifically,
during training, we pad shorter sequences in a mini-batch with padding tokens and exclude these
tokens from the loss computation. During inference, upon generating an EOS token, we dynamically
truncate the target length to that token’s position. This prevents the decoding of any tokens with a
higher position ID, thereby reducing redundant computation.

B.2 HYPERPARAMETER SETTING

During REFUSION inference process, three hyperparameters can be adjusted: the verification thresh-
old τ , the slot size k, and the block size b. Table 7 shows the specific settings used in our evaluation.

C EXPERIMENT RESULTS

C.1 ANALYSIS OF GENERATION LENGTH AND LATENCY

To ensure that REFUSION’s superior performance is not merely an artifact of generating more tokens
than baselines, we present a direct comparison of the average generated token length and total
inference latency for representative tasks. The results, shown in Table 8, address the hypothesis that
quality gains might stem from quantity.

The data clearly demonstrates that REFUSION’s generated outputs are consistently and significantly
shorter than those of the ARM baseline (Qwen3-8B) and are either shorter or comparable in length to
other MDMs. For instance, on MMLU-Pro, REFUSION generates only 128 tokens, roughly 5× fewer
than Qwen3-8B, while achieving superior performance. This directly refutes the hypothesis that our
model’s quality gains are achieved by generating longer sequences.

Furthermore, the table highlights REFUSION’s dramatic efficiency advantage, with measured la-
tency being substantially lower across all tasks. These results confirm that REFUSION’s superior
performance-efficiency profile is a direct result of its methodological innovations, enabling it to
produce concise and high-quality responses with minimal latency.
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Table 8: Comparison of average generated length and total latency (in seconds) across key benchmarks.
For each model, the cell shows generated length, with the measured latency in parentheses.

Model MMLU-Pro GSM8K MBPP
Qwen3-8B 654 (20.82s) 300 (9.63s) 53 (1.74s)
LLaDA-8B-Instruct 251 (13.81s) 247 (9.02s) 82 (27.65s)
Dream-7B-Instruct 211 (13.23s) 223 (10.99s) 45 (36.26s)
REFUSION 128 (3.25s) 148 (3.66s) 46 (1.01s)

Table 9: Comparison of certainty score heuristics on zero-shot performance. “Prob. of First Token”
is our default method used in Table 1. “Mean Prob. of Slot” is the alternative. Results are highly
comparable, validating our design choice.

Method MMLU-Pro ARC-C GSM8K MATH GPQA HumanEval MBPP
Prob. of First Token 45.39 89.68 85.60 56.06 35.04 75.61 66.60
Mean Prob. of Slot 45.18 89.68 85.14 56.14 33.71 77.44 67.80

C.2 ANALYSIS OF CERTAINTY SCORE HEURISTIC

A key design choice in our slot planning step is the metric used to compute the certainty score, which
determines which slots are selected for parallel generation. In our default implementation, as described
in Section A.2, we use the probability of the most likely token at the slot’s first position. This choice
is motivated by our two-step “plan-and-infill” decoding process. The diffusion-based planning step
primarily aims to identify valid starting points for parallel generation. The subsequent autoregressive
infilling step is then responsible for coherently completing the rest of the slot, conditioned on this
first token. Therefore, the confidence of the initial token serves as an efficient and effective proxy for
the overall viability of initiating the slot’s generation.

An alternative and intuitive approach is to use the mean probability of the most likely tokens across
all positions within a draft slot. To evaluate this alternative, we conducted a comparative experiment.
As shown in Table 9, the performance of the two methods is highly comparable across all seven
benchmarks. While using the mean probability yields a slight improvement on HumanEval (+1.83)
and MBPP (+1.20), our default first-token-based method performs slightly better on MMLU-Pro,
GSM8K, and GPQA. This indicates that both metrics are effective and likely select a significantly
overlapping set of high-confidence slots for parallel decoding. Given this parity and the slightly
simpler computation of the first-token probability, we retain it as our default method, validating our
design choice.

C.3 SCALING WITH DATA SIZE
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Figure 6: Scaling properties of REFUSION on
GSM8K and MBPP. We plot performance (Accu-
racy/Pass@1, %) and inference throughput (TPS)
as a function of training data size.

To understand the scaling properties of our
model, we investigate the impact of training data
size on REFUSION’s performance and efficiency.
To this end, we collected additional, publicly
available data to expand our training set to 14M
samples. Figure 6 illustrates the results of this
analysis on GSM8K and MBPP, where we train
REFUSION for one epoch on datasets of varying
sizes (from 120K to 14M samples) and evaluate
it using the same hyperparameters as in Table 7.

The results reveal a clear and positive scaling
trend for both key metrics. Specifically, through-
put (TPS, dashed lines) consistently improves
as the training data size increases. For instance,
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on MBPP, throughput rises from approximately 31 TPS with 120K samples to over 36 TPS with
3.7M samples, and further to nearly 40 TPS with 14M samples. This indicates that as the model is
exposed to more diverse data, its internal generation process becomes more efficient, likely due to a
higher confidence and thus a higher acceptance rate of its parallel drafts, leading to fewer decoding
iterations.

Interestingly, the performance scaling (solid lines) is not strictly monotonic, a common phenomenon
when training with a fixed epoch count. On GSM8K, accuracy peaks at 2M samples before slightly
decreasing at 3.7M. A more pronounced effect is seen on MBPP, where the optimal pass@1 score
is achieved with just 1M samples. This behavior highlights a trade-off between data breadth and
training depth under a constrained computational budget: with a fixed one-epoch schedule, training
on a larger dataset potentially leads to under-convergence relative to the dataset’s complexity.

Nevertheless, the consistent rise in throughput coupled with the substantial performance uplift from
the 120K baseline suggests that with an increased computational budget (i.e., more training epochs
on the larger datasets), performance would likely continue to improve, further unlocking the full
potential of our approach.

C.4 ANALYSIS OF BLOCK SIZE
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Figure 7: Relative change in REFU-
SION’s pass@1 (%) and throughput
(tokens/sec) compared to Qwen3-8B
(horizontal dashed lines at zero) as block
size b varies. The yellow shaded region
highlights the range of b where REFU-
SION surpasses Qwen3-8B.

Our inference strategy is compatible with semi-
autoregressive remasking (Nie et al., 2025). Specifically,
during inference, the target sequence is partitioned into
consecutive blocks of size b. These blocks are decoded
sequentially, while our synergistic decoding algorithm is
applied to each block as a single unit. Notably, the con-
straint b ⩾ k must be satisfied, where k is the size of a slot,
the fundamental unit for parallel decoding in our method.

Figure 7 illustrates the impact of block size b on our
method’s performance and throughput (TPS). The figure
shows that performance degrades as b increases, since
generating a larger, more complex block in any order
is inherently more challenging, although we have miti-
gated this difficulty through intra-slot serial generation.
Throughput (TPS) exhibits a non-monotonic trend, peak-
ing around b = 64. This non-monotonic trend is due to
computational overhead: while a larger b provides more
opportunities for parallelism, it also forces the model to
process a longer sequence containing many “padded” (i.e.,
yet-to-be-generated) positions. This significantly increases the latency of each decoding step, which
eventually diminishes and then reverses the throughput gains observed with larger block sizes.

Although its performance slightly degrades with larger block sizes, REFUSION’s pass@1 decreases
by only approximately 4% as b increases from 16 to 512. This robustness to the block size highlights
the model’s ability to leverage strong diffusion-based planning to select the most appropriate slots
for decoding across a wide range. Collectively, these analyses reveal a robust and wide “sweet spot,”
highlighted by the yellow shaded regions in Figures 4 and 7, where REFUSION consistently surpasses
the Qwen3-8B baseline in both performance and throughput (TPS). This superior operating zone
corresponds to a verification threshold τ ∈ [0.5, 0.9], a slot size k ∈ {16, 32}, and a block size
b ∈ [16, 128].

C.5 ABLATION OF CONFIDENCE-AWARE PARALLELISM

REFUSION already integrates representative MDMs acceleration techniques such as confidence-aware
parallelism (Wu et al., 2025c) as a core component of its inference strategy. This is manifested
in two key stages: (1) In the Diffusion-based Slot Planning phase: We select only those slots
whose certainty scores exceed the confidence threshold τ . This ensures that only high-probability
slots are considered for parallel generation. (2) In the Autoregressive Slot Infilling phase: During
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Table 10: Ablation study on the impact of confidence-aware parallelism. Each cell shows accuracy/-
pass@1 (left) and throughput in TPS (right, in parentheses).

Method GSM8K (0-shot) MBPP (0-shot) MMLU-Pro (0-shot)
w/ confidence-aware parallelism 85.60 (40.29) 66.60 (45.34) 45.39 (39.38)
w/o confidence-aware parallelism 85.75 (28.95) 68.20 (25.19) 46.15 (28.93)

speculative decoding, we accept the longest prefix of the concatenated draft where the probabilities
of all tokens exceed the same threshold τ . This avoids generating low-confidence continuations.

To ablate the impact of this integrated mechanism, we compare our default model against a variant
where confidence-aware parallelism is disabled (i.e., always selecting a fixed number of slots with the
highest scores, and disabling speculative decoding). As shown in Table 10, incorporating confidence-
aware parallelism yields a substantial ∼1.5× speedup across all tasks, with only a negligible
performance drop (0.84% on average). This demonstrates that confidence-aware parallelism is a
critical and effective component of REFUSION’s efficiency.

D CASE STUDY

D.1 CODE GENERATION CASE STUDY

Table 11 showcases responses to the same MBPP problem as Figure 5 from different models.
REFUSION’s ability to globally plan the overall structure via a diffusion-based process while locally
infilling details autoregressively results in better-structured, high-quality code, demonstrating its
superiority over existing MDMs.

D.2 STEP-BY-STEP VISUALIZATION OF INFERENCE

In order to facilitate the understanding of our inference method, we show a step-by-step decoding
process in Figure 8. Specifically, our inference process progressively generates the response through
an iterative “plan-and-infill” mechanism.

The model maintains token-wise causal attention throughout the entire process. Each decoding
iteration operates as a two-stage cycle: First, the planning stage predicts drafts for all masked
slots in parallel and selects a subset of high-quality slots based on confidence scores. Second, the
infilling stage treats the selected slots as a batch and completes them autoregressively to ensure local
coherence.

To enable full KV cache reuse, the newly decoded slots are physically moved to the front of the
remaining masked slots after infilling. Crucially, while the tokens’ physical position may change due
to this repositioning, their position IDs remain invariant, always corresponding to their indices in
the correct ground-truth sequence. By utilizing these consistent position IDs with RoPE (Su et al.,
2021), the model accurately perceives the relative positions of all tokens, even when the input buffer
is reordered.

E LIMITATIONS

A primary limitation of our current framework is the immutability of generated slots. Once the
tokens within a slot are generated via diffusion-based planning and autoregressive infilling, they
are considered final and cannot be remasked or refined in future iterations. This design choice,
while simplifying the process, precludes the model from correcting potential errors made within a
completed slot.

A promising direction for future work would be to introduce a re-masking mechanism at the sub-slot
level. For instance, after infilling a slot, the model could verify the generated tokens and preserve only
a high-confidence prefix, while re-masking the lower-quality suffix. This would allow for iterative
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Table 11: Model responses to the same MBPP problem as Figure 5.

Problem You are an expert Python programmer. Your task is to write a single Python function to solve the
problem described below, and here is your task: Write a function to sum all amicable numbers from 1
to a specified number. Your code should pass these tests:

assert amicable_numbers_sum(999)==504
assert amicable_numbers_sum(9999)==31626
assert amicable_numbers_sum(99)==0

LLaDA-8B-Instruct ✗ def amicable_numbers_sum(limit):
def is_perfect_square(n):

root = int(n**0.5)
return root * root == n

def sum_divisors(n):
total = 0
for i in range(1, n):

if n % i == 0:
total += i

return total

def is_amicable(a, b):
return sum_divisors(a) == b and sum_divisors(b) == a

amicable = set()
for i in range(1, limit + 1):

if is_perfect_square(i):
amicable.add(i)

for j in range(i + 1, limit + 1):
if is_amicable(i, j):

amicable.add(j)

return sum(amicable)

Dream-7B-Instruct ✗ def amicable_numbers_sum(n):
def is_amicable(num):

divisors = 1
for i in range(2, num):

if num % i == 0:
divisors += i
if i != num // i:

divisors += num // i
return divisors == num

total = 0
for i in range(2, n):

if is_amicable(i):
total += i

return total

REFUSION ✓ def amicable_numbers_sum(n):
def sum_of_divisors(num):

sum = 1
for i in range(2, int(num**0.5) + 1):

if num % i == 0:
sum += i + num // i

return sum

amicable_sum = 0
for i in range(2, n + 1):

sum_i = sum_of_divisors(i)
if sum_i != i and sum_of_divisors(sum_i) == i:

amicable_sum += i
return amicable_sum

refinement but would necessitate a more complex inference logic, potentially involving dynamic
adjustments of slot sizes to handle these newly masked, smaller segments. Developing an efficient
strategy for such dynamic, fine-grained refinement remains a key challenge for future research.
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Figure 8: Visualization of the REFUSION inference mechanism.

F THE USE OF LARGE LANGUAGE MODELS

In the interest of complete transparency, we wish to clarify the use of AI assistance in the preparation
of this manuscript. The core research ideas, including the conception of the REFUSION model, the
design of the training and inference algorithms, all experimental setups, and the analysis of the results
were developed exclusively by the human authors. We utilized a Large Language Model for the
limited purpose of linguistic refinement. This involved polishing certain sentences and paragraphs to
improve grammatical correctness, clarity, and overall flow. This usage was restricted to editing and
did not extend to research ideation, content generation, or experimental analysis.
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