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Abstract

Visual prompting (VP) is an emerging parameter-efficient fine-tuning approach
to adapting pre-trained vision models to solve various downstream image-
classification tasks. However, there has hitherto been little systematic study of the
design space of VP and no clear benchmark for evaluating its performance. To
bridge this gap, we propose AutoVP, an end-to-end expandable framework for au-
tomating VP design choices, along with 12 downstream image-classification tasks
that can serve as a holistic VP-performance benchmark. Our design space covers
1) the joint optimization of the prompts; 2) the selection of pre-trained models,
including image classifiers and text-image encoders; and 3) model output mapping
strategies, including nonparametric and trainable label mapping. Our extensive
experimental results show that AutoVP outperforms the best-known current VP
methods by a substantial margin, having up to 6.7% improvement in accuracy; and
attains a maximum performance increase of 27.5% compared to linear-probing (LP)
baseline. AutoVP thus makes a two-fold contribution: serving both as an efficient
tool for hyperparameter tuning on VP design choices, and as a comprehensive
benchmark that can reasonably be expected to accelerate VP’s development. The
source code is available at https://github.com/IBM/AutoVP.

1 Introduction
Originating in the domain of natural language processing, prompting (Gao et al., 2021; Lester et al.,
2021) has gained considerable popularity as a parameter-efficient fine-tuning approach for adapting
pre-trained models to downstream tasks. Prompting’s methodology has recently been extended to the
field of computer vision, where it is termed visual prompting (VP) (Bahng et al., 2022). In its simplest
form, VP can be perceived as an in-domain model-reprogramming technique (Chen, 2022). More
specifically, it adjusts the inputs and outputs of a pre-trained vision model to address downstream
image-classification tasks, without having to make any changes to the weights or architecture of the
source model’s pre-trained backbone. As such, it stands in contrast to conventional transfer-learning
methods that involve complete fine-tuning, LP (i.e., involving modifications of the trainable linear
layer in the penultimate layer’s output), or zero-shot learning (Radford et al., 2021). For instance,
as illustrated in Figure 1, VP adds a universal trainable data frame to the target samples at the
model-input stage, and then employs a mapping function – which can be either explicitly defined or
implicitly learned – to associate the source and target labels at the output stage.

While VP exhibits tremendous potential, there are two critical challenges that limit its research and
development. The first is absence of a systematic VP framework. That is, VP design choices, such
as prompts’ sizes and shapes, source models, and label-mapping (LM) strategies, have thus far only
been studied separately, generally for the purpose of delineating their distinct roles in enhancing
downstream task accuracy. Ideally, such a systematic framework would automatically search for the
best configurations for performance optimization.
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Figure 1: Overview and key highlights of AutoVP. Bottom panel: Given a fixed ImageNet-pre-trained
classifier (ResNet18), AutoVP outperforms the state-of-the-art (ILM-VP in Chen et al. (2023b)) on
all 12 different downstream image classification tasks.

To bridge this gap, this paper proposes AutoVP, a solution addressing both these challenges via 1)
its automated, extendable framework for joint optimization of a) input-image scaling (i.e., prompt
size), b) visual prompts, c) source model selection, and d) output label-mapping strategies; and 2) its
provision of a unified benchmark consisting of 12 diverse image-classification tasks with quantifiable
content-similarity relative to the dataset (e.g., ImageNet) used for source model pre-training.

We summarize the main contributions as follows:

• AutoVP is the first end-to-end VP framework that simultaneously takes account of the design of
input scale, visual prompts, pre-trained model selection, and output LM strategies. This modular
approach to automating VP gives its users flexibility for VP engineering, as well as a straightforward,
comprehensive performance benchmark based on 12 downstream image-classification datasets.

• The proposed hyperparameter tuning process is capable of identifying optimal configurations
tailored to individual downstream datasets. In addition, its novel components – e.g., automated
input scaling (Section 3) and weight initialization (Appendix 4.2) – augment VP’s overall efficacy
significantly, as compared to state-of-the-art VP methods, LP, and zero-shot baselines (see Table 2).

• This paper represents the first step in a comprehensive exploration of optimal configurations across
varied conditions (e.g., fixing a source model or an output-mapping strategy), and presents an
analysis of domain similarity’s impact on VP performance for each downstream dataset.

• This paper highlights AutoVP’s superior performance over LP in data-limited settings (Figure 2)
and its better out-of-distribution robustness than LP (Figure 4).

2 Related Work
Background of Visual Prompts. Traditionally, to derive task-specific machine-learning models,
researchers have to train or update all model parameters. But, amid the advancement of powerful
foundation models, model fine-tuning and training from scratch have both become time-consuming
and parameter-inefficient approaches, usually requiring large amounts of training data and storage
space. To this end, VP, also known as in-domain model reprogramming, has emerged as an effective
means of obtaining machine-learning models for various domain-specific tasks (Chen, 2022). A
well-developed pre-trained model from a source domain can be directly used for performing tasks in
the target domain with little transformation of the target data. For example, we can use an ImageNet
pre-trained model to classify medical images without modifying any of its parameters (Tsai et al.,
2020). As compared to traditional approaches such as transfer learning, model fine-tuning, and
training from scratch, VP is a low-complexity and model-agnostic strategy; and it is especially
suitable for low-data domains.

The Design of Visual Prompts. A VP framework can generally be divided into two trainable
modules, one for input transformation and the other for output transformation. These are respectively
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placed at the input and output ends of a pre-trained model. In the case of input transformation,
previous literature has proposed various ways to generate and place visual prompts. One of the
most popular such approaches is to pad a frame around the target task image and then fill it with
trainable additive-input perturbation (prompts) (Bahng et al., 2022; Chen et al., 2023b; Elsayed et al.,
2019; Tsai et al., 2020; Wu et al., 2022; Oh et al., 2023). Next, since the output logits of the source
pre-trained model are still in the source domain, further output transformation (e.g., LM) is required
to obtain the target-domain logits. One naive way of achieving this is randomly mapping (RandMap)
m source labels onto the target labels. Tsai et al. (2020) found that frequency-based LM (FreqMap),
which constructs its LM from the source-label prediction distribution of the target-domain data,
can further improve the accuracy of downstream tasks. However, Chen et al. (2023b) argued that
FreqMap lacks interpretability and that its interaction with VP is difficult to measure. To address that
problem, the authors proposed iterative LM (IterMap), a transformation of FreqMap that enables it to
concurrently design LM and visual prompts. Yang et al. (2023), meanwhile, proposed a semantics-
based LM approach that aligns source and target classes that have similar semantic meanings. And
Liao et al. (2023) utilized a prototypical verbalizer to map a mask token to downstream labels, thus
providing a different perspective on LM. In this paper, we follow a similar design to Bahng et al.
(2022), in which visual prompts are placed around images for input transformations, and there are
four mapping methods for output transformations. Further details will be presented in Section 3.

Non-universal Visual Prompts. Instead of utilizing universal input prompts, some researchers
have focused on designing input-aware prompting models (Zhou et al., 2022a,b). For instance,
Chen et al. (2023a) generated class-wise visual prompts to improve model robustness. Similarly,
to address accuracy drops caused by low-voltage-induced bit errors, Sun et al. (2023) proposed an
input-aware add-on module to generate a robust prompt; and Loedeman et al. (2022) proposed the
Prompt Generation Network (PGN), which generates visual prompt token vectors based on input
images, allowing for more adaptive and context-aware prompting.

Although input prompting is commonly applied directly to the target image, researchers have also
developed visual prompt tuning (Jia et al., 2022; Sohn et al., 2023), which learns prompting parameters
at intermediate layers of a source model. However, this approach is primarily developed for vision
transformers. In this paper, we focus on a pixel-level VP approach using a task-specific prompting
model for each image-classification task. As such, our approach closely resembles real-world
scenarios in which a pre-trained source model remains unmodified, and external variations are not
introduced internally.

3 AutoVP Framework

In this section, we present AutoVP’s four main components (Input Scaling, Visual Prompt, Pre-trained
Classifier, and Output Label Mapping). The hyperparameter tuning feature, which enables the joint
optimization of these components, is introduced in Appendix A.3. Our framework can be extended to
support user-defined configurations.

Input Scaling. In our implementation of AutoVP, we choose frame-shape prompts as the default
prompting template. That is, if the source model takes images with size 224 × 224 as input, one
can scale the target image size to 128 × 128, resulting in the final visual prompt of size p =
(224 − 128)/2 = 48. It was shown in Bahng et al. (2022) and Wu et al. (2022) that the prompt
size (p) plays a key role in VP performance. To automate the process of optimizing image resizing
scale, we design a gradient-based optimization algorithm to implement the input scaling module.
Furthermore, to facilitate the optimization of image resizing and avoid bad local minima, we set the
default image size to 128 along with three initial scales: 0.5, 1.0, and 1.5 to optimize.

Visual Prompt. For the visual prompt module, AutoVP adds universal pixel-level prompts around
all (resized) input images. Let xt ∈ RNt denote the target (flattened) input image (of Nt-dimension),
x̃t ∈ RNs be the prompted image, which fits the input dimension (Ns) of the pre-trained source model
fθs (θs denotes its weights), δ ∈ RNs be a trainable universal perturbation, andMp ∈ {0, 1}Ns be a
binary mask of prompt size p, indicating the prompting area. Hence, the prompted image x̃t can be
formulated as:

x̃t = P(xt) = InputScalingp(xt) +Mp ⊙ σ(δ)︸ ︷︷ ︸
Prompts

. (1)
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Table 1: Comparison of VP testing accuracy (%) using CLIP as a pre-trained model on 12 datasets;
the optimal tuning settings of AutoVP and the final prompts sizes p are also provided. In the AutoVP
setting field, the notation “Mapping-m” represents mapping m source classes to each target class.

Dataset AutoVP Setting AutoVP ILM-VP CLIP-VP LP

SVHN (Netzer et al., 2011) FullyMap, p = 51 92.9 ± 0.2 91.2 88.4 65.4

CIFAR10 (Krizhevsky & Hinton, 2009) IterMap-1, p = 23 95.2 ± 0.0 94.4 94.2 95.0

Flowers102 (Nilsback & Zisserman, 2008) FullyMap, p = 16 90.4 ± 0.6 83.7 70.3 96.9

Food101 (Bossard et al., 2014) FreqMap-1, p = 16 82.3 ± 0.1 79.1 78.9 84.6

UCF101 (Soomro et al., 2012) FullyMap, p = 16 73.1 ± 0.6 70.6 66.1 83.3

OxfordIIITPet (Parkhi et al., 2012) FreqMap-10, p = 16 88.2 ± 0.2 85.0 85.0 89.2

CIFAR100 (Krizhevsky & Hinton, 2009) FullyMap, p = 31 77.9 ± 0.6 73.9 75.3 80.0

EuroSAT (Helber et al., 2019) FullyMap, p = 16 96.8 ± 0.2 96.9 96.4 95.3

DTD (Cimpoi et al., 2014) FullyMap, p = 17 62.5 ± 0.3 63.9 57.1 74.6

ISIC (Codella et al., 2019; Tschandl et al., 2018) IterMap-1, p = 16 74.0 ± 1.0 73.3 75.1 71.9

FMoW (Christie et al., 2018) FullyMap, p = 16 40.8 ± 0.8 36.8 32.9 36.3

GTSRB (Houben et al., 2013) FullyMap, p = 80 93.1 ± 0.2 92.6 92.4 85.8

Average Accuracy 80.6 78.5 76.0 79.9

The prompts are initialized as 0 and formally defined asMp⊙ σ(δ), where σ is the Sigmoid function
that maps the input to a value between 0 and 1 (the scaled input pixel value range), ensuring it has the
same numerical range as the input image. We then update δ using gradient descent.

Pre-trained Classifier. After applying the prompts to the resized image through the preceding
stages, the prompted image is subsequently fed into the pre-trained model, which serves as a feature
extractor to generate predictions in the source domain. We include four representative pre-trained
models in our AutoVP framework: ResNet18 (He et al., 2016), ResNeXt101-IG (Mahajan et al.,
2018), Swin-T (Liu et al., 2021), and a vision-language multi-modal model, CLIP (Radford et al.,
2021). Note that in AutoVP, the weights of the pre-trained classifiers are frozen and kept unchanged.
The details of the models are provided in Appendix A.1.

Output Label Mapping. The pre-trained models predict target data to source labels, while the
last mile for VP is to map predictions on the source labels to target classes. As illustrated in Figure
1, AutoVP provides four types of output mapping and they can be generally categorized into two
groups. (i) nonparametric label mapping: frequency mapping (FreqMap) and semantic mapping
(SemanticMap), which are defined during the initialization of VP training and remain unchanged
throughout the training process; and (ii) trainable label mapping: iterative label mapping (IterMap)
and fully connected layer mapping (FullyMap). These two methods dynamically adjust the mapping
based on the prompted images. The details of each output mapping approach are in Appendix A.2.

4 Experiments
Experimental Setup. We evaluated the performance of AutoVP on 12 downstream datasets (CI-
FAR10, CIFAR100, ISIC, SVHN, GTSRB, Flowers102, DTD, Food101, EuroSAT, OxfordIIITPet,
UCF101, and FMoW), which are common datasets when measuring transfer learning generalization.
Detailed descriptions of these datasets are given in Appendix B.1. We repeated each AutoVP experi-
ment in triplicate, utilizing a learning rate of 40 with the SGD optimizer for CLIP, and a learning
rate of 0.001 with the Adam optimizer for the other pre-trained models. The results of the baselines
(CLIP-VP (Bahng et al., 2022) and ILM-VP (Chen et al., 2023b)) were extracted from the reported
accuracies in their respective papers (please refer to Appendix B.2 for more details). Our experiments
were performed on NVIDIA GeForce RTX 3090 and are implemented with PyTorch.

4.1 Experimental Results

Comparison of AutoVP and Prior Work. To ensure that our comparison of AutoVP against
previously proposed VP approaches was fair, we fixed its source model but relaxed its other hyperpa-
rameter tunings. We compared AutoVP against LP and two state-of-the-art VP baselines, CLIP-VP
and ILM-VP, whose configurations can also be found in Table 2. With the optimal configuration
chosen via the tuning process, AutoVP outperformed these other approaches by up to 6.7% on nine
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of the 12 target datasets. Additionally, AutoVP surpassed the LP baseline on half those datasets, by a
maximum of 27.5% in the case of SVHN. AutoVP also obtained the best average accuracy.

We observed that AutoVP employed FullyMap as the output transformation on most datasets. We
speculate that this might have been because the linear layer has more parameters and thus allows the
achievement of better results. Also, when AutoVP selected initial image scales, it had a tendency to
scale up those images with relatively small prompt sizes. This allowed the VP model to allocate more
attention to the image itself, leading to improved overall performance. As shown in Figure 1, when
ResNet18 was used as the source model, AutoVP outperformed ILM-VP by 24.8% on average. More
experimental results under this setting are provided in Appendix B.8.

AutoVP with Source Model Selection. We also allowed AutoVP to search the optimal source
model for downstream tasks. The optimal settings selected by AutoVP, and a comparison of experi-
mental results can be found in Appendix B.8. Our experimental results show that Swin-T was the
pre-trained model most frequently chosen by AutoVP as most suitable, i.e., in the cases of eight
of the 12 datasets. On average, this choice resulted in 0.43% better accuracy than when CLIP was
utilized as the fixed pre-trained backbone. On the DTD and Flowers102 datasets, however, Swin-T’s
performance was better than CLIP’s by much more: i.e., 6.80% and 3.08%, respectively. These
findings highlight how multiple pre-trained models can be leveraged to enhance performance across a
diverse range of datasets.

Data Scalability. To understand how AutoVP would perform in a data-limited regime, we gradually
and uniformly reduced the amount of training data to 50%, then 25%, then 10%, and finally 1% of each
training dataset’s original size. The experimental results in Figure 2 indicate that AutoVP consistently
outperformed LP across all 12 datasets, and that its relative performance was especially high in the
two scenarios with the lowest data volumes, i.e., 10% and 1% data usage. The dataset-specific results
can be found in Figure 8 (within Appendix B.3).

4.2 Ablation Studies of AutoVP
We designed a range of model architectures as testbeds for examining the performance of AutoVP’s
various components. Our comparisons of these VP architectures included 1) the utilization of a
weight-initialization strategy with FullyMap, 2) the inclusion vs. exclusion of the CLIP text encoder,
3) the presence vs. absence of visual prompts, and 4) the frequency analysis of the learned VP.

Weight Initialization of FullyMap with CLIP. When CLIP was used as the pre-trained model, the
FullyMap output transformation exhibited significantly inferior performance to FreqMap and IterMap
(Figure 3). This is because FreqMap and IterMap can leverage CLIP’s zero-shot property with the
semantic meanings of the labels, whereas the fully connected layer needs to learn the mapping from a
random state. As a result, FullyMap tends to perform poorly in the hyperparameter tuning process,
yet may achieve higher accuracy after completing 200 epochs of training. In Figure 3, for example,
AutoVP suggests that the optimal output transformation for Flowers102 with CLIP is IterMap; but in
reality, FullyMap achieves better performance after training for 200 epochs (87.3%, as against 78.8%
for IterMap).

To address the bottleneck in hyperparameter tuning caused by FullyMap, we introduced weight
initialization (WI). This allows FullyMap to initialize with a more informative mapping based on the
semantic meaning of the class names. As mentioned in Section 3, AutoVP’s FullyMap consists of a
linear layer, which can be characterized as Lt = w · Ls + b where the weight w is a Kt by KtT real
matrix, Kt denotes the number of target classes, and T is the number of templates used in the CLIP
text encoder. The weight initialization is to assign the diagonal of w to be 1, and the rest of it is set to
0, resulting in w = (IKt |0), where IKt is an identity matrix of size Kt, and 0 is a Kt ×Kt(T − 1)
zero matrix, indicating the connection between each target class class_name and its corresponding
text prompts (“This is a photo of a [class_name]”). In Figure 6 (within Appendix A.2), we represent
this concept visually. As shown in Figure 3, our experimental results demonstrate that when utilizing
CLIP as the pre-trained model, FullyMap with proper WI (hatched bar) can also outperform other
mapping approaches.

Impact of the Non-inclusion of Text Encoder in CLIP. When replicating the experimental setting
as shown in Table 1 and establishing a direct connection between the fully connected output mapping
layer and the CLIP image encoder without incorporating the text encoder, there was a substantial
decrease in average accuracy: to 69.0% (see Figure 11, Appendix B.5). Dataset-specific accuracy
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drops were particularly prominent in Flowers102, Food101, and OxfordIIITPet. These outcomes
suggest that label semantics play a crucial role in those datasets.

The Impact of Visual Prompts. We also investigated the effects on the overall performance of
removing the module of visual prompts from the AutoVP pipeline while retaining the pre-trained
model and output-mapping modules. When the ResNet18 model was used, leaving the visual prompts
in yielded better performance than omitting them in just three out of 12 cases: i.e., the SVHN,
GTSRB, and ISIC datasets (Figure 10 (b), Appendix B.4). For the remaining datasets, the inclusion
of visual prompts actually led to a decline in performance. This suggests that when a relatively small
source model is used for VP, a significant improvement in accuracy of the sort reported in Table 8
can primarily be attributed to fully connected layer mapping, and visual prompts may be perceived
as noise. On the other hand, when the CLIP model was used, most of the datasets had positive gain
values (Figure 5 (b)), indicating improved performance, when visual prompts were included. This
suggests that CLIP is more suitable for VP tasks than ResNet18 is.

Frequency Analysis of the Learned Visual Prompts. In Appendix B.9, we also conducted an
analysis from a frequency perspective (Brigham, 1988) to study the generalization of visual prompt
patterns. The results highlighted the effectiveness of prompting with CLIP, harnessing low-frequency
features that generalize to the target domain.

5 Discussions

Tuning Selection. AutoVP provides joint optimization of its multiple configurations and selects
different parameters according to its target tasks. In terms of output label mapping, FullyMap exhibits
superior performance in vision models, but IterMap or FreqMap appear to enhance the performance of
text-image models like CLIP. In this context, weight initialization with FullyMap plays an important
role in CLIP, making this option one of the more frequently chosen output-mapping strategies (Table
1). We also observed that novel designs exploiting larger image scales and mapping a larger number
of source classes tended to yield enhanced performance. More information on selection preferences
during hyperparameter tuning can be found in Appendix B.11.

AutoVP Robustness. We trained AutoVP on CIFAR10 and evaluated its robustness on the corrupted
dataset CIFAR10-C, which consists of 18 types of filters or noise. As shown in Figure 4, AutoVP
maintained greater robustness than ILM-VP, CLIP-VP, and LP. Its loss of accuracy was relatively
small: suggesting that AutoVP exhibits a lower degree of overfitting to the training data and possesses
a higher ability to resist the impact of noise than the other baselines do.

Performance Evaluation on ID/OOD Downstream Tasks. We evaluate the out-of-distribution
(OOD) extent of each dataset relative to the pre-trained CLIP by considering the average confidence
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score (Guo et al., 2017) and the CLIP zero-shot inference. The accuracy gains achieved through
VP (Figure 5) were computed as the difference in accuracy between AutoVP and LP or non-VP
approaches (i.e. visual prompts were removed and output mapping retained). We observed that the
datasets that were more in-distribution (ID), with higher confidence scores and higher zero-shot
accuracy, exhibited smaller accuracy gains from VP. Conversely, datasets that were more OOD,
characterized by lower confidence scores and lower zero-shot accuracy, had their accuracy improved
more through AutoVP.

We also evaluated accuracy gains with ResNet18 pre-trained on ImageNet-1K (Russakovsky et al.,
2015) (Figure 10, Appendix B.4) and, to assess domain differences between ImageNet-1K and other
downstream datasets, we calculated the FID score (Heusel et al., 2017). The results were consistent
with the cases using CLIP. In conclusion, AutoVP is suitable for datasets that exhibit more OOD
characteristics than the source domain dataset.

6 Limitations

This work is subject to some limitations. First, our optimization process did not include certain hyper-
parameters, notably learning rate and weight decay. This omission stemmed from our primary focus
on identifying the best configurations for VP training, and because including such hyperparameters
would have greatly increased execution workload. In addition, when it comes to choosing the best
pre-trained model to fine-tune on the target dataset, You et al. (2021) also argued that, in general,
the sophisticated fine-tuning techniques (e.g., regularization) would not change the ranking of pre-
trained models in downstream tasks. Nonetheless, we conducted supplementary tuning experiments
encompassing various learning rates and weight decays, the results of which can be found in Table 10
(within Appendix B.12). In practice, we suggest enabling the tuning of learning rates, weight decay,
and other model-specific parameters after the initial hyperparameter tuning phase of AutoVP.

Another limitation pertains to the scope of AutoVP, which is oriented toward classification tasks.
We provide an extension on segmentation tasks in Appendix B.6. Recent research has demonstrated
the success of visual prompts in generative tasks (Ramesh et al., 2021, 2022; Liu & Chilton, 2022;
Bar et al., 2022; Sohn et al., 2023). However, expanding support for generative tasks will require
accommodation of their distinctive requirements, e.g., via the integration of a suitable pre-trained
generative model, such as GANs (Goodfellow et al., 2014), VAEs (Kingma & Welling, 2013), or
diffusion models (Ho et al., 2020), along with tailored prompt design. Certainly, our results imply
that there are many avenues for VP research that merit further exploration.

7 Conclusion

This paper has introduced AutoVP, an end-to-end framework that automatically selects the optimal
VP configuration for a downstream dataset. AutoVP demonstrates superior performance over other
state-of-the-art VP methods and transfers learning baselines in both standard and sample-reduced
fine-tuning settings. This research has also yielded important insights into optimal VP configurations,
the effects of downstream data characteristics on VP, and how robustness against image corruption
might be improved. In short, we believe AutoVP is an efficient and expandable tool, and perhaps more
importantly, a useful benchmark that will accelerate the development of VP research and technology.
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Appendix

A Implementation Details

A.1 Pre-trained Classifier Details

Our AutoVP framework includes four pre-trained models: ResNet18 (He et al., 2016), ResNeXt101-
IG (Mahajan et al., 2018), Swin-T (Liu et al., 2021), and CLIP (Radford et al., 2021). Both ResNet18
and Swin-T models were trained on the ImageNet-1K (Russakovsky et al., 2015) dataset, while
ResNeXt101-IG was pre-trained on a large collection of Instagram photos. Additionally, CLIP was
trained on a dataset consisting of 400 million pairs of images and corresponding text from the internet.

In the structural differences, the first three models are single-modality vision models. ResNet18 is
a typical and relatively small convolutional neural network with residual blocks. ResNeXt101-IG
is a deeper residual network that incorporates cardinality, which refers to the size of the set of
transformations (Xie et al., 2017). Swin-T is a vision transformer that operates by dividing the input
image into patches and processing them using the transformer architecture. The last model, CLIP, is a
vision-language multi-modal model that calculates the cosine similarity between image embeddings
and label text embeddings. The prediction is to select the class with the highest similarity score to
the embedding of the input image. The prediction flow is illustrated in Eq. 2, where the input image
is denoted as x, and Kt represents the size of the predictable class set. The token vector of the i-th
class label text, obtained from a tokenizer, is denoted as ClsTki. CLIP utilizes the Image-Encoder()
and Text-Encoder() components to extract features from images and text. The resulting image and
text embeddings are represented as xemb and tembi , respectively. The cosine similarity between any
pair of (image, text) embeddings can be computed, and the class with the highest cosine similarity is
considered as the predicted class ypred.

xemb = Image-Encoder(x)
tembi = Text-Encoder(ClsTki), 0 ≤ i < Kt

ypred = arg max
0≤i<Kt

(
xemb · tembi

∥ xemb ∥∥ tembi ∥
)

(2)

By training with pairs of image and text annotations, CLIP is able to learn correlations between visual
and textual information, achieving state-of-the-art zero-shot accuracy.

A.2 Output Label Mappings of AutoVP
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Figure 6: Output Label Mapping. Illustration of four output mapping methods: (I) Frequency
Mapping, (II) Iterative Mapping, (III) Semantic Mapping, and (IV) Fully Connected Layer Mapping.
(V) represents the weight initialization technique employed in the FullyMap when using CLIP as the
pre-trained model.
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As mentioned in Section 3, AutoVP incorporates four output label mappings: frequency mapping
(FreqMap), iterative mapping (IterMap), semantic mapping (SemanticMap), and fully connected
layer mapping (FullyMap). In the following, we provide more details and the visual illustrations
(Figure 6) of each mapping algorithm.

Frequency Mapping (FreqMap). Proposed by Tsai et al. (2020), FreqMap utilizes the source-label
prediction distribution of the target-domain data to map each target class to the top-m most frequent
source classes. That is, FreqMap maps the target label yt to the top-m source labels, which are the
most frequent labels that fθs classified X̃t as. We describe this m-to-1 FreqMap in Algorithm 1.

Algorithm 1: FreqMap (δ, fθs ,Dt,m)
Input: visual prompts δ, source classifier fθs , target dataset Dt, and the specified number of

source classes mapped to each target class m
Output: mapping matrix M
# Initialization

1 Ks, Kt ← number of source and target classes
2 M← 0Ks×Kt # mapping matrix
3 count← 0Ks×Kt # a zero matrix, records the number of images of each target class being

predicted (by fθs ) as each source class
4 done_s← 0Ks # a boolean vector, records whether the source class has been assigned
5 done_t← 0Kt # a boolean vector, records whether the number of source classes per target

class is equal to m
# Calculate the Frequency

6 foreach (xt, yt) ∈ Dt do
7 x̃t ← P(xt) # generates x̃t from xt and δ using Eq. 1
8 ys ← fθs(x̃t) # the predicted source domain class
9 count[ys][yt]← count[ys][yt] + 1

10 end
11 index_list← ArgSort(count) # get the list of source-target id pairs (Sid, Tid) sorted by

count[Sid][Tid] in descending order
# Define the FreqMap

12 for (Sid, Tid) in index_list do
13 if not done_t[Tid] and not done_s[Sid] then
14 M[Sid][Tid]← 1 # assign the mapping from Sid (source label) to Tid (target label)
15 done_s[Sid]← True
16 end
17 if Sum(M[:][Tid]) == m then
18 done_t[Tid]← True # if the target class Tid has been mapped to m source classes
19 end
20 if Sum(done_t) == Kt then
21 break # early stop if all the target classes has been mapped to m source classes
22 end
23 end
24 return M

In lines 6-10, we traverse all the training data pairs (xt, yt). First, we pad the image xt with the current
visual prompts to obtain a prompted image x̃t. Then, we could obtain the prediction fθs(x̃t) = ys
in the source domain. This gives us a mapping relation from ys to yt, and we increase the count
accordingly. In line 11, we obtain the list of source-target id pairs (Sid, Tid), which is sorted by the
count matrix (count) in descending order. Accordingly, we start defining the mapping of FreqMap
from the most frequently source-target pair. If the source class has not been mapped yet and the
mapping count for the target class has not reached the limit m, we establish the mapping relationship
M[Sid][Tid] = 1 (line 14). We continue this process until all target classes have been mapped to m
source classes. Once this condition is met, the mapping assignment is completed, and we return the
mapping matrix M.

Iterative Mapping (IterMap, or ILM). Proposed by Chen et al. (2023b), IterMap is an iterative
approach for updating FreqMap. At the beginning of each training epoch, the mapping relationship is
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established using the FreqMap with the current prompted image. This means IterMap can obtain a
new mapping distribution that aligns with the updated prompts. Hence, it can be characterized as
bi-level optimization, where the mapping relationship iteratively updates during the training process
of visual prompts.

Semantic Mapping (SemanticMap). Follow the works from Yang et al. (2023) and Yen et al.
(2021), we utilize the text encoder Tokenizer() and text encoder Text-Encoder() of CLIP to
generate embeddings of source and target class names. Subsequently, we map the source-target pairs
based on the highest cosine similarity score between their respective embeddings. We demonstrate
the mapping process using the following equation:

ClsTkys , ClsTkyt = Tokenizer(Nys), Tokenizer(Nyt)

Embys , Embyt = Text-Encoder(ClsTkys), Text-Encoder(ClsTkyt)

Similarity(ys,yt) =
Embys ·Embyt

∥ Embys ∥∥ Embyt ∥
yt ← y∗

s = arg max
ys∈Ys

(Similarity(ys,yt))

(3)

In Eq. 3, let Ys = {0, · · · ,Ks − 1} and Yt = {0, · · · ,Kt − 1} be the set of source and target
labels, where Ks/Kt are the numbers of source/target classes. For the source label ys ∈ Ys with the
classname Nys and the target label yt ∈ Yt with the classname Nyt , we first utilize the tokenizer
to obtain token vectors (ClsTkys and ClsTkyt ) corresponding to Nys and Nyt . Then, the text
encoder is used to obtain their embeddings (Embys and Embyt ). Pair-wise cosine similarity is
calculated between each source and target embeddings, and each target label is mapped to the source
label with the highest similarity.

Fully Connected Layer Mapping (FullyMap). FullyMap uses a linear layer Lt = w · Ls + b with
weights w and bias b to learn the mapping, enabling the transformation of the output source logits
Ls to target logits Lt (Arif et al., 2023). In the case of CLIP with FullyMap, we implement weight
initialization (WI) to enhance the mapping performance. This technique involves setting the weights
between the target labels and their default templates as 1, while setting the rest to 0. With WI, the
linear layer can achieve a favorable initial mapping state, thereby expediting the process of obtaining
a good mapping relation.

A.3 AutoVP Tuning Process

End-to-end Hyperparameter Tuning. Given the flexibility and modularity of AutoVP, its users
must consider numerous settings (n = 222), including how big the initial input image should be,
whether to use a trainable resizing module, which pre-trained classifiers to adopt, what output-
mapping method to implement, and the number of source labels to map for each target label (as
shown in Figure 7). Note that the Visual Prompt component depicted in Figure 1 is not involved in
this initial tuning process, as it does not contain any hyperparameters.

To speed up the tuning operation and save computational resources, we use Ray Tune (Liaw et al.,
2018) along with an early-stop strategy for terminating poor trails. In our experiments, we employed
grid searches to test all configurations. An ASHA scheduler (Li et al., 2018) was used to retain the
top-n tasks, and we continued training them while stopping the remaining tasks early. We established
experimentally that n = 2 top tasks were enough to obtain the optimal setting. When the few-epoch
tuning process (training 2-5 epochs with each setting) is complete, we select the setting having the
highest testing accuracy and conduct complete training using that setting. By using hyperparameter
tuning, AutoVP can efficiently find the best configuration of VP and lead to significant accuracy
improvement in downstream tasks.

Tuning Selection. For the Input Scaling stage, users can choose to enable this scaling feature of
AutoVP to learn the resizing scale of the input image. AutoVP will first select one of three initial
scaling factors, and then start tuning to obtain the optimal prompt size. In the Pre-trained Classifier
stage, users have the option to select from four pre-trained models to serve as the feature extractor.
The Output Label Mapping stage offers four mapping methods to choose from. For FreqMap,
IterMap, and SemanticMap, users can specify the number of source classes that are mapped to a
single target class.
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Figure 7: Hyperparameter Tuning Selection. Illustration of the end-to-end hyperparameter tuning
process in AutoVP with a total of 222 possible configurations.

A.4 Comparison of AutoVP with Other Approaches

Table 2 compares AutoVP against prior VP proposals and the other two baselines proposed to date:
LP and text-prompt (TP)-based zero-shot inference. As the table shows, AutoVP is the only such
framework that considers the broad range of settings that can affect VP performance. Moreover,
thanks to such settings’ collective optimization, AutoVP’s configuration amounts to a breakthrough
in average accuracy across 12 distinct downstream tasks. For instance, with CLIP as the pre-trained
model (see Table 1), AutoVP’s average accuracy is 4.6% higher than CLIP-VP’s (Bahng et al., 2022)
and 2.1% higher than ILM-VP’s (Chen et al., 2023b). AutoVP also surpasses LP’s accuracy by 0.7%
on average, suggesting that it is a competitive alternative to LP in terms of transfer learning.

Table 2: Comparison of AutoVP with other baselines, including Linear Probing, CLIP zero-shot
inference with text prompts (i.e. CLIP-TP in Radford et al. (2021)), CLIP-VP (Bahng et al., 2022),
and ILM-VP (Chen et al., 2023b). The average accuracy is evaluated over 12 downstream tasks (see
Sec. 4). For detailed information about the setting configurations, please refer to Sec. 3.

Method
Pre-trained

Classifier
Prompt Size

Output

Transformation

Output Mapping

Number

Average

Accuracy (%)

Linear

Probing
CLIP —

Modified Last

Classification Layer
— 79.86

CLIP-TP CLIP — Fixed Text Prompt 1 49.54

CLIP-VP CLIP 30 Fixed Text Prompt 1 76.01

ILM-VP
ResNet18 48 IterMap 1 45.19

CLIP 30 IterMap 1 78.45

AutoVP

(Ours)

ResNet18

ResNeXt101-IG

Swin-T

CLIP

Trainable

IterMap

FullyMap

FreqMap

SemanticMap

1/5/10 81.02
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B Experiments

In this section, we provide detailed experiments discussed in the main paper, covering several topics,
including: 1) experimental settings (Section B.1 and B.2), 2) additional AutoVP experiments (Section
B.3, B.4, B.5, and B.6), 3) methods comparisons (Section B.7), 4) pre-trained models comparisons
(Section B.8 and B.9), 5) output mapping (Section B.10), 6) comparison with black-box pre-trained
setting (Section B.14), 7) hyperparameter tuning (Section B.11, B.12, and B.13), and 8) computing
resources (Section B.15).

B.1 The Twelve Downstream Datasets

To assess the efficacy of the proposed AutoVP, we selected the following twelve datasets for our
experiments. The detailed information is shown in 3.

• CIFAR10 & CIFAR100 (Krizhevsky & Hinton, 2009): The datasets consist of labeled subsets of
the 80 million tiny images dataset, which are composed of 32×32 color images.

• ISIC (Codella et al., 2019; Tschandl et al., 2018): The International Skin Imaging Collaboration
(ISIC) developed an international repository of dermoscopic images known as the ISIC Archive. The
images of the datasets were acquired using different devices at several medical centers worldwide.

• SVHN (Netzer et al., 2011): A real-world image dataset of street view house numbers.
• GTSRB (Houben et al., 2013): The German Traffic Sign Benchmark (GTSB) is a multi-class,

single-image classification challenge that was conducted at the International Joint Conference on
Neural Networks (IJCNN) in 2011.

• Flowers102 (Nilsback & Zisserman, 2008): The 102 categories flowers dataset consists of com-
monly occurring flowers in the United Kingdom.

• DTD (Cimpoi et al., 2014): The Describable Textures Dataset (DTD) is a collection of textural
images that have been annotated with a series of human-centric attributes.

• Food101 (Bossard et al., 2014): The food dataset consists of 101 different classes, with a total of
101,000 images.

• EuroSAT (Helber et al., 2019): The Sentinel-2 satellite images dataset for land use and land cover
classification.

• OxfordIIITPet (Pets) (Parkhi et al., 2012): The dataset includes diverse breeds of cats and dogs,
with images exhibiting variations in scale, pose, and lighting conditions.

• UCF101 (Soomro et al., 2012): The action recognition dataset consists of realistic action videos
that have been collected from YouTube.

• FMoW (Christie et al., 2018): The dataset contains satellite images that are used for sites and land
use classification.

Table 3: Dataset Setting
Dataset Class Number Training Set Size Testing Set Size Batch Size

SVHN 10 73257 26032 128

EuroSAT 10 13500 8100 128

Flowers102 102 4093 2463 64

CIFAR100 100 50000 10000 128

UCF101 101 7639 3783 128

DTD 47 2820 1692 32

FMoW 62 76863 22108 128

GTSRB 43 26640 12630 128

CIFAR10 10 50000 10000 128

Food101 101 75750 25250 128

OxfordIIITPet 37 3680 3669 128

ISIC 7 4990 555 128
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B.2 Setup and Baseline Details

We repeated each AutoVP experiment in triplicate, utilizing a learning rate of 40 with the SGD
optimizer for CLIP, and a learning rate of 0.001 with the Adam optimizer for the other pre-trained
models.

The reported accuracy of the baselines (ILM-VP by Chen et al. (2023b), CLIP-VP and LP by Bahng
et al. (2022)) in Section 4 is obtained from the results documented in the respective papers. For
some datasets (such as ISIC, FMoW, and GTSRB), the authors did not include them in their paper;
in this regard, we follow the corresponding experimental settings to obtain baseline accuracy. Our
experiments were performed on NVIDIA GeForce RTX 3090 and are implemented with PyTorch.

B.3 Data Scalability

In the data scalability experiments, Figure 8 illustrates the performance of AutoVP and LP on each
dataset under various data usage proportions. The corresponding settings can be found in Table 4.
Notably, when the chosen pre-trained model is fixed to CLIP, AutoVP outperformed LP in scenarios
with limited data on most of the datasets. In some datasets, such as SVHN, GTSRB, and EuroSAT,
AutoVP performs better than LP for all proportions of data. Besides, in OxfordIIITPet, CIFAR100,
DTD, Food101, UCF101, and Flowers102, AutoVP also obtains promising performance compared
to LP on a small amount of data. This suggests that AutoVP will be a more suitable and effective
solution than LP, especially when training data is limited.
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Figure 8: Data Scalability. The charts present the accuracy of AutoVP and LP with varying
percentages of data usage: 100%, 50%, 25%, 10%, and 1%.
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Table 4: Data Scalability Settings. The table shows the settings for data scalability experiments with
data usage ranging from 100% to 1%. The source pre-trained model is fixed to CLIP. The notation
“Mapping-m” represents mapping m source classes to each target class.

Dataset 100% 50% 25% 10% 1%

SVHN FullyMap, p = 53 FullyMap, p = 51 FullyMap, p = 49 FullyMap, p = 80 FullyMap, p = 80

CIFAR10 IterMap-1, p = 22 FreqMap-1, p = 16 FreqMap-5, p = 16 IterMap-5, p = 16 IterMap-1, p = 16

Flowers102 FullyMap, p = 16 FreqMap-1, p = 16 FreqMap-1, p = 16 IterMap-1, p = 16 FullyMap, p = 16

Food101 FreqMap-1, p = 16 IterMap-5, p = 16 IterMap-1, p = 16 IterMap-1, p = 16 FullyMap, p = 16

UCF101 FullyMap, p = 17 FullyMap, p = 16 IterMap-1, p = 16 FullyMap, p = 16 FullyMap, p = 16

OxfordIIITPet FreqMap-10, p = 16 FreqMap-5, p = 16 FreqMap-5, p = 16 FullyMap, p = 16 FullyMap, p = 16

CIFAR100 FullyMap, p = 30 FullyMap, p = 26 IterMap-1, p = 16 FreqMap-1, p = 16 FullyMap, p = 16

EuroSAT FullyMap, p = 16 FullyMap, p = 16 FullyMap, p = 16 FullyMap, p = 16 FullyMap, p = 16

DTD FullyMap, p = 18 IterMap-10, p = 16 IterMap-5, p = 16 FullyMap, p = 16 FullyMap, p = 16

ISIC IterMap-1, p = 16 FreqMap-1, p = 16 FullyMap, p = 80 FreqMap-5, p = 48 FullyMap, p = 80

FMoW FullyMap, p = 16 FullyMap, p = 16 FullyMap, p = 16 FreqMap-10, p = 16 FullyMap, p = 17

GTSRB FullyMap, p = 80 FullyMap, p = 16 FullyMap, p = 79 FullyMap, p = 48 FullyMap, p = 80

B.4 Downstream Dataset Analysis (ID/OOD vs. Accuracy Gain)

To further understand how the downstream dataset distribution influences the performance of visual
prompting. We conduct experiments to observe the relation between accuracy gain and dataset
characteristics. When using CLIP as the pre-trained model, we define confidence score, obtained
by averaging the maximum softmax probability of predictions across the entire training set, as an
indicator of dataset characteristics. For other vision pre-trained models, the FID score is used to
measure the dissimilarity between the downstream dataset and the ImageNet-1K dataset, i.e. the
degree of out-of-distribution (OOD). We present the Confidence/FID scores of each dataset in Figure
9, providing insights into their OOD characteristics. Furthermore, Figure 10 demonstrates the
accuracy gain for each dataset when using ResNet18 as the pre-trained model. The experimental
results show that when using AutoVP, datasets with a higher degree of OOD tend to benefit from
more accuracy gains.
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Figure 9: Confidence Score and FID Score. We sort the datasets by the degree of out-of-distribution
(OOD), where the one closer to the left indicates higher similarity (in-distribution, ID) to the training
data of the pre-trained model, while the one closer to the right indicates greater dissimilarity (OOD).
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Figure 10: Accuracy Gains with Resnet18. The gains are calculated by taking the difference
between the performance of AutoVP and LP or Non-VP scenario.

Table 5: Performance on Additional Datasets. The
testing accuracy (%) for four additional datasets com-
monly found in VP research. The figure on the right side
shows the accuracy gains.

Dataset AutoVP Setting AutoVP LP ILM CLIP-VP

SUN397 FullyMap, p = 16 65.4 70.9 61.2 60.5

StanfordCar FullyMap, p = 16 61.8 77.6 57.6 56.2

RESISC FullyMap, p = 17 88.5 91.7 86.6 84.5

CLEVR FullyMap, p = 16 83.0 68.0 83.1 81.4

Table 1 has encompassed the prevalent 12 datasets in VP research. Furthermore, to enable a more
comprehensive comparison within a wider spectrum of VP research, we have included additional
datasets—SUN397, RESISC, CLEVR, and StanfordCar—with their respective results available in
Table 5. Our findings consistently demonstrate AutoVP’s superior performance compared to ILM and
CLIP-VP across the most of datasets. Especially notable is the substantial 15% increase in accuracy
observed in the out-of-distribution (OOD) dataset, CLEVR, when compared to linear probing (LP).
However, the in-distribution (ID) datasets, SUN397 and StanfordCar, showcased lower performance
than LP, aligning with the trend of accuracy gain illustrated in Figure 5 in Section 5.
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B.5 The Impact of Text Encoder in CLIP

Figure 11 illustrates the impact on accuracy when incorporating or excluding the CLIP text encoder.
On average, this configuration results in a significant decrease in accuracy of approximately 12%,
highlighting the crucial role of the text encoder in VP with CLIP.
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Figure 11: The Accuracy Difference of AutoVP Variations. The chart shows the difference in
accuracy between AutoVP variations with and without the CLIP text encoder. The numbers above
the bars indicate the accuracy difference.

B.6 Visual Prompting in Segmentation Task

Figure 12: LP and AutoVP in Segmetation model.

Table 6: Performance on Segmentation Datasets. The IoU and pixel accuracy (%) of linear probing
(LP) and AutoVP.

Dataset LP AutoVP

Pets IoU : 0.83, Pixel : 90.7% IoU : 0.77, Pixel : 86.9%

ISIC IoU : 0.64, Pixel : 78.1% IoU : 0.81, Pixel : 89.5%

Although AutoVP primarily focuses on classification tasks, we aimed to delve deeper into various
vision tasks by applying the model to image segmentation. Our VP segmentation framework,
depicted in Figure 12, integrates a FullyMap after the pre-trained model to facilitate pixel-wise
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Figure 13: ISIC Segmentation. Performance on LP and AutoVP with different prompt size (p). It’s
important to note that the performance calculation involves only the target image itself without the
prompts, ensuring a fair comparison to LP. Specifically, the predicted mask is initially cropped to the
region of the original target image and then resized to match the dimensions used in LP.

classification using a custom class number. In contrast, the linear probing approach modifies the final
2D convolutional layer, and the results are depicted in Table 6.

We evaluated segmentation performance using two metrics: IoU (Intersection over Union) score and
pixel-wise classification accuracy. AutoVP exhibited superior performance on both metrics on the
ISIC dataset. Additionally, segmentation examples highlighted that predictions align more accurately
with the ground truth mask when the prompt space is larger (see Figure 13). However, in the ID
dataset (Pets), VP performance was inferior to LP. This aligns with our findings in the classification
task, where OOD datasets derived greater benefits from visual prompts.

B.7 Comparison of AutoVP, Linear Probing, and Full Fine-Tuning

When comparing the performance of AutoVP to that of linear probing (LP) and full fine-tuning
(FF), it’s crucial to acknowledge the significant discrepancy in terms of trainable parameter size.
As FF involves a parameter size that is roughly 100 to 1000 times larger (as shown in Table 15).
Nevertheless, it’s worth noting that the differences in performance between VP and FF are relatively
minor in certain datasets. For instance, in the case of EuroSAT, both AutoVP and FF achieve a 96%
accuracy (as demonstrated in Table 7). This observation suggests that VP retains its advantages even
when faced with such substantial variations in parameter size.

Table 7: Comparison of AutoVP, Linear Probing (LP), and Full Fine-Tuning (FF). With the
EuroSAT dataset and using CLIP as the pre-trained model, the table displays the testing accuracy,
execution time, and trainable parameter size associated with each respective method.

Experimental Info. AutoVP LP FF

Accuracy (%) 96.84 94.62 96.78

Execution Time (second) 2448 2370 3081

Trainable Parameter Size (Million) 0.15 0.005 151.28

B.8 Fixed Pre-trained Model vs. Auto Pre-trained Model Selection

We observed that AutoVP employed FullyMap as the output transformation on most datasets (see
Table 1). We speculate that this might have been because the linear layer has more parameters and
thus allows the achievement of better results. Also, when AutoVP selected initial image scales, it had
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a tendency to scale up those images with relatively small prompt sizes. This allowed the VP model to
allocate more attention to the image itself, leading to improved overall performance.

In addition to the comparisons with CLIP and VP baselines, we further evaluate the performance using
ResNet18 as the pre-trained model and explore a scenario without any pre-trained model restrictions.
The results using ResNet18 are presented in Table 8, while the results for the unrestricted scenario are
provided in Table 9. These comparisons consistently demonstrate that AutoVP outperforms previous
approaches, including LP and the state-of-the-art VP methods.

Table 8: AutoVP with ResNet18. Comparison of VP test accuracy (%) using ResNet18 as the
pre-trained model on 12 datasets.

Dataset AutoVP Setting AutoVP ILM-VP LP

SVHN FullyMap, p = 48 83.74 ± 0.45 75.2 65.0

CIFAR10 FullyMap, p = 48 87.81 ± 0.17 65.5 85.9

Flowers102 FullyMap, p = 16 85.40 ± 1.89 27.9 88.0

Food101 FullyMap, p = 16 54.15 ± 3.53 14.8 50.6

UCF101 FullyMap, p = 16 55.86 ± 1.81 23.9 63.2

OxfordIIITPet FullyMap, p = 16 82.65 ± 0.84 65.4 87.2

CIFAR100 FullyMap, p = 16 63.67 ± 3.48 24.8 63.3

EuroSAT FullyMap, p = 48 93.01 ± 0.15 85.2 93.8

DTD FullyMap, p = 16 54.82 ± 1.14 35.3 60.0

ISIC FullyMap, p = 16 67.44 ± 1.22 57.5 68.6

FMoW FullyMap, p = 16 30.17 ± 0.06 14.8 28.4

GTSRB FullyMap, p = 16 81.52 ± 1.21 52.0 77.4

Average Accuracy 70.02 45.2 69.3

Table 9: AutoVP with source model selection. This table displays the best tuning setting without
any restriction on the choice of pre-trained model, and shows the test accuracy (%) of AutoVP and
the LP baseline of the chosen model across 12 datasets.

Dataset AutoVP Setting AutoVP LP

SVHN CLIP, FullyMap, p = 51 92.86 ± 0.18 65.40

CIFAR10 ResNeXt101-IG, FullyMap, p = 48 95.89 ± 0.07 93.89

Flowers102 Swin-T, FullyMap, p = 16 93.48 ± 0.52 95.75

Food101 CLIP, FreqMap-1, p = 16 82.28 ± 0.09 84.60

UCF101 Swin-T, FullyMap, p = 16 72.96 ± 0.26 75.96

OxfordIIITPet Swin-T, FullyMap, p = 16 90.20 ± 0.55 93.04

CIFAR100 ResNeXt101-IG, FullyMap, p = 48 79.76 ± 0.47 76.09

EuroSAT Swin-T, FullyMap, p = 16 95.98 ± 0.02 95.50

DTD Swin-T, FullyMap, p = 16 69.25 ± 0.58 71.49

ISIC Swin-T, FullyMap, p = 16 71.66 ± 1.45 72.22

FMoW Swin-T, FullyMap, p = 48 39.79 ± 0.83 32.73

GTSRB Swin-T, FullyMap, p = 55 88.10 ± 2.11 74.97

Average Accuracy 81.02 77.64
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B.9 Prompts in Frequency Domain

We have analyzed the learned prompts using the best setting selected from AutoVP and have
represented them in the frequency domain through Fast Fourier transformation (Brigham, 1988). In
Figure 14(a), the prompting result of SVHN dataset with CLIP is notably distinct and achieves the
highest testing accuracy among all the pre-trained models. In the frequency analysis (Figure 14(b)),
the prompts are concentrated in the low-frequency domain (at the center of the plot), with CLIP
displaying the most distinct structure and significantly larger magnitudes compared to the others.
These results validate the efficient learning of prompts with CLIP, harnessing low-frequency features
that generalize to the target domain.
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Figure 14: Prompting Analysis of SVHN Using Various Pre-trained Models. (a) Frame-shape
prompts learned with the best settings selected from AutoVP for a given pre-trained model. (b)
Prompts in the frequency domain by Fast Fourier transformation.

B.10 Output Mapping Analysis

Figure 15: The Weight Distribution of FullyMap in DTD. The top 5 source labels exhibiting the
highest weight values within the FullyMap pertain to (a) the label bumpy and (b) the label scaly.

Figure 15 illustrates that FullyMap can be interpreted as a weighted combination of multiple source
labels, where some human-readable features may exhibit similarity. For instance, in Figure 15(a),
’bumpy’ shows similarities with ’custard apple’, ’disk brake’, and ’pineapple’, while in Figure 15(b),
’scaly’ shares similar features with ’boa constrictor’, ’coho’, and ’common iguana’.

Furthermore, when comparing FullyMap and IterMap, a significant accuracy gap is observed, with
FullyMap achieving 69.96% and IterMap-1 only achieving 40.77%. However, in Figure 16, IterMap
has mapped to some classes that are indeed very close to the target. For instance, in Figure 16(b),
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Figure 16: The Correspondence Between Output Mapping Labels in DTD. Each column rep-
resents the mapping between the target label and its respective top-1 source label in FullyMap. (a)
FullyMap (top-1 class having the largest weight) with swin-t (second row). (b) IterMap-1 with swin-t
(third row).

’braided’ maps to ’knot’, ’bubbly’ maps to ’bubble’, and ’cobwebbed’ maps to ’spider web’. This
demonstrates that a mere combination of source labels is insufficient for achieving better performance;
the weighting in the combination plays a crucial role, which is precisely what FullyMap accomplishes.

B.11 The Preferences in Hyperparameter Tuning Selection
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Figure 17: Average Tuning Results. The three charts display the average few-epoch tuning accuracy
for different selected conditions.

Tuning Preference. AutoVP provides joint optimization of its multiple configurations and selects
different parameters according to its target tasks. In terms of output label mapping, FullyMap exhibits
superior performance in vision models, but IterMap or FreqMap appear to enhance the performance of
text-image models like CLIP. In this context, weight initialization with FullyMap plays an important
role in CLIP, making this option one of the more frequently chosen output-mapping strategies.

Figure 17 illustrates the average tuning results for all datasets across different settings, including
image scale, mapping methods, pre-trained models, etc. In Figure 17(a), among the vision models
(ResNet18, ResNeXt-IG, Swin-T), the FullyMap demonstrates superior performance compared to
the other methods. However, for CLIP, a vision-language model, the FullyMap only shows a slight
advantage over the others. Furthermore, as shown in Figure 17(b), we observed that novel designs
exploiting larger image scales and mapping a larger number of source classes tended to yield enhanced
performance. Experimental results showed that using larger initial scales, such as 1.0 or 1.5 (yielding
square images with a width of 128× 1.0 or 128× 1.5), generally leads to better results when using
FreqMap, IterMap, or FullyMap. Last, since both FreqMap and IterMap can configure the number
(m) of source labels mapped to each target class, we found that increasing this count generally
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improves accuracy for the three vision models (see Figure 17(c)). However, for CLIP, mapping five
source labels appears to be the optimal choice based on the average tuning results.

B.12 Exploring Additional Tuning Axes

In AutoVP, we set the learning rate (LR) for CLIP to be 40 and employed the SGD optimizer with a
momentum of 0.9 and a weight decay (WD) of 0. In this section, we have undertaken supplementary
tuning options within the AutoVP framework. Specifically, we introduce additional choices for the
LR, selecting from 35, 40, and 45 (for CLIP), as well as WD, choosing from 0, 10−5, and 10−10.
The outcomes presented in Table 10 showcase a 0.6% enhancement in accuracy with the additional
tuning options. It is important to note that the execution workload dramatically increases, as it will
involve exploring 9 times more additional combinations in the tuning process.

Table 10: Hyper-Parameter Tuning for Learning Rate (LR) and Weight Decay (WD). The table
displays the optimal tuning configurations and corresponding testing accuracy for both scenarios
with and without additional LR and WD tuning options for AutoVP on Flowers102. The pre-trained
model used is CLIP. The highest accuracy is marked in bold.

Setting Tuning Selection Testing Accuracy (%)

AutoVP

w/o LR & WD tuning

FullyMap, p = 16

LR = 40

WD = 0

90.4

AutoVP

w/ LR & WD tuning

FullyMap, p = 16

LR = 45

WD = 10−10

91.0

B.13 Improved ILM-VP with Tuning Configuration

In order to establish an equitable comparison with AutoVP, we undertake a comprehensive hyperpa-
rameter tuning process for ILM-VP. We investigate tuning options that span 1, 2, 5, and 10 source
classes for output mapping, as well as prompt sizes of 10, 20, 30, 40, and 50. For ILM-VP without
tuning, default settings are maintained, with the mapping number set to 1 and the prompt size set to
30.

The tuning procedure is applied to several datasets, and the results are shown in Table 11. Although
hyperparameter tuning in ILM-VP leads to an improvement in accuracy, it remains unable to surpass
the performance exhibited by AutoVP.

Table 11: ILM-VP with Hyper-Parameter Tuning. The chosen tuning configurations and the
corresponding testing accuracy (%) in ILM-VP. The highest accuracy is marked in bold.

Datasets AutoVP
ILM-VP

w/ Tuning

ILM-VP

w/o Tuning

UCF101
FullyMap, p = 16

Accuracy: 73.1%

mapping number = 5, p = 30

Accuracy: 70.4%
Accuracy: 68.4%

EuroSAT
FullyMap, p = 16

Accuracy: 96.8%

mapping number = 2, p = 30

Accuracy: 96.2%
Accuracy: 96.7%

OxfordIIITPet
FreqMap-10, p = 16

Accuracy: 88.2%

mapping number = 5, p = 30

Accuracy: 86.7%
Accuracy: 85.1%
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B.14 Comparison of AutoVP and BlackVIP

Some visual prompting research has delved into a black-box setting, where the internal architecture
of the pre-trained model remains unattainable during the training process. For instance, BlackVIP
Oh et al. (2023) employs an input-dependent prompt designer to generate visual prompts. These
prompts are then fed into a black-box model, and gradient approximation strategies are utilized to
update the prompt designer. In Table 12, we present a comparison between AutoVP and BlackVIP.
Since BlackVIP uses CLIP as the pre-trained backbone, we report our results using the same pre-
trained model. AutoVP demonstrates a 16% performance increase on average compared to BlackVIP.
This notable difference might be attributed to the variance in update strategies: BlackVIP utilizes
SPSA-GC for black-box models, while AutoVP relies on classic gradient descent. However, due to
the differing objectives of these two studies, direct comparisons may introduce certain unfairness.

Table 12: AutoVP vs. BlackVIP. The testing accuracy (%) of AutoVP and BlackVIP.
Pets Cars Flowers Food SUN DTD SVHN EuroSAT RESISC CLEVR UCF Avg.

AutoVP 88.2 61.8 90.4 82.3 65.4 62.5 92.9 96.8 88.5 82.8 73.1 80.4

BlackVIP 89.7 65.6 70.6 86.6 64.7 45.2 44.3 73.1 64.5 36.8 69.1 64.6

B.15 Computing Resources

In this section, we provide the execution time (measured on NVIDIA GeForce RTX 3090) and the
comparison of trainable parameters of AutoVP. For ease of comparison, we use the Flower102 dataset
for illustration. In Table 13, we provide the end-to-end execution time (hyperparameter tuning +
200-epoch training) of AutoVP. When we measure only the 200-epoch training, AutoVP demonstrates
its competitiveness in terms of similar or even lower training time (see Table 14), compared to the
state-of-the-art VP baselines (ILM-VP and CLIP-VP The comparison of trainable parameters can
also be found in Table 15.

Table 13: Flowers102 End-to-End Execution Time. For the Flowers102 dataset, the pre-trained
model selected by AutoVP is Swin-T, the output mapping is FullyMap, and the prompt size is 16.

Hyperparameter Tuning 200-Epoch Training Total Execution Time
Time (minutes) 146 31 177

Table 14: Execution Time Comparison. The 200-epoch training time (in minutes) on the Flowers102
dataset varies depending on the chosen pre-trained model: Swin-T or CLIP. In both cases, AutoVP
utilizes the FullyMap as the output mapping method with the prompt size 16.

Pre-trained model AutoVP ILM-VP CLIP-VP Linear Probing
Swin-T 31 43 — 28
CLIP 39 76 38 40

Table 15: Trainable Parameter Size. The average trainable parameter sizes (million) are calculated
across the 12 datasets for different pre-trained models, mapping methods, and baselines.

AutoVP

SemanticMap

AutoVP

FreqMap

AutoVP

IterMap

AutoVP

FullyMap
Linear Probing Full Finetune

ResNet18 0.15 0.15 0.15 0.20 0.03 11.20

ResNeXt101-IG 0.15 0.15 0.15 0.20 0.11 86.85

Swin-T 0.15 0.15 0.15 0.20 0.04 27.56

CLIP 0.15 0.15 0.15 0.49 0.03 151.23
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