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Abstract

Large Language Models (LLMs) have shown promise in assisting scientific dis-
covery. However, such applications are currently limited by LLMs’ deficiencies
in understanding intricate scientific concepts, deriving symbolic equations, and
solving advanced numerical calculations. To bridge these gaps, we introduce
SciInstruct, a suite of scientific instructions for training scientific language mod-
els capable of college-level scientific reasoning. Central to our approach is a novel
self-reflective instruction annotation framework to address the data scarcity chal-
lenge in the science domain. This framework leverages existing LLMs to generate
step-by-step reasoning for unlabelled scientific questions, followed by a process of
self-reflective critic-and-revise. Applying this framework, we curated a diverse and
high-quality dataset encompassing physics, chemistry, math, and formal proofs.
We analyze the curated SciInstruct from multiple interesting perspectives (e.g.,
domain, scale, source, question type, answer length, etc.). To verify the effective-
ness of SciInstruct, we fine-tuned different language models with SciInstruct,
i.e., ChatGLM3 (6B and 32B), Llama3-8B-Instruct, and Mistral-7B: MetaMath,
enhancing their scientific and mathematical reasoning capabilities, without sacri-
ficing the language understanding capabilities of the base model. We release all
codes and SciInstruct at https://github.com/THUDM/SciGLM.

1 Introduction

Large language models (LLMs) have shown potential to assist and accelerate scientific discovery [1;
2], helping tasks like protein prediction [3], weather forecasting [4] and geoscience understanding [5].
Despite these promising proof-of-concept trials, recent studies [6; 7; 8; 9] show that even advanced
LLMs like GPT-3.5 and GPT-4 struggle with basic scientific problems, achieving only 28.52%
accuracy on some college-level textbook questions. These scientific questions, such as calculating
energy with the Planck distribution, require a diverse set of skills, including finding the correct
combination of physical concepts and axioms, choice and deduction of formal equations, and rigorous
numerical computing. Before letting LLMs equip these skills to solve basic scientific questions, all
ambitious visions of building LLM agents to assist scientific discovery could be unreliable. This
brings substantial incentives for building scientific instructions and using them to develop foundational
scientific language models.

*Work done while these authors interned at Zhipu AI.
†Corresponding author.
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Table 1: Comparison between SciInstruct and
other related instruction datasets.

Dataset Domain College

Math Physics Chemistry Lean Level

Galactica [1] ! ! ! % Unknown
MathInstruct [10] ! % % % %

MetaMath [11] ! % % % %

WebInstruct [12] ! ! ! % %

SciInstruct ! ! ! ! !
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Figure 3: Average accuracy on CEval-Sci, Sci-
Eval, SciBench, MATH, and SAT-Math bench-
marks of different LLMs.

However, training LLMs to understand science (e.g., physics, chemistry, math) is much more
challenging than many general reasoning tasks, requiring more complicated skills. Therefore, the
core of improving LLMs’ scientific problem-solving capabilities is to build large-scale and high-
quality instruction datasets, which shall cover all the required skills. We thus aggregate data to
improve each skill: 1) for scientific concept understanding, we gather a substantial amount of physics
and chemistry questions that require basic science knowledge; 2) for numerical calculation, we crawl
and utilize additional and more advanced mathematical calculation data; 3) for rigorous deduction of
symbolic equations, we incorporate formal theorem proofs written in Lean. Such a mixture of data
sources enables the trained model not to overfit to a single subject but to acquire some general and
fundamental skills to solve different scientific tasks.

On the other hand, the scale of available instruction data from the internet for scientific problems
is way smaller than other tasks. As scientific content often requires certain expertise to create,
and high-quality information is often protected by intellectual property, most data we can legally
access only contain question-answer (QA) pairs without detailed chain-of-thought reasoning steps
(R). However, merely training LLMs on QA pairs will lead to very bad results and even harm their
general language capability. To get high-quality reasoning steps (R) as instruction, we propose a self-
reflective instruction annotation framework that asks LLM to autonomously annotate, critique, and
revise reasoning steps, with minimal human intervention. Specifically, LLM first tries to generate both
reasoning steps and answer the given question (Q) only; then, for those outputs with incorrect answer
prediction, we ask LLM itself to identify the error type, based on which to address the error and
revise the output, until getting the correct answer. Such a self-reflective annotation framework solely
utilizes AI rather than humans to collect reasoning traces (R) as instructions, while guaranteeing
the quality and addressing the potential mistakes of existing LLM with careful answer checking and
LLM self-reflection.

After consolidating the questions and answers produced by self-reflective annotation, we construct
SciInstruct, a comprehensive dataset instruction tuning scientific language models. Figure 1 and
Figure 2 present the domain and question type proportions of SciInstruct. Table 1 concludes
the key differences between existing datasets and ours. In this work, we choose three LLMs, i.e.,
the ChatGLM3 [13; 14] (6B and 32B), Llama3-8B-Instruct [15], and Mistral-7B: MetaMATH [16;
11], as our backbone base models. For example, by fine-tuning the ChatGLM series model on
SciInstruct, we obtain the SciGLM model. We then evaluate the fine-tuned models through three
types of evaluation tasks, including scientific test sets, mathematical benchmarks, and general
language and coding tasks, and show the average accuracy on scientific benchmarks of different
LLMs in Figure 3. Through instruction tuning, we achieve a 4.87% improvement over the 6B model,
and 2.67% improvement over the 32B model, outperforming many previous state-of-the-art models
with the same parameter size, including Galactica [1] for science problems, and MAmmoTH [10]
for math problems. We also show tuning our instruction datasets does not sacrifice general language
understanding capabilities, making SciGLM a good suite of scientific language models for both
human-AI communication as well as scientific domain-knowledge expertise.

We highlight our contributions as follows:
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Figure 4: The pipeline of constructing SciInstruct. On the far left is a mix of training datasets.
The purpose of the annotation is to supplement chain-of-thought processes with reflective generation.
The goal of the filter is to train an instruction-quality classifier and only keep high-quality reasoning
traces as instructions.

• From the data perspective, we construct SciInstruct, a comprehensive scientific instruction
tuning dataset that includes physics, chemistry problems, math, and formal proofs.

• From the method perspective, we propose a self-reflective annotation pipeline for LLMs to
autonomously curate instruction datasets.

• From the model perspective, to verify the effectiveness of our SciInstruct, we finetune dif-
ferent LLMs (the ChatGLM3 series model, Llama3-8B-Instruct, and Mistral-7B: MetaMATH)
on SciInstruct and show performance improvements on various scientific and mathematical
benchmarks, without sacrificing general language understanding tasks.

2 SciInstruct

Many research [17; 10; 12] have shown that fine-tuning pre-trained LLMs on high-quality CoT
reasoning data can gain performance improvement by enabling the model to better utilize the
knowledge memorized through pre-training, follow more accurate and human-readable reasoning
styles and language formats. However, the main challenges of constructing scientific instructions
include the knowledge and complexity required and the smaller scale of available data. Therefore,
we seek to tackle these obstacles by creating SciInstruct to enhance the LLMs’ scientific problem-
solving capabilities. Figure 4 illustrates our meticulous design of essential sub-modules aimed at
gathering large-scale, high-quality instructions. These critical sub-modules encompass self-reflective
instruction annotation and noisy instruction filtering. SciInstruct comprises a total of 254,051
verified instructions.

2.1 Diverse Instruction Collection

Our objective is to build a comprehensive and diverse dataset that encompasses scientific knowledge
in terms of depth, wide coverage, and diversity. To achieve this, we will focus on scientific fields
and curate several top-tier datasets that are extensively utilized and cover a wide range of scientific
disciplines, such as physics, chemistry problems, mathematics, and formal proofs. To initiate the
process, we collect questions from a variety of sources, including textbooks, pedagogical materials,
and problem sets.

Instruction Subject. As show on the left side of Figure 4, we create data from the following subjects:

• Physics. This subject aims to address the challenge of processing complex physical problems
with step-by-step solutions and assessing the ability of LLMs to comprehend and analyze physics
problems. Public training datasets such as Fundamentals of Physics and Physical Chemistry are
observed to lack college-level physics knowledge. To address this gap, we collected a large set of
physical questions from a wide array of subjects (e.g., dynamics, quantum physics, electrodynamics,
etc.) from typical physical textbooks, along with a comprehensive dictionary of physics problems
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Generate
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[Sampled Output] The phase difference Δφ = π/6, the distance between 
two points Δx = 0.2m, and the vibration period T = 0.4s are known. According 
to the phase difference and the relationship between the wavelength: Δφ = 2 PI 
(Δx/lambda), we have wavelength lambda = 1.2m. Then according to the 
relationship between wavelength λ and period T and wave speed v: v = λ/T, the 
known value is substituted into the above formula: v = 1.2/0.4 = 3m/s. The 
wave speed is 3m/s.

LLM

[Reflection] The error in the solution is that the relationship between 
phase difference and wavelength used in the calculation of wavelength is 
incorrect. The correct relation should be Δφ = 2PI (Δx/lambda). 
[Answer] First, according to the formula ∆phi = 2 PI (∆x/lambda), we 
know that lambda = 2 PI (0.2)/(PI / 6) = 1.2 m. Next, known vibration period T 
= 0.4s, according to the definition of wave speed v formula v = lambda/T, we 
have v = 1.2m / 0.4s = 3m/s. In summary, the wavelength is 1.2m and the 
wave speed is 3m/s.

LLM

[Reflection] The error in the solution is that the ratio of the phase 
difference π/6 to the full wave phase 2π, rather than half wave phase π, i.e. 
π/6 ÷ 2π, should be used to determine the ratio of the distance between two 
points to the wavelength.
[Answer] First, known phase difference Δphi=PI / 6, distance between
two points Δx = 0.2 m, we can use the formula Δphi = 2 PI (Δx/lambda) to
solve the wavelength lambda. We can know that lambda = (2 PI (0.2)/(PI / 6)
= (2 x 0.2)/(1/6) = 2.4 m. Next, known vibration period T = 0.4s, according
to the definition of wave speed v formula v = λ/T, we obtain v = λ/ T = 2.4m
/ 0.4s = 6m/s. To sum up, the wavelength is 2.4m and the wave speed is 6m/s.

LLM

[Prompt] On a ray of simple harmonics, the vibration phase difference between two points 
0.2\\mathrm{~m} is \\pi/6. It is also known that the vibration period is 0.4\\mathrm{~s}, then the 
wavelength is, and the wave speed is?

Figure 5: The workflow and quantity of data for self-reflective instruction annotation framework.

and solutions. Note that most of these physics questions only contain a single answer without a
step-by-step solution.

• Chemistry. We gathered questions from various chemistry subjects, including college-level General
Chemistry, Analytical Chemistry, Biochemistry, and Inorganic Chemistry. Unlike Physics, these
Chemistry problems emphasize more on knowledge concepts and require less calculation.

• Math. College-level mathematical tasks are characterized by their intricate logic and high com-
plexity. We have gathered math problems encompassing various mathematical subjects such as
Calculus, Algebra, and Advanced Mathematics. These problems come in different formats, including
multi-choice questions, calculations, and complex problem-solving scenarios. Our collection process
involves sourcing problems from public Q&A websites, problem sets, and textbooks.

• Formal Proofs (Lean). SciInstruct also includes data from formal mathematics. In formal
math, theorems and proofs are expressed in formal logic instead of natural language. They look like
computer programs. For example, “theorem gcd_self (n : Nat) : gcd n n = n” is a theorem
that says: For any natural number n, the greatest common divisor of n and itself is n. And “cases
n <;> simp [gcd, mod_self]” is a proof of this theorem. There are many languages for writing
formal theorems and proofs; examples include Coq [18], Isabelle [19], and Lean [20]. We chose to
include data from Lean, as it offers a vast math library and is currently the most popular in the math
community. Therefore, it has abundant theorems and proofs written by mathematicians, covering
diverse topics in graduate-level mathematics, such as analysis, geometry, and algebra. Specifically,
we process the data from LeanDojo [21] and format it to align with the successive deduction process,
ensuring its relevance and applicability to the model’s training for mathematical reasoning tasks in
natural language. This preprocessing step helps bridge the gap between the Lean dataset’s nature and
the model’s expected learning signals. Finally, we obtained 40,248 instructions for theorem proof.
Like Appendix A.3, we form an instruction for each theorem and its proof.

Multi-lingual Instruction. To enhance the overall quality and effectiveness of the curated dataset,
we also translate the default Chinese questions into English. We found that LLMs tend to generate
correct solutions after translating these problems into English for some Chinese problems that do
not obtain correct solutions. This improved performance is likely due to the higher-quality English
corpus used during the pre-training of LLMs. Therefore, we have embraced this strategy to construct
SciInstruct for Chinese questions.

Summary. In total, we gathered 257,143 raw questions, the majority of which lacked step-by-step
reasoning steps. We aim to supplement these through a self-reflective annotation process.
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Table 2: Ablation study of filter step. We arranged
the samples by score and excluded the lowest 10%.
The resulting numbers represent the average weighted
accuracy on evaluation tasks.

Type Ave. Sci Ave. Math Ave. {Sci+Math}

Unfiltered 43.57 48.50 46.03
Filtered 43.85 49.24 46.54

Table 3: Statistics of SciInstruct across
subjects.

Subject # Number Proportion

Physics & Chemistry 123,869 48.76%
Math 89,934 35.40%

Formal Proofs (Lean) 40,248 15.84%

Total 254,051

2.2 Self-Reflective Instruction Annotation

Given a language model π to answer question Q, recent studies [22] have shown that by first forcing
it to generate step-by-step reasoning steps (R) first, the overall performance for correctly generating
answer A can be significantly improved, via: Pπ(A | Q) = ER∼Pπ(R|Q)

[
P (A | R,Q)

]
. This is why

many instruction datasets aim to collect high-quality intermediate solutions to train LLMs generating
correct step-by-step solutions. The key challenge for the science domain, as we state above, is that
most of the QA pairs we collect do not contain ground-truth reasoning paths (R). Getting the correct
intermediate reasoning R given QA can be regarded as a discrete latent variable inference problem via
posterior sampling. However, in practice, we cannot afford to sample all possible R from LLM. Here
we adopt a simplified strategy for solving it: 1) Utilizing a powerful LLM (we use GPT-4-0613), we
sample each multiple times for each question, recording its reasoning traces as well as the predicted
answer; 2) We filter out only the traces with a correct predicted answer, by assuming only with correct
traces, LLM can get a correct answer.

LLM Self-Reflection. However, even GPT-4 cannot consistently produce accurate answers after
multiple trials, and the above procedure can only collect R for a portion of questions. Drawing on
prior research demonstrating the capacity of language models for self-correction [23; 24], we refine
the CoT process using a self-reflective framework, as depicted in the middle of Figure 4. The final
reflective generation process entails three stages. Initially, we employ a simple CoT prompt (Prompt
1) to obtain step-by-step solutions for each question. To obtain an accurate assessment of reasoning
results, we employ a GPT-4 labeling method based on an outcome reward model (ORM) [25] as
a basic implementation in our work, rather than the expensive process reward model (PRM) [25]
that typically requires manual annotation, especially for complex scientific reasoning. We filter out
incorrect solutions by applying the GPT-4 labeling method, resulting in 19,824 correct solutions.
Subsequently, the incorrect solutions from stage one and their respective questions enter stage two.
Here, a reflective prompt (Prompt 2) assists GPT-4 in generating correct answers by analyzing its
errors from stage one. The newly generated solutions are then filtered again by GPT-4, and the
undesirable ones proceed to stage three. In stage three, based on Prompt 2, we incorporate the real
answer as a direct hint in the prompt (Prompt 3) to further aid in question resolution. The final
segment of correct solutions is obtained after the generation and filtering process. We illustrate the
reflective generation in Figure 5 and quantify the amount of data generated by each process.

2.3 Filtering Out Low-Quality Instruction

Though the above procedures give us the annotated reasoning steps (R), not all of them are correct.
The error can come from two sources: 1) though LLM generates a correct answer, the intermediate
reasoning can still be wrong [26]; 2) the question and ground-truth solutions transformed via Optical
character recognition (OCR) may be incomplete and unable to be successfully compiled. Therefore,
we propose another step to train an instruction-quality classifier and filter out low-quality instructions.

Quality Data Synthesis. We randomly selected a subset of questions from our labeled dataset of
11,553 questions as positive samples. To generate negative samples, we prompted ChatGLM2-6B,
GPT-3.5-turbo-0613, and GPT-4-0613 to provide step-by-step answers to selected questions. We
filtered inaccurate answers from ChatGLM2-6B and labeled the solutions from GPT-3.5-turbo and
GPT-4 using a formatted prompt method demonstrated in Figure 11 in Appendix A.4. These solutions
were merged with annotated solutions from the original dataset to train our classifier. The composition
of the merged dataset is detailed in Table 7 in Appendix A.5.
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Instruction-quality Classifier. We improved dataset quality by training an instruction-quality
classifier based on Table 7 using ChatGLM3-6B-Base features. Using these data, we train an
instruction-quality classifier via the feature pre-extracted by a ChatGLM3-6B-Base model. The
classifier outputs a logit ranging from -1 to 1, with higher scores indicating more reliable answers.
This logit is used to rank and select high-quality data from the noisy dataset. Table 2 demonstrates the
effectiveness of supervised fine-tuning on both filtered and unfiltered datasets at a 6B scale, showing
that models trained on a filtered dataset perform better.

Error Analysis. As our classifier filter is trained on labeled datasets and generated solutions, errors
in negatively labeled solutions from ChatGLM2-6B, GPT-3.5-turbo, and GPT-4 can significantly
impact the classifier’s performance. Therefore, we conduct an error analysis and categorize them
into Comprehensive mistakes, Calculation mistakes, and False reasoning. This analysis is detailed in
Figure 12 in A.6, demonstrating the classifier’s capacity to recognize these errors in the dataset.

Summary. Based on the aforementioned key sub-modules, we have constructed the SciInstruct
dataset, which comprises 254,051 instructions, as illustrated in Table 3.

2.4 Instruction-Tuning with SciInstruct

As our foundational model, we choose three LLMs, i.e., ChatGLM3 (6B and 32B), Llama3-8B-
Instruct, and Mistral-7B: MetaMATH. After establishing the base model, we have standardized all
data into a chatbot-style format. Subsequently, we have fine-tuned the foundational model using
the SciInstruct, enabling us to validate our constructed SciInstruct. Throughout the fine-tuning
process, we have conducted experiments using the Huggingface transformers library. For both the 6B
and 32B models, we have utilized a learning rate of 3e-6, employed a linear scheduler, and trained
for two epochs. To efficiently train the model, we have leveraged DeepSpeed [27] training.

Table 4: Results on scientific reasoning tasks. Experiments indicate that fine-tuning on
SciInstruct consistently outperforms the base model across various parameter scales. Avg. Sci
represents the weighted average score of all scientific tasks within the same evaluation category,
while Avg. {Sci+Math} signifies the weighted average score on both scientific and mathematical
tasks. Within each parameter setup, Bold spotlights the one with best performance, and Underline
denotes the second-best result. Results marked as † are benchmarked by ourselves.

Model CEval-Hard CEval-Sci MMLU-Sci SciEval SciBench GPQA_Diamond Avg. Sci Avg. {Sci+Math}

(API, parameter details unknown)

GPT-4 54.96 60.55 - 73.93 28.52 39.70 - -
GPT-3.5-turbo 41.37 46.83 - 66.97 12.17 - - -
Claude-v1.3 39.14 44.64 - 63.45 - - - -

(# parameter = 6B∼7B)

LLaMA-2-7B 28.29† 30.00† 30.41 28.37 0.40 - - -
Galactica-6.7B 11.84† 11.44† 30.68 50.87 - - - -
ChatGLM2-6B 29.61† 45.71† 37.09† 53.02† 1.54† - - -

ChatGLM2-6B-Base 32.90† 40.95† 38.06† 50.38† 1.20† - - -
ChatGLM3-6B 36.84† 38.57† 41.78† 56.56† 2.40† 28.70 34.14 29.73

ChatGLM3-6B-Base 45.40† 54.29† 40.16† 61.69† 2.40† 24.75 38.12 40.34
SciGLM (ChatGLM3-6B-Base) 51.97 60.00 45.34 62.09 3.77 25.25 41.40 45.32
Llama3-8B-Instruct (zero-shot) 26.32† 27.62† 26.90† 71.38† 1.03† 27.27† 30.09 28.58
Llama3-8B-Instruct (few-shot) 25.66† 23.33† 52.67† 71.38† 3.60† 31.31† 34.66 37.92

+ SciInstruct 32.24 34.76 40.86 66.47 3.60 29.29 34.54 36.04
Mistral-7B: MetaMATH (zero-shot) 9.87† 8.57† 28.25† 63.61† 4.63† 27.78† 23.79 25.57
Mistral-7B: MetaMATH (few-shot) 9.21† 19.52† 44.74† 63.61† 6.17† 29.29† 28.76 33.92

+ SciInstruct 30.92 38.10 42.16 64.16 6.23 27.27 34.81 37.91

(# parameter = 12B∼13B)

LLaMA-2-13B 19.74† 19.05† 35.85 36.96 1.37 26.20 22.59 22.13
Vicuna-13B - - 32.13 53.93 - - - -

(# parameter = 30B∼32B)

Galactica-30B - - 35.53 54.96 - - - -
ChatGLM3-32B-Base 53.95† 64.29† 50.30† 67.38† 4.29† 22.22 43.74 48.62

SciGLM (ChatGLM3-32B-Base) 56.58 66.19 49.38 69.84 5.15 25.76 45.48 51.47

3 Benchmark on SciInstruct

3.1 Experimental Setup

Scientific and Mathematical Tasks. The evaluation tasks are summarized in Table 8 in Appendix A.7.
These tasks have been chosen as out-of-domain benchmark datasets, encompassing CEval-Hard [28],
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Table 5: Results on mathematical reasoning. The Avg. Math represents the weighted average score
of all mathematical tasks within the evaluation category. Results marked as † are benchmarked by
ourselves.

Model GSM8K MATH Mathematics SAT-Math MMLU-Math CEval-Math Avg. Math

(API, parameter details unknown)

GPT-4 92.00 42.50 - 95.00 - 53.91 -
GPT-3.5-turbo 80.80 34.10 - 70.90 - 40.81 -
Claude-v1.3 - - - - - 37.66 -

(# parameter = 6B∼7B)

LLaMA-2-7B 14.60 2.50 6.00 26.80 29.80 30.00† 18.28
Galactica-6.7B 10.20 2.20 4.60 17.50 28.00 14.48† -
WizardMath-7B 54.90 10.70 9.30 25.40 31.10 - -

MAmmoTH (CoT)-7B 50.50 10.40 9.20 32.70 39.90 - -
MetaMath-7B 66.50 19.80 - - - - -

MAmmoTH & MetaMath-7B 66.30 24.10 18.30 41.40 44.40 - -
ChatGLM2-6B 25.85 6.90† 14.30† 39.55† 38.91† 36.67† 27.03

ChatGLM2-6B-Base 31.54 7.84† 17.10† 34.55† 40.45† 32.22† 27.28
ChatGLM3-6B 29.05 9.92† 11.60† 39.09† 41.07† 21.11† 25.31

ChatGLM3-6B-Base 72.93 25.38† 29.30† 55.91† 31.83† 40.00† 42.56
SciGLM (ChatGLM3-6B-Base) 73.62 25.18 31.80 65.46 49.38 50.00 49.24
Llama3-8B-Instruct (zero-shot) 7.35† 20.76† 4.50† 58.64† 54.52† 16.67† 27.07
Llama3-8B-Instruct (few-shot) 63.38† 30.00† 22.30† 57.27† 55.24† 18.89† 41.18

+ SciInstruct 63.76 31.40 22.60 43.64 42.81 21.11 37.55
Mistral-7B: MetaMATH (zero-shot) 76.12† 29.34† 23.90† 15.45† 10.37† 8.89† 27.35
Mistral-7B: MetaMATH (few-shot) 72.33† 28.28† 24.40† 50.45† 42.40† 16.67† 39.09

+ SciInstruct 76.65 30.30 25.00 43.82 41.48 28.89 41.02

(# parameter = 12B∼13B)

LLaMA-2-13B 28.70 3.90 11.50 32.70 34.40 18.89† 21.68
Vicuna-13B 28.40 5.80 10.00 34.00 34.10 - -

WizardMath-13B 63.90 14.00 14.10 24.50 32.10 - -
MAmmoTH (CoT)-13B 56.30 12.90 11.70 43.60 42.30 - -

MAmmoTH & MetaMath-13B 71.04 26.18 20.60 48.18 48.25 - -

(# parameter = 30B∼32B)

Galactica-30B 41.70 12.70 11.80 37.70 37.90 - -
ChatGLM3-32B-Base 81.80 31.60† 38.60† 67.73† 50.10† 51.11† 53.49

SciGLM (ChatGLM3-32B-Base) 83.70 32.86 35.00 76.36 61.29 55.56 57.46

CEval-Sci [28], MMLU-Sci [29], SciEval [6], SciBench [7], GPGQ [8], GSM8K [30], MATH [31],
Mathematics [32], SAT-Math [33], MMLU-Math [29] from MathInstruction, and CEval-MATH [28].
These evaluation datasets cover a broad range of subjects, including physics, chemistry, and math.

General Tasks. Furthermore, we assess the generalization abilities of tasks across various scales
when fine-tuning models. These tasks include assessing knowledge abilities (MMLU [29] and
CEval [28]) and code generation (MBPP) [34].

Evaluation Metrics. The default setting for the fine-tuned base model inherently provides the CoT
solution. Hence, we conduct all experiments using CoT settings. To thoroughly and accurately
evaluate the capabilities of different models, we employ the accuracy metric for all tasks except for
code generation, for which we use the pass@1 metric.

Baselines. We consider the following baselines(e.g., GPT-4 [35], GLM [13; 14; 36] and LLaMA
Base [37], Continue Pre-training, and Dataset-specific Tuning, etc.) and describe details in Ap-
pendix A.8. We employ a standardized evaluation framework to compare GLM and LLaMA Base
baselines fairly. To gauge performance in the MATH task, we utilize zero-shot and 8-shot configu-
rations to determine the highest accuracy. Additionally, for Mathematics, SAT-Math, MMLU, and
CEval, we employ a chat module for assessment. When dealing with multiple-choice questions, we
formulate the prompt as “Therefore, among A through D, the answer is”.

Data Contamination. Both SciInstruct and the evaluation benchmarks fall within the science
domain. To minimize any potential data contamination and strengthen the integrity of our results, we
ensure that the training set used to construct SciInstruct was not derived from the test sets utilized
in our evaluation. In other words, there was no overlap between the SciInstruct and the evaluation
benchmarks used in our experiments.
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3.2 Main Results and Analysis

Table 4, Table 5, and Table 6 present experimental findings for scientific and mathemat-
ical benchmarks, as well as general tasks. The results show that training on the pro-
vided SciInstruct benefits reasoning tasks, improving performance in scientific reason-
ing (i.e., CEval-Sci, SciEval, SciBench, MMLU-Sci) and transferring to mathematical tasks.

Table 6: Results on general language
understanding tasks. Fine-tuning does
not sacrifice most language tasks and only
drops a bit on the code generation task.

Model MMLU CEval MBPP Avg.

GPT-4 86.40 68.70 83.00 79.37

ChatGLM3-6B-Base 61.32 67.09 55.80 61.40
SciGLM (6B-Base) 61.38 67.16 45.00 57.85

ChatGLM3-32B-Base 69.05 79.94 58.20 69.06
SciGLM (32B-Base) 70.08 79.64 56.60 68.78

Such performance improvement is consistent with differ-
ent scales of based model parameters, across 6B and 32B.
In addition, SciGLM’s performance improvement in sci-
entific reasoning does not sacrifice its general language
understanding capabilities. As shown in Figure 13 in A.9,
on standard tasks like MMLU and CEval, SciGLM even
achieves slight performance improvement. On code gen-
eration like MBPP, the performance is slightly lower but
is overall consistent. As shown in Figure 15 in A.10, we
present a statistics problem in SciBench that is accurately
solved with the SciGLM (32B).

4 SciInstruct Analysis

Influence of Data Mixture. We further explore how the diverse subjects within the SciInstruct
mixture affect downstream tasks when training the SciGLM-6B model. By employing a
Leave-One-Out strategy, i.e., omitting one subject at a time from the dataset and retraining,
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Figure 6: Influence of different domains
in fine-tuning data towards target tasks.
Weight is calculated by (Acc. (SciGLM) - Acc.
(Exclude subjects) / Acc. (SciGLM)) under the
leave-one-out subject setting.

we assess the significance of each subject based
on the performance impact across various tasks.
As shown in Figure 6, we have an interesting find-
ing: each subject contributes tasks that are not re-
stricted to its immediate domains. For instance,
Physics and Chemistry data significantly aid in
CEval-Math tasks, while Math and Formal Proof
improve SciBench performance. This shows that
our mixture dataset enables LLMs to acquire some
general reasoning skills for solving scientific ques-
tions instead of merely overfitting to a certain task
distribution, and achieving universal improvement
on different downstream tasks.

Influence of Data Scaling. One central question for
instruction dataset creation is how many samples
are needed for a model to learn specific skills [38].
Prior works [39] have shown that for dialogue tasks,
as few as 1000 high-quality instruction samples can
lead to significant improvements. We’re interested
in analyzing data scaling law for scientific problem-
solving. Through retraining the model with varying
data proportions and analyzing the outcomes in sci-
ence and math, as shown in Figure 7, one interesting
pattern we find is initial data augmentation of 10%
yields improvements, but further additions show no
significant gains until surpassing a 50% threshold.
We hypothesize that the early gains are due to that
finetuned LLM learning basic reasoning and task
formatting, which requires fewer instruction data (less than 30k). Advancing to more complex
skills, such as equation deduction, necessitates a larger dataset for effective learning and generalize.
Future research on improving data quality could potentially lower the data requirement for LLM skill
learning.

Pass@K Analysis on Sample Diversity. One interesting observation of LLM reasoning is that with
non-zero temperature and sampling multiple times, even for those very hard questions, LLM still has
a high chance of providing a correct answer. Pass@K is widely used for code generation [40; 41] and
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Figure 8: Evaluating Pass@K on SciBench
(Quantum Chemistry) and SciEval. All sam-
ples are generated at temperature 1.0. Results
show that our instruction tuning does not influ-
ence the sample diversity, and increases the per-
formance even with large K.

math reasoning [25]. To analyze whether our SciInstruct can really improve the general reasoning,
we simulate different Pass@K values as shown in Figure 8. We use fine-tuned SciGLM (32B) and
ChatGLM (32B) to generate N ≥ K (in this paper, N = 30 and K ≤ 25) solutions per question,
allowing for a more accurate examination of the LLM’s true pass rate on that question. We find
fine-tuning does not influence the sample diversity. SciGLM (32B) with K=25 on SciBench and K=3
on SciEval can achieve comparable performance to GPT-4, showing the potential of our fine-tuned
model to achieve better results. We hypothesize that high-quality and diverse reasoning data indeed
lead the model to good behavior/skills for analyzing and solving hard scientific problems instead of
overfitting the training set, showing the general usability of our self-annotated SciInstruct dataset.

5 Conclusion
In this work, we present a self-instructive annotation framework to create a high-level and high-quality
dataset, SciInstruct, to enrich the scientific knowledge of LLMs. Using SciInstruct, we train
three LLMs, which significantly improve many scientific and mathematical benchmarks over the base
models and outperform many state-of-the-art LLMs that have an order of magnitude more parameters.
Our research underscores the significance of diverse training data as well as LLM self-annotation and
correctness for enhancing general reasoning capability, even for hard domains like science.

Limitation
In this section, we discuss more limitations during the research of SciInstruct.

Scale of Dataset and Model. Even though our training dataset has expanded to approximately
254k, improving model performance still necessitates access to an even larger dataset. Our model’s
experimental outcomes are carried out at 6∼8B and 32B parameters, leading to a relatively better
performance. However, it’s important to note that these performances are constrained by the model’s
scale. Moving forward, it’s worth exploring the potential benefits of leveraging larger-scale datasets
and models to further improve performance.

Using Data Classifier to Enhance the Generation of Models. In line with what was discussed
in Section 2.3, we employ an instruction-quality classifier to boost the instruction quality, yielding
improved performance as shown in Table 2. However, we anticipate that the instruction-quality
classifier, also referred to as the reward model, could provide even greater benefits. One particular
avenue of improvement could be bootstrapping data to improve the ability of the base model.

Broader Impact
Positive impact. This paper aims to construct high-level and high-quality instruction to improve the
scientific reasoning capability of LLMs, which helps LLMs to better give the answers to questions at
the college level. Collecting diverse instructions, annotating self-reflective instructions, and filtering
out low-quality instructions provide researchers insights to prepare training datasets.

Negative impact. A drawback of this work is that the scale of the training dataset and model is
relatively small, and we can address this by bootstrapping a more large training dataset. We believe
that the benefits of data generation manner outweigh the downside.
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A Appendix

A.1 Related Works

Recently, there have been advances to bridge the gaps in reasoning difficulty and evaluation subjects
from three perspectives for scientific reasoning with LLMs.

High-level evaluation like SciBench [7] and GPQA [8], which evaluate the scientific reasoning
capabilities of LLMs at the college level and even graduate level. In addition, SciEval [6] pro-
vides a multi-level LLMs evaluation benchmark to address data leakage problems and subjective
question/answer evaluation ability issues.

Continued pre-training like Galactica [1] and MINERVA [42], which continue to train their
respective base LLMs on multiple web texts including science-related or math-related corpus. This
continued pre-training approach explores the potential of LLMs for science and contributes to the
open-source models for the scientific community, but it is computationally expensive.

Dataset-specific fine-tuning like RFT [38], WizardMath [43], MAmmoTH [10], and MetaMath [11],
which constructs certain datasets including GSM8K and MATH, conducts supervised fine-tuning of
LLMs and evaluates the popular benchmarks GSM8K and MATH. MAmmoTH not only improves
the in-domain (IND) performance like GSM8K but also generalizes to broader mathematical tasks
by building a spectrum of math instruction tuning datasets including in-domain and out-of-domain
datasets. This series of methods mainly focuses on mathematical reasoning tasks.

A.2 SciInstruct Analysis

Filling

33.2%

Choice Question

32.0%

Complex Solution Problem20.1%

Simple Solution Problem

14.6%

Question Type Proportions

(a)

Complex Solution Problem

54.8%

Simple Solution Problem

35.5%

Filling
9.3%

Choice Question0.4%

Question Type Proportions in Mathematics

(b)

Filling

35.0%

Choice Question

35.0%

Simple Solution Problem
17.7%

Complex Solution Problem

12.2%

Question Type Proportions in Physics

(c)

Filling
40.3%

Choice Question

40.3%

Complex Solution Problem

18.9%

Simple Solution Problem

0.4%

Question Type Proportions in Chemistry

(d)

Figure 9: We present the proportions of question types in all subjects and each subject.
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Figure 10: We show the number of questions of that length and the average length of all answers
under each question.

A.3 Instruction Examples

Instruction Format for Physics, Chemistry, and Math. To make our dataset consistent, we define a
unified template for the problem-solving process that matches the logical flow of human thinking for
Physics, Chemistry, and Math. For each question, we first list the basic analysis of which scientific
concepts (or knowledge points) this question asks, and then present step-by-step reasoning steps of
the detailed solution, and eventually summarize the answer.

This is an example of an instruction format.
Problem: ∗ ∗ ∗.
Answer:
Analysis: This question examines ∗ ∗ ∗ knowledge points.
Step 1: ∗ ∗ ∗.
Step i: ∗ ∗ ∗.
Step n: ∗ ∗ ∗.
To sum up, the answer to this question is ∗ ∗ ∗.

Instruction Format for Formal Math.

This is an example of an instruction format for Lean.
Problem: theorem gcd_self (n : Nat) : gcd n n = n
Answer: cases n <;> simp [gcd, mod_self]

A.4 GPT Labeling

As shown in Figure 11, we present the process of GPT-4 labeling. It is important to note that
addressing the solution comparison by obtaining the accurate assessment of reasoning steps, such
as through the use of a process reward model (PRM), typically requires costly human annotations,
especially for complex scientific reasoning. Therefore, our work employs a labeling method based
on an outcome reward model (ORM) as a basic implementation. While this approach may have
limitations, it serves as a foundation for constructing the training set for our instruction-quality
classifier. Moreover, Table 2 demonstrates the effectiveness of this classifier.

A.5 Dataset of Instruction-quality Classifier

As shown in Table 7, we list the data statistics used to train the instruction-quality classifier.

A.6 Detailed Error Analysis

As shown in Figure 12, we give detailed error examples, which are summarized in Section 2.3.
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Self-reflection. Since our classifier is trained on the labeled dataset and generated solutions, the
errors that occur in ChatGLM2-6B, GPT-3.5-turbo, and GPT-4’s negative labeled solutions may
strongly influence the classifier’s performance. Therefore, we analyze the errors and categorize them
into three main classes (Calculation mistakes, False reasoning, and Comprehensive mistakes), which
are shown below in Figure 2. This means that our classifier has some ability to identify these errors
in datasets.

GPT-4 Labeling

Prompt: The following input includes three segments. It starts with a question, followed
by a step-by-step solution to the question, and ends with the true answer. If the answer
obtained in the solution is equivalent to the real one, output ‘1’, otherwise output ‘0’.

Input

Q: A photon moving at speed c, a person chasing light at 0.9c, that person observes the
speed of light is?

Solution: According to Einstein’s theory of special relativity, we cannot simply add up the
velocities. In relativity, the superposition of velocities follows the Lorentz transformation,
rather than the classical addition. For the speed of light, there is a special case in which
the observer measures the speed of light as c, regardless of the observer’s speed. This
means that even if an observer is moving at 0.9c, the speed of light he measures is still c.
Therefore, the speed of light observed by this person is c.

Real Answer: c.

GPT-4 Output: 1

Data Classifier. Indeed, real-world datasets are noised and present challenges. To improve the
data quality and retain more useful datasets, we train a data classifier and rigorously filter the noised
datasets. As mentioned, during training the data classifier, we randomly selected some questions
Q from high-quality datasets annotated by annotators. Regarding positive samples, we select the
accurate answers of GPT-3.5-turbo and GPT-4 for Q. Meanwhile, the error answer generated by
GPT-3.5-turbo and GPT-4 can be viewed as negative samples. We train our classifier to output a
scalar logit that ranges from -1 to 1. Higher scores represent more reliable and accurate answers.
Based on the trained data classifier, each data from noise datasets can receive a logit l that reflects its
correctness and completeness, which can be further utilized for automatically ranking and selecting
high-quality data. In Table 2, we demonstrate the effectiveness of instruction filtering by supervised
fine-tuning on both filtered and unfiltered datasets at a 6B scale. Compared to models trained on
unfiltered datasets, those trained on filtered datasets outperform the average tasks. This underscores
the importance of data quality over data quantity for scientific tasks.

Table 2: Ablation study on instruction filtering.

Type Ave. Math Ave. Sci Ave. Bench

Unfiltered 39.03 52.54 43.53
Filtered 40.85 52.28 44.66

2.1.3 Instruction Optimization

Supplement Thought. Multiple questions only have the final answer while lacking the chain-of-
thought process. Due to the scarce high-quality datasets, that is important to supplement the solutions.
For questions without thoughts, we use GPT-4 Turbo to supplement them with thoughts and retain
the correct thought by comparing the generated answer with the true answer. We take a problem of
physics subject as an example and show the analysis and labeling of GPT-4 Turbo.

5

Figure 11: We present the process of GPT-4 labeling. Given a prompt, question, solution, and real
answer, GPT-4 can give the final label output.

Table 7: Composing data based on a limited set of labeled examples to train a data classifier and filter
out noisy instructions.

Source # Positive Samples # Negative Samples Total

Original Clean Data 11,553 0 11,553
ChatGLM2-6B 0 23,106 23,106

GPT-3.5-Turbo-0613 745 2075 2,820
GPT-4-0613 332 3,898 4,230

Total 12,630 29,079 41,709

A.7 Evaluation Tasks

Table 8: Overview of Scientific Evaluation Tasks. (†: Pre-Algebra, ‡: Inter-Algebra, §: Algebra, △:
Probability, ♢: NumTheory, △: Statistics, ▲: Calculus, ▼: Geometry, ♦: Physics, ⋆: Chemistry, ♣:
Biology)

Eval Dataset # Samples Answer Form Subject

CEval-Hard 152 Multi-choice △,▲,♢,△, ♦, ⋆

CEval-Sci 210 Multi-choice △,♢,△,▲, ♦, ⋆, ♣
MMLU-Sci 1,855 Multi-choice §,△,♢,△,▲, ♦, ⋆, ♣

SciEval 15,901 Multi-choice ♦, ⋆, ♣
MATH 5,000 Open-formed †, ‡, §,△,♢,▲,▼

Mathematics 1,000 Open-formed †, ‡,♢,▲

SAT-Math 220 Multi-choice ‡,△,▼

MMLU-Math 974 Multi-choice §,△,♢,▲

CEval-Math 90 Multi-choice △,△,♢,▲

.

• CEval-Hard [28] comprises the eight subjects at the hard level from CEval.

• CEval-Sci [28] is selected from CEval including physical, chemical, and mathematical, subjects.

• MMLU-Sci [29] is similar to CEval-Sci and includes physical, chemical, and mathematical subjects
selected from MMLU.
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Comprehension mistakes
Explanation
Answers that do not resolve the task exactly as instructed, often including an output that is insufficient.
Example
Q: A particle moving in a straight line in the x direction has the coordinates x = 5t2 − t3 at time t,
where x is measured in meters and t in seconds. Find: displacement and average velocity in the 4th
second.
A: The displacement in 4 seconds can be obtained by calculating the coordinates at t = 4 minus
the coordinates at t = 0, Displacement = x(4) − x(0) = 5 × 42 − 43 − 5 × 02 + 03 =
5× 16− 64− 0 + 0 = 80− 64 = 16. Average velocity in 4 seconds can be obtained by calculating
displacement divided by time, that is average_velocity = displacement/time = 16/4 = 4. In
summary, the displacement in 4 seconds is 16 meters, the average speed is 4 meters/second, and the
distance traveled by the particle is 16 meters.
Error: Wrong comprehension. The answer should be displacement and average velocity ’in the 4th
second’ rather than ’in 4 seconds’.

Calculation mistakes
Explanation
Answers that fail to accurately calculate or simplify mathematical expressions, especially when
encountering integration and differentiation.
Example
Q: In a shell with an inner radius of R1 and an outer radius of R2, the charge density in the shell is
ρ = a+ br, Where r is the distance from the center to the observation point, and there is no charge
distribution elsewhere in the space. (a) Find the expression that the electric field everywhere in the
space depends on r.
A: First of all, according to Gauss’s law, the total electric flux of any closed surface inside the
closed surface is equal to the total charge inside the closed surface. According to the condi-
tions in the topic, the charge density in the shell is ρ = a + br, the total charge in the shell
can be obtained as: Q =

∫ R2

R1

∫ π

0

∫ 2π

0
(a + br) · r2 sin θdϕdθdr = 4π

∫ R2

R1
(a + br)r2dr =

4π
(

a
4
(R4

2 −R4
1) +

b
5
(R5

2 −R5
1)
)

. According to the Gauss theorem, inside the spherical shell,
the flux of the electric field is zero. Therefore, we only need to produce the electric field out-
side the shell. Outside the shell, according to Coulomb’s Law, the electric field generated by
the charge can be expressed as: E = 1

4πϵ0

Q
r2

Substituting Qinto this formula yields: E =

1
4πϵ0

4π( a
4
(R4

2−R4
1)+

b
5
(R5

2−R5
1))

r2
simplified, we can get electric field depends on the expression of

rare as follows: E = 1
ϵ0

(
a
r2
(R4

2 −R4
1) +

b
r2
(R5

2 −R5
1)
)

Error: Wrong integration.

False reasoning
Explanation
Solutions consist of false reasoning steps or made-up information in reasoning.
Example
Q: The escape work of polonium and barium is 4.52 eV, and 2.50 eV, respectively. Calculate the
cut-off frequencies of barium and polonium.
A: According to the theory of photoelectric effect, the relationship between escape work and cutting
potential can be expressed by the following formula escape work = cutting potential−photon energy.
Apply the relationship between escape work and cutting potential to the case of barium and polonium.
For polonium, cutting potential = escape work + photon energy = 4.52 eV + hν. For barium,
cutting potential = escape work + photon energy = 2.50 eV + hν, where h is Planck’s constant
and ν is the frequency of light.
In the visible range, the frequency range of light is approximately 4.3× 1014 Hz to 7.5× 1014 Hz.
Now we can calculate the cut-off frequencies of barium and polonium respectively. For polonium,
4.52 eV + hνcut = 4.30 eV. hνcut = 4.30 eV − 4.52 eV. hνcut = −0.22 eV. For barium, 2.50 eV +
hνcut = 4.30 eV. hνcut = 4.30 eV − 2.50 eV. hνcut = 1.80 eV.
In summary, the cut-off frequency of polonium is −0.22 eV, and that of barium is 1.80 eV. Because
the cutoff frequency is the frequency of light and must be positive, barium can be used as a phototube
cathode material in the visible range. Final answer: Barium can be used as a phototube cathode
material in the visible range.
Error: False reasoning, cutting potential should be W/h.

[7] Andrew Drozdov, Nathanael Schärli, Ekin Akyürek, Nathan Scales, Xinying Song, Xinyun Chen, Olivier
Bousquet, and Denny Zhou. Compositional semantic parsing with large language models. arXiv preprint
arXiv:2209.15003, 2022.
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Figure 12: Error analysis of three types of self-reflection for noisy instruction filtering.
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• SciEval [6] serves as a comprehensive, multi-disciplinary benchmark for assessing subjective
question-answering capabilities.

• MATH [31] is a standard benchmark for evaluating the mathematical ability of LLMs.

• Mathematics [32] mainly includes Algebra, NumTheory, and Calculus.

• SAT-Math [33] is a math task including Intermediate Algebra, Probability, and Calculus.

• MMLU-Math [29] evaluation is the same as MAmmoTH [10], including Algebra, Probability,
NumTheory, and Calculus.

• CEval-MATH [28] only includes mathematical subjects extracted from CEval.

A.8 Evaluation Baselines

• GPT-4 [35]: We consider the closed-source model GPT-4, which uses CoT prompting.

• GLM [13; 14] and LLaMA Base [37]: We select ChatGLM2-6B (Base), ChatGLM3-6B (Base),
and ChatGLM3-32B (Base) as the base models. In addition, we consider LLaMA-2-7B and
LLaMA-2-13B as baselines.

• Continue Pre-training: We include Galactica [1] although we note that its continued pre-training
does not necessarily include college-level scientific reasoning.

• Dataset-specific Tuning: For the dataset-specific tuning, we consider WizardMath [43],
MAmmoTH-CoT [10], and MetaMath [11], which adapt to the MATH dataset.

A.9 Detailed Experimental Results

Regarding domain-wise results in Figure 13, we present the detailed subject results in Table 9 and
Table 10.
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Figure 13: SciGLM consistently improving the ChatGLM3-Base for different scientific tasks, without
sacrificing general language understanding capabilities.

Table 9: Detailed results of physical subjects for Figure 3. Bold denotes the best result in the
closed-source models and open-source models.

model Ave. CEval MMLU SciEval

Avg. College
Physics

High
School
Physics

Middle
School
Physics

Avg. College
Physics

Conceptual
Physics

Middle
School
Physics

Physics.

ChatGLM3-6B-Base 54.32 63.16 42.11 63.16 84.21 45.59 39.22 55.32 34.44 46.95
SciGLM (ChatGLM3-6B-Base) 56.59 66.67 47.37 63.16 89.47 46.52 34.31 55.32 41.06 47.56
ChatGLM3-32B-Base 67.85 78.95 57.89 78.95 100.00 56.76 42.16 62.55 57.62 51.22
SciGLM (ChatGLM3-32B-Base) 69.65 80.70 63.16 78.95 100.00 58.61 41.18 66.81 57.62 56.71
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Table 10: Detailed results of chemical subjects for Figure 3. Bold denotes the best result in the
closed-source models and open-source models.

model Ave. CEval MMLU SciEval

Avg. College
Chemistry

High
School

Chemistry

Middle
School

Chemistry
Avg. College

Chemistry

High
School

Chemistry
Chemistry.

ChatGLM3-6B-Base 58.25 66.67 45.83 63.16 95.00 49.83 45.00 52.22 55.76
SciGLM (ChatGLM3-6B-Base) 58.55 68.25 41.67 73.68 95.00 48.84 47.00 49.75 57.27
ChatGLM3-32B-Base 66.44 69.84 41.67 78.95 95.00 63.04 51.00 68.97 60.15
SciGLM (ChatGLM3-32B-Base) 69.05 71.42 45.83 78.95 95.00 66.67 57.00 71.43 61.40

A.10 Output Examples of SciGLM

We show several concrete examples in SciBench, as well as the output generated by SciGLM (32B)
and ChatGLM3-32B-Base in Figure 14, Figure 15, Figure 16, Figure 17, and Figure 18.
Problem When an electron in a certain excited energy level in a one-dimensional box of length 2.00 \u00c5 makes a transition to the ground
state, a photon of wavelength 8.79 nm is emitted. Find the quantum number of the initial state.

Correct Answer: 4

Predicted Solution by ChatGLM3-32B-Base (Served as baseline)
The ground state has n = 1. The energy in the n = 1 state is 1

L2 . For the n = 2 state, this becomes
(

1
2L

)2 .

Thus, this energy difference is 1

222 − 1
12

= 9
4 .

By de Broglie’s equation, hc/λ = 9
4hcν , so ν = 4hc

9λ . Thus, E = hν = hc 4
9λ .

Therefore, n = 2, thus the answer is 2 .

Predicted Solution by SciGLM (Finetuned from ChatGLM3-32B-Base)
Concept: The concept of this problem is based on the photoelectric effect. The photoelectric effect is the emission of electrons
when light shines on a material. The photoelectric effect occurs when photons with energies greater than the binding energy of
electrons cause the ejection of electrons from a material. When a photon is emitted by an electron, the energy of the photon is
equal to the energy of the electron in the excited state minus the energy in the ground state. The energy of a photon is given
by the equation E = hc/λ, where h is Planck’s constant (6.626 × 10−34 Js), c is the speed of light (3.000 × 108 m/s), and
λ is the wavelength of the photon in meters. The energy of an electron in a one-dimensional box is given by the equation
En = (n2 × h2/8l2), where n is the quantum number of the state and l is the length of the box in meters. The problem asks for
the quantum number of the initial state. This can be found by setting the energies of the initial and final states equal to the energy of the photon.

Step 1: Convert the length of the box and the wavelength of the photon to meters.
- The length of the box is given as 2.00 Å. We need to convert this to meters by multiplying by 10−10 (since 1 Å = 10−10m).
- The wavelength of the photon is given as 8.79 nm. We need to convert this to meters by multiplying by 10−9 (since 1 nm = 10−9 m).

Step 2: Calculate the energy of the photon.
- Use the equation E = hc/λ, where h is Planck’s constant (6.626 × 10−34 Js) and c is the speed of light (3.00 × 108 m/s).

Step 3: Set the energy of the final state (n = 1) equal to the energy of the photon and solve for n.
- Use the equation En = (n2 ∗ h2/8l2), where l is the length of the box in meters.

Step 4: Convert the answer to scientific notation and round to 3 decimal places.

To sum up, the answer to the question is therefore n = 4.000 . ✓

Figure 14: An example Quantum Chemistry problem in SciBench that has been solved accurately
with SciGLM (32B). It shows that after instruction-tuning, the SciGLM learns skills/behaviors to first
analyze the knowledge required for each problem, and then step-by-step solve the problem with
correct formula and calculations.

A.11 Examples of SciInstruct

We present SciInstruct examples for Math (Figure 19), Physics (Figure 20), Chemistry (Figure 21),
and Formal Proofs (Figure 22).
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Problem Extend Example 1.4-6 to an n-sided die. That is, suppose that a fair n-sided die is rolled n independent times. A match occurs if
side i is observed on the i th trial, i = 1, 2, . . . , n. Find the limit of this probability as n increases without bound.

Correct Answer: 1 − 1/e = 0.6321 . . .

Predicted Solution by ChatGLM3-32B-Base
We need the limit of P (A) as n goes to infinity. P (A) equals 1

nn as there are n possibilities for each of the n rolls. Thus we wish to find
limn→∞

1
nn = limx→∞

1
xx = 0.

Conclusion: The answer is therefore 0 .

Predicted Solution by SciGLM (Finetuned from ChatGLM3-32B-Base)
The probability that all i sides of the die are rolled i times in a row is

(
1
n

)n = 1
nn .

Step 1: If we write the sum of the n terms of this geometric sequence from i = 1 to n, it equals 1 because each term in the sum is 1
n and

there is a total of n terms being summed. Thus, if we want to find the probability that no match occurs, we sum all probabilities that no match
occurs over k = 1 to n. This becomes

n∑
k=1

1
kn = 1

1n + 1
2n + 1

3n + · · · + 1
nn

As n → ∞, the sum approaches a limiting term e−1. Since the total probability must equal 1 for all n, and we just established that the limit
of the sum of all probabilities that no match occurs is e−1, this must be the probability that no match occurs at all. The probability that at
least one match occurs is then 1 − e−1.

Step 2:
Thus, as n → ∞, the limit of the probability that no match occurs is e−1 = 0.367, and the limit of the probability that at least one match
occurs is 1 − e−1 ≈ 0.63.

To sum up, the answer to the question is 0.63.

The limit of the probability that at least one match occurs is 0.63 . ✓

Figure 15: An example statistics problem in SciBench that is accurately solved with the SciGLM
(32B).

Problem The World Series in baseball continues until either the American League team or the National League team wins four games. How
many different orders are possible (e.g., ANNAAA means the American League team wins in six games) if the series goes four games?

Correct Answer Latex: 2
Correct Answer Number: 2

Answer generated by ChatGLM3-32B-Base
The answer is therefore 20 .

Answer generated by SciGLM (32B)
Solution:
Step 1: American league team wins in 4 games (44) .
National team wins in 4 games (44) .

Step 2: Total number of ways
=(44)+(44)=2×1=2.

Conclusion: The answer is therefore 2 . ✓

Figure 16: A statistics example problem in SciBench that has been solved accurately with SciGLM
(32B).
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Problem 7.3-9. Consider the following two groups of women: Group 1 consists of women who spend less than 500 annually on clothes;
Group 2 comprises women who spend over 1000 annually on clothes. Let p1 and p2 equal the proportions of women in these two groups,
respectively, who believe that clothes are too expensive. If 1009 out of a random sample of 1230 women from group 1 and 207 out of a
random sample 340 from group 2 believe that clothes are too expensive,
(a) Give a point estimate of p1 − p2.

Correct Answer Latex: $0.2115$
Correct Answer Number: 0.2115

Answer generated by ChatGLM3-32B-Base
To find the point estimate of p1p2, which is the joint probability that a woman from group 1 and a woman from group2, believe that clothes
are too expensive, we will use the number of women in each group that believe clothes are too expensive.

From group1, we have that 10.0907 of women believe that clothes are too expensive, And from group 2, we have that 0.6076
of women believe that clothes are too expensive.
The point estimate is approximately(123)=0.000000.
The answer is therefore 0.000 .

Answer generated by SciGLM (32B)
Solution:
n1 = 1230, p1 = 1009

n1
≈ 0.819,

n2 = 340, p2 ≈ 207
340 = 0.609

p1 − p2 ≈ 0.819 − 0.609 = 0.210

The answer is therefore 0.210 . ✓

Figure 17: A statistics example problem in SciBench that has been solved accurately with SciGLM
(32B).

Problem Calculate the uncertainty ∆Lz for the hydrogen-atom stationary state: 2pz .

Correct Answer Latex: 0
Correct Answer Number: 0

Answer generated by ChatGLM3-32B-Base
Since the angular momentum of a revolving electron around the nucleus is: Lz = µBℏ. And the radius of revolution for the electron around
the proton is about . The uncertainty is: ∆Lz = ℏ

2

√
2. The answer is therefore 7.605 .

Answer generated by SciGLM (32B)
Solution:
∆Lz = h

2π

√
ℏ

mcℏc

√
n(n−1)

2

=

√
1·(1−1)

2

=
√

0
2 = 0

The answer is therefore 0 . ✓

Figure 18: A Quantum Chemistry example problem in SciBench that has been solved accurately with
SciGLM (32B).
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Problem
Using the method of undetermined coefficients to answer the below question.
y′′ − 2y′ + 5y = sin x, y(0) = 1, y′(0) = 1

Answer
Analysis: The key points of this problem are the undetermined coefficients and the differential equation of parameter variations.
This test uses the Method of undetermined coefficients to solve differential equation problems.
Step1: the auxiliary equation is r2 − 2r + 5 = 0 with roots r = 1 ± 2i, so the complementary solution is:
ιe(x) = ex(c1 cos 2x + c2 sin 2x).
Try the particular solution:
yp(x) = A cos x + B sin x,
y′
p = −A sin x + B cos x

Step2: substituting, we have:
(−A cos x − B sin x) − 2(−A sin x + B cos x) + 5(A cos x + B(sin x) = sin x
⇒ (4A − 2B) cos x + (2A + 4B) sin x = sin x.
Then:
4A − 2B = 0, 2A + 4B = 1 ⇒ A = 1

10 , B = 1
3

and the general solution is:
y(x) = y1(x) + yp(x) = e′(c1 cos 2x + c22x) +

1
10 cos x + 1

3 sin x

But, 1 = y(0) = c1 + 1
10 ⇒ c1 = 3

10

and 1 = y′(0) = 2c2 + c1 + 1
5 ⇒ c2 = − 1

26

Step3: Thus the solution to the initial-value problem is:
y(x) = ex

(
9
10 cos 2x − 1

20 sin 2x
)
+ 1

10 cos x + 1
5 sin x.

To sum up, the answer is:
y(x) = ex

(
9
10 cos 2x − 1

20 sin 2x
)
+ 1

10 cos x + 1
5 sin x.

Figure 19: An instruction example on the math subject.
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Problem
Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits.
a. The two bulbs are first connected in parallel to a 120 V source.
i. Determine the resistance of the bulb rated 30 W and the current in it when it is connected in this circuit.
ii. Determine the resistance of the bulb rated 40 W and the current in it when it is connected to this circuit.

b. The bulbs are now connected in series with each other and have a 120 V source.
i. Determine the resistance of the bulb rated 30 W and the current in it when it is connected in this circuit.
ii. Determine the resistance of the bulb rated 40 W and the current in it when it is connected to this circuit.

c. In the spaces below, number the bulbs in each situation described, in order of their brightness.
(1= brightest, 4 = dimmest)
____30 W bulb in the parallel circuit
____40 W bulb in the parallel circuit
____30 W bulb in the series circuit
____40 W bulb in the series circuit

d. Calculate the total power dissipated by the two bulbs in each of the following cases.
i. The parallel circuit
ii. The series circuit

Answer
Aanalysis: Use formulas to calculate resistance, current, and total power.
(a) i: Calculate the resistance and current of the light bulb.
P = V2/R given R=480 Ω and
V=IR given I=0.25 A
ii: Calculate the resistance and current of the light bulb.
P = V2/R given R=360 Ω and
V=IR given I=0.33 A

(b) i./ii. Calculate the resistance and current of the light bulb.
The resistances are unchanged 480 Ω and 360 Ω. The total resistance in series is 480 Ω + 360 Ω = 840 Ω making the total current
I = V/R = 0.14 A which is the same value for both resistors in series.

(c) Compare the brightness of the light bulb.
The bulbs are brightest in parallel, where they provide their labeled values of 40 W and 30 W. In series, it is the larger resistor (the 30 W bulb)
that glows brighter with a larger potential difference across it in series. This gives the order from top to bottom as 2 1 3 4.

(d) i: Calculate the total power consumed by two light bulbs.
In parallel, they each operate at their rated voltage so they each provide their rated power andPT = 30W + 40W = 70W
ii: Calculate the total power consumed by two light bulbs
In series PT = VT

2/RT = 17W

In summary,
(a) i: P = 480 Ω and V = 0.25A
ii: P = 360 Ω and V = 0.33A
(b) i/ii: P = 840 Ω and V = 0.14A
(c) This gives the order from top to bottom as 2 1 3 4.
(d) i: PT = 70W
ii: PT = 17W

Figure 20: An instruction example on the physics subject.
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Problem
Consider a mixture of the two solids, BaCl2 + 2H2O (FM 244.26) and KCl (FM 74.551), in an unknown ratio. (The notation
BaCl2 · 2H2O means that a crystal is formed with two water molecules for each BaCl2.) When the unknown is heated to 160◦C for 1 h,
the water of crystallization is driven off:

BaCl2 · 2H2O(s)
160◦C−→ BaCl2(s) + 2H2O(g)

A sample originally weighing 1.7839 g weighed 1.5623 g after heating. Calculate the weight percent of Ba,K, and Cl in the original
sample.

Answer
Analysis: The content of this question is to calculate the weight percentage.
Step1: Formula and atomic masses: Ba(137.327),Cl(35.453),K(39.098), H2O(18.015),KCl(74.551),BaCl2 ·
2H2O(244.26),H2O lost = 1.7839− 1.5623 = 0.2216 g = 1.2301 × 10−2 mol of H2O. For 2 molH2O lost, 1 mol

BaCl2 · 2H2O must have been present. 1
2

(
1.2301 × 10−2 molH2O lost ) = 6.1504 × 10−3 molBaCl2 · 2H2O = 1.5024 g.

The Ba and Cl contents of the BaCl2 · 2H2O are
Ba =

(
137.33
244.26

)
(1.5024 g) = 0.84469 g

Cl =
(

2(35.453)
244.26

)
(1.5024 g) = 0.43613 g

Step2: Because the total sample weighs 1.783 g and contains 1.5024 g of BaCl2 · 2H2O, the sample must contain
1.7839 − 1.5024 = 0.2815 g of KCl, which contains
K =

(
39.098
74.551

)
(0.2815) = 0.14763 g

Cl =
(
35.453
74.551

)
(0.2815) = 0.13387 g

Weight percent of each element:
Ba = 0.84469

1.7839 = 47.35%

K = 0.14763
1.7839 = 8.28%

Cl = 0.43613+0.13387
1.7839 = 31.95%

In summary, the weight percent of Ba is 47.35%,the weight percent of K is 8.28%, the weight percent of Cl is 31.95%.

Figure 21: An instruction example on the chemistry subject.

Problem
lemma unfold_sub α [subtraction_monoid α] (a b c : α) (h : a + -b = c) : a - b = c :=.

Answer
by rw [sub_eq_add_neg, h]

Problem lemma subtype.exists_pi_extensionι: Sort* α : ι→ Sort* [ne : Πi, nonempty (αi)]
p : ι→ Prop (f : Πi : subtype p, α i) :
g : Πi : ι, α i, (λi : subtype p, g i) = f :=

Answer
begin
tactic.classical,
refine 〈λi, if hi : p i then f 〈i, hi〉 else classical.choice (ne i), funext _〉,
rintro 〈i, hi〉,
exact dif_pos hi
end

Figure 22: Examples on formal proofs.
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A.12 Scientific Reasoning Datasets

Mathematical Datasets. In the past, the emphasis in mathematical reasoning tasks was primarily on
fundamental arithmetic reasoning datasets [44; 45; 46], addressing basic mathematical problems such
as AddSub [47]. Later on, to address realistic math word problems, some more difficult datasets are
proposed [48; 49; 30; 50]. To construct a more difficult and diversified dataset, NumGLUE [51] and
LiLA [52] have been introduced to enhance current research. However, their focus remains primarily
on elementary, middle school, and high school math problems. Given the rapid advancement of LLMs,
to assess their capacity and constraints in addressing more intricate math problems, MMLU [29]
with college-level math problems has been proposed. To address the more challenging college-level
math problems, PoT [53; 7] is proposed. Our proposed SciInstruct covers more complex and more
diversified math problems at the college level.

Scientific Datasets. To address the scientific ability of LLMs, SciBench [7] proposes various solutions
like calling existing tools (python and Wolfram). SciEval [6] presents a multi-level evaluation
benchmark for scientific research. GPQA [8] builds a graduate-level Q&A benchmark to evaluate
more difficult physics and chemistry questions.

A.13 General Reasoning with LLMs

Assisted by Chain-of-Thought prompting [54; 55; 56] and Tree-or-Thought [57], LLMs have brought
decent reasoning performance improvements. Especially, on the challenging BIG-Bench tasks, the
CoT technique has already outperformed human ability [58]. Later on, to address reasoning tasks, a
few studies [59; 60; 61; 62; 63; 11; 64; 65; 66] propose various methods to leverage LLMs and retain
step-by-step processes. With the rapid development of LLM Agents, several works [67; 17] propose
to utilize external tools to enhance the reasoning capabilities of LLMs. For example, ReAct [67]
attempts to call existing tools like web search engines to improve the reasoning skills of LLMs.
Indeed, leveraging the programs as thought processes is a natural way. Several recent studies have
utilized programs as thought processes, such as PoT [68], to improve the reasoning abilities of
LLMs. To enhance LLMs’ reasoning performance in solving mathematical or scientific problems
with PoT, several methods have been suggested, including Self-critic [69], Self-eval [70], and Plan-
and-solve [71]. For example, self-critic [69] and self-eval [70] propose to adopt self-evaluation to
improve the generated program’s robustness. Different from these two methods, plan-and-solve [71]
adopts more detailed planning instructions to generate a high-level reasoning plan for LLMs. Indeed,
these methods have demonstrated that they can obtain great capabilities over PoT.

A.14 Instruction Tuning in LLMs

To align language models with human preferences and effective objectives, some works [17; 72; 66]
design instruction tuning. The instruction tuning aims to mine the potential capabilities by aligning
with and responding to human preference. Early on, instruction tuning focuses on improving the
instruction-following abilities of LLMs for general purposes. Represented by FLAN [73] and
T0 [74], they aim to understand the generalization abilities of LLMs for instruction tuning. Later, to
comprehend the efficacy and performance of enlarging the instructional tuning datasets on models,
FLAN-v2 [75; 76] has been proposed to validate this goal. However, these methods build training
instruction tuning datasets in a human-annotated manner. Recently, various studies [77; 72; 78; 17;
39; 79] have started to construct synthetic instruction following datasets distilled from some LLMs
like GPT-3.5-turbo and GPT-4. Like these works, Platypus [80] constructs a small-scale instruction
for the following dataset by utilizing a domain-specialized dataset, aiming to enhance the reasoning
capabilities of LLMs.
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Part II

Supplementary Materials
B Datasheet

B.1 Motivation

1. For what purpose was the dataset created? Our benchmark dataset was created to address
the data scarcity challenge in the science domain and provide a suite of scientific instructions for
training scientific language models capable of college-level scientific reasoning.

2. Who created the dataset and on behalf of which entity? The dataset was developed by LLM
researchers (undergraduate students, doctoral students, and postdocs) listed in the author list.

3. Who funded the creation of the dataset? This work is supported by the NSFC 62276148, NSFC
for Distinguished Young Scholar 62425601, a research fund from Zhipu, New Cornerstone Science
Foundation through the XPLORER PRIZE and Tsinghua University (Department of Computer Science
and Technology) - Siemens Ltd., China Joint Research Center for Industrial Intelligence and Internet
of Things (JCIIOT).

B.2 Distribution

1. Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? Yes, the dataset is open to the public.

2. How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? The dataset
has been distributed through Hugging Face, Google Drive, Tsinghua Cloud, and the code used for
developing baseline models through GitHub.

3. Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? No.

4. Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? No.

5. When will the dataset be distributed? It has been released now.

6. Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? The dataset will be distributed under the CC BY 4.0
license.

B.3 Maintenance

1. Who will be supporting/hosting/maintaining the dataset? Zhipu AI and THUDM will support,
host, and maintain the dataset.

2. How can the owner/curator/manager of the dataset be contacted (e.g., email address)? The
owner/curator/manager(s) of the dataset can be contacted through the following emails: Dan Zhang
(zd18@tsinghua.org.cn) and Sining Zhoubian (zbsn21@mails.tsinghua.edu.cn).

3. Is there an erratum? No. If errors are found in the future, we will release errata on the main
web page for the dataset (https://github.com/THUDM/SciGLM and https://huggingface.co/
datasets/zd21/SciInstruct).

4. Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? Yes, the datasets will be updated whenever necessary to ensure accuracy, and an-
nouncements will be made accordingly. These updates will be posted on the main web page for the
dataset (https://github.com/THUDM/SciGLM and https://huggingface.co/datasets/zd21/
SciInstruct).
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5. If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data would
be retained for a fixed period of time and then deleted?) N/A

6. Will older version of the dataset continue to be supported/hosted/maintained? Yes, older
versions of the dataset will continue to be maintained and hosted.

7. If others want to extend/augment/build on/contribute to the dataset, is there a mechanisms
for them to do so? If others want to extend/augment/build on/contribute to the dataset, the most
efficient way to reach us is via GitHub pull requests. For more questions, don’t hesitate to get in
touch with Dan Zhang (zd18@tsinghua.org.cn), who will be responsible for maintenance.

B.4 Composition

1. What do the instance that comprise the dataset represent (e.g., documents, photos, people,
countries?) Each instance includes a question, corresponding answer, and subject. These attributes
are used to fine-tune LLMs capable of college-level scientific reasoning.

2. How many instances are there in total (of each type, if appropriate)? The constructed
SciInstruct dataset comprises 254,051 instructions, including 123,869 physics and chemistry, 89,934
math, and 40,248 formal proof (Lean).

3. Does the dataset contain all possible instances or is it a sample of instances from a larger set?
The datasets contain all possible instances.

4. Is there a label or target associated with each instance? Yes, each instance includes the
corresponding subject.

5. Is any information missing from individual instances? No.

6. Are there recommended data splits (e.g., training, development/validation, testing)? We use
all instances as a training set because there are various public benchmark datasets as test sets that
cover a broad range of subjects.

7. Are there any errors, sources of noise, or redundancies in the dataset? No.

8. Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? The dataset is self-contained.

9. Does the dataset contain data that might be considered confidential? No.

10. Does the dataset contain data that, if viewed directly, might be offensive, insulting, threaten-
ing, or might otherwise cause anxiety? No.

B.5 Collection Process

1. How was the data associated with each instance acquired? The data associated with each
instance is acquired from a variety of sources, including textbooks, pedagogical materials, and
problem sets. References for these sources are provided in Table 7 in Appendix 7.2.

2. What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or
sensor, manual human curation, software program, software API)? We first use Optical character
recognition (OCR) to transform the question and final answer in the collected materials, then utilize
a powerful LLM API to generate the intermediate reasoning, and finally filter out the traces with a
correct predicted answer.

3. Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)? Regular LLM
researchers (e.g., undergraduate students, PhD students, and postdocs listed in the author list) at
Tsinghua and Caltech were involved in the data collection process.

4. Does the dataset relate to people? No.

5. Did you collect the data from the individuals in questions directly, or obtain it via third
parties or other sources (e.g., websites)? We obtained the dataset from textbooks, pedagogical
materials, and problem sets. References for these sources are provided in Table 7 in Appendix 7.2.
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B.6 Uses

1. Has the dataset been used for any tasks already? Yes, this dataset has been used to generate new
datasets, for example, to convert the text-formatted calculations into code formats and to fine-tune
the code-based language models.

2. What (other) tasks could be the dataset be used for? No.

3. Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? The current composition of the
datasets is self-sufficient to train a scientific language model. Any changes in the next release and
updates will be documented and shared through the dataset webpage (https://github.com/THUDM/
SciGLM and https://huggingface.co/datasets/zd21/SciInstruct).

4. Are there tasks for which the dataset should not be used? No.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 1.
(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] We have read the ethics review guidelines and ensured that your paper
conforms to them.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] We have
provided a URL.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 2.4.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 2.4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 2.4.
(b) Did you mention the license of the assets? [Yes] See Section 2.4.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We have provided a URL.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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