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Abstract

Transferring knowledge from task-agnostic pre-trained deep models for down-1

stream tasks is an important topic in computer vision research. Along with the2

growth of computational capacity, we now have open-source Vision-Language pre-3

trained models in large scales of the model architecture and amount of data. In this4

study, we focus on transferring knowledge for vision classification tasks. Conven-5

tional methods randomly initialize the linear classifier head for vision classification,6

but they leave the usage of the text encoder for downstream visual recognition7

tasks undiscovered. In this paper, we revise the role of the linear classifier and8

replace the classifier with the embedded language representations of the object9

categories. These language representations are initialized from the text encoder of10

the vision-language pre-trained model to further utilize its well-pretrained language11

model parameters. The empirical study shows that our method improves both the12

performance and the training speed of video classification, with a negligible change13

in the model. In particular, our paradigm achieves the state-of-the-art accuracy of14

87.3% on Kinetics-400.15

1 Introduction16

Pre-training a task-agnostic model using large-scale general datasets and then transferring its learning17

feature representations to downstream tasks is a paradigm in many computer vision applications [1, 2].18

While in the last decade, the convolutional-based models that are optimized on the ImageNet [3]19

(more precisely, ILSVRC-2012) dataset with a supervised style dominated this field. Owing to the20

dramatically increasing computational capacity, now we can train models that have several magnitude21

more model parameters and FLOPs on significantly larger datasets in either supervised [4, 2, 5],22

weakly-supervised [1, 6] or self-supervised [7, 8] style. Recently, contrastive learning-based vision-23

language pre-training [1] manifest their superior capabilities in improving down-streaming tasks24

performance such as classification [1], captioning [9], image generation [10, 11], to name a few.25

These models are powerful for two reasons: i) the employed large-scale weakly-related datasets26

provide rich semantics and diverse representations of concepts; ii) the representation vectors of27

images and texts are roughly aligned in the semantic embedding space. However, the most common28

approach to using these models is fine-tuning the visual encoder on specific tasks. Although the rich29

semantics and diverse representations of concepts benefit the downstream tasks, the usage of the30

textual encoder is still left undiscovered.31

In this study, we aim to improve the transferability of such vision-language pre-training models for32

downstream classification tasks, with the help of their textual encoders. Our motivation comes from33

the semantic similarity among the ground-truth labels. To demonstrate this, we employ the kinetics34

video recognition dataset [12] for the analysis. We extract the embedded textual vectors of class35

labels using the textual encoder released by CLIP [1]. We then calculate the correlation between the36
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Figure 1: Inter-class correlation maps of “embeddings of class labels” for 20 categories on Kinetics-
400. Left: The extracted textual vectors of class labels, Right: The “embeddings” from learned
classifier. The color thresholds are adjusted for better understandability. Please zoom in for best view.

embedded textual vectors. The plot is shown on the left of Figure 1. Not surprisingly, the extracted37

textual vectors of class labels exhibit certain inter-class correlations, since part of them include the38

same verbs in their labels, such as playing <something>. Meanwhile, the labels with different verbs39

show a negligible inter-class correlation, such as drinking and driving. Next, we examine the final40

projection head of a vanilla visual recognition framework. We conduct the visual-only fine-tuning41

progress with the visual encoder that is also released by CLIP [1]. The detailed configurations are42

provided in Section 4.2. The projection head is a matrix of d× c to compute the pre-softmax values43

(or logits) from the d-dimensional feature vectors for the c classes. Non-rigorously, we can consider44

the d-dimensional row vectors as the embeddings of the class labels, allowing us to explore the45

inter-class correlation between these learned “embeddings”, as shown on the right side of Figure 1.46

Interestingly, these learned “embeddings” also reveal certain correlations after the training progress,47

despite being initialized randomly and optimized without knowing any textual information 1.48

Therefore, we suppose that the semantic information contained in the samples (images and videos)49

does correlate with inter-classes. Following this motivation, we replace the projection matrix with50

several variants: i) A projection matrix whose row vectors are randomly sampled (trivial correlation);51

ii) A projection matrix whose row vectors are orthogonal to each other (non-correlated). Then we52

replace the projection matrix with fixed embedded textual vectors that provide the “proper” correlation.53

In the empirical studies, we find that the textual knowledge significantly improves the transferability54

of pre-trained models, regarding both the classification accuracy and the convergence speed. Our55

main contributions are summarized as follows:56

• We build a new recognition paradigm to improve the transferability using knowledge from57

the textual encoder of the well-pretrained vision-language model.58

• We conduct extensive experiments on popular video and image datasets (i.e., Kinetics-59

400 [12], UCF-101 [13], HMDB-51 [14] and ImageNet [3]) to demonstrate the transferability60

of our solution in many types of transfer learning, i.e., image/video recognition, zero-shot61

recognition, few-shot recognition. Our approach democratizes the training on large-scale62

video/image datasets and achieves state-of-the-art performance on video recognition tasks,63

e.g., 87.3% top-1 accuracy on Kinetics-400.64

2 Methodology65

Denotations. In the rest of the paper, we use bold letters to denote Vector, and capital italic letters66

to denote Tensor or Matrix. For instance, we employ z ∈ Rd to denote the feature vector extracted67

from a pre-trained model of dimension d, we employ W ∈ Rd×c to denote the projection matrix68

for the c−class linear classifier. Without ambiguity, we also use capital italic letters to denote the69

1That is, optimized with cross-entropy loss with one-hot labels
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(a) Standard visual recognition paradigm

(b) Vision-language pre-training paradigm

(c) Our recognition paradigm

Emb.
Visual embedding

Emb.
Textual embedding

CLS
class name

Encoder
Offline encoderdot product

Visual
Encoder

Classifier W
c x d

Emb. logitsImages / Videos
b x d

Textual
Encodera photo of a {CLS}

Images / Videos

Emb.

logitsVisual
Encoder Emb.

Textual
EncoderCLS1, CLS2, ..., CLSc 

Images / Videos

Emb.

logitsVisual
Encoder Emb.

Classifier W

b x c

b x d

b x d

b x b

b x d c x d

b x c

gT

gV

gV
gV

gT

Figure 2: Illustration of (a) standard visual recognition paradigm, (b) vision-language pre-training
paradigm, and (c) our proposed recognition paradigm.

modality in subscripts, especially we employ V and T to denote the Visual modality and Textual70

modality, respectively. We further employ lowercase italic letters to denote functions or neural71

networks. For instance, we employ gV (·,ΘV ) and gT (·,ΘT ) to denote the visual encoder and textual72

encoder, respectively. Additionally, we employ calligraphic letters, e.g., D, to denote sets of elements.73

2.1 Revisiting of the standard paradigm and the vision-language pre-training74

Standard visual feature transferring paradigm. We start with the most ordinary scenario,75

where a visual feature encoder model gV is optimized using a large-scale dataset D that con-76

tains visual samples with or without ground-truth labels. On our labeled downstream dataset77

D̃ = {(x1,y1), (x2,y2), . . .}, our empirical learning target can be written as78

g∗V ,W
∗ = argmin

ΘV ,W
Ex,y∼D̃

[
H(y|σ(W · gV (x)))

]
, (1)

where H(p̂|p) stands for the CrossEntropy between the predicted distribution p and the ground-truth79

distribution p̂, σ denotes the softmax operation, W ∈ Rc×d denotes the linear projection matrix for80

classification. The formulation in Eq. 1 is a standard visual feature transferring paradigm, where the81

visual encoder gV and the projection matrix (classifier) W are learned simultaneously.82

Vision-language pre-training in CLIP. As shown in Figure 2(b), we then review the contrastive83

pre-training paradigm of the vision-language models in [1]. Given a weakly related image-text84

pair dataset D = {(xV,1,xT,1), (xV,2,xT,2)...}. With slight abuse of the notations, we employ the85

xV ,xT to denote a mini-batch of size b, then we minimize the following target,86

g∗V , g
∗
T = argmin

ΘV ,ΘT

ExV ,xT∼D̃
[
H(Q|σ(gV (xV )

T · gT (xT )))
]
, (2)

where Q is the set that contains b one-hot labels of size c, with their 1, 2, . . . , b -th element being87

1 (b < c, denoting the positive image-text pairs. Here we clarify that, the definition in Eq. 2 is not88

the rigorous form of the Noise-Contrastive Estimation (NCE) loss proposed in [15, 16]. Instead,89

we employ the cross entropy version implementation in [1, 17]. This implementation depicts a90

connection between the standard feature transferring paradigm and ours. In which, the gT (xT ) can91

be considered as the projection matrix that map the visual feature gV (xV ) to the given label set Q.92

2.2 Our proposed paradigm93

As discussed in Section 1, we replace the learnable randomly initialized linear projection matrix W94

with pre-defined matrix W̃ . Similarly, the training target can be written as95

g∗V = argmin
ΘV

Ex,y∼D̃
[
H(y|σ(W̃ · gV (x)))

]
. (3)

Note that W̃ is not in the optimization targets, since we freeze it from updating during the fine-tuning96

on the downstream tasks. We do this for two reasons: Firstly, it could preserve the textual knowledge97

from being disturbed by the randomness brought by the mini-batch. For instance, when some classes98

are missing, their embedded feature vector might be broken by the other classes; Secondly, we want99
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to provide a fair comparison between different initializations of W̃ (The unfrozen results are given in100

the supplementary materials). Now we consider how to initialize W̃ . To examine how the correlation101

between the semantic information contained in the samples helps, we investigate the following four102

types of initialization, where the forth is our proposed initialization.103

Randomized matrix For the most simple randomized matrix case, we set each row of the W̃ with a104

random Gaussian vector of zero mean and standard deviation, that is105

W̃ ∼ N (0, Id), (4)

where Id denotes the identity matrix of dimension d × d. Arithmetically, a trivial “correlation”106

would appear between the row of the W̃ , since the sampling size is significantly small to be biased.107

Evidently, the trivial “correlation” cannot indicate the real correspondence between the classes due to108

its stochasticity. Therefore we expect the model to have inferior performance since it needs to avoid109

these incorrect correlations when learning the visual feature representation.110

Randomized Orthogonal matrix We follow the approach of the randomized matrix. We then remove111

the correlation by ensuring the row vectors are orthogonal. This is achieved by QR decomposition.112

Concretely, since d > c, we first generate a random matrix of size d× d and select the first c rows as113

our projection matrix. Formally, we have,114

W̃j ∼ QR(U)j , j = 1, 2, . . . , c, Ui ∼ N (0, Id), i = 1, 2, . . . , d, (5)

where U is the intermediate randomized matrix, QR(U) is the row orthogonal matrix obtained115

through the QR decomposition. Similar to the randomized matrix, we also expect this initialization to116

have inferior performance. Given the fact that the one-hot label vectors are also orthogonal to each117

other, it will not be helpful to project the visual feature vectors with an orthogonal matrix, which118

increases the difficulty of learning meaningful visual features.119

Linear discriminant projection We consider another way of initializing the projection matrix. We120

employ the multi-class Fisher’s linear discriminant analysis (LDA) to learn a linear classifier, then121

employ the weight matrix of the classifier as our initialization of the projection matrix. The LDA122

is optimized using the visual embeddings from the pre-trained model of samples in the train split.123

Then we compute the projection matrix following previous work [18]. Intuitively, the LDA first124

projects the feature vectors into a lower dimension space that maximizes the inter-class covariance125

and then estimates the likelihood of a sample to the class distributions. We, therefore, term this as126

the maximal correlation initialization. As an essential classifier, this type of initialization delivers127

reasonable performance, but it is largely dependent on the data employed to compute the projection128

matrix. When the data is limited, the estimated correlation will be biased. On the other hand, in our129

proposed paradigm, the pre-trained textual encoder provides unbiased correlations for fine-tuning.130

Textual embedding vectors We finally describe our proposed feature transferring paradigm. Briefly,131

the projection weight W̃ is composed of the embedded textual feature vectors of the labels. Given a132

set of tokenized class labels L = {l1, l2, . . . , lc}, we have133

W̃i ∼ gT (li), i = 1, 2, . . . , c, (6)

where W̃i the i-th row vector in matrix W̃ . And W̃i is initialized using the textual encoder output of134

the textual label of the i-th class. In the experimental analysis, we investigate two types of textual135

feature encoders: i) The encoder that is trained with a visual encoder in the contrastive style; ii) The136

encoder that is trained solely using only textual samples on tasks such as masked language modeling.137

3 Related Works138

Visual Recognition. Convolutional networks have long been the standard for backbone architectures139

in image recognition [19, 20, 21, 22, 23, 24] and video recognition [25, 26, 27, 28, 29, 30, 31]. In-140

spired by the Transformer [32] scaling successes in Natural Language Processing, Vision Transformer141

(ViT) [33] applies a standard Transformer directly to images, which delivers impressive performance142

on image recognition. Since then, ViT [33] has led a new trend in image recognition backbone143

architectures, shifting from CNNs to Transformers. To improve performance, follow-up studies (e.g.,144

DeiT [34], Swin [35]) have been developed. Also, many works has begun to adopt transformers in145

video recognition, such as TimeSFormer [36], ViViT [37], VideoSwin [38], and MViT [39].146
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Vision-language Pre-training. Recently, CLIP [1] provides good practice in learning the coordinated147

vision-language pre-training models using the image-text InfoNCE contrastive loss [40]. Based on148

CLIP, several variants [41, 42, 43, 44, 45] have been proposed by combining more types of learning149

tasks such as image-text matching and masked image/language modeling. These contrastively150

learned models have two deserved properties for downstream tasks: the abundant visual feature151

representations and the aligned textual feature representations. Yet another study [46] merged152

the downstream classification task into the pre-training progress, which demonstrates a decent153

improvement of accuracy over the standard cross-entropy loss. Moreover, a few recent works [47, 48]154

transfer the CLIP [1] pre-trained image-text matching model to the downstream video-text matching155

framework for video recognition with contrastive loss. Specifically, ActionClip [47] extends the156

CLIP [1] to train a downstream video-text matching model and then perform video recognition157

indirectly using the similarity between learned video and text encoders during inference. [48] focus158

on efficient prompting and learning the continuous prompt template as text input for video recognition.159

Instead of these matching-based approaches, we aim to propose a new recognition paradigm that160

directly transfers textual knowledge for visual recognition. Our approach can balance performance161

and efficiency, and experiments demonstrate that our approach can reduce computational power162

requirements while democratizing training on large-scale video/image datasets (see Table 6 and 12163

for more information).164

4 Experiments: Video Recognition165

4.1 Setups166

To evaluate our method for video recognition, we conduct experiments on three widely used bench-167

marks, i.e., Kinetics-400 [12], UCF-101 [13] and HMDB-51 [14]. See Supp. for more details.168

Training & Inference. We utilize ResNet [20] and ViT [33] as the visual encoders since they are the169

representative backbones of CNN and vision transformer, respectively. We employ the pre-trained170

visual and textual encoder released by CLIP [1] in most experiments for simplicity. Given a video,171

we first uniformly sampled T (e.g., 8, 16, 32) frames over the entire video. Then image patches with172

the resolution of 224×224 are randomly cropped from the sampled frames to form the input. The173

model is optimized using AdamW with momentum set to 0.9. We use an initial learning rate of 5e−6,174

a cosine learning rate schedule with a 5-epoch linear warmup and a batch size of 128 for experiments175

on all datasets. For fast training, we set the total training epoch to 30 unless specified otherwise.176

To trade off accuracy and speed, we consider two evaluation protocols. (1) Single View: We use only177

1 clip per video and the center 224×224 crop for efficient evaluation, (e.g., as in Section 4.2). (2)178

Multiple Views: This is a widely used setting in previous works [49, 27, 50] to sample multiple clips179

per video (e.g., 10 clips) with several spatial crops (e.g., 3 crops) in order to get higher accuracy. For180

comparison with SOTAs, we use four clips with three 224×224 crops (“4×3 Views”) in Table 7.181

4.2 Ablations on Kinetics.182

In this section, we conduct extensive ablation experiments to demonstrate our method with the183

instantiation. Models in this section use 8-frame input, ViT-B/16 as the visual backbone, 30 epochs184

for training and a single view for testing on Kinetics-400, unless specified otherwise.185

Comparison with vision-only framework. Figure 2(a) illustrates the standard visual recognition186

framework. As a comparison with our method, we train the unimodality video model, which consists187

of the same visual encoder and a learnable classifier with random initialization. To produce video188

embedding, we just apply temporal average pooling (TAP) to frame embeddings. As presented in189

Figure 3, our method surpasses Vision-Only baselines across multiple label fractions on Kinetics-400.190

Especially when just only 10% labeled data is available for training, demonstrating that the advantage191

of our paradigm is more profound when the labeled data is limited. Also, when training with full192

data, our Vision-Text method leads to an additional 5% improvement with the same training recipe.193

Figure 4 further demonstrates our paradigm significantly improves convergence speed.194

Different assignments to the offline classifier. We set different initializations described in section 2.2195

to the offline classifier W ∈ Rd×c and then train our visual encoder on Kinetics-400. Table 1 lists196

their comparisons. We show that feeding the offline classifier a random d-by-c matrix with a normal197

distribution reduces performance significantly. Then we assign the orthogonal matrix to the classifier,198
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and we can see that having different classes that are orthogonal will result in inferior performance.199

Also, we choose DistilBERT [51] as the textual encoder to pre-extract the text embeddings of c200

categories. The resulting performance is the same as that of the CLIP’s textual encoder. Furthermore,201

we term the linear discriminate projection as the maximal correlation initialization, as stated in202

Section 2.2. To do so, we first sample 60 videos from each class in the training set and utilize the203

pre-trained visual encoder to extract visual embeddings from these 24,000 videos. Finally, we learn204

the linear classifier by performing linear discriminant analysis on these visual embeddings and their205

ground-truth labels. We can see that the result of the LDA projection is consistent with our statement.206

More visualizations of these classifiers are in supplementary materials.207

Table 1: Exploration of different generation
methods for the frozen classifier.

Offline classifier from Top 1
Textual encoder of CLIP 81.52
Random normal matrix 59.30
Random orthogonal matrix 59.44
DistilBERT 81.45
Linear discriminant projection 80.77

Table 2: Temporal modeling for video encoders.

Backbone Modeling Top-1 Top-5

ResNet-50
TAP 71.20 90.37
T1D 67.18 88.45

T-Trans 74.26 91.67

VIT-B/16
TAP 80.13 94.98

TokenT1D 80.42 95.03
T-Trans 81.52 95.49

Temporal modeling. Here we explore more temporal modelings for ViT [33] and ResNet [20]:208

(1) TAP: Temporal average pooling is the most straightforward temporal modeling. (2) T1D: The209

channel-wise temporal 1D convolutions, is a common strategy [50, 52, 53], to perform efficient210

temporal interaction in the latter stages (i.e., res4−5) of ResNet. (3) T-Trans: The embeddings211

of frames are fed to a multi-layer (e.g., 6-layer) temporal transformer encoder. (4) TokenT1D:212

We use T1D to model temporal relations for [class] token features that are aggregated from local213

features via attention in the vision transformer. We perform the TokenT1D in multiple positions214

of a vision transformer. Results are shown in Table 2. On both backbones, TAP provides simple215

baselines and T-Trans exhibits the best top-1 accuracy. Both of them maintain the original frame-level216

representations and then perform temporal modeling. An interesting thing we observed is that T1D217

does not seem to work in this scenario. The reason lies in that T1D may have the potential to break the218

learned strong representations provided by CLIP. TokenT1D is another internal-backbone temporal219

modeling, and it does not yield a performance drop, and even slightly improves the TAP baseline.220

We believe this is because TokenT1D is only imposed on the global [class] token features instead of221

patches features, resulting in minimal modifications on pre-trained features.222

Visual encoder with different pre-training. Besides CLIP-pretrained visual encoders, we further223

explore our paradigm with different pre-trained visual encoders. As shown in Table 3, equipped with224

ImageNet-pretrained visual encoder, our method helps to improve the vision-only counterpart by225

0.9%. We can see that the CLIP-pretrained visual encoder achieves more significant performance,226

which is probably because CLIP provides the coarse initial alignment between frames and category227

names, as well as covers rich visual concepts.228

Text input forms. Intuitively, the name of a class appears to be the most straightforward text229

information. We can see that only using the label text can yield good results in Table 4. Then230
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Table 3: Study on different pre-training.

Visual encoder Paradigm Top-1

CLIP-pretrained Vision-Only 75.27
Vision-Text 80.13

ImageNet-pretrained Vision-Only 74.78
Vision-Text 75.63

Table 4: Study on various text input forms.

Text input from Top 1
class name 81.37
“a video of a person” + class name 81.52
multiple fixed templates + class name 80.88
learnable template + class name 81.22

following the prompt engineering in CLIP [1], we utilize the prompt template “a video of a person231

{label}.” to help specify the text is about the content of the video. This only slightly increases232

performance over the baseline of using the label text. We further use multiple prompt templates as233

the text augmentation during training. Performance decreases by 0.64% on Kinetics-400. This may234

be because different prompt templates may introduce extra noise for the training. In addition to the235

hand-crafted prompt, we also adopt an automated prompt [54] to describe a prompt’s context using a236

set of learnable vectors. The results suggest that different templates have little impact on our model.237

Table 5: Different instantiations of our method on Kinetics-400. “Single View" indicates one temporal
clip with one spatial crop, whereas “4×3 Views" indicates 4 temporal clips with 3 spatial crops.

Encoder Resolution Frames
Single View 4×3 Views

Top-1 Top-5 Top-1 Top-5

ResNet-50 224×224 8 74.26 91.67 75.50 92.61
16 74.81 92.20 75.94 93.00

VIT-B/32 224×224 8 77.97 93.80 79.57 94.70
16 79.17 94.24 80.37 94.95

VIT-B/16 224×224 8 81.52 95.49 82.65 96.25
16 82.34 95.71 83.15 96.25

VIT-L/14 224×224
8 84.82 96.59 85.83 97.05

16 85.85 96.47 86.36 96.88
32 86.39 96.75 87.09 97.06

VIT-L/14 336×336
8 84.94 96.55 86.23 97.11

16 86.05 96.92 86.63 97.27
32 86.60 97.00 87.30 97.46

More instantiations. We assess different instantiations of our paradigm, in terms of different visual238

encoders, more input frames, and larger spatial resolution. See Supp. for more details on architectures.239

In Table 5, we present the results of our method with two typical evaluation protocols. In general,240

more frames, larger spatial resolution, and deeper backbones lead to higher accuracy.241

Table 6: Ours vs. Matching paradigm with ViT-B/16 on Kinetics-400. The number of V100-days
is the number of V100 GPU used for training multiplied by the training time in days. ∗ indicates
the official result [47] via “Data-parallel training” on 3090 GPUs. For efficient training and fair
comparison, we implement all experiments with “Distributed Data-parallel training” in the Table.

Method Batch gather Textual encoder Top-1 Top-5 V100-days

Matching paradigm [47]

✓ online 81.15 95.42 6.7 (10∗)
✓ offline 80.73 95.36 6.6
✗ online 77.77 94.79 3.5
✗ offline 76.13 94.57 3.3

Our paradigm ✗ offline 81.52 95.49 3.3

Our recognition paradigm vs. Matching paradigm. Here we make a comparison with the242

matching-based method mentioned in Section 3. The matching paradigm treats the recognition task243

as a video-text matching problem with contrastive loss, thus requiring a batch gathering to collect244

embeddings of all batches across all GPUs and calculate cosine similarity for a given batch across245

all other batches. See Supp. for details about the batch gathering. In Table 6, we try to compare246
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Table 7: Comparison to SOTAs on Kinetics-400. “Views” indicates # temporal clip × # spatial crop.
The magnitudes are Giga (109) and Mega (106) for FLOPs and Param. “IN” denotes ImageNet.

Method Input Pre-train Top-1 Top-5 FLOPs×Views Param

NL I3D-101 [27] 128×2242 IN-1K 77.7 93.3 359×10×3 61.8
MVFNetEn [50] 24×2242 IN-1K 79.1 93.8 188×10×3 -
SlowFast NL101 [49] 16×2242 Scratch 79.8 93.9 234×10×3 59.9
X3D-XXL [55] 16×4402 Scratch 80.4 94.6 144×10×3 20.3
MViT-B, 64×3 [39] 64×2242 Scratch 81.2 95.1 455×3×3 36.6
Methods with large-scale pre-training
TimeSformer-L [36] 96×2242 IN-21K 80.7 94.7 2380×1×3 121.4
ViViT-L/16×2 [37] 32×3202 IN-21K 81.3 94.7 3992×4×3 310.8
Swin-L [38] 32×3842 IN-21K 84.9 96.7 2107×10×5 200.0
ip-CSN-152 [56] 32×2242 IG-65M 82.5 95.3 109×10×3 32.8
ViViT-L/16×2 [37] 32×3202 JFT-300M 83.5 95.5 3992×4×3 310.8
ViViT-H/16×2 [37] 32×2242 JFT-300M 84.8 95.8 8316×4×3 647.5
TokLearner-L/10 [57] 32×2242 JFT-300M 85.4 96.3 4076×4×3 450
MTV-H [58] 32×2242 JFT-300M 85.8 96.6 3706×4×3 -
CoVeR [59] 16×4482 JFT-300M 86.3 - -×1×3 -
Florence [44] 32×3842 FLD-900M 86.5 97.3 -×4×3 647
CoVeR [59] 16×4482 JFT-3B 87.2 - -×1×3 -

Ours ViT-L/14 32×2242 WIT-400M 87.1 97.1 1662×4×3 230.7
Ours ViT-L/14 32×3362 WIT-400M 87.3 97.5 3829×4×3 230.7

with the matching paradigm [47] as fairly as we can. We can see that the matching paradigm does247

not work well without batch gather. This is due to contrastive learning favors a large batch size.248

Besides, involving batch gather will multiply the training time. Also, in this case, the pre-trained249

textual encoder still needs to be updated, which requires larger GPU memory. However, our paradigm250

employs pre-extracted text embeddings as our classifier, so the only thing we need to fine-tune is the251

visual encoder. Results show that our method achieves the best accuracy-cost trade-off. Specifically,252

our method achieves the performance of 81.52% with VIT-B/16, which takes only 10 hours to run the253

training using 8 GPUs (2×faster than the matching counterpart).254

4.3 Main Results.255

Comparison to state-of-the-art. In Table 7, on Kinetics-400, we compare to state-of-the-arts that256

are pre-trained on large-scale datasets such as ImageNet-21K [3], IG-65M [60], JFT-300M [2],257

FLD-900M [44] and JFT-3B [5]. The suffix represents the magnitude of the dataset, e.g., JFT-3B258

consists of nearly 3 billion annotated images. We include the details of these web-scale datasets in259

Supp. To the best of our knowledge, up to now, none of the three largest datasets (i.e., JFT-300M,260

FLD-900M, JFT-3B) are open-sourced and also do not provide pre-trained models. Thus, we use261

the CLIP [1] checkpoints, which are publicly available2 and have been trained on 400 million web262

image-text pairs (namely WIT-400M). Observe that we achieve state-of-the-art results. Specifically,263

our model outperforms all JFT300M-pretrained methods in terms of Top-1 and Top-5 accuracy. We264

achieve 87.3%, which improves even further by 0.8% over Florence [44], although their model and265

data scale are both 2×larger. Besides, our model is even better than JFT3B-pretrained CoVeR [59],266

and their data scale is 7.5×larger. See Supp. for more results on UCF-101 and HMDB-51 datasets.267

Few-shot video recognition. Video recognition using only a few samples is known as few-shot video268

recognition. We study a more challenging K-shot C-way situation instead of the conventional 5-shot269

5-way configuration. We scale the task up to categorize all categories in the dataset with just K270

samples per category for training. The upper bound of this situation is denoted by the term “All-shot”.271

Table 8 reports the top-1 accuracy for the three datasets. In this extreme scenario of few data, we use272

200 epochs to train models with ViT-B/16 for few-shot video recognition. For temporal modeling,273

we use TAP. We can observe that our method provides amazing transferability on diverse domain274

data in these extreme data-poor circumstances.275

2https://github.com/openai/CLIP/blob/main/clip/clip.py
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Table 8: Few-shot video recognition on three
popular datasets under K-shot C-way setting.

K-shot K400 UCF101 HMDB51
1 63.16 88.77 65.17
3 67.50 92.78 69.99
5 69.89 93.87 71.03

All 80.13 95.24 73.18

Table 9: Zero-shot video recognition under intra-
dataset and cross-dataset settings. {A}→{B} indi-
cates we train the model on dataset A then perform
zero-shot recognition on dataset B.

K300→K100 K400→UCF
Ours w/o train 63.35 63.01
Ours w/ train 66.38 74.67

Zero-shot video recognition. We conduct experiments on two open-set settings: 1) Intra-dataset:276

The Kinetics-400 was divided into two parts: 300 categories (K300) for training and 100 categories277

(K100) for zero-shot recognition. 2) Cross-dataset: We train our models on K400 and then evaluate278

them on UCF101. To avoid catastrophic forgetting [61], here we train our models with few epochs. As279

shown in Table 9, unlike the traditional recognition paradigm, ours can achieve zero-shot recognition280

for unseen categories by replacing the offline classifiers. Appropriately tweaking the pre-trained281

model slightly can boost performance even further.282

5 Experiments: Image Recognition283

We also evaluate our approach to the image recognition task. Here we conduct experiments on284

ImageNet [3] and share the same training recipe in section 4.1 with ImageNet.285

Few-shot image recognition. Here we also use the challenging K-shot C-way setting on ImageNet.286

Specifically, the models are trained using K images (shots) from the training set for each image287

category and then measure performance on the corresponding standard 1000-class testing set. As288

shown in Table 10, the results reveal that our method has strong transferability under data-poor289

conditions, whereas the standard unimodality paradigm is ineffective in comparison to ours.290

Table 10: Few-shot image recognition on ImageNet. “Zero-
shot” and “All-shot” denote the lower and upper bounds of
the task respectively. Top-1 accuracy is reported here.

K-shot 0 1 3 5 All
Ours 66.73 71.50 73.64 74.99 82.25

Vision-Only 0 4.71 30.44 41.70 79.70

Table 11: Zero-shot image recognition.
We train the model on IN600 then per-
form evaluation on IN400.

IN600→IN400
Ours w/o train 70.28
Ours w/ train 72.62

Zero-shot image recognition. Here we split the ImageNet-1K into two parts, with 600 categories291

(IN600) for training, and the remaining unseen 400 categories (IN400) for evaluation. Table 11292

demonstrates the zero-shot image recognition ability of our method.293

Efficient training. For readers’ reference, we provide the performance of our approach with different294

visual backbones on ImageNet in Tabel 12. Notably, using 8 GPUs, we can train the VIT-B/16 to295

achieve 82.25% in 90 minutes, while the ViT-L/14 only takes 6 hours to achieve 86.47%.296

Table 12: Study on various backbones. Models are trained with 10 epochs.

Backbone Resolution Top-1 Top-5 FLOPs Params A100-days
VIT-B/16 224×224 82.25 96.82 11.3G 57.3M 0.5
VIT-L/14 224×224 86.47 98.11 51.9G 202.1M 2.0
VIT-L/14 336×336 87.12 98.33 116.5G 202.1M 5.7

6 Conclusion297

We present a new paradigm for improving the transferability of visual recognition that is based on the298

knowledge from the textual encoder of the well-trained vision-language model. The empirical study299

shows that our method improves both the performance and the convergence speed of visual classi-300

fication. The proposed approach has superior performance on both general and zero-shot/few-shot301

recognition and achieves state-of-the-art performance on video recognition tasks, and democratizes302

training on large-scale video/image datasets.303
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