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ABSTRACT

Autoregressive models (ARMs) are hindered by slow sequential inference. While
masked diffusion models (MDMs) offer a parallel alternative, they suffer from
critical drawbacks: high computational overhead from precluding Key-Value (KV)
caching, and incoherent generation arising from learning dependencies over an
intractable space of token combinations. To address these limitations, we introduce
REFUSION, a novel masked diffusion model that achieves superior performance
and efficiency by elevating parallel decoding from the token level to a higher
slot level, where each slot is a fixed-length, contiguous sub-sequence. This is
achieved through an iterative “plan-and-infill” decoding process: a diffusion-based
planning step first identifies a set of weakly dependent slots, and an autoregressive
infilling step then decodes these selected slots in parallel. The slot-based design
simultaneously unlocks full KV cache reuse with a unified causal framework and
reduces the learning complexity from the token combination space to a manageable
slot-level permutation space. Extensive experiments on seven diverse benchmarks
show that REFUSION not only overwhelmingly surpasses prior MDMs with 32%
performance gains and an over 10x speedup on average, but also bridges the
performance gap to strong ARMs while maintaining a 1.4x average speedup.

1 INTRODUCTION

While autoregressive models (ARMs) (Grattafiori et al., [2024; [Yang et al.| 2025} Jaech et al.| 2024)
have achieved impressive progress across a wide range of tasks (Chen et al., 2021; |Wei et al., [2022;
Lightman et al., 2023} [Li et al.l 2024), their inference throughput is fundamentally limited by a
sequential, left-to-right decoding process that precludes parallelization (Chen et al.} 2023} |Cai et al.,
2024; Zhang et al.,|2025). In contrast, masked diffusion models (MDMs) (Nie et al., 2025; Ye et al.,
20235)) operate via an iterative denoising process with no fixed generation order. This flexibility yields
two significant advantages. First, it permits parallel decoding by assuming conditional independence
among target tokens: their joint probability, given the context, is assumed to be the product of their
individual marginal probabilities (L1 et al., [2023). Second, it offers the potential for the model to
discover better generation orders than the rigid left-to-right trajectory (Kim et al., 2025).

Despite these theoretical advantages, existing MDMs often suffer from two issues: (1) Architec-
tural bottlenecks negate efficiency gains from parallelism. The flexibility of generation orders
necessitates the use of bidirectional attention in MDMs (Vaswani et al., 2017} |Devlin et al.,[2019), an
architectural choice fundamentally incompatible with Key-Value (KV) caching used in ARMs (Rad+
ford et al.| [2018). That is, each decoding iteration forces a full re-computation of the KV states
of the entire context, introducing significant latency and making MDMs significantly slower than
ARMs (Feng et al., [2025)). (2) Intractable training complexity hinders coherent parallel gen-
eration. MDMs typically decode multiple tokens with high marginal probabilities in parallel (Nie
et al., |2025). However, the conditional independence assumption frequently fails for these tokens,
particularly for nearby tokens, leading to severe incoherence (Huang et al.l 2022; Luxembourg et al.,
2025; |Gwak et al.| [2025)). For example, in a context where both “at once” and “right now” are
valid, an MDM might decode a spurious output “right once” by independently sampling tokens
with high individual marginal probabilities but low joint probability. We attribute this failure to an
immense learning challenge: modeling a data distribution over an exponential space of possible token
combinations is far more demanding than the fixed sequential dependency of ARMs. Consequently,
current MDMs often remain undertrained for reliably identifying conditionally independent tokens.
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To address these challenges, we introduce REFUSION, a masked diffusion large language model
that elevates the parallel decoding process from the traditional token level to a higher slot level,
progressively denoising slots in parallel from a fully masked sequence. Specifically, we partition the
initially masked sequence into fixed-length, consecutive sub-sequences, i.e., slots, and unfold each
decoding iteration into two synergistic steps: first, a diffusion-based planning step identifies a set of
weakly dependent slots, and second, an autoregressive infilling step decodes these slots in parallel
(Figure[2). This design is guided by a key finding from our pilot study (§4.1)): inter-token dependency
is highly localized, decaying significantly with distance. Therefore, serializing adjacent tokens within
a slot directly mitigates the violation of conditional independence for these strongly-coupled tokens.
Furthermore, such a simple design also uniquely achieves two critical benefits simultaneously: (1)
By repositioning newly generated slots (Sahoo et al., [2025) to precede masked ones for the next
decoding iteration, REFUSION naturally accommodates causal attention that allows the KV states of
all previously generated tokens to be seamlessly reused; And (2) it reduces the learning complexity
from an intractable token combination space to a substantially more manageable slot permutation
space. Appendix [A.T]compares REFUSION and existing MDMs in detail.

REFUSION’s training process mirrors its infer- 44 pass@1 (%)
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et al., 2025), REFUSION achieves an average MBPP. We plot pass@1 (%) against throughput
performance gain of 32% while being over 10X (tokens/sec), with both metrics calculated rela-
faster in throughput (tokens/sec). More strik- (jyve to the Qwen3-8B baseline at the origin. The
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often surpasses strong ARMs. For instance, it coding using the REFUSION model. See §5.3| for

outperforms Qwen3-8B (Yang et al., 2025) on  detajls about hyperparameters of REFUSION.
GSMS8K (Cobbe et al.,[2021) and MBPP (Austin

et al.| 2021)) by 3.2 absolute points while being 1.4 x faster on average. This dual advantage in both
performance and speed is further illustrated in Figure[I] where REFUSION (the line) is the only
method to establish a superior performance-efficiency frontier in the top-right quadrant. It signifi-
cantly outperforms both the Qwen3-series (the blue line) and prior MDM-based methods (lower-left,
implying slower and less effective). Furthermore, our controlled experiments confirm these gains are
driven by our architectural and training innovations, not initialization and data advantages.

40

Our contributions are summarized as follows:

I. We propose REFUSION, a generative model integrating inter-slot parallel decoding with intra-slot
autoregressive decoding, combining the strengths of autoregREssive and difFUSION-based modeling.

II. To the best of our knowledge, REFUSION is the first MDM that achieves full KV cache reuse of
every decoded token, while maintaining global generation flexibility and tractable training complexity.

III. Extensive experiments on seven diverse benchmarks show that REFUSION not only overwhelm-
ingly surpasses all prior MDMs in both performance and speed, but also bridges the performance gap
to ARMs while maintaining the efficiency advantage.
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2 RELATED WORK

MDMs promise to outperform traditional ARMs by offering faster inference through parallel decoding
and potentially superior solutions via flexible generation orders (Kim et al., [2025). Recent MDMs
such as LLaDA (Nie et al.,[2025)), the first open-source MDM trained from scratch, and Dream (Ye
et al., 2025), initialized from an ARM, have delivered performance on par with ARMs of equivalent
scale across diverse tasks, establishing MDMs as a viable research direction.

Architectural Designs for Efficient MDMs. Standard MDMs’ reliance on bidirectional attention
precludes the use of KV caching. Recent work alleviates this bottleneck through three main strategies.
The first strategy approximates KV cache reuse while retaining bidirectional attention. For instance,
dLLM-Cache (Liu et al.| |2025)) reuses slow-changing KV states, while sparse-dLLM (Song et al.|
2025)) dynamically prunes non-critical KV states. The second strategy mixes bidirectional attention
and causal attention. Models like BD3-LLMs (Arriola et al.,[2025)) and Fast-dLLM (Wu et al., 2025b)
partition the sequence into consecutive blocks, enforcing a left-to-right order between blocks to enable
KV cache reuse, while retaining parallel, bidirectional generation within each block. D2F (Wang et al.}
20235)) further parallelizes the generation of succeeding blocks, although performance is limited by the
lack of inter-block lookahead attention. While sharing the concept of a grouped unit, REFUSION’s
“slot” operates fundamentally differently from “block” in these approaches. In the block-based design,
a fixed left-to-right inter-block schedule sacrifices any-order flexibility, while intra-block bidirectional
attention sacrifices KV caching and risks incoherence. In contrast, REFUSION enables both global
any-order generation and full KV cache reuse with a unified causal framework. The final strategy
leverages only causal attention, enabling an exact KV cache. Eso-LMs (Sahoo et al., 2025), for
instance, dynamically reposition newly generated tokens ahead of masked ones at each step to
facilitate caching. However, this strategy introduces an intractable learning objective at a token-level
permutation space, which hinders training and leads to significant performance drops.

Decoding Strategies in MDMs. A crucial aspect of MDM inference is the strategy used to select
which tokens to decode in parallel at each step. Existing approaches generally fall into two categories.
The first class leverages confidence heuristics derived from the model’s own distribution, such
as top token probability (Nie et al.| [2025), low entropy (Ben-Hamu et al., [2025), and probability
margins between top candidates (Kim et al.|[2025)). Some methods further refine these heuristics with
position-aware weights and frequency-based calibration (Huang et al.2025). While simple, these
methods rely on the often-unreliable assumption that the model’s confidence scores are perfectly
calibrated (Wu et al.l |2025b). The second class employs external models for verification, e.g., using a
small ARM to validate and extend the longest acceptable prefix (Hu et al., 2025} [Israel et al.| 2025),
or using dedicated reward models to guide generation (Gwak et al.,[2025). Although effective, these
approaches introduce the overhead of maintaining and querying a separate model. Unlike these
methods, REFUSION adopts a unified inference framework that benefits from the parallel efficiency
of MDMs without sacrificing the quality assurance of ARMs, all within a single architecture.

3 PRELIMINARY

Autoregressive Models. ARMs are a prominent class of generative models that factorize the joint
probability of a sequence = = (x1, ...,z ) by enforcing a strict left-to-right conditional dependency
using a causal attention mask. This structure leads to a next-token prediction objective, where the
model parameters 6 are optimized by minimizing the negative log-likelihood: — ZiLZZ log Py (z; |
Z<;). During inference, generation is an inherently sequential process requiring 7" forward passes to
produce a sequence of length 7', resulting in a latency that scales with the sequence length.

Masked Diffusion Models. MDMs represent another class of generative models, operate on a

“mask-and-denoise” principle. During training, each sample x¢ = (g, 73, -+ ,z) is corrupted
to ; by masking each token with a special token “[MASK]” under probability ¢ ~ U(0, 1). The
model learns to reconstruct the original context by minimizing the objective: —% 5:1 1(z} =

[MASK])log Py (:E6 | ;vt). MDM inference proceeds by progressively generating tokens from a
fully masked sequence. It requires fewer forward passes than an ARM thanks to parallel decoding,
but each pass is drastically more expensive due to its incompatibility with KV caching.
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Figure 2: The inference and training process of REFUSION. Inference (Left) proceeds via an iterative
“plan-and-infill” loop at the slot level: A diffusion-based step first plans which slots to generate and
proposes initial drafts, and a parallel autoregressive step then fills them using a verify-and-complete
mechanism. Full KV cache reuse is achieved by reordering generated slots before masked ones after
each iteration. Training (Right) mirrors inference by optimizing a hybrid objective that combines an
autoregressive loss (Larm) on permuted clean slots and a denoising loss (Lypy) on masked slots.

4 METHODOLOGY

Traditional MDMs allow a flexible token-level decoding process during inference. We elevate this
concept to operate on slots, i.e., a fixed-length, non-overlapping sequence of continuous tokens,
denoising them in parallel. It yields two critical benefits: it enables full KV cache reuse by arranging
newly generated slots before masked ones with a causal framework, and it substantially reduces train-
ing complexity from the token-level combination space to a more manageable slot-level permutation
space. To support non-sequential generation, we build REFUSION upon a standard causal architecture
with a key modification: it accepts an explicit, non-contiguous list of position IDs. By applying RoPE
(Su et al.| 2021]) to these absolute position IDs, the model can correctly compute relative distances
and attend to all logical predecessors. Figure 2] illustrates the inference and training process.
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degree to which the presence of ) influences the dency in MDMs, with the sign on the x-axis
model’s prediction of ). In practice, we approximate ~denoting the direction from the revealed token

this measurement in a pilot study on the GSMS8K test (positive for rightward, negative for leftward).

set (Cobbe et al.,|2021)). For a corrupted sequence x;, we first reveal the ground-truth token x% ata
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randomly selected masked position j, and then quantify the influence of this reveal on the prediction
at any other masked position ¢ through the Jensen-Shannon (JS) divergence (Manning & Schutze)
1999) between the distributions before and after this reveal, i.e., p(z|z;) and p(z |z, 2}). A higher
divergence implies stronger dependency, with zero divergence indicating conditional independence.
Using both LLaDA (Nie et al.; 2025)) and Dream (Ye et al.,|2025)), we plot the averaged JS divergence
against the relative distance between positions 7 and j in Figure [3] The average JS divergence
consistently decays as the relative distance increases, and this decay is more rapid in denser contexts
(i.e., lower masking ratios t). This result directly motivates us to define a slot as a contiguous token
sequence, thereby grouping strongly correlated tokens for serial decoding within a slot, in contrast to
prior block-based methods that decode nearby tokens within a block in parallel (Arriola et al., 2025)).

4.2 SYNERGISTIC DECODING ALGORITHM AT INFERENCE

Armed with the quantitative evidence that inter-token dependency is highly localized, we design
the inference algorithm to explicitly leverage this property. The process iteratively generates a
final response 7y from a prompt py, starting with an initial masked sequence 7;. This sequence is
partitioned into K consecutive slots of £ “[MASK]” tokens each. Each iteration comprises two
synergistic steps: (1) diffusion-based slot planning to identify slots that are strongly dependent on the
context but weakly interdependent; and (2) autoregressive slot infilling to decode them in parallel.

Step I: Diffusion-based Slot Planning. The first step leverages the model’s MDM capability to
plan the next decoding slots. At a timestep ¢, which is defined as the ratio of remaining masked slots,
we construct the input S; by concatenating already-decoded slots (S§'°", in generation order) with
the masked slots (S™**¢d_in their original positional order). This ordering naturally enables KV
cache reuse. The model then computes a certainty score for each masked slot based on its predictive
distribution. While various heuristics exist for certainty score, we adopt a simple yet effective one:
the probability of the most likely token at the slot’s first position

. Finally, a batch of slots with scores exceeding a threshold 7 is selected for subsequent
infilling. This strategy identifies slots that are strongly constrained by the existing context and
weakly interdependent (e.g., distinct function definitions in code generation), making them suitable to
parallelize. Furthermore, to accelerate the subsequent autoregressive generation, we adopt a strategy
from speculative decoding (Leviathan et al.| 2023)): for each selected slot, we generate a draft slot by
sampling a token from its distribution at every position, yielding the draft slots S§rft,

Step II: Autoregressive Slot Infilling. The second step efficiently verifies the draft slots S¢f and
completes them using the model’s autoregressive capability: (1) Verification. We concatenate all
draft slots into a sequence in their original positional order. The model then performs one forward pass
to compute the probability of each token in the sequence, conditioned on the prompt and the already
decoded slots. We identify the longest prefix of the concatenated draft where the probabilities of all
tokens exceed 7. If this prefix spans one or more complete slots, we accept these slots wholesale and
immediately proceed to the next planning iteration, thereby bypassing suffix completion. Otherwise,
we determine the longest common prefix length that is successfully verified across all individual draft
slots, and truncate each draft slot to this common length. (2) Completion. The model then completes
any truncated slots by autoregressively sampling the remaining positions in parallel for each slot.

Finally, the newly completed slots are appended to the sequence of decoded slots. Their KV caches are
directly concatenated for future iterations, a valid approximation as the lack of inter-slot conditioning
during parallel generation has minimal impact on final performance (see §5.4). The plan-and-infill
cycle continues until all slots are filled, at which point the final response is constructed by restoring
the original slot order. The decoding process is formalized in Appendix

4.3 TRAINING OF REFUSION

The training procedure for REFUSION is carefully designed to mirror the dynamics of our two-step
decoding algorithm. This requires a data construction strategy that simulates the non-sequential,
partially-decoded states encountered during generation, and a hybrid training objective that jointly
optimizes the model’s planning and infilling capabilities.
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Training Data Construction. To simulate the partially decoded states encountered during iterative
generation, we introduce a three-step strategy to construct training data from each prompt-response
pair (po, 7). The response ry is first partitioned into a sequence of K slots, So = [S§, ..., S&],
each of size k. Then, a corrupted version S; is constructed given a masking ratio ¢t ~ U(0, 1) as
follows: (1) Random slot masking. Analogous to token-level masking in traditional MDMs, we
randomly select and mask |¢tK | slots from the original sequence Sy. Each selected slot is replaced
with a block of £ “[MASK]” tokens. (2) Permutation of clean slots. Since the generation order of
slots is dynamically determined, the model must learn to process context in any arbitrary permutation.
To achieve this, we randomly permute the unmasked (clean) slots to form S§'°", while keeping
the original relative positions of the masked slots to form S"#kd_ (3) Reorder. The final training
instance .S} is assembled by concatenating the permuted clean slots followed by the masked slots.

Hybrid Training Objective. To empower our model with the dual capabilities of global planning
and local decoding, we propose a hybrid training objective that learns from every token in the
sequence. This approach also provides a significant benefit of data efficiency, which contrasts with
traditional MDMs where clean tokens only serve as context and provide no direct supervision.

On one hand, the clean slots S§'*" are trained with a standard ARM loss for next token prediction:

|Scledn‘ k
LarM = _EEPOI’J%)T)D (—|Sclean| Z Zlog Py (Ut | po, SC]eanz J)) ) ()
~ > i=1 j=2

where vz 7 is the j-th token in the i-th clean slot, Sfleé‘?t ) is the prefix of the token in S§lan,

On the other hand, the masked slots S{naSked are trained with an MDM objective for denoisinﬂ

|S:msked| k
1 1 sked
Evont = gy | gy 2 D loRo(uy” |, ST SPE) |
~U(0, i=1 j=1

where vé’j is the ground-truth token from the original response corresponding to the j-th token in the
i-th slot of SM*ked_ The final training objective is a summation of the two losses, balanced by A:

L = Larm + ALyvpM- (3)

We initialize our model Py with an off-the-shelf ARM backbone, a strategy validated by prior
work (Gong et al., [2025; | Ye et al., [2025)). Crucially, all tokens retain their original positional indices
from r( throughout the process. This allows the model to maintain awareness of the relative positions
among all tokens, ensuring sequence coherence despite the shuffled input order.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Implementation Details. We initialize REFUSION from the Qwen3-8B checkpoint (Yang et al.,
2025) and fine-tune it for 4 epochs on a diverse 3.7M-sample dataset covering math-
ematics, coding, and general instruction-following. For inference, we employ a semi-autoregressive
remasking strategy (Nie et al.,2025)): the output sequence is partitioned into blocks of size b, which
are decoded serially. Within each block, our plan-and-infill algorithm from §4.2)is applied. Detailed
implementation and hyperparameter specifics are provided in Appendix [B.|and [B.2] respectively.

Evaluation Benchmarks and Metrics. We evaluate REFUSION on diverse benchmarks span-
ning: (1) General-purpose understanding and reasoning: MMLU-Pro (Wang et al., |2024) and
ARC-C (Clark et al., [2018)); (2) Mathematical and scientific problem-solving: GSM8K (Cobbe
et al.,|2021), MATH (Hendrycks et al., 2021)), and GPQA (Rein et al., [2024); (3) Code generation:
HumanEval (Chen et al.||2021) and MBPP (Austin et al., [ 2021). We use pass@1 for code generation
and accuracy for the others. We assess inference throughput using tokens decoded per second (TPS)
with a single A100 GPU and a batch size of 1.

1
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Table 1: Zero-shot performance and throughput (TPS) comparison on multiple benchmarks. Each
model displays accuracy/pass@1 (top row) and throughput (TPS, bottom row). Within the MDM
category, we highlight the best performance results in bold and underline the second best. An italic
score in the ARM category signifies that it surpasses the best-performing MDM.

Model MMLU-Pro ARC-C GSMS8K MATH GPQA HumanEval MBPP Avg.
Autoregressive Model
Llama.3-8B-Instruct 35.23 8276 7513 2548 2946 46.34 53.00 49.63
32.07 4412 42.81 1973 42.00 42.26 41.68 3781
Qwen3-8B 67.25 90.36 8196 8328  39.06 87.80 63.80 73.36
31.42 42.78 3120 30.11 3043 30.95 30.07 3242
Masked Diffusion Model
35.80 8558 7635 3878 3237 45.12 2560 48.51
LLaDA-8B-Instruct 18.21 0.03 2735 2393 1.99 12.42 297 1241
35.02 8285 7627 3858 2835 37.80 24.80  46.24
LLlLirL b v e L 39.81 0.86 73.07 5223 17.54 62.52 37.19  40.46
22.84 84.13 39.04 2368  31.25 36.59 3520 38.96
LLaDA w/ D2F 44.54 3.70 82.59 5948  23.84 96.90 53.85 52.13
Dream.7B-Instruct 40.05 88.31 7642  46.60  30.36 56.71 50.40  55.55
15.98 0.06 2030 1899 1.8l 351 123 884
40.36 86.86 7582 3676  31.25 56.10 10.60 4825
Dream w/ Fast-dLLM 47.18 142 6149 5824 2296 49.73 1955 37.22
Dream w/ D2F 38.26 8737 4799 2460  22.77 46.95 35.00 4328
60.64 1482 9659 8159 2520 49.05 53.95  54.55
45.39 89.68 8560  56.06 35.04 75.61 66.60  64.85
L D TTORY 39.38 4925 4029 4240 4223 46.48 4534  43.62

Baselines. We compare REFUSION with: (1) ARMs: Llama-3-8B-Instruct (AI@Metal, 2024) and
Qwen3-8B (Yang et al., [2025). (2) MDMs: LLaDA-8B-Instruct (Nie et al.,[2025)), and Dream-7B-
Instruct (Ye et al., [2025). (3) State-of-the-art MDM acceleration methods: Fast-dLLM (Wu et al.|
2025c)) and D2F (Wang et al., |2025)). We implement the baselines based on official hyperparameters.

5.2 MAIN RESULTS

The main results in Table [I| show: (1) REFUSION dominates all MDM baselines. REFUSION
consistently outperforms all MDM baselines across all seven benchmarks, often by a substantial
margin. For instance, on HumanEval, it achieves 75.61% pass@ 1, surpassing the next-best MDM
(Dream-7B-Instruct) by nearly 19 absolute points. While acceleration methods like Fast-dLLM and
D2 improve throughput at a significant performance cost, REFUSION delivers both state-of-the-art
performance and competitive efficiency, establishing a new frontier for MDMs. (2) REFUSION
challenges strong ARMs. More remarkably, REFUSION challenges and often surpasses strong
ARMs. On GSMS8K and MBPP, for example, it outperforms Qwen3-8B by 3 absolute points while
delivering a 1.4x speedup. This demonstrates that our non-autoregressive approach can break the
long-standing trade-off between the speed of MDMs and the quality of ARMs (Feng et al.| [2025).

5.3 ANALYSIS OF HYPERPARAMETERS

We examine the key hyperparameters governing the performance-efficiency trade-off in REFUSION:
the verification threshold 7 and the slot size k. The threshold 7 controls the confidence for both slot
selection (planning) and draft acceptance (infilling), while k defines the granularity of the generation
unit. An analysis of other hyperparameters is shown in Appendix

As illustrated in Figure [] (left & middle), these hyperparameters create a predictable trade-off.
(1) Verification threshold 7: Lowering 7 boosts throughput (TPS) by enabling more aggressive
parallelism, but at the cost of reduced performance due to lower token reliability. (2) Slot size k:
Similarly, smaller slot sizes (k) increase TPS by creating more parallelizable units given a fixed full
length, though this speed gain is counteracted by a performance drop.

2



Under review as a conference paper at ICLR 2026

60 —o— ReFusion

04 < LLaDA-8B-Instruct|
N
~ Dream-7B-Instruct
10 -5 1 15 5401
] Apass@l (%) = Apass@1 (%) z
’ -~ A Throughput (TPS) \, -104 - AThroughput (TPS). 110 S, ]
\\\ r0 , \\
\ 1 3
o = oL . . L ‘ ‘ ‘ ‘ :
0.3 04 05 06 0.7 0.8 09 1.0 4 8 16 32 1 2 3 4 5
Threshold T Slot Size k Average #TPF

Figure 4: Left & Middle: Impact of key hyperparameters on MBPP (0-shot). The plots show the
change in pass@1 (%) and throughput (TPS) of REFUSION relative to Qwen3-8B (horizontal dashed
lines at zero). When one parameter is varied, others are held at their default values (7 = 0.6, k = 16).
Yellow shaded regions highlight the “sweet spot” where REFUSION surpasses the baseline in both
metrics. Right: pass@1 on MBPP for REFUSION and baseline MDMs over the average number of
tokens generated per forward pass (TPF) under various hyperparameter settings.

Table 2: Controlled comparison of models initialized from Qwen3-8B and trained on 120K subset.

Model MMLU-Pro ARC-C GSMSK MATH GPQA HumanEval MBPP Avg.
Qwen3-8B 5271 88.65 8757  67.84  33.6 53.66 5920 6327
31.32 3046 3103 3073 26.70 30.73 30.16  30.16
LLaDA 5.12 7065  13.42 138 0.00 427 620 1443
0.26 0.03 118 020  0.15 0.66 042 041
38.80 84.64 7945 4998  30.36 62.20 5240 56.83
Lol ST 3536 4714 3967 4485  40.68 39.54 38.64  40.84

More importantly, the shape of this trade-off frontier distinguishes REFUSION from prior MDMs.
Figure [4| (right) shows that both LLaDA and Dream suffer a sharp performance decline as parallelism
(TPF) increases’} indicating a failure to uphold the conditional independence assumption when se-
lecting tokens for parallel decoding. In contrast, REFUSION’s curve is substantially flatter, validating
that its training and decoding strategies can more reliably identify conditionally independent tokens.
Expanding on this, Figure[T| presents the complete performance-throughput (TPS) frontier against all
baselines, revealing a critical finding: for every baseline model, there exists at least one REFUSION
configuration that is simultaneously superior in both performance and throughput.

8
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5.4 ABLATION STUDY

Controlled Comparison with the Same Backbone and Data. To isolate the benefits of REFUSION
from data or backbone advantages, we conduct a controlled comparison using a smaller 120K data
subset randomly sampled from the full 3.7M data due to resource constraints. We fine-tune Qwen3-8B,
LLaDA, and REFUSION for 10 epochs using their respective original objectives, with all initialized
from Qwen3-8B. This setup ensures that observed differences are attributable solely to the algorithm
design. Appendix [C.3]discusses the scaling property of REFUSION regarding data size.

Results in Table 2] confirm the architectural superiority of REFUSION. LLaDA suffers a catastrophic
performance collapseﬂ

This result robustly validates that REFUSION’s

3We use TPF here, rather than TPS, to isolate the algorithmic trade-off from any system-level overheads.
4
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Table 3:
Model MMLU-Pro ARC-C GSMSK MATH GPQA HumanEval MBPP Avg.
Dream-7B-Instruct 40.05 8831 7642  46.60 3036 56.71 5040 5555
15.98 0.06 2030 1899 181 3.51 123 884
3451 83.11 7938 4638 3147 69.51 60.00 57.77
Lol OESITRY 50.93 4649 4115 4569  20.90 65.57 5849  47.03

Table 4: Ablation regarding our KV cache reuse mechanism. We compare our default REFUSION,
which efficiently reuses KV caches by concatenating them after parallel generation, against a variant
(w/ KV Re-computation) that recomputes caches for full contextualization at a higher cost.

Model MMLU-Pro ARC-C GSMSK MATH GPQA HumanEval MBPP
. 4534 80.68 8491 5590  35.04 7378 66.40

REFUSION w/ KV Re-computation 34.13 36.21 3638 3757 29.96 41.02 40.13
4539 89.68 8560 5606 3504 75.61 66.60

LEYe] DIOEST R 30.38 4925 4029 4240 4223 46.48 4534

architectural innovations are the primary driver of its success, enabling effective learning even from
limited data where standard MDMs fail.

Ablation on KV Cache Reuse. To maximize efficiency, REFUSION directly concatenates the KV
caches of parallel-generated slots, bypassing a costly forward pass that would otherwise be needed
to contextualize them. To quantify the impact of this approximation, we conduct an ablation study
comparing our default model against a variant, “REFUSION w/ KV Re-computation,” which performs
this extra forward pass to ensure full contextualization at the cost of speed.

As shown in Table[d] our default approach is consistently 1.1—1.4x faster across all benchmarks.
Surprisingly, this significant speedup comes at virtually no cost to performance; in fact, accuracy
remains stable and even slightly improves on several benchmarks. We hypothesize this counter-
intuitive benefit arises from a form of implicit regularization: by avoiding over-conditioning on
potentially flawed parallel drafts, our method mitigates error propagation. This result validates
our KV cache reuse strategy not merely as a speed-accuracy trade-off, but as a design choice that
simultaneously enhances efficiency and robustness.

5.5
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Table 5:
Average #TPF 1 2 3
REFUSION 56.80 (25.83) 56.00 (36.66) 47.40 (42.08)
BD3-LM 51.60 (16.18)  30.20 (29.31) 16.00 (37.96)

5.6 CASE STUDY

Figure E] provides a qualitative under-  Problem: Write a function to sum all amicable numbers from 1 to a specified number.
standing of how REFUSION solves .o .-

a programming problem from the (27| am)Ecabie) numbers) (<o) @)7?)

MBPP benchmark, revealing two key D

capabilities: (1) High degree of — = [

parallelism. The model frequently (— 1" ) =020 ) el HOEDE 0
I 5 0 )« &2 8 0w/

generates multiple slots concurrently.

For instance, at iteration 9, it si- (ol ) (700
multaneously generates three sepa- (X rerorj(Tu]

rate slots. )
Ceabtel_sunl O]
(o () in] range]q w00
) ) o ey [asors[D ()
CIC A and) Counl o) div)isors) (Tun] 0N = CE)
. . . Yembeabte] sunl =] 9
(2) Non-linear generation ) return)_am) Frabte) sun)
order. The generation process is
markedly non-linear. For example, Figure 5:
the model constructs the central “for”
loop structure (iteration 7) before ini-
tializing a local variable “sum = 17 (it-
eration 8). This ability to plan and
execute in a parallel, non-monotonic
fashion allows REFUSION to construct complex, structured code in a manner that is both efficient and
conceptually closer to human problem-solving. Appendix [D.I]|shows the results of baseline models
on the same problem.
D3

6 CONCLUSION

In this work, we present REFUSION, a novel generative model that synergizes the strengths of
diffusion-based planning and autoregressive infilling to address the long-standing efficiency and
coherence challenges in traditional MDMs. This unique design enables full KV cache reuse within a
flexible, any-order generation framework, while making the training objective tractable by simplifying
the combinatorial complexity of the generation space. Extensive evaluations across seven benchmarks
show that REFUSION establishes a new state of the art for MDMs. More strikingly, it bridges the
performance gap to strong ARMs, often outperforming them while being significantly faster. Our
work demonstrates that by structuring the parallel generation process, it is possible to achieve the
throughput potential of MDMs without sacrificing generation quality. Future directions include
further scaling of the model and data size, as well as leveraging reinforcement learning to optimize
the model’s planning policy for complex, multi-step reasoning tasks.

10
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experimental results, our training and inference code
is open-sourced in an anonymized repository https://anonymous.4open.science/r/
ICLR2026-ReFusionl The specific settings for training and testing are detailed in §5.1] and

Appendix [B]
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Table 6: Comparison between REFUSION and existing MDMs. L denotes the generation length and
k denotes the block or slot size.

Model Generation Attention Generation Full KV Number of Distinct
Scope Mechanism Order Cache Reuse Masking Patterns
e L (L

LLaDA Full Sequence  Bidirectional Any-Oder D1 (l) ~ 2k
Intra-block Bidirectional Any-Order v L

LEIDRHLALE Inter-block Causal Left-to-Right 2%
Intra-slot Causal Left-to-Right % !

REHUR Inter-slot Causal Any-Order v (%! < 2% for large k)

A METHODOLOGICAL DETAILS

A.1 COMPARISON BETWEEN REFUSION AND REPRESENTATIVE MDMSs

Table [6] provides a detailed, side-by-side comparison of the architectural and methodological designs
of REFUSION against two representative MDMs, LLaDA (Nie et al., [2025)) and BD3-LMs (Arriola;
et al., |2025). This comparison highlights how REFUSION uniquely addresses the fundamental
trade-offs between generation flexibility, computational efficiency, and learning complexity.

(1) LLaDA, as a conventional MDM, operates on the entire sequence with a bidirectional attention
mechanism. This grants it maximum flexibility, allowing for a fully unconstrained, any-order genera-
tion process. However, this design choice incurs two significant penalties. First, the bidirectional
attention is fundamentally incompatible with KV caching, resulting in substantial computational
overhead at each decoding step. Second, it must learn dependencies across an exponential space of
possible masking patterns. For a sequence of length L, any given training or inference state is defined
by a subset of tokens that remain masked. Since each of the L positions can be either masked or
unmasked, the model must, in principle, handle any of the 2% possible subsets of visible contexlﬂ
This combinatorial space of approximately 2” distinct masking patterns presents an intractable
objective, as the model may not be sufficiently trained on the specific patterns encountered during
inference, leading to incoherent parallel generation.

(2) BD3-LMs attempts to mitigate these issues with a hybrid, block-based approach. It enforces a rigid,
left-to-right generation order between blocks, which enables KV cache reuse across block boundaries.
However, within each block, it retains bidirectional attention and any-order token generation. This
design makes a critical compromise. It sacrifices global generation flexibility for discovering optimal
generation strategies, which is a key theoretical advantage of MDMs. Furthermore, it still faces the
challenges of token-level incoherence and the inability to utilize KV caching for intra-block decoding.

(3) REFUSION introduces a more elegant and unified solution. Generation is structured at the slot
level. Within each slot (intra-slot), generation is autoregressive (left-to-right) under a causal attention
mask, directly addressing the strong local dependencies between adjacent tokens. Between slots
(inter-slot), the model retains the flexibility of any-order generation, enabling it to discover better,
non-linear generation paths than the left-to-right order. Crucially, by reordering generated slots to
always precede masked ones in the input sequence, REFUSION enables full KV cache reuse for
every decoded token, a feature unique among these models. This design simultaneously achieves two
critical goals: it combines global generation flexibility with universal computational efficiency, and it
drastically reduces the learning complexity from an exponential token-level permutation space to a
far more manageable slot-level one (%!). For a typical sequence length of L = 4,096, a slot size of

just k = 8 is sufficient to ensure £1 < 27
In summary, while prior models are forced to trade flexibility for efficiency or vice versa, REFUSION’s

innovative slot-based framework is the only approach that concurrently offers global any-order
generation, full KV cache reuse, and a tractable training objective.

SNotably, due to the bidirectional attention, the model is invariant to the order in which clean tokens are
revealed. Therefore, the learning complexity is not permutations (L!).
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A.2 INFERENCE FORMALIZATION

In this section, we formalize the two-step decoding iteration as follows:

Step I: Diffusion-based Slot Planning. The first step leverages the model’s MDM capability
to plan the next decoding slots. At a timestep ¢ (defined as the ratio of remaining masked slots),
we construct the input S; for enabling KV cache by concatenating already-decoded clean slots
(Sl in generation order) with the remaining masked slots (S**¢d_in their original positional
order). The planning process then generates a draft for all masked slots. This draft serves a dual
purpose: providing a basis for scoring each slot for planning, and acting as a speculative guess for the
subsequent infilling stage (Leviathan et al., 2023). Specifically, for each position j in the i-th slot
of Sm“ked a draft token dl’j is sampled from the model’s marginal distribution, conditioned on the
leadmg context:

dy? ~ Py(- | po, S5, Spsed ), v

where g;“a;‘(‘fdj) denote the tokens before the position of the target token. This yields a draft version

of the masked slots, denoted as Sgraf‘ = {cfij }. We then quantify the model’s certainty score of i-th
slot S¢ in §Masked 4 the model’s predicted probability of its first token d:'':

C(S5) = P(dy" | po, S5, STEES)). )

The model then selects a batch of slots with scores exceeding a threshold 7 for subsequent infilling.
If no slot meets this criterion, the single slot with the globally highest score is selected instead. This
strategy identifies slots that are strongly constrained by the existing context and weakly interdependent
(e.g., distinct function definitions in code generation), making them suitable to parallelize.

Step II: Autoregressive Slot Infilling. The second step verifies and completes the selected draft
slots using a single autoregressive forward pass. To achieve this, we first concatenate the slots in
their original left-to-right order. The model then calculates the conditional probability of each token,
conditioned on all preceding tokens within the newly formed sequence:

. P CZiJ Sclean Sma%ked fi=1
P(d;i”):{ o | CE. ©)

Py (dN:J | Po, Sglean Sdraft ) ifj>1

t,<(4,5)

Next, we verify the draft by identifying the longest prefix of the concatenated sequence, with length
l, where every token’s probability exceeds the threshold 7. If the prefix is long enough to form
at least one full slot (i.e., [ > k), we accept the first |I/k| slots and immediately begin a new
planning-infilling iteration, bypassing the costly suffix completion. Otherwise, we find the longest
common prefix length, I’ > 1, that is successfully verified across all individual draft slots. Each slot
is then truncated to this length {’, and the model proceeds to suffix completion, filling the remaining
empty positions in each slot via parallel autoregressive decoding:

- = aﬁ’j, ifj <V
Uz] P, ( ‘ S'clean ~1,<j h (7)
o (- | po, SE™, 0,°7),  otherwise

where @, is the finally decoded token at the j-th position of the i-th slot. After infilling each selected
slot, the completed slots are moved from S"ked to §¢lean  Eor the subsequent iteration, the KV
caches from these parallel-generated slots are concatenated. While this parallel generation forgoes
intra-batch conditioning, we observe in our experiments that this has a minimal impact on final
performance (see §5.4). This planning-infilling iteration repeats with an updated timestep ¢ until no
masks remain (¢ = 0), at which point the final response 7y is formed by sorting S back into its
original sequence order.
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Table 7: Hyperparameter settings for different tasks.

Benchmark Generation Length Verification Threshold = Slot Size £ Block Size b

MMLU-Pro 512 0.5 16 128
ARC-C 512 0.4 4 16
GSMSK 512 0.7 16 64
MATH 512 0.6 32 64
GPQA 128 0.6 8 16
HumanEval 512 0.6 16 32
MBPP 512 0.6 16 32

B EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS

Our training data comprises 3.7M samples from MAmmoTH (Yue et al., |[2023)), OpenMathlnstruct-
2 (Toshniwal et al., 2024)), OpenCoder (Huang et al.| |2024), SmolLM 2 (Allal et al.,[2025)), and Tulu
3 (Lambert et al.,[2024). For OpenMathlInstruct-2, we use its 1M open-source version and remove
questions longer than 1,024 tokens as instructed. We use a global batch size of 512, a maximum
sequence length of 4,096, and a learning rate of 2e-5. The training is conducted on 16 nodes, each
with 8 H20 GPUs, and is accelerated using DeepSpeed ZeRO-2 (Rajbhandari et al., [2020) and
Flash-attention-2 (Daol, 2023)).

We set A in Eq. to 1. For each training sample, we randomly select a slot size from {4, 8, 16, 32}.

Existing MDMs decode sequences to a predetermined length. Even when an end-of-sequence (EOS)
token appears early, the model still expends decoding time on all tokens with higher position IDs. To
address this issue, we introduce a mechanism for efficient variable-length generation. Specifically,
during training, we pad shorter sequences in a mini-batch with padding tokens and exclude these
tokens from the loss computation. During inference, upon generating an EOS token, we dynamically
truncate the target length to that token’s position. This prevents the decoding of any tokens with a
higher position ID, thereby reducing redundant computation.

B.2 HYPERPARAMETER SETTING

During REFUSION inference process, three hyperparameters can be adjusted: the verification thresh-
old 7, the slot size k, and the block size b. Table shows the specific settings used in our evaluation.

C EXPERIMENT RESULTS

C.1

17
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Table 8:
Model MMLU-Pro GSMSK MBPP
Qwen3-8B 654 (20.82s) 300 (9.63s) 53 (1.74s)
LLaDA-8B-Instruct 251 (13.81s) 247 (9.02s) 82 (27.65s)
Dream-7B-Instruct 211 (13.23s) 223 (10.99s) 45 (36.26s)
REFUSION 128 (3.25s) 148 (3.66s) 46 (1.01s)
Table 9:
[
Method MMLU-Pro ARC-C GSMS8K MATH GPQA HumanEval MBPP
Prob. of First Token 45.39 89.68 85.60 56.06 35.04 75.61 66.60
Mean Prob. of Slot 45.18 89.68 85.14 56.14 33.71 77.44 67.80
C.2

C.3 SCALING WITH DATA SI1ZE

3

To understand the scaling properties of our GSMBSK (0-shot) 0 o MBPP (0-shot)
model, we investigate the impact of training data
size on REFUSION’s performance and efficiency.

3

Throughput (TPS)

®

|/ —— Pass@1 (%)
=~ Throughput (TPS) |
3

——  Accuracy (%)

Figure [0]illustrates the results of this <750/ ,
analysis on GSM8K and MBPP, where we train ~ , |7 = ™™ T 0 [0 ¢
REFUSION for one epoch on datasets of varying . o i
sizes (from 120K to samples) and evaluate 120K 1M oM. 3TMC 1M 120K IM M 7M. 14
it using the same hyperparameters as in Table

30

. . Figure 6: Scaling properties of REFUSION on
The results reveal a clear and positive scaling GSMSK and MBPP. We plot performance (Accu-

trend for both key metrics. Sp ?Clﬁcally.’ through- racy/Pass@1, %) and inference throughput (TPS)
put (TPS, dashed lines) consistently improves . . .
as a function of training data size.

as the training data size increases. For instance,
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on MBPP, throughput rises from approximately 31 TPS with 120K samples to over 36 TPS with
3.7M samples . This indicates that as the model is
exposed to more diverse data, its internal generation process becomes more efficient, likely due to a
higher confidence and thus a higher acceptance rate of its parallel drafts, leading to fewer decoding
iterations.

Interestingly, the performance scaling (solid lines) is not strictly monotonic, a common phenomenon
when training with a fixed epoch count. On GSMSK, accuracy peaks at 2M samples before slightly
decreasing at 3.7M. A more pronounced effect is seen on MBPP, where the optimal pass@1 score
is achieved with just 1M samples. This behavior highlights a trade-off between data breadth and
training depth under a constrained computational budget: with a fixed one-epoch schedule, training
on a larger dataset potentially leads to under-convergence relative to the dataset’s complexity.

Nevertheless, the consistent rise in throughput coupled with the substantial performance uplift from
the 120K baseline suggests that with an increased computational budget (i.e., more training epochs
on the larger datasets), performance would likely continue to improve, further unlocking the full
potential of our approach.

C.4 ANALYSIS OF BLOCK SI1ZE

Our inference strategy is compatible with semi-
autoregressive remasking (Nie et al., 2025). Specifically,
during inference, the target sequence is partitioned into
consecutive blocks of size b. These blocks are decoded
sequentially, while our synergistic decoding algorithm is
applied to each block as a single unit. Notably, the con-
straint b > k£ must be satisfied, where k is the size of a slot,
the fundamental unit for parallel decoding in our method.

—e— Apass@1 (%) “‘
- A Throughput (TPS)
\
\

A pass@]1 (%)

A Throughput (TPS)

Figure [/] illustrates the impact of block size b on our
method’s performance and throughput (TPS). The figure 632 64 128 256 512
. 5 Block Size b

shows that performance degrades as b increases, since

generating a larger, more complex block in any order
is inherently more challenging, although we have miti-
gated this difficulty through intra-slot serial generation.
Throughput (TPS) exhibits a non-monotonic trend, peak-
ing around b = 64. This non-monotonic trend is due to
computational overhead: while a larger b provides more
opportunities for parallelism, it also forces the model to
process a longer sequence containing many “padded” (i.e.,
yet-to-be-generated) positions. This significantly increases the latency of each decoding step, which
eventually diminishes and then reverses the throughput gains observed with larger block sizes.

Figure 7: Relative change in REFU-
SION’s pass@1 (%) and throughput
(tokens/sec) compared to Qwen3-8B
(horizontal dashed lines at zero) as block
size b varies. The yellow shaded region
highlights the range of b where REFU-
SION surpasses Qwen3-8B.

Although its performance slightly degrades with larger block sizes, REFUSION’s pass@1 decreases
by only approximately 4% as b increases from 16 to 512. This robustness to the block size highlights
the model’s ability to leverage strong diffusion-based planning to select the most appropriate slots
for decoding across a wide range. Collectively, these analyses reveal a robust and wide “sweet spot,”
highlighted by the yellow shaded regions in Figures ] and[7] where REFUSION consistently surpasses
the Qwen3-8B baseline in both performance and throughput (TPS). This superior operating zone
corresponds to a verification threshold 7 € [0.5,0.9], a slot size k € {16, 32}, and a block size
b € [16,128].

C.5
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Table 10:
Method GSMSK (0-shot) MBPP (0-shot) MMLU-Pro (0-shot)
w/ confidence-aware parallelism 85.60 (40.29) 66.60 (45.34) 45.39 (39.38)
w/o confidence-aware parallelism 85.75 (28.95) 68.20 (25.19) 46.15 (28.93)

D CASE STUDY

D.1 CODE GENERATION CASE STUDY

Table showcases responses to the same MBPP problem as Figure [5] from different models.
REFUSION’s ability to globally plan the overall structure via a diffusion-based process while locally
infilling details autoregressively results in better-structured, high-quality code, demonstrating its
superiority over existing MDMs.

D.2

E LIMITATIONS

A primary limitation of our current framework is the immutability of generated slots. Once the
tokens within a slot are generated via diffusion-based planning and autoregressive infilling, they
are considered final and cannot be remasked or refined in future iterations. This design choice,
while simplifying the process, precludes the model from correcting potential errors made within a
completed slot.

A promising direction for future work would be to introduce a re-masking mechanism at the sub-slot
level. For instance, after infilling a slot, the model could verify the generated tokens and preserve only
a high-confidence prefix, while re-masking the lower-quality suffix. This would allow for iterative
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Table 11: Model responses to the same MBPP problem as Figure 3]

Problem You are an expert Python programmer. Your task is to write a single Python function to solve the
problem described below, and here is your task: Write a function to sum all amicable numbers from 1
to a specified number. Your code should pass these tests:

assert amicable_numbers_sum(999)==504
assert amicable_numbers_sum(9999)==31626
assert amicable_numbers_sum(99)==

LLaDA-8B-Instruct X def amicable_numbers_sum(limit) :
def is_perfect_square (n):
root = int (n*x0.5)
return root * root == n

def sum_divisors(n):
total = 0
for i in range(l, n):
if n % 1i==0:
total += i
return total

def is_amicable(a, Db):
return sum_divisors(a) == b and sum_divisors (b)

Il
Il
@

amicable = set ()
for i in range(l, limit + 1):
if is_perfect_square (i) :
amicable.add (i)
for j in range(i + 1, limit + 1):
if is_amicable (i, 3J):
amicable.add(3)

return sum(amicable)

Dream-7B-InstructX def amicable_numbers_sum(n) :
def is_amicable (num) :
divisors = 1
for i in range (2, num):
if num % 1 ==
divisors += i

if i !'= num // i:
divisors += num // i
return divisors == num

total = 0
for i in range (2, n):
if is_amicable (i) :
total += 1
return total

REFUSION def amicable_numbers_sum(n) :
def sum_of_divisors (num) :
sum = 1

for i in range (2, int (numxx0.5) + 1):
if num % 1 ==
sum += i 4+ num // i
return sum

amicable_sum = 0
for i in range(2, n + 1):
sum_i = sum_of_divisors (i)
if sum_i != i and sum_of_divisors(sum_i) == 1i:
amicable_sum += i
return amicable_sum

refinement but would necessitate a more complex inference logic, potentially involving dynamic
adjustments of slot sizes to handle these newly masked, smaller segments. Developing an efficient
strategy for such dynamic, fine-grained refinement remains a key challenge for future research.
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|:| Masked token @ Forward pass

I:l KV-cached token Rule-based high-quality slot selection

Note: Slot size k = 3. The prompt KV cache is
fixed at the sequence start (no shifting) and is
omitted from later steps for visual clarity.

Prompt ~ What does the proverb "the early bird catches the worm" mean?
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