
Under review as submission to TMLR

Node Feature Forecasting in Temporal Graphs:
an Interpretable Online Algorithm

Anonymous authors
Paper under double-blind review

Abstract

In this paper, we propose an online algorithm mspace for forecasting node features in1

temporal graphs, which captures spatial cross-correlation among different nodes as well as the2

temporal auto-correlation within a node. The algorithm can be used for both probabilistic3

and deterministic multi-step forecasting, making it applicable for estimation and generation4

tasks. Comparative evaluations against various baselines, including temporal graph neural5

network (TGNN) models and classical Kalman filters, demonstrate that mspace performs6

at par with the state-of-the-art and even surpasses them on some datasets. Importantly,7

mspace demonstrates consistent performance across datasets with varying training sizes, a8

notable advantage over TGNN models that require abundant training samples to effectively9

learn the spatiotemporal trends in the data. Therefore, employing mspace is advantageous10

in scenarios where the training sample availability is limited. Additionally, we establish11

theoretical bounds on multi-step forecasting error of mspace and show that it scales linearly12

with the number of forecast steps q as O(q). For an asymptotically large number of nodes n,13

and timesteps T , the computational complexity of mspace grows linearly with both n, and T ,14

i.e., O(nT), while its space complexity remains constant O(1). We compare the performance15

of various mspace variants against ten recent TGNN baselines and two classical baselines,16

ARIMA and the Kalman filter across ten real-world datasets. Lastly, we have investigated the17

interpretability of different mspace variants by analyzing model parameters alongside dataset18

characteristics to jointly derive model-centric and data-centric insights.19

1 Introduction20

Temporal graphs are a powerful tool for modelling real-world data that evolves over time. They are increasingly21

being used in diverse fields, such as recommendation systems (Gao et al., 2022), social networks (Deng et al.,22

2019), and transportation systems (Yu et al., 2018), to name a few. Temporal graph learning (TGL) can be23

viewed as the task of learning on a sequence of graphs that form a time series. The changes in the graph can24

be of several types: changes to the number of nodes, the features of existing nodes, the configuration of edges,25

or the features of existing edges. Moreover, a temporal graph can result from a single or a combination of26

these changes. The TGL methods can be applied to various tasks, such as regression, classification, and27

clustering, at three levels: node, edge, and graph (Longa et al., 2023).28

In this work, we focus on node feature forecasting, also known as node regression, where the previous temporal29

states of a graph are used to predict its future node features. In most temporal graph neural network (TGNN)30

models, the previous states are encoded into a super-state or dynamic graph embedding (Barros et al., 2021),31

guided by the graph structure. This dynamic embedding is then used to forecast the future node features.32

While the TGNN models perform well, they could be more interpretable, as a direct relationship between the33

node features and the embeddings cannot be understood straightforwardly. Furthermore, most embedding34

aggregation mechanisms impose a strong assumption that the neighbours influence a node in proportion to35

their edge weight (Wang et al., 2021).36

TGNN methods (Li et al., 2018; Micheli & Tortorella, 2022; Wu et al., 2019; Fang et al., 2021; Liu et al.,37

2023) typically involve a training phase where the model learns from training data and is then deployed on38

1

Under review as submission to TMLR

test data without further training due to computational costs. If the test data distribution differs from the39

training data, an offline model cannot adapt. Therefore, when dealing with time-series data, it is crucial40

to use a lightweight online algorithm that can adapt to changes in data distribution while also performing41

forecasts. Moreover, TGNN models are typically trained to forecast a predetermined number of future steps.42

If we want to increase the number of forecast steps, even by one, the model needs to be reinitialized and43

retrained.44

Inspired by the simplicity of Markov models, we define the state of a graph at a given time in an interpretable45

manner and propose a lightweight model that can be deployed without any training. The algorithm is46

designed with a mechanism to prioritize recent trends in the data over historical ones, allowing it to adapt to47

changes in data distribution.48

Contributions The contributions of our work are summarized as follows:49

• We have proposed an online learning algorithm mspace for node feature forecasting in temporal50

graphs, which can sequentially predict the node features for q ∈ N future timesteps after observing51

only two past node features.52

• The algorithm mspace can produce both probabilistic and deterministic forecasts, making it suitable53

for generative and predictive tasks.54

• The root mean square error (RMSE) of q-step iterative forecast scales linearly in the number of steps55

q, i.e. RMSE(q) = O(q).56

• For asymptotically large number of nodes n, and timesteps T , the computational complexity of57

msapce grows linearly with both n, and T , i.e., O(nT), while the space complexity is constant O(1).58

• We have compared the performance of different variants of mspace against ten recent TGNN baselines,59

and two classical baselines ARIMA, and Kalman filter.60

• We have evaluated mspace on four datasets for single-step forecasting and six datasets for multi-step61

forecasting.62

• In addition to the evaluation on ten real-world datasets, we have proposed a technique to generate63

synthetic datasets that can aid in a more thorough evaluation of node feature forecasting methods.64

The synthetic datasets have the potential to serve as benchmark for future research.65

• We have investigated the interpretability of different mspace variants by analyzing the model66

parameters along with the dataset characteristics to jointly derive model-centric and data-centric67

insights.68

• To facilitate the reproducibility of results, the code is made available here.69

Notation We denote vectors with lowercase boldface x, and matrices and tensors with uppercase boldface70

X. Sets are written in calligraphic font such as V,U ,S, C, with the exception of graphs G, and queues Q.71

The operator ≻ is used in two contexts: x ≻ 0 is an element wise positivity check on the vector x, and A ≻ 072

indicates that the matrix A is positive definite. I(·) is the indicator function, and [m] ≜ {1, 2, · · · , m} for any73

m ∈ N. We denote the distributions of continuous variables by p(·), and of discrete variables by P (·). The74

statement x ∼ p means that x is sampled from p. The Hadamard product operator is denoted by ⊙ while75

the Kronecker product operator is denoted by ⊗. The trace of a matrix A is written as tr(A).76

We denote the neighbours of a node v for an arbitrary number of hops as Uv. The neighbours of node v up77

to K number of hops is defined as follows. Let N =
∑

k∈[K] Ak, then Uv = {u : Nv,u > 0,∀u ∈ V}. Since78

Av,v = 1, v ∈ Uv. We introduce the operator ⟨·⟩ to arrange the nodes in a set U in ascending numerical79

order of the node IDs. When another set or vector is super-scripted with ⟨U⟩, the elements within that set or80

vector are filtered and arranged as per ⟨U⟩.81

A Markov chain is represented using Z with different subscripts for identification. The transition kernel of a82

Markov chain is denoted as P with Pa,b representing the probability of transitioning from state a to b.83

2

https://anonymous.4open.science/r/mspace-TMLR

Under review as submission to TMLR

Organization In Sec. 2 we formulate the problem of node feature forecasting and also a propose a model84

to solve it. In Sec. 3 we expand upon the solution and present it as an algorithm. We discuss the related85

works in Sec. 4 and present the results on single-step and multi-step node feature forecasting in Sec. 5. In86

Sec. 6 we discuss the interpretability of the proposed algorithm and then discuss the limitations in Sec. 7.87

Finally, we conclude in Sec. 8.88

2 Methodology89

Problem Formulation A discrete-time temporal graph is defined as {Gt = (V, E , Xt) : t ∈ [T]}, where90

V = [n] is the set of nodes, E ⊆ V × V is the set of edges, and Xt ∈ Rn×d is the node feature matrix at time91

t. The set of edges E can alternatively be represented by the adjacency matrix denoted as A ∈ {0, 1}n×n.92

The node feature vector is denoted by xt(v) ∈ Rd such that Xt =
[
xt(v)

]⊤
v∈V , and we refer to the first-order93

differencing (Shumway & Stoffer, 2017) of a node feature vector as shock. For a node v ∈ V we define the94

shock at time t as εt(v) ≜ xt(v)− xt−1(v). The shock of the nodes in an ordered set U at time t is denoted95

by ε
⟨U⟩
t ∈ R|U|d. The shock at time t for an arbitrary set of nodes is εt.96

Assumption 2.1. The shocks {ε1, ε2, ε3 · · · εT } is assumed to be sampled from a continuous-state Markov97

chain defined on Rnd such that p (εt+1 | εt, εt−1. · · ·) = p (εt+1 | εt).98

This is a weak assumption because a continuous-state Markov chain has infinite number of states. However,99

having infinite number of states makes it impossible to learn the transition kernel from limited samples100

without additional assumptions on the model. To circumvent this, linear dynamical systems and autoregressive101

models are used in the literature (Barber, 2012).102

Let p(ε′ | ε) denote the transition probability ε→ ε′ in a continuous-state Markov chain Z0 defined over C.103

A discrete-state Markov chain Z1 defined over finite S with transition probability Ps,s′ can be constructed104

from p(ε′ | ε) through a mapping Ψ : C → S as105

Ps,s′ =

∫
C

∫
C

p(ε′ | ε)p(ε) I(Ψ(ε) = s) I(Ψ(ε′) = s′) dε dε′∫
C

∫
C

p(ε′ | ε)p(ε) I(Ψ(ε) = s) dε dε′ . (1)

For a continuous-state Markov chain sample {ε1, ε2, · · · εT }, we can estimate P directly from106

{Ψ(ε1), Ψ(ε2), · · ·Ψ(εT)} without the need of p(ε′ | ε). Now, consider a random function Ω : S → C,107

such that: (a) Ψ(ε) = s, (b) Ψ(ε′) = s′, (c) ε′ = Ω(s), from which follows p(Ω(s)) = p(ε′ | s).108

The approximate transition kernel P̂ due to (Ψ, Ω) can be written as:109

P̂s,s′ =
∫

{ε′∈C:Ψ(ε′)=s′}
p(ε′ | s) dε′ =

∫
C

p(Ω(s)) I(Ψ(ε′) = s′) dε′. (2)

Figure 1: (left) state and sampling functions visualized, (right) Markov approximation.

3

Under review as submission to TMLR

In Fig. 1 (left) we depict the functions Ψ mapping from continuous space in C to a discrete space S. We also110

depict Ω mapping from S to C. In a red patch we show the range of Ω(s), and in the green patch we show111

the domain of Ψ(s). In Fig. 1 (right), we visualize Assumption 2.1 wherein the shocks evolve as a Markov112

chain through the functions Ψ, Ω.113

We refer to Ψ as the state function, and Ω as the sampling function. The approximated Markov chain114

defined over S resulting from (Ψ, Ω) is denoted as Ẑ(Ψ, Ω), with p(ε̂′ | ε) = p(Ω ◦Ψ(ε)). Ideally, the goal is115

to find the pair of functions (Ψ, Ω) such that: (a) Ps,s′ = P̂s,s′ ∀s, s′ ∈ S, (b) p(ε′|ε) = p(Ω ◦Ψ(ε))∀ε ∈ C.116

However, in practice this is quite ambitious as the state and sampling functions will induce some error in the117

encoding and decoding process. Therefore, we frame the problem as follows.118

The sequence of shocks drawn from the original Markov chain Z0 is represented as {εt : t ∈ [T]} ∼ Z0. Then,119

for each εt we generate a sequence of q future shocks using the Markov chain Ẑ(Ψ, Ω) as120

ε̂t+j = (Ω ◦Ψ)j(εt), ∀t ∈ [T − q], j ∈ [q].

The problem is to design Ψ, Ω such that
∥∥∥∑j∈[k] εt+j − ε̂t+j

∥∥∥2
is minimized ∀k ∈ [q], t ∈ [T − q], which can121

be written alternatively as:122

Problem 2.1 (q-step node feature forecasting). Design the state and sampling functions Ψ, Ω such that123

min
∑

t∈[T −q]

∑
k∈[q]

∥∥∥∥∥∥
∑
j∈[k]

εt+j − (Ω ◦Ψ)jεt

∥∥∥∥∥∥
2

. (3)

124

In a deep learning context, both Ψ and Ω would typically be neural networks trained directly using the125

objective in Problem 2.1. In this work, however, we explicitly define Ψ and Ω and learn their parameters126

through the same objective.127

Proposed Model Instead of creating a single model to approximate p
(

ε
⟨V⟩
t+1 | ε

⟨V⟩
t

)
, we create a model for128

each node v ∈ V to approximate p
(

ε
⟨Uv⟩
t+1 | ε

⟨Uv⟩
t

)
where Uv denotes the neighbours of node v within a certain129

number of hops. We present this in the following assumption.130

Assumption 2.2. The shock of node v at time t + 1 can be estimated from the shock of its neighbouring131

nodes in Uv at time t.132

While εt(u′) for any node u′ /∈ Uv may help in estimating εt+1(v), we assume that enough information is133

already conveyed by the nodes in Uv that the impact of considering node u′ would be minimal. It must be134

noted that Uv denotes the neighbours of node v up to an arbitrary number of hops, therefore if we consider135

Uv to mean k hops, then all the nodes that neighbours v with 1, 2, · · · , k hops are all in Uv and their impact136

is considered. Assumption 2.2 is important to create a scalable model, because in a connected graph every137

node will be correlated with every other node which will make the state space prohibitively large.138

We propose two variants of the state function, one which captures the characteristics of the shock ΨS, and139

the other which is concerned with the timestamps ΨT and captures seasonality.140

• ΨS : R|U|d → {−1, 1}|U|d, ΨS(ε⟨U⟩) = sign(ε⟨U⟩).141

• ΨT : N→ {0, 1, · · · τ0 − 1}, ΨT(t) = t mod τ0, where τ0 ∈ N is the time period.142

We also define two variants of the sampling function:143

• deterministic Ωµ(s) = µ(s), ∀s ∈ S.144

• probabilistic ΩN (s) ∼ N (ε′; µ(s), Σ(s)), ∀s ∈ S.145

More details on the state functions are provided in Sec. 6, where we offer a comprehensive explanation. The146

proposed model is presented as an online algorithm and discussed in detail in the following section.147

4

Under review as submission to TMLR

3 Algorithm148

We name our algorithm mspace with a suffix specifying the state and sampling functions. For example,149

mspace-SN represents the algorithm with state function ΨS, and sampling function ΩN . For each node v ∈ V ,150

we approximate p(ε⟨Uv⟩
t+1 | ΨS(ε⟨Uv⟩

t) = s) as a Gaussian distribution with mean vector µv(s) ∈ R|Uv|d and151

covariance matrix Σv(s) ∈ R|Uv|d×|Uv|d indexed by the state s ∈ {−1, 1}|Uv|d. The parameters µv(s), Σv(s)152

are learnt through maximum likelihood estimation (MLE). For each node v ∈ V, and state s we maintain a153

queue Qv(s) of maximum size M in which the shocks succeeding a given state s are collected. The MLE154

solution is calculated as µv(s)← mean(Qv(s)), and Σv(s)← covariance(Qv(s)).155

past future

Normal
sampling

shock

state

Figure 2: Operation of a queue.

The use of a fixed-size queue ensures that the model prioritises recent data over historical data, thereby156

allowing the system to adapt to prevailing trends. It must be noted that obtaining the parameters µv(s), Σv(s)157

from historical data relaxes the Markov assumption in the original model. The queue Qv(s) = {ε⟨UV ⟩
τ :158

ΨS(ε⟨Uv⟩
τ−1) = s, τ < t} contains shocks from the past (see Fig. 2). Therefore, the estimated sample ε

⟨Uv⟩
t+1159

depends on certain shocks from the past which violates the Markov property.160

As mspace is an online algorithm, we might encounter unobserved states for which the queue is empty, and161

therefore cannot employ MLE. To facilitate inductive inference, as a state st is encountered, we find the state162

s∗ ∈ Sv which is the closest to st, i.e., s∗ ← arg mins∈Sv ∥s− st∥, where Sv is the set of states observed163

before time t.164

Algorithm 1 mspace-SN
Input G = (V, E , X), r ∈ [0, 1), q, M
Output ε̂t(v), ∀v ∈ V, t ∈ [⌊r · T ⌋, T]

1: εt ← xt − xt−1, ∀t ∈ [T]
Offline training (A)

2: for t ∈ [⌊r · T ⌋] do
3: for v ∈ V do
4: st ← ΨS

(
ε

⟨Uv⟩
t

)
5: Sv ← Sv ∪ {st}
6: Qv (st)← enqueue ε

⟨Uv⟩
t+1

7: end for
8: end for
9: for v ∈ V do

10: µv(s)← mean(Qv(s)), ∀s ∈ Sv

11: Σv(s)← covariance(Qv(s)), ∀s ∈ Sv

12: end for

Online learning (B)
13: for t ∈ [⌊r · T ⌋, T − q] do
14: for v ∈ V do
15: st ← ΨS

(
ε

⟨Uv⟩
t

)
16: s∗ ← arg min

s∈Sv

∥s− st∥

17: ε̂
⟨Uv⟩
t+1 ∼ N (ε; µv(s∗), Σv(s∗))

18: for k ∈ [q] \ {1} do
19: s∗ ← arg min

s∈Sv

∥∥∥s−Ψ
(

ε̂
⟨Uv⟩
t+k−1

)∥∥∥
20: ε̂

⟨Uv⟩
t+k ∼ N (ε; µv(s∗), Σv(s∗))

21: end for
22: ε̂t+k(v)← ε̂

⟨Uv⟩
t+k (v), ∀k ∈ [q]

23: Update Sv,Qv; µv(s), Σv(s),∀s ∈ Sv

24: end for
25: end for

5

Under review as submission to TMLR

Figure 3: Shock Distribution.

Example For the purpose of explaining mspace-SN we165

consider an example with two nodes n = 2, and feature166

dimension d = 1. In Fig. 3 we first show the shock vector167

εt ∈ R2. The state of shock εt, denoted by Ψ(εt) is marked168

in S ∈ {−1, 1}2. Corresponding to this state, we have a169

Gaussian distribution N (ε; µ(Ψ(εt)), Σ(Ψ(εt))) depicted170

as an ellipse. The next shock εt+1 is sampled from this171

distribution. This distribution is updated as we gather172

more information over time. The volume of the Gaussian173

density in a quadrant is equal to the probability of the174

next shock’s state being in that quadrant, i.e., the tran-175

sition kernel P̂s,s′ =
∫

s′⊙ε≻0N (ε; µ(s), Σ(s)) dε. There-176

fore, mspace-SN can be viewed as a Markov chain whose177

transition function is a multivariate Gaussian.178

4 Related Works179

Correlated Time Series Forecasting A set of n time series data denoted as xt(v),∀v ∈ [n], t ∈ [T] is180

assumed to exhibit spatio-temporal correlation (Wu et al., 2021a; Lai et al., 2023). The correlations can then181

be discerned from the observations to perform forecasting. The correlated time series (CTS) data can be182

viewed as a temporal graph G = (Xt, A), with Xt ≜
[
xt(v)

]
v∈[n] where the spatial correlation between xt(u)183

and xt(u) is quantified as the edge weight Au,v, and Au,u signifies the temporal correlation within xt(u).184

The architecture of existing CTS forecasting methods consist of spatial (S) and temporal (T) operators. The185

S-operator can be a graph convolutional network (GCN) (Kipf & Welling, 2017) or a Transformer (Vaswani186

et al., 2017). As for the T-operator, convolutional neural network (CNN), recurrent neural network (RNN)187

(Chung et al., 2014) or Transformer (Zeng et al., 2023) can be used.188

Temporal Graph Neural Network A Graph Neural Network (GNN) is a type of neural network that189

operates on graph-structured data, such as social networks, citation networks, and molecular graphs. GNNs190

aim to learn node and graph representations by aggregating and transforming information from neighbouring191

nodes and edges (Wu et al., 2021b). GNNs have shown promising results in various applications, such as192

node classification, link prediction, and graph classification.193

Temporal GNN (TGNN) (Longa et al., 2023) is an extension of GNNs which operates on temporal graphs194

Gt = (Xt, At) where Xt denotes the node features, and At is the evolving adjacency matrix. The TGNN195

architecture can be viewed as a neural network encoder-decoder pair (fθ, gϕ) (see Fig. 4).196

Figure 4: TGNN architecture.

A sequence of m past graph snapshots is first encoded into197

an embedding ht = fθ

(
{Gt−m+1, · · · Gt}

)
, and then a se-198

quence of q future graph snapshots is estimated by the de-199

coder as {Ĝt+1, · · · Ĝt+q} = gϕ(ht). The parameters (θ, ϕ) are200

trained to minimize the difference between the true sequence201

{Gt+1, · · · Gt+q} and the predicted sequence {Ĝt+1, · · · Ĝt+q}.202

In node feature forecasting, the objective is to minimize the203

difference between the node feature matrices {X̂t+1, · · · X̂t+q}204

and {Xt+1, · · ·Xt+q}, while in temporal link prediction, the205

goal is to minimize the difference between the graph structures {Ât+1, · · · Ât+q} and {At+1, · · ·At+q}.206

There are two main approaches to implementing TGNNs: model evolution and embedding evolution. In207

model evolution, the parameters of a static GNN are updated over time to capture the temporal dynamics of208

the graph, e.g., EvolveGCN (Pareja et al., 2020). In embedding evolution, the GNN parameters remain fixed,209

and the node and edge embeddings are updated over time to learn the evolving graph structure and node210

features (Li et al., 2018; Zhao et al., 2019; Micheli & Tortorella, 2022; Wu et al., 2019; Fang et al., 2021; Liu211

et al., 2023). The TGNN methods are described in Appendix D.3.212

6

Under review as submission to TMLR

Linear Dynamical System In a linear dynamical system (LDS) (Barber, 2012), the observation yt213

is modelled as a linear function of the latent vector ht. The transition model dictates the temporal214

evolution of the latent state ht = Atht−1 + ηt, with ηt ∼ N (η; h̄t, Σt), and the emission model defines215

the relation between the observation and the latent state yt = Btht + ζt, ζt ∼ N (ζt; ȳt, Σ′
t). The LDS216

describes a first-order Markov model p((yt, ht)T
t=1) = p(h1)p(y1 | h1)

∏T
t=2 p(ht | ht−1)p(yt | ht), where217

p(ht | ht−1) = N (ht; Atht−1 + h̄t, Σ), and p(y − t | ht) = N (yt; Btht + ȳt, Σ′
t). Therefore a LDS is defined218

by the parameters (At, Bt, Σt, Σ′
t, h̄t, ȳt) and initial state h1. In simplified models the parameters can219

be considered time-invariant. In the literature, LDS is also referred to as Kalman filter (Welch, 1997), or220

Gaussian state space model (Eleftheriadis et al., 2017).221

Gaussian Mixture Model A Gaussian mixture model (GMM) (McLachlan et al., 2019) is a weighted222

sum of multiple Gaussian distribution components. An M -component GMM is defined as:223

p (x) =
∑

i∈[M] wi · N (x ; µi, Σi),
∑

i∈[M] wi = 1. (4)

where wi denotes the probability of the sample belonging to the ith component. The parameters of the224

GMM {(wi, µi, Σi) : ∀i ∈ [M]} are learnt through expectation-maximisation (EM) algorithm (Barber, 2012),225

maximum a posteriori (MAP) estimation, or maximum likelihood estimation (MLE) (Barber, 2012, Def. 8.30).226

5 Results227

Baselines & Datasets We compare the performance of mspace with the following recent TGNN baselines:228

DCRNN (Li et al., 2018), TGCN (Zhao et al., 2019), EGCN-H (Pareja et al., 2020), EGCN-O (Pareja et al., 2020),229

DynGESN (Micheli & Tortorella, 2022), GWNet (Wu et al., 2019), STGODE (Fang et al., 2021), FOGS (Rao et al.,230

2022), GRAM-ODE (Liu et al., 2023), LightCTS (Lai et al., 2023). Additionally, we also evaluate the performance231

of classic autoregressive method ARIMA (Box & Pierce, 1970), and the famous LDS, the Kalman filter (Welch,232

1997). We introduce two variants of the Kalman filter: Kalman-x, which considers the node features as233

observations, and Kalman-ε, which operates on the shocks. For more details, please see Appendix D.

Table 1: We use the datasets tennis, wikimath, pedalme, and cpox for single-step forecasting as they are
relatively smaller in terms of number of nodes n and samples T . For multi-step forecasting we use the larger
traffic datasets PEMS03, PEMS04, PEMS07, PEMS08, PEMSBAY, and METRLA. The datasets PEMS03/04/07/08
report traffic flow, while PEMSBAY, and METRLA report traffic speed.

tennis wikimath pedalme cpox PEMS03 PEMS04 PEMS07 PEMS08 PEMSBAY METRLA

n 1000 1068 15 20 358 307 883 170 325 207
T 120 731 35 520 26K 17K 28K 18K 52K 34K

234

Single-step Forecasting In Table 2, we have single-step forecasting RMSE results for various models with235

training ratio 0.9. The best result is marked bold, and the second-best is underlined.236

Table 2: Single-step forecasting RMSE, (M = 20).

tennis wikimath pedalme cpox

DynGESN 150.41 906.85 1.25 0.95
DCRNN 155.43 1108.87 1.21 1.05
EGCN-H 155.44 1118.55 1.19 1.06
EGCN-O 155.43 1137.68 1.2 1.07
TGCN 155.43 1109.99 1.22 1.04
LightCTS 199.04 319.47 1.58 0.84
GRAM-ODE 206.50 484.90 0.99 0.98
STGODE 172.16 279.87 0.91 0.83
mspace-Sµ 105.32 563.69 0.86 1.58
mspace-SN 117.23 725.42 1.35 2.11
Kalman-x 73.01 792.6 0.66 1.42
Kalman-ε 7.5K 64K 1.79 10.2

The models DCRNN, ECGN, and TGCN exhibit similar237

performance across all datasets, which may be at-238

tributed to their use of convolutional GNNs for spa-239

tial encoding. Kalman-ε performs poorly across all240

datasets, indicating challenges in establishing a state-241

space relation for shocks. In contrast, Kalman-x per-242

forms notably well, outperforming other methods on243

tennis and pedalme datasets.244

For wikimath and cpox, STGODE shows the best per-245

formance, followed by LightCTS and GRAM-ODE, po-246

tentially due to a higher number of training samples.247

The light-weight methods such as Kalman-x and248

mspace exploit the unavailability of enough training249

samples and perform better on tennis and pedalme.250

7

Under review as submission to TMLR

We notice that mspace-Sµ achieves a balanced performance between TGNN models and Kalman-x across all251

datasets except for cpox. The subpar performance of mspace-S* on the cpox dataset may be attributed to252

the seasonal trend, given that it represents the weekly count of chickenpox cases.253

Multi-step Forecasting For the TGNN models, we use the 6 : 2 : 2 train-validation-test chronological split254

in line with the experiments reported by the baselines. For mspace and Kalman, the train-test chronological255

split is 8 : 2, as they do not require a validation set. In Table 3 we report the multi-step q = 121 forecasting256

RMSE, and mean absolute error (MAE) on the test set. For mspace, the queue size M = 202.257

Table 3: Multi-step forecasting RMSE and MAE, (M = 20).

PEMS03 PEMS04 PEMS07 PEMS08 PEMSBAY METRLA

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

GRAM-ODE 26.40 15.72 31.05 19.55 34.42 21.75 25.17 16.05 3.34 1.67 6.64 3.44
STGODE 27.84 16.50 32.82 20.84 37.54 22.99 25.97 16.81 4.89 2.30 7.37 3.75
DCRNN 30.31 18.18 38.12 24.70 38.58 25.30 27.83 17.86 4.74 2.07 7.60 3.60
ARIMA 47.59 33.51 48.80 33.73 59.27 38.17 44.32 31.09 6.50 3.38 13.23 6.90
GWNet 32.94 19.85 39.70 25.45 42.78 26.85 31.05 19.13 4.85 1.95 7.81 3.53
LightCTS - - 30.14 18.79 - - 23.49 14.63 4.32 1.89 7.21 3.42
FOGS 24.09 15.06 31.33 19.35 33.96 20.62 24.09 14.92 - - - -
mspace-Sµ 36.51 26.43 18.85 13.25 54.39 38.83 14.61 10.36 4.27 2.47 10.24 6.56
mspace-Tµ 26.53 18.31 13.49 8.70 38.63 24.02 10.35 6.33 3.77 2.19 10.08 6.77
Kalman-x 45.38 33.21 33.75 15.26 64.95 48.01 27.40 12.40 5.71 3.87 13.97 10.7
Kalman-ε 749 619 818 709 2313 1988 460 399 50.2 43.1 127.1 109

2 × 104 3 × 104 4 × 104

samples

1.0

1.5

2.0

2.5

3.0

3.5

4.0

RM
SE

/m
in

(R
M

SE
)

PE
M

S0
3

PE
M

S0
4 PE
M

S0
7

PE
M

S0
8

PE
M

SB
AY

M
ET

RL
A

GRAM-ODE
STGODE
DCRNN
ARIMA
GWNet

LightCTS
FOGS
mspace-S
mspace-T
Kalman-xI

Figure 5: Multi-step forecasting normalised RMSE.

Figure 5 shows the RMSE of the models,258

normalized to the minimum RMSE for the259

dataset, plotted against the number of avail-260

able training samples. We observe that261

mspace-Tµ performs competitively across262

all datasets with the exception of METRLA.263

Moreover, mspace-Tµ demonstrates supe-264

rior performance compared to mspace-Sµ265

across all the datasets which suggests that266

temporal auto-correlation dominate spatial267

cross-correlation among the nodes.268

TGNN models, being neural networks, rely269

heavily on the amount of training data avail-270

able. With the relatively small number271

of training samples in PEMS04 and PEMS08,272

these models underperform. In contrast,273

both variants of mspace significantly surpass the state-of-the-art (SoTA), demonstrating their effectiveness274

with smaller datasets 3. Furthermore, mspace-Tµ ranks as the second-best model for the largest dataset,275

PEMSBAY. Therefore, we conclude that mspace offers consistent performance across datasets with varying276

sample sizes, and it is particularly advantageous when training data is limited.277

In Fig. 6, we illustrate how the RMSE scales with the number of forecast steps q for different variants278

of mspace. The scaling law for mspace-S* appears linear, while for mspace-T*, it appears sublinear. We279

investigate this theoretically in Appendix A.280

The TGNN baselines perform forecasting for q = 12 future steps, relying on the node features from the281

preceding 12 time steps as input. In contrast, mspace requires only the node features from the two previous282

1q = 12 corresponds to one hour in the traffic datasets used.
2a higher value of M might give better estimates at the cost of higher memory usage and lower adaptability.
3single-step forecasting datasets have prohibitively low number of samples (< 800), likely limiting mspace’s performance

compared to multi-step forecasting with 17k+ samples.

8

Under review as submission to TMLR

12 24 36 48
q

40

80

120
RM

SE

PEMS03

12 24 36 48
q

20

40

60

RM
SE

PEMS04

12 24 36 48
q

50

100

150

RM
SE

PEMS07

12 24 36 48
q

15

30

45

RM
SE

PEMS08

Figure 6: Scaling of error with the number of forecast steps q using different mspace variants: ▼ mspace-SN ,
▲ mspace-TN , ■ mspace-Sµ, • mspace-Tµ.

time steps. Additionally, mspace has the flexibility to forecast for any q ∈ N, whereas TGNN models are283

limited to forecasting up to the specified number of steps they were trained on. Moreover, mspace offers284

both probabilistic (ΩN) and deterministic (Ωµ) forecasts, a capability absent in the baselines. Finally, while285

TGNN baselines exploit the edge weights information for predictions, mspace achieves comparable results286

using only the graph structure.287

6 Interpretability288

In this section, we examine mspace in light of the following definition of Interpretability.289

Definition 6.1. Consider data x ∈ D which is processed by a model Fθ to produce the output ŷ ∈ Y, i.e.,290

ŷ = Fθ(x), where θ denotes the model parameters. Moreover, consider a true mapping f : x 7→ y, ∀x ∈ D291

where y is the ground truth associated with the input data x. Then, an interpretable or explainable model292

Fθ fulfils one or more of the following properties (Gilpin et al., 2018; Du et al., 2019):293

• The internals of the model Fθ can be explained in a way that is understandable to humans.294

• The output ŷ can be explained in terms of the properties of the input x, the input data distribution295

D, and the model parameters θ.296

• The failure of a model on a given input data can be explained.297

• For a certain distance metric ∆ : Y × Y → R+, theoretical bounds on the expected error298

Ex∼D[∆(y, Fθ(x))] can be established based on the description of Fθ, supported by the assumptions299

on the input data distribution D.300

• It can be identified whether the model Fθ is susceptible to training bias, and to what extent.301

6.1 Explaining ΨS302

In Fig. 7, we depict two consecutive snapshots of a subgraph, focused on node v. The dashed circle highlights303

the corresponding 1-hop neighbourhood Uv. At any time t, we draw green and red arrows next to the nodes304

to depict whether its node feature value increased or decreased, respectively.305

Figure 7: Consecutive subgraph snapshots.

9

Under review as submission to TMLR

The design of ΨS was inspired by the correlation dynamics of the stock market (Caraiani, 2014), where the306

inter-connectedness of various stocks exerts mutual influence on their respective prices. For instance, within307

the semiconductor sector, stocks such as NVDA, AMD, and TSMC often exhibit synchronised movements, with308

slight lead or lag. Similarly, the performance of gold mining stocks can offer insights into the future value of309

physical gold and companies engaged in precious metal trade. This concept transcends individual industries310

and encompasses competition across multiple sectors.311

Let us record the states at two consecutive time-steps st1 =
[
1 −1 1 −1

]⊤, and st1+1 =312 [
−1 −1 −1 1

]⊤. At the state-level, we iterate through the time-steps, and collect all the states succeeding313

s =
[
1 −1 1 −1

]⊤. If we then draw a random sample from this collection of succeeding states, we can314

predict whether the node feature value is more likely to increase or decrease. However, we are interested in pre-315

dicting the amount of change. Therefore, at every time step when the state st matches s =
[
1 −1 1 −1

]⊤,316

we collect the succeeding shock ε
⟨Uv⟩
t+1 in a queue Qv(s), i.e., at time τ , Qv(s) =

{
ε

⟨Uv⟩
t+1 : st = s,∀t < τ

}
with317

|Qv(s)| ≤M . The queue entries are then used to approximate a distribution from which a random sample is318

drawn during forecast.319

In Fig. 8, we plot the normalized histogram of the trace tr(·) of the covariance matrix Σ(s) of all the states320

s ∈ Sv, v ∈ [n] for all the datasets used in multi-step forecasting. We notice that in both PEMS04 and PEMS08321

the distribution of values is skewed to the left, with a concentration of data points at values close to zero.322

This explains the better-than-SoTA performance of mspace-Sµ on these datasets. In contrast, the histogram323

of METRLA is completely away from zero, while for PEMS03, and PEMS07 there are peaks near zero, but a major324

mass of the histogram is skewed away from zero. This explains the poor performance of mspace-Sµ on these325

datasets.326

0 500 1000 1500 2000 2500
0.000

0.001

0.002 PEMS03

0 500 1000 1500 2000 2500
0.000

0.001

0.002

0.003 PEMS04

0 500 1000 1500 2000 2500
0.0000

0.0005

0.0010

0.0015
PEMS07

0 500 1000 1500 2000 2500
0.000

0.002

0.004
PEMS08

0 2 4 6 8 10
0.0

0.2

0.4
PEMSBAY

0 20 40 60 80 100
0.00

0.01

0.02 METRLA

Figure 8: Normalized histogram of {tr(Σ(s)) : ∀s ∈ Sv,∀v ∈ [n]} for different datasets.

6.2 Explaining ΨT327

Next, we discuss the rationale behind ΨT, which is designed to identify periodic patterns. For instance, in328

many traffic networks, trends exhibit weekly cycles, with distinct patterns on weekdays compared to weekends.329

Moreover, on an annual basis, the influence of holidays on traffic can be discerned, as people engage in330

10

Under review as submission to TMLR

shopping and other leisure activities. In Fig. 9, we have shown the traffic flow value of PEMS04 with weekly (a)331

and daily (b) periodicity. For the weekly periodic view (a), the trend is more pronounced with less deviation332

from the mean while for the daily view (b), a scattered trend is visible with high variance across states.

(a) PEMS04: Weekly (b) PEMS04: Daily

Figure 9: Periodic trends in the traffic dataset PEMS04; the black points represent the data-points, and the
red line is the mean estimate for each state t mod τ0.

333

6.3 Error Bounds334

We present the error bounds of mspace in the following theorem, a detailed proof of which can be found in335

Appendix A.336

Theorem 6.1. The RMSE of mspace for a q-step node feature forecast is upper bounded as RMSE(q) ≤337 √
αq2 + (3α + β)q + (2α + β), where α, β ∈ R+ are constants that depend on the data, as well as the variant338

of the mspace algorithm.339

Corollary 6.1. In the asymptotic case of large q, the RMSE grows linearly with q: RMSE(q) = O(q).340

6.4 Complexity Analysis341

We denote the computational complexity operator as C(·), and the space complexity operator as M(·), where342

the argument of each operator is an algorithm or a portion of an algorithm. The optional offline part of343

mspace is denoted by A, while the online part is denoted by B. In Table 4, we exhibit the computational344

and space complexities of the different mspace variants, where b ≜ maxv∈[n] |Uv| is the maximum degree. For345

more details please refer to Appendix B.

Table 4: Computational and space complexity of different mspace variants.
ΨS ΨT

ΩN

C(A) = O
(
ndb

(
rT + dbM min{rT, 2bd}

))
C(B) = O

(
(1− r)Tnd2b2

(
qdb + M min

{
(1+r)

2 T, 2bd
}))

M(A ∪ B) = O
(
db(M + db) min{T, 2bd}

)
C(A) = O

(
nrT + d2Mnτ0

)
C(B) = O

(
(1− r)Tnd2(qd + Mτ0)

)
M(A ∪ B) = O

(
d(M + d)τ0

)

Ωµ

C(A) = O
(
ndb

(
rT + M min{rT, 2bd}

))
C(B) = O

(
(1− r)Tndb(q + M) min

{
(1+r)

2 T, 2bd
})

M(A ∪ B) = O
(
Mdb min{T, 2bd}

)
C(A) = O (nrT + dMnτ0)
C(B) = O ((1− r)Tnd(q + M)τ0)
M(A ∪ B) = O (Mdτ0)

346

Theorem 6.2. For asymptotically large number of nodes n and timesteps T , the computational complexity347

of mspace is O(nT), and the space complexity is O(1) across all variants.348

The proof is detailed in Appendix B.2.349

11

Under review as submission to TMLR

7 Discussion350

In this section we discuss the limitations of mspace and how they can be overcome. Firstly, mspace only351

considers binary edges, i.e.. A ∈ {0, 1}n×n instead of a weighted adjacency matrix A ∈ Rn×n. This does not352

imply that we have used datasets with binary edges, rather it means that we have used a binarized version of353

the adjacency matrix as input to mspace while the baselines exploited weighted edges. Secondly, we assume354

that the graph structure is fixed throughout, while for a truly dynamic graph, the graph structure should355

also be dynamic. Lastly, we have proposed two state functions: one that focuses on cross-correlation among356

the nodes, and the other that considers seasonality. Therefore, a state function which combines both can be357

studied in an extension of our work in the future.358

On incorporating edge weights We now investigate how we can incorporate edge weights in mspace,359

and if it has any potential benefits. In addition to Assumption 2.2, consider the following:360

Assumption 7.1. For nodes v, u, u′ ∈ V, if |Av,u| ≥ |Av,u′ | then |ρ(x(v), x(u))| ≥ |ρ(x(v), x(u′))|, where361

Av,u ∈ R denotes the edge weight of (v, u) ∈ E .362

Assumption 2.2 can be applied to both weighted and unweighted graphs, while Assumption 7.1 is appli-363

cable only to weighted graphs. It is also evident that Assumption 7.1 is stronger than Assumption 2.2.364

Therefore, we base mspace-S* on Assumption 2.2 and the correlation between the connected nodes are365

determined intrinsically through the conditional distributions, as the state ΨS
(
ε⟨Uv⟩) encodes the struc-366

tural information of a node v w.r.t its neighbours. However, we can enforce Assumption 7.1 through:367

s∗ ∼
{

s ∈ Sv :
∥∥∥A

⟨Uv⟩
v ⊙ (s− st)

∥∥∥ < δ
}

, where δ ∈ R+.368

On adapting to dynamic graph structures Algorithms that exploit dynamic graph structures are369

based on the temporal extension of Assumption 7.1, formulated as:370

Assumption 7.2. For nodes u, v ∈ V, and time-steps t, t′ ∈ [T], if |Au,v(t)| ≥ |Au,v(t′)|, then371

|ρ(xt(u), xt(v))| ≥ |ρ(xt′(u), xt′(v))|.372

Finding the matched state as s∗ ∼
{

s ∈ Sv :
∥∥∥A

⟨Uv⟩
v (t)⊙

(
s− s

⟨Uv⟩
t

)∥∥∥ < δ
}

, δ ∈ R+ makes mspace compati-373

ble with dynamic graph structure. However, the number of nodes in the graph must remain fixed, i.e., mspace374

cannot deal with node addition or deletion.375

On creating a state function which combines ΨS and ΨT We can define ΨST : R|U|d×N→ {−1, 1}|U|d×376

{0, 1, · · · τ0 − 1} as ΨST
(
ε⟨U⟩, t

)
≜
[
sign(ε⟨U⟩)⊤ t mod τ0

]⊤. In essence, the queues Qv(s),∀s ∈ Sv,∀v ∈ [n]377

in mspace-ST would have lesser entries compared to mspace-S which might lead to poor estimates and378

consequently make the algorithm data-intensive. Furthermore, in the step where we find the closest state s∗, the379

spatial and temporal parts can be assigned different weights: s∗ ← arg mins∈Sv

∥∥∥[1d|Uv| γ
]⊤ ⊙ (s− s

⟨Uv⟩
t

)∥∥∥,380

where γ ∈ R+.381

On benchmarking using diverse datasets Experiments on more diverse datasets would help establish382

the performance of the proposed algorithm. In this work, we have used 4 non-traffic datasets for single-step383

forecasting, and 6 traffic datasets for multi-step. The proposed algorithm mspace has a general formulation,384

and is not designed specifically for traffic datasets; mspace can be applued to any graph whose node features385

(of any dimension) evolve with time. We also proposed a synthetic temporal graph generation method in386

Appendix C to alleviate the data scarcity issue in temporal graph learning.387

8 Conclusion388

In conclusion, our proposed algorithm, mspace, performs at par with the SoTA TGNN models across various389

spatio-temporal datasets. As an online learning algorithm, mspace is adaptive to changes in data distribution390

and is suitable for deployment in scenarios where training samples are limited. The interpretability of mspace391

sets it apart from black-box deep learning models, allowing for a clearer understanding of the underlying392

12

Under review as submission to TMLR

mechanisms driving predictions. This emphasis on interpretability represents a significant step forward in the393

field of temporal graph learning. In Sec. 7, we discussed the potential limitations of mspace, and suggested394

design changes through which they can be overcome.395

In addition to the algorithm, we also introduce a synthetic temporal graph generator (see Appendix C) in396

which the features of the nodes evolve with the influence of their neighbours in a non-linear manner. These397

synthetic datasets can serve as a valuable resource for benchmarking algorithms.398

References399

David Barber. Bayesian reasoning and machine learning. Cambridge University Press, 2012.400

Claudio DT Barros, Matheus RF Mendonça, Alex B Vieira, and Artur Ziviani. A survey on embedding401

dynamic graphs. ACM Computing Surveys (CSUR), 55(1):1–37, 2021.402

Ferenc Béres, Róbert Pálovics, Anna Oláh, and András A Benczúr. Temporal walk based centrality metric403

for graph streams. Applied network science, 3:1–26, 2018.404

G. E. P. Box and David A. Pierce. Distribution of Residual Autocorrelations in Autoregressive-Integrated405

Moving Average Time Series Models. Journal of the American Statistical Association, 65(332):1509–1526,406

December 1970. ISSN 0162-1459. doi: 10.1080/01621459.1970.10481180.407

Petre Caraiani. The predictive power of singular value decomposition entropy for stock market dynamics.408

Physica A: Statistical Mechanics and its Applications, 393:571–578, 2014.409

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical Evaluation of Gated410

Recurrent Neural Networks on Sequence Modeling, December 2014. URL http://arxiv.org/abs/1412.411

3555. arXiv:1412.3555 [cs].412

Songgaojun Deng, Huzefa Rangwala, and Yue Ning. Learning dynamic context graphs for predicting social413

events. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &414

Data Mining, pp. 1007–1016, 2019.415

Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for interpretable machine learning. Communications of416

the ACM, 63(1):68–77, 2019.417

Stefanos Eleftheriadis, Tom Nicholson, Marc Deisenroth, and James Hensman. Identification of gaussian418

process state space models. Advances in neural information processing systems, 30, 2017.419

Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. Spatial-Temporal Graph ODE Networks for420

Traffic Flow Forecasting. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &421

Data Mining, pp. 364–373, August 2021. doi: 10.1145/3447548.3467430. URL http://arxiv.org/abs/422

2106.12931. arXiv:2106.12931 [cs].423

Chen Gao, Xiang Wang, Xiangnan He, and Yong Li. Graph neural networks for recommender system. In424

Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 1623–1625,425

2022.426

Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. Explaining427

explanations: An overview of interpretability of machine learning. In 2018 IEEE 5th International428

Conference on data science and advanced analytics (DSAA), pp. 80–89. IEEE, 2018.429

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In430

International Conference on Learning Representations, 2017. URL https://openreview.net/forum?id=431

SJU4ayYgl.432

Zhichen Lai, Dalin Zhang, Huan Li, Christian S Jensen, Hua Lu, and Yan Zhao. LightCTS: A lightweight433

framework for correlated time series forecasting. Proceedings of the ACM on Management of Data, 1(2):434

1–26, 2023.435

13

http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/2106.12931
http://arxiv.org/abs/2106.12931
http://arxiv.org/abs/2106.12931
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

Under review as submission to TMLR

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:436

Data-driven traffic forecasting. In International Conference on Learning Representations, 2018. URL437

https://openreview.net/forum?id=SJiHXGWAZ.438

Zibo Liu, Parshin Shojaee, and Chandan K. Reddy. Graph-based multi-ODE neural networks for spatio-439

temporal traffic forecasting. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL440

https://openreview.net/forum?id=Oq5XKRVYpQ.441

Antonio Longa, Veronica Lachi, Gabriele Santin, Monica Bianchini, Bruno Lepri, Pietro Lio, Andrea Passerini,442

et al. Graph neural networks for temporal graphs: State of the art, open challenges, and opportunities.443

Transactions on Machine Learning Research, 2023.444

Geoffrey J McLachlan, Sharon X Lee, and Suren I Rathnayake. Finite Mixture Models. 2019.445

Alessio Micheli and Domenico Tortorella. Discrete-time dynamic graph echo state networks. Neurocomputing,446

496:85–95, 2022. Publisher: Elsevier.447

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim Kaler,448

Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional networks for dynamic graphs.449

In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 5363–5370, 2020. Issue: 04.450

Xuan Rao, Hao Wang, Liang Zhang, Jing Li, Shuo Shang, and Peng Han. FOGS: First-Order Gradient451

Supervision with Learning-based Graph for Traffic Flow Forecasting. In Proceedings of the Thirty-First452

International Joint Conference on Artificial Intelligence, pp. 3926–3932, Vienna, Austria, July 2022.453

International Joint Conferences on Artificial Intelligence Organization. ISBN 978-1-956792-00-3. doi:454

10.24963/ijcai.2022/545. URL https://www.ijcai.org/proceedings/2022/545.455

Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel, Maria Aste-456

fanoaei, Oliver Kiss, Ferenc Beres, Guzman Lopez, Nicolas Collignon, et al. Pytorch geometric temporal:457

Spatiotemporal signal processing with neural machine learning models. In Proceedings of the 30th ACM458

international conference on information & knowledge management, pp. 4564–4573, 2021a.459

Benedek Rozemberczki, Paul Scherer, Oliver Kiss, Rik Sarkar, and Tamas Ferenci. Chickenpox cases in460

hungary: A benchmark dataset for spatiotemporal signal processing with graph neural networks. In461

Workshop on Graph Learning Benchmarks@ TheWebConf 2021, 2021b.462

Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its Applications: With R Exam-463

ples. Springer Texts in Statistics. Springer International Publishing, Cham, 2017. ISBN 978-3-319-464

52451-1 978-3-319-52452-8. doi: 10.1007/978-3-319-52452-8. URL http://link.springer.com/10.1007/465

978-3-319-52452-8.466

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,467

and Illia Polosukhin. Attention is All you Need. Neural Information Processing Systems, 2017.468

Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Dissecting the diffusion process in linear469

graph convolutional networks. In NeurIPS, pp. 5758–5769, 2021. URL https://proceedings.neurips.470

cc/paper/2021/hash/2d95666e2649fcfc6e3af75e09f5adb9-Abstract.html.471

Greg Welch. An Introduction to the Kalman Filter. 1997.472

Xinle Wu, Dalin Zhang, Chenjuan Guo, Chaoyang He, Bin Yang, and Christian S Jensen. AutoCTS:473

Automated correlated time series forecasting. Proceedings of the VLDB Endowment, 15(4):971–983, 2021a.474

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep spatial-475

temporal graph modeling. In Proceedings of the 28th International Joint Conference on Artificial Intelligence,476

pp. 1907–1913, 2019.477

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A Comprehensive478

Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems,479

32(1):4–24, January 2021b. ISSN 2162-237X, 2162-2388. doi: 10.1109/TNNLS.2020.2978386. URL480

https://ieeexplore.ieee.org/document/9046288/.481

14

https://openreview.net/forum?id=SJiHXGWAZ
https://openreview.net/forum?id=Oq5XKRVYpQ
https://www.ijcai.org/proceedings/2022/545
http://link.springer.com/10.1007/978-3-319-52452-8
http://link.springer.com/10.1007/978-3-319-52452-8
http://link.springer.com/10.1007/978-3-319-52452-8
https://proceedings.neurips.cc/paper/2021/hash/2d95666e2649fcfc6e3af75e09f5adb9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2d95666e2649fcfc6e3af75e09f5adb9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2d95666e2649fcfc6e3af75e09f5adb9-Abstract.html
https://ieeexplore.ieee.org/document/9046288/

Under review as submission to TMLR

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: a deep learning482

framework for traffic forecasting. In Proceedings of the 27th International Joint Conference on Artificial483

Intelligence, pp. 3634–3640, 2018.484

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In485

Proceedings of the AAAI conference on Artificial Intelligence, volume 37, pp. 11121–11128, 2023.486

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li. T-gcn: A487

temporal graph convolutional network for traffic prediction. IEEE transactions on intelligent transportation488

systems, 21(9):3848–3858, 2019. Publisher: IEEE.489

15

Under review as submission to TMLR

A Error Bounds490

Upper Bound We derive the upper bound on the RMSE for q-step iterative forecast below.491

Proof of Theorem 6.1. For nodes in Uv, v ∈ [n], the shock at time t is sampled from a Gaussian distribution,492

the parameters of which depend on the previous shock ε̂
⟨Uv⟩
t−1 through the state function:493

ε̂
⟨Uv⟩
t ∼ N

(
ε̂; µ

(
ΨS

(
ε̂

⟨Uv⟩
t−1

))
, Σ
(

ΨS

(
ε̂

⟨Uv⟩
t−1

)))
(5)

We denote the shock estimated for node v at time t as:494

ε̂t(v) = ε̂
⟨Uv⟩
t (v) ∼ N

(
ε̂; µv

(
ΨS

(
ε̂

⟨Uv⟩
t−1

))
, Σv

(
ΨS

(
ε̂

⟨Uv⟩
t−1

)))
(6)

The mean square error for q-step iterative node feature forecasting is defined as:495

MSE(q) ≜ 1
ndq

E

∑
v∈[n]

∑
i∈[q]

∥∥∥∥∥∥
∑
j∈[i]

ε̂t+j(v)− εt+j(v)

∥∥∥∥∥∥
2

= 1
ndq

∑
v∈[n]

∑
i∈[q]

E

∥∥∥∥∥∥
∑
j∈[i]

ε̂t+j(v)− εt+j(v)

∥∥∥∥∥∥
2
 . (7)

The shock difference between the true shock and predicted shock also follows a Gaussian distribution:496

ε̂t+j(v)− εt+j(v) ∼ N
(

ε; µv

(
ΨS

(
ε̂

⟨Uv⟩
tj−1

))
− εt+j(v), Σv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

)))
. (8)

Since, the sum of Gaussian r.v.s is also Gaussian, we have:497

∑
j∈[i]

ε̂t+j(v)− εt+j(v) ∼ N

ε;
∑
j∈[i]

µv

(
ΨS

(
ε̂

⟨Uv⟩
tj−1

))
− εt+j(v),

∑
j∈[i]

Σv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

)) . (9)

Moreover, for a Gaussian r.v. x ∼ N (x; µ, Σ), E
[
∥x∥2

]
= ∥µ∥2 + tr(Σ).498

E

∥∥∥∥∥∥
∑
j∈[i]

ε̂t+j(v)− εt+j(v)

∥∥∥∥∥∥
2
 =

∥∥∥∥∥∥
∑
j∈[i]

µv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

))
− εt+j(v)

∥∥∥∥∥∥
2

+
∑
j∈[i]

tr
(

Σv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

)))
. (10)

499 ∥∥∥∥∥∥
∑
j∈[i]

µv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

))
− εt+j(v)

∥∥∥∥∥∥ ≤
∑
j∈[i]

∥∥∥µv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

))
− εt+j(v)

∥∥∥
≤ i ·max

j∈[i]

∥∥∥µv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

))
− εt+j(v)

∥∥∥
≤ i · max

t,j∈N

∥∥∥µv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

))
− εt+j(v)

∥∥∥
= i · √αv,1. (11)

16

Under review as submission to TMLR

500 ∑
j∈[i]

tr
(

Σv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

)))
≤ i ·max

j∈[i]
tr
(

Σv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

)))
≤ i · αv,2. (12)

E

∥∥∥∥∥∥
∑
j∈[i]

ε̂t+j(v)− εt+j(v)

∥∥∥∥∥∥
2
 ≤ αv,1 · i2 + αv,2 · i, αv,1, αv,2 ∈ R+. (13)

MSE(q) ≤ 1
ndq

∑
v∈[n]

∑
i∈[q]

αv,1 · i2 + αv,2 · i

=
∑

v∈[n] αv,1

6nd
(q + 1)(q + 2) +

∑
v∈[n] αv,2

2nd
(q + 1). (14)

Let α ≜ 1
6nd

∑
v∈[n] αv,1, and β ≜ 1

2nd

∑
v∈[n] αv,2, then501

MSE(q) ≤ αq2 + (3α + β)q + (2α + β). (15)

By Jensen’s inequality,502

RMSE(q) ≤
√

MSE(q) ≤
√

αq2 + (3α + β)q + (2α + β). (16)

503

The above proof is for mspace-SN and also applies to mspace-TN . For mspace-Sµ and mspace-Tµ, β = 0.504

Lower Bound Similarly, we can find a lower bound on the MSE for q-step iterative forecast:505

E

∥∥∥∥∥∥
∑
j∈[i]

ε̂t+j(v)− εt+j(v)

∥∥∥∥∥∥
2
 ≥∑

j∈[i]

tr
(

Σv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

)))
≥ i ·min

j∈[i]
tr
(

Σv

(
ΨS

(
ε̂

⟨Uv⟩
t+j−1

)))
= i · αv,3. (17)

506

MSE(q) ≥ 1
ndq

∑
v∈[n]

∑
i∈[q]

i · αv,3 =
(1

nd

∑
v∈[n]

αv,3︸ ︷︷ ︸
≜β′

)
· (q + 1) = β′q + β′. (18)

17

Under review as submission to TMLR

B Complexity Analysis507

B.1 Computational Complexity508

We denote the computational complexity operator as C(·), the argument of which is an algorithm or part of509

an algorithm. The optional offline part of the algorithm is denoted as A while the online part is denoted as B.510

Algorithm 2 mspace-SN
Input G = (V, E , X), r ∈ [0, 1), q, M
Output ε̂t(v), ∀v ∈ V, t ∈ [⌊r · T ⌋, T]

1: εt(v)← xt(v)− xt−1(v), ∀v ∈ V, t ∈ [T]
Offline training (A):

2: for t ∈ [⌊r · T ⌋] do
3: for v ∈ V do
4: s

⟨Uv⟩
t ← Ψ

(
ε

⟨Uv⟩
t

)
▷
∑

v∈V d|Uv|

5: Sv ← Sv ∪
{

s
⟨Uv⟩
t

}
▷ n

6: Qv

(
s

⟨Uv⟩
t

)
← enqueue ε

⟨Uv⟩
t+1 ▷ n

7: end for
8: end for
9: µv(s)← mean(Qv(s)), ∀s ∈ Sv, v ∈ V ▷

∑
v∈V d|Uv||Sv|M

10: Σv(s)← covariance(Qv(s)), ∀s ∈ Sv, v ∈ V ▷
∑

v∈V(d|Uv|)2|Sv|M
Online learning (B):

11: for t ∈ [⌊r · T ⌋, T − q] do
12: for v ∈ V do
13: s

⟨Uv⟩
t ← Ψ

(
ε

⟨Uv⟩
t

)
▷
∑

v∈V d|Uv|

14: s∗ ← arg min
s∈Sv

∥∥∥s− s
⟨Uv⟩
t

∥∥∥ ▷
∑

v∈V d|Uv||Sv|

15: ε̂
⟨Uv⟩
t+1 ∼ N (ε; µv(s∗), Σv(s∗)) ▷

∑
v∈V(|Uv|d)3

16: for k ∈ [2, q] do
17: s∗ ← arg min

s∈Sv

∥∥∥s−Ψ
(

ε̂
⟨Uv⟩
t+k−1

)∥∥∥ ▷ (q − 1)×
∑

v∈V d|Uv|(1 + |Sv|)

18: ε̂
⟨Uv⟩
t+k ∼ N (ε; µv(s∗), Σv(s∗)) ▷ (q − 1)×

∑
v∈V(|Uv|d)3

19: end for
20: ε̂t+k(v)← ε̂

⟨Uv⟩
t+k (v), ∀k ∈ [q]

21: Update Sv,Qv ▷ 2n
22: Update µv(s), Σv(s), ∀s ∈ Sv ▷

∑
v∈V(d|Uv|+ d2|Uv|2)|Sv|M

23: end for
24: end for

Computational complexity of offline training for mspace-SN can be written as:511

C(A) = O
(
⌊rT ⌋d

∑
v

|Uv|︸ ︷︷ ︸
[4]

+ ⌊rT ⌋2n︸ ︷︷ ︸
[5],[6]

+ dM
∑

v

|Uv||Sv|︸ ︷︷ ︸
[9](mean)

+ d2M
∑

v

|Uv|2|Sv|︸ ︷︷ ︸
[10](covariance)

)
. (19)

18

Under review as submission to TMLR

Computational complexity of online learning for mspace-SN can be written as:512

C(B) = O
(

T −q∑
t=⌈rT ⌉

{
dq
∑

v

|Uv|︸ ︷︷ ︸
[13],[17]

+ dq
∑

v

|Uv||Sv|︸ ︷︷ ︸
[14],[17]

+ d3q
∑

v

|Uv|3︸ ︷︷ ︸
[15],[18](sampling)

+ 2n︸︷︷︸
[21]

+ dM
∑

v

|Uv||Sv|︸ ︷︷ ︸
[22](mean)

+ d2M
∑

v

|Uv|2|Sv|︸ ︷︷ ︸
[22](covariance)

})
. (20)

Lemma B.1. The computational complexity of mspace-SN is:513

C(A) = O
(

dbnrT + d2b2Mn ·min{rT, 2bd}
)

,

C(B) = O
(

(1− r)Tnd2b2
(

qdb + M ·min
{

(1 + r)
2 T, 2bd

}))
,

where b = maxv∈[n] |Uv|.514

Proof. We denote the maximum degree of a node as b ≜ maxv∈[n] |Uv| < n which does not necessarily scale515

with n unless specified by the graph definition. Furthermore, the total number of states observed for a node516

till time step t ∈ N cannot exceed t, i.e., |Sv| ≤ t. We also know the total number of states theoretically517

possible for node v is 2|Uv|d for ΨS(·). Therefore, the number of states observed till time t for node v is upper518

bounded as: |Sv| ≤ min
{

t, 2bd
}

. Based on this, we can simplify equation 19, and equation 20 as follows:519

C(A) = O
(
dbnrT + 2nrT + (dbM + d2b2M) · n min{rT, 2bd}

)
= O

(
dbnrT + d2b2Mn ·min{rT, 2bd}

)
.

C(B) = O

 T −q∑
t=⌈rT ⌉

qdbn + qd3b3n + 2n + db(q + M)n ·min{t, 2bd}+ d2b2Mn ·min{t, 2bd}

= O

 T −q∑
t=⌈rT ⌉

qd3b3n + (db(q + M) + d2b2M)n ·min{t, 2bd}

= O

(
(1− r)T · qd3b3n + d2b2Mn ·min{(1− r2)T 2, 2bd(1− r)T}

)
= O

(
(1− r)Tn

(
qd3b3 + d2b2M ·min

{
(1 + r)

2 T, 2bd

}))
.

520

Lemma B.2. The computational complexity of mspace-Sµ is:521

C(A) = O
(

dbnrT + dbMn ·min{rT, 2bd}
)

,

C(B) = O
(

(1− r)Tndb(q + M) ·min
{

(1 + r)
2 T, 2bd

})
.

522

Proof. The sampling steps [15], and [18] in Algorithm 2 are replaced with ε̂
⟨Uv⟩
t ← µ(s∗) which has a523

computational complexity of O(d|Uv|). Moreover, Ωµ(·) does not require the covariance matrix, therefore we524

19

Under review as submission to TMLR

do not need to compute it. We simplify the computational complexity expressions as:525

C(A) = O
(
⌊rT ⌋d

∑
v

|Uv|+ ⌊rT ⌋2n + dM
∑

v

|Uv||Sv|

)
= O

(
dbnrT + dbMn ·min{rT, 2bd}

)
.

C(B) = O
(

T −q∑
t=⌈rT ⌉

{
dq
∑

v

|Uv|+ dq
∑

v

|Uv||Sv|+ dq
∑

v

|Uv|︸ ︷︷ ︸
(sampling)

+2n + dM
∑

v

|Uv||Sv|
})

= O

 T −q∑
t=⌈rT ⌉

2qdbn + 2n + db(q + M)n ·min{t, 2bd}

= O

(
(1− r)Tndb(q + M) ·min

{
(1 + r)

2 T, 2bd

})
.

526

Lemma B.3. The computational complexity of mspace-TN is:527

C(A) = O
(
nrT + d2Mnτ0

)
,

C(B) = O
(

(1− r)Tnd2 · (Mτ0 + qd)
)

.

528

Proof. For the state function ΨT, the total number of states for any node is the period τ0 ∈ N, i.e., |Sv| ≤ τ0.529

Moreover, the state calculation st ← Ψ(t) has computational complexity of O(1). Most importantly, for ΨT,530

b = 1 as it only focuses on the seasonal trends.531

C(A) = O
(
⌊rT ⌋

∑
v

1 + ⌊rT ⌋2n + dM
∑

v

|Uv||Sv|+ d2M
∑

v

|Uv|2|Sv|

)
= O

(
3nrT + dMnτ0 + d2Mnτ0

)
= O

(
nrT + d2Mnτ0

)
.

C(B) = O
(

T −q∑
t=⌈rT ⌉

{
q
∑

v

1 + dq
∑

v

|Uv||Sv|+ d3q
∑

v

|Uv|3 + 2n

+ dM
∑

v

|Uv||Sv|+ d2M
∑

v

|Uv|2|Sv|
})

= O
(
{q + dqτ0 + qd3 + 2 + dMτ0 + d2Mτ0} · n(1− r)T

)
= O

(
(1− r)Tnd2 · (Mτ0 + qd)

)
.

532

Lemma B.4. The computational complexity of mspace-Tµ is:533

C(A) = O (nrT + dMnτ0) ,

C(B) = O
(

(1− r)Tn · d(q + M)τ0

)
.

534

20

Under review as submission to TMLR

Proof. Based on the explanation provided for mspace-TN , we simplify the computational complexity expres-535

sions for mspace-Tµ as:536

C(A) = O
(
⌊rT ⌋

∑
v

1 + ⌊rT ⌋2n + dM
∑

v

|Sv|

)
= O (3nrT + dMnτ0) = O (nrT + dMnτ0) .

C(B) = O

 T −q∑
t=⌈rT ⌉

{
q
∑

v

1 + dq
∑

v

|Sv|+ 2n + dM
∑

v

|Sv|

}
= O

(
{q + dqτ0 + 2 + dMτ0} · n(1− r)T

)
= O

(
(1− r)Tn · d(q + M)τ0

)
.

537

B.2 Space Complexity538

We denote the space complexity operator as M(·), the argument of which is an algorithm or part of an539

algorithm. The variables in offline training A are re-used in online learning B. Therefore, we can say that540

M(B) = M(A ∪ B).541

In an implementation of mspace where forecasting is sequentially performed for each node v ∈ [n], memory542

space can be efficiently reused, except for storing the outputs. This approach optimises memory usage,543

resulting in a space complexity characterised by:544

M(A ∪ B) = O

max
v∈[n],
t∈[T]

d|Uv||Sv|︸ ︷︷ ︸
Sv

+ cMd|Uv||Sv|︸ ︷︷ ︸
Qv(s) ∀s∈Sv

+ cd|Uv||Sv|︸ ︷︷ ︸
µv(s) ∀s∈Sv

+ c(d|Uv|)2|Sv|︸ ︷︷ ︸
Σv(s) ∀s∈Sv

+ d|Uv|︸ ︷︷ ︸
s∗

 . (21)

Lemma B.5. The space complexity of mspace-SN is M(A ∪ B) = O
(

db(M + db) ·min{T, 2bd}
)

.545

Proof. Simplifying equation 21 results in:546

M(A ∪ B) = O

max
v∈[n],
t∈[T]

(db + cMdb + cdb + cd2b2)|Sv|+ db

= O

(
(cMdb + cd2b2) ·max

t∈[T]
min{t, 2bd}

)
= O

(
db(M + db) ·min{T, 2bd}

)
.

547

Lemma B.6. The space complexity of mspace-Sµ is M(A ∪ B) = O
(

Mdb ·min{T, 2bd}
)

.548

Proof. Some space is saved in mspace-Sµ, as we do not need to store the covariance matrices.549

M(A ∪ B) = O

max
v∈[n],
t∈[T]

(db + cMdb + cdb)|Sv|+ db

 = O
(

Mdb ·min{T, 2bd}
)

.

550

Lemma B.7. The space complexity of mspace-TN is M(A ∪ B) = O
(

d(M + d)τ0

)
.551

21

Under review as submission to TMLR

Proof. As explained earlier, for the state function ΨT, b = 1. Therefore, the queues only store the shock552

vectors for a single node, and not the neighbours. The space complexity expression is simplified as:553

M(A ∪ B) = O

max
v∈[n],
t∈[T]

(d + cMd + cd + cd2)|Sv|+ db

 = O
(

d(M + d)τ0

)
.

554

Lemma B.8. The space complexity of mspace-Tµ is O
(

Mdτ0

)
.555

Proof. M(A ∪ B) = O
(

maxv∈[n],
t∈[T]

(d + cMd + cd)|Sv|+ d

)
= O

(
Mdτ0

)
.556

Asymptotic Analysis Theorem 6.2 states that for asymptotically large number of nodes n and timesteps557

T , the computational complexity of mspace is O(nT), and the space complexity is O(1) across all variants.558

Proof. We analyse the lemmas B.1-B.8 introduced in this section for the asymptotic case of very large n559

and T . For very large T , min
{

(1+r)
2 T, 2bd

}
→ 2bd. Similarly, min{T, 2bd} → 2bd. Considering the terms560

r, d, M, q, τ0, b as constants, the computational complexity for both offline and online parts of all the mspace561

variants becomes O(nT) for asymptotically large n, T .562

Furthermore, the space complexity terms lack n or T for very large T , which allows us to conclude that the563

space complexity of all the variants of mspace is constant, i.e., O(1).564

C Synthetic Datasets & Experiments565

In traffic datasets, seasonality outweighs cross-nodal correlation, making it challenging to assess the efficacy566

of a TGL algorithms on node feature forecasting task. To address this gap, we propose a synthetic dataset567

generation technique in line with the design idea of mspace which is described in Algorithm 3.568

Algorithm 3 Synthetic Data Generation
Input G = (V, E), d, µmin, µmax, σ2

min, σ2
max, µ0, σ2

0 , τ , µτ , σ2
τ .

1: ε0 ∼ Bernoullind
(1

2
)

2: x0 ∼ N (x; µ01, σ2
0I)

3: for t ∈ [T] do
4: st−1 ← ΨS(εt−1)
5: if st−1 /∈ S then
6: S ← S ∪ {st−1}
7: µ(st−1) ∼ Uniformnd(µmin, µmax)
8: Σ̃ ∼ Uniformnd×nd(σ2

min, σ2
max)

9: Σ̂← 1
2
(
Σ̃ + Σ̃⊤)

10: Σ(st−1)← Σ̂⊙ (A⊗ 1d×d)
11: end if
12: εt ∼ N (ε; µ(st−1), Σ(st−1))
13: xt = xt−1 + εt

14: end for
15: if τ > 0 then
16: yt ∼ N (y; µτ 1, σ2

τ I) ∀t ∈ [τ]
17: xt ← xt + yt mod τ ∀t ∈ [T]
18: end if

22

Under review as submission to TMLR

In steps 8-10, we construct a covariance matrix adhering to Assumption 2.2, and in step 12, we sample the569

shock from a multivariate normal distribution. In steps 16-17, a random signal y is tiled with period τ and570

added to the node features to introduce seasonality into the dataset.571

The synthetic datasets can be utilized to analyze how various factors such as graph structure, periodicity,572

connectivity, sample size, and other parameters affect error metrics.573

We generate datasets through Algorithm 3 by supplying the parameters outlined in Table 5. For each dataset,574

we create multiple random instances and report the mean and standard deviation of the metrics in the results.575

Table 5: Parameters for different synthetic dataset packages.
Dataset G ∼ d T µmin µmax σmin σmax µ0 σ0 τ µτ στ

SYN01 GER (20, 0.2) 1 103 −200 200 40 50 2 × 104 5000 100 100 20
SYN02 GER (20, 0.2) 1 103 −200 200 40 50 2 × 104 5000 0
SYN03 GER (40, 0.5) 1 103 −400 400 30 40 104 2000 0
SYN04 GER (40, 0.5) 1 104 −400 400 30 40 104 2000 0

576

0 200 400 600 800 1000
t

10000
12000
14000
16000
18000
20000
22000
24000

x t

(a) SYN01

0 200 400 600 800 1000
t

14000
16000
18000
20000
22000
24000
26000
28000

x t

(b) SYN02

0 200 400 600 800 1000
t

5000

0

5000

10000

15000

x t

(c) SYN03

0 2000 4000 6000 8000 10000
t

10000
0

10000
20000
30000
40000
50000

x t

(d) SYN04

Figure 10: Exemplary synthetic dataset samples shown for 5 nodes.

C.1 Periodicity577

The generator parameters for SYN01 and SYN02 are same except for the periodic component added to SYN01578

which has a period of τ = 100 timesteps consisting of shocks sampled from N (100, 20). An algorithm which579

can exploit the periodic influence in the signal should perform better on SYN01 compared to SYN02. The580

models which perform worse on periodic dataset are marked red.581

23

Under review as submission to TMLR

Table 6: Impact of data periodicity on RMSE achieved by different models.
SYN01 SYN02 % increase

mean std. dev. mean std. dev.
(

SYN02−SYN01
SYN01

)
mspace-Sµ 299.18 ± 6.55 294.99 ± 8.81 −0.63
mspace-SN 400.99 ± 3.74 395.33 ± 3.24 −1.52
STGODE 420.86 ± 103.29 420.25 ± 52.17 −9.87
GRAM-ODE 921.94 ± 537.63 853.77 ± 340.45 −18.18
LightCTS 419.43 ± 176.5 334.59 ± 79.01 −30.6
Kalman-x 781.94 ± 32.35 776.75 ± 30.38 −0.88
Kalman-ε 393.76 ± 4.72 390.45 ± 3.54 −1.13

C.2 Training Samples582

The generator parameters for SYN03 and SYN04 are same except for the total number of samples being ten583

times more in SYN04. If a model perform better on SYN04 compared to SYN03, it would indicate that it is584

training intensive, requiring more samples to infer the trends. On the other hand, if the model performs585

worse on SYN04, it would indicate that there are scalability issues, or the training caused overfitting. An586

ideal model is expected to have similar performance on SYN03 and SYN04. The models with ideal behaviour587

are marked teal, and the models susceptible to overfitting are marked red. Moreover, model(s) that require588

more training samples are marked violet.589

Table 7: Impact of number of training samples on RMSE achieved by different models.
SYN03 SYN04 % increase

mean std. dev. mean std. dev.
(SYN04−SYN03

SYN03

)
mspace-Sµ 793.41 ± 5.86 789.36 ± 3 −0.86
mspace-SN 793.93 ± 5.73 792.61 ± 2.02 −0.63
STGODE 830.63 ± 127 931.33 ± 191.87 +17.29
GRAM-ODE 1382.48 ± 80.78 1423.93 ± 190.13 +10.31
LightCTS 769.34 ± 196.6 998.01 ± 319.72 +36.42
Kalman-x 785.7 ± 8.95 721.88 ± 1.73 −8.94
Kalman-ε 782.6 ± 6.5 783.36 ± 1.45 −0.54

D Evaluation590

D.1 Metrics591

The root mean squared error (RMSE) of q consecutive predictions for all the nodes is:592

RMSE(q) ≜ E

[√
1

ndq

∑
v∈V

∑
i∈[q]

∥∥∥∑j∈[i] εt+j(v)− ε̂t+j(v)
∥∥∥2

2

]
. (22)

The mean absolute error (MAE) of q consecutive predictions for all the nodes is:593

MAE(q) ≜ 1
ndqE

[∑
v∈V

∑
i∈[q]

∥∥∥∑j∈[i] εt+j(v)− ε̂t+j(v)
∥∥∥

1

]
. (23)

D.2 Datasets594

In Table 8, we list the datasets commonly utilised in the literature for single and multi-step node feature595

forecasting.596

24

Under review as submission to TMLR

tennis (Béres et al., 2018) represents a discrete-time dynamic graph showing the hourly changes in the597

interaction network among Twitter users during the 2017 Roland-Garros (RG17) tennis match. The input598

features capture the structural attributes of the vertices, with each vertex symbolizing a different user and599

the edges indicating retweets or mentions within an hour 4.600

wikimath (Rozemberczki et al., 2021a) tracks daily visits to Wikipedia pages related to popular601

mathematical topics over a two-year period. Static edges denote hyperlinks between the pages 5.602

pedalme (Rozemberczki et al., 2021a) reports weekly bicycle package deliveries by Pedal Me in London603

throughout 2020 and 2021. The nodes are different locations, and the edge weight encodes the physical604

proximity. The count of weekly bicycle deliveries in a location forms the node feature footnote 6.605

cpox (Rozemberczki et al., 2021b) tracks the weekly number of chickenpox cases for each county of606

Hungary between 2005 and 2015. Different counties form the nodes, and are connected if any two counties607

share a border 6.608

PEMS03/04/07/08 (Rao et al., 2022) The four datases are collected from four districts in California609

using the California Transportation Agencies (CalTrans) Performance Measurement System (PeMS) and610

aggregated into 5-minutes windows7 . The spatial adjacency matrix for each dataset is constructed using the611

length of the roads. PEMS03 is collected from September 2018 to November 2018. PEMS04 is collected from612

San Francisco Bay area from July 2016 to August 2016. PEMS07 is from Los Angeles and Ventura counties613

between May 2017 and August 2017. PEMS08 is collected from San Bernardino area between July 2016 to614

August 2016.615

Variables: The flow represents the number of vehicles that pass through the loop detector per time interval616

(5 minutes). The occupancy variable represents the proportion of time during the time interval that the617

detector was occupied by a vehicle. It is measured as a percentage. Lastly, the speed variable represents the618

average speed of the vehicles passing through the loop detector during the time interval . It is measured in619

miles per hour (mph).620

PEMSBAY (Li et al., 2018) is a traffic dataset collected by CalTrans PeMS. It is represented by a621

network of 325 traffic sensors in the Bay Area with 6 months of traffic readings ranging from January 2017 to622

May 2017 in 5 minute intervals8.623

METRLA (Li et al., 2018) is a traffic dataset based on Los Angeles Metropolitan traffic conditions.624

The traffic readings are collected from 207 loop detectors on highways in Los Angeles County over 5 minute625

intervals between March 2012 to June 20129.626

D.3 Baselines627

DCRNN (Li et al., 2018) The Diffusion Convolutional Recurrent Neural Network (DCRNN) models the628

node features as a diffusion process on a directed graph, capturing spatial dependencies through bidirectional629

random walks. Additionally, it addresses nonlinear temporal dynamics by employing an encoder-decoder630

architecture with scheduled sampling.631

TGCN (Zhao et al., 2019) Temporal Graph Convolutional Network (TGCN) combines the graph convolu-632

tional network (GCN) with a gated recurrent unit (GRU), where the former learns the spatial patterns, and633

the latter learns the temporal.634

4https://github.com/ferencberes/online-centrality
5wikimath dataset from PyTorch Geometric Temporal
6https://github.com/benedekrozemberczki/spatiotemporal_datasets
7https://github.com/guoshnBJTU/ASTGNN/tree/main/data
8PEMSBAY dataset from PyTorch Geometric Temporal
9METRLA dataset from PyTorch Geometric Temporal

25

https://github.com/ferencberes/online-centrality
https://pytorch-geometric-temporal.readthedocs.io/en/latest/_modules/torch_geometric_temporal/dataset/wikimath.html
https://github.com/benedekrozemberczki/spatiotemporal_datasets
https://github.com/guoshnBJTU/ASTGNN/tree/main/data
https://pytorch-geometric-temporal.readthedocs.io/en/latest/_modules/torch_geometric_temporal/dataset/pems_bay.html
https://pytorch-geometric-temporal.readthedocs.io/en/latest/_modules/torch_geometric_temporal/dataset/metr_la.html

Under review as submission to TMLR

Table 8: Real world datasets for single and multi-step forecasting.
Name n x time-step T

tennis 1,000 # tweets 1 hour 120
wikimath 1,068 # visits 1 day 731
pedalme 15 # deliveries 1 week 35
cpox 20 # cases 1 week 520

PEMS03 358 flow 5 min 26,208
PEMS04 307 flow, occupancy, speed 5 min 16,992
PEMS07 883 flow 5 min 28,224
PEMS08 170 flow, occupancy, speed 5 min 17,856
PEMSBAY 325 speed 5 min 52,116
METRLA 207 speed 5 min 34,272

EGCN (Pareja et al., 2020) EvolveGCN (EGCN) adapts a GCN model without using node embeddings.635

The evolution of the GCN parameters is learnt through an RNN. EGCN has two variants: ECGN-H which uses636

a GRU, and ECGN-O which uses an LSTM.637

DynGESN (Micheli & Tortorella, 2022) Dynamic Graph Echo State Networks (DynGESN) employ echo638

state networks (ESNs) a special type of RNN in which the recurrent weights are conditionally initialized,639

while a memory-less readout layer is trained. The ESN evolves through state transitions wheere the states640

belong to a compact space. For more details please refer to the original text.641

GWNet (Wu et al., 2019) GraphWave Net (GWNet) consists of an adaptive dependency matrix which642

is learnt through node embeddings, which is capable of capturing the hidden spatial relations in the data.643

GWNet can handle long sequences owing to its one-dimensional convolutional component whose receptive field644

grows exponentially with the number of layers.645

STGODE (Fang et al., 2021) Spatial-temporal Graph Ordinary Differential Equation (STGODE) employs646

tensor-based ordinary differential equations (ODEs) to model the temporal evolution of the node features.647

GRAM-ODE (Liu et al., 2023) Graph-based Multi-ODE (GRAM-ODE) improves upon STGODE by con-648

necting multiple ODE-GNN modules to capture different views of the local and global spatiotemporal649

dynamics.650

FOGS (Rao et al., 2022) FOGS utilises first-order gradients to train a predictive model because the traffic651

data distribution is irregular.652

LightCTS (Lai et al., 2023) LightCTS stacks temporal and spatial operators in a computationally-efficient653

manner, and uses lightweight modules L-TCN and GL-Former.654

ARIMA (Box & Pierce, 1970) ARIMA is a multivariate time series forecasting technique that combines655

autoregressive, integrated, and moving average components. It models the relationship between observations656

and their lagged values, adjusts for non-stationarity in the data, and accounts for short-term fluctuations.657

Kalman (Welch, 1997) Since mspace is a state-space algorithm, we also use the Kalman filter as a658

baseline. We introduce two variants of the Kalman filter: Kalman-x, which considers the node features as659

observations, and Kalman-ε, which operates on the shocks.660

26

	Introduction
	Methodology
	Algorithm
	Related Works
	Results
	Interpretability
	Explaining S
	Explaining T
	Error Bounds
	Complexity Analysis

	Discussion
	Conclusion
	Error Bounds
	Complexity Analysis
	Computational Complexity
	Space Complexity

	Synthetic Datasets & Experiments
	Periodicity
	Training Samples

	Evaluation
	Metrics
	Datasets
	Baselines

