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Abstract
Machine learning-aided clinical decision support
has the potential to significantly improve patient
care. However, existing efforts in this domain
for principled quantification of uncertainty have
largely been limited to applications of ad-hoc
solutions that do not consistently improve re-
liability. In this work, we consider stochastic
neural networks and design a tailor-made mul-
timodal data-driven (m2d2) prior distribution
over network parameters. We use simple and
scalable Gaussian mean-field variational infer-
ence to train a Bayesian neural network using
the m2d2 prior. We train and evaluate the pro-
posed approach using clinical time-series data
in MIMIC-IV and corresponding chest X-ray
images in MIMIC-CXR for the classification
of acute care conditions. Our empirical results
show that the proposed method produces a more
reliable predictive model compared to determin-
istic and Bayesian neural network baselines.

Keywords: Uncertainty quantification, multi-
modal healthcare data, Bayesian inference

1. Introduction

Trustworthy machine learning in healthcare requires
robust uncertainty quantification (Begoli et al., 2019;
Gruber et al., 2023), considering the safety-critical
nature of clinical practice. Sources of uncertainty can
be due to model parameters, noise and bias of the
calibration data, or deployment of the model in an
out-of-distribution scenario (Miller et al., 2014).

Unfortunately, the literature in machine learning
for healthcare has largely neglected developing tai-
lored solutions for improved uncertainty quantifica-
tion (Kompa et al., 2021), perhaps due to the limited
underlying theory on how to best adapt predictive un-

certainty in clinical tasks (Begoli et al., 2019). Other
challenges include the complexity of scaling uncer-
tainty quantification in real-time clinical systems, lim-
ited empirical evaluation of different methods due to
the lack of well-constructed priors by medical experts
(Zou et al., 2023), and the high prevalence of data
shifts in real-world clinical applications that can neg-
atively affect predictive performance (Ovadia et al.,
2019b; Xia et al., 2022), further emphasizing the need
for better uncertainty in predictive models.

Additionally, despite the recent proliferation of mul-
timodal learning, existing work on uncertainty quan-
tification in healthcare has mainly been studied in
the unimodal setting, with a particular focus on med-
ical imaging applications (Gawlikowski et al., 2021).
This includes brain tumor segmentation (Jungo et al.,
2018), skin lesion segmentation (DeVries and Tay-
lor, 2018), and diabetic retinopathy detection tasks
(Filos et al., 2019; Band et al., 2021; Nado et al.,
2022), among others. Hence, effective quantification
of predictive uncertainty in the context of multimodal
clinical problems remains a challenging and unsolved
task (Tran et al., 2022).

We propose a multimodal data-driven (m2d2) prior
distribution over neural network parameters to im-
prove uncertainty quantification in multimodal fusion
of chest X-ray images and clinical time series data.
We evaluate the use of effective priors on the two uni-
modal components of the multimodal fusion network:
an image-based convolutional neural network and a
recurrent neural network for clinical time series. In
summary, we make the following contributions:

1. We design a multimodal data-driven (m2d2) prior
distribution over neural network parameters that
places high probability density on desired predic-
tive functions.
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Figure 1: Overview of model training. Left: We construct a multimodal context dataset by applying modality-
specific transformations to clinical time series data and chest X-ray images, resulting in a tailored distribution
shift. Right: We train the multimodal neural network end-to-end with the training set and the constructed
context dataset.

2. We evaluate the method on large publicly-available
multimodal datasets: MIMIC-IV and MIMIC-
CXR (Johnson et al., 2019, 2021), for the classifi-
cation of acute care conditions assigned to patient
stays in the intensive care unit.

3. Our findings illustrate an increase in predictive per-
formance and improved reliability in uncertainty-
aware selective prediction.

2. Related Work

2.1. Multimodal Learning in Healthcare

Multimodal learning in healthcare seeks to exploit
complementary information from different data modal-
ities to enhance the predictive capabilities of learning
models. There are different approaches for leverag-
ing information across different data modalities, with
the most popular paradigm being multimodal fusion
(Huang et al., 2020). For example, Zhang et al. (2020)
and Calhoun and Sui (2016) investigated different
methods for fusion segmentation and quantification in
neuroimaging by leveraging different imaging modali-
ties in the same data pipeline. Another recent study
focused on the development of smart healthcare appli-
cations by merging multimodal signals collected from
different types of medical sensors (Muhammad et al.,
2021). Other studies also show improved predictive
performance when using multiple modalities in prog-
nostic tasks in patients with COVID-19 (Shamout
et al., 2021; Jiao et al., 2021).
Despite the promise of multimodal learning in

healthcare, research in reliable uncertainty quantifica-

tion applications in the multimodal setting is currently
limited. There is no generalized use of uncertainty
quantification methods that address increased data
distribution shifts and deal with multiple modalities
simultaneously (Liang et al., 2023).

2.2. Variational Inference in Neural Networks

We consider a stochastic neural network f(· ; Θ), de-
fined in terms of stochastic parameters Θ ∈ RP . For
an observation model pY |X,Θ and a prior distribu-
tion over parameters pΘ, Bayesian inference provides
a mathematical formalism for finding the posterior
distribution over parameters given the observed data,
pΘ|D (MacKay, 1992; Neal, 1996). However, since neu-
ral networks are non-linear in their parameters, exact
inference over the stochastic network parameters is
analytically intractable.
Variational inference is an approach that seeks to

avoid this intractability by framing posterior inference
as finding an approximation qΘ to the posterior pΘ|D
via the variational optimization problem:

minqΘ∈QΘ
DKL(qΘ ∥ pΘ|D) ⇐⇒ maxqΘ∈QΘ

F(qΘ),

where F(qΘ) is the variational objective

F(qΘ)=̇EqΘ [log p(yD |xD,Θ)]−DKL(qΘ ∥ pΘ), (1)

QΘ is a variational family of distributions (Wainwright
and Jordan, 2008), and (xD, yD) are the training data.
One particularly simple type of variational inference
is Gaussian mean-field variational inference (Blundell
et al., 2015; Graves, 2011), where the posterior distri-
bution over network parameters is approximated by a
Gaussian distribution with a diagonal covariance ma-
trix. This method enables stochastic optimization and
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Figure 2: Selective prediction algorithm. For each input sample, we obtain a prediction and an estimate of the
model’s uncertainty for that specific data point. If the uncertainty estimate is higher than the selected risk
tolerance, then the sample will be sent to an expert for further review and classification. Otherwise, the
sample is processed by the learning model for automated prediction.

can be scaled to large neural networks (Hoffman et al.,
2013). However, Gaussian mean-field variational infer-
ence has been shown to underperform with determin-
istic neural networks when uninformative, standard
Gaussian priors are used (Ovadia et al., 2019a; Rudner
et al., 2022a).

To improve the performance, we extend the ap-
proach presented in Rudner et al. (2023a) to stochas-
tic neural networks, construct a data-driven prior
distribution from multimodal input data, and use this
prior for Gaussian mean-field variational inference
to improve the performance of neural networks for
multimodal clinical prediction tasks.

3. Constructing Data-Driven Priors for
Models with Multimodal Input Data

We consider a supervised multimodal fusion task on
data D .

= {(x1n, x2n, yfusionn )}Nn=1 = (X1
D, X

2
D, YD). As

shown in Figure 1, we consider the first modality to
be clinical time series data extracted from electronic
health records, denoted by Xehr, and the second to be
chest X-ray images, denoted by Xcxr. For a given sam-
ple (xehr, xcxr), the two modalities are processed by
encoders Φehr and Φcxr respectively, and their concate-
nated feature representations are further processed by
a classifier g(·) and activation function to compute the
fusion prediction ŷfusion. The loss is computed based
on the predictions and ground truth labels yfusion ∈ Y ,
where Y ⊆ {0, 1}Q , with Q > 1 for multi-label classi-
fication.

3.1. Informative Priors for Multimodal Data

One of the key components in defining the probabilis-
tic model for our uncertainty quantification method is
the definition of a sensible and explainable prior distri-
bution. In this work, we construct a prior distribution
over parameters that places high probability density

on parameter values that induce predictive functions
that have high uncertainty on input points that are
meaningfully different from the training data. To do
this, we build on the approach proposed in Rudner
et al. (2023a) and use information about the two input
modalities to construct a data-driven prior that can
help find an approximate posterior distribution with
desirable properties (e.g., an induced predictive dis-
tribution with reliable uncertainty estimation). More
specifically, we construct a data-driven prior over some
set of model parameters Ψ and condition it on a set
of context points X̃, that is p(ψ|x̃). In Appendix A,
we show that we can derive a tractable variational
objective using this prior. The objective is given by
Equation (A.16).

To construct a meaningful prior, we need to specify
a distribution over the set of context points, pX̃ . We

design a multimodal prior by letting X̃ be a set of ran-
domly generated multimodal input points (X̃ehr, X̃cxr)
designed to be distinct from the training data. For
the clinical time series data, we construct X̃ehr by
applying three transformations to the original time
series: drop start, Gaussian noise, and inversion (i.e,
for each xi in 1, ..., n, x1 = xn, x2 = xn−1, x3 = xn−2,
etc). For the chest X-ray images, we construct X̃cxr

by applying seven transformations representative of
perturbations that exist in real-world medical settings
to the imaging data: random crop, random horizon-
tal and vertical flip, Gaussian blur, random solarize,
random invert and color jitter.

Hence, this context set encompasses distributionally
shifted points, where we want the model’s uncertainty
to be higher.

4. Empirical Evaluation

To evaluate the proposed approach, we combine clini-
cal time series data from MIMIC-IV (Johnson et al.,
2021) and chest X-ray images from MIMIC-CXR
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Table 1: Performance results. We summarize the results on the test set for the baselines and our stochastic model,
including 95% confidence intervals computed via bootstrapping. Higher values are better for all metrics.

Model (MedFuse) AUROC AUPRC Selective AUROC Selective AUPRC

Deterministic (Hayat et al., 2022) 0.726 (0.718, 0.733) 0.503 (0.493, 0.517) 0.724 (0.715, 0.735) 0.439 (0.429, 0.455)
Bayesian (standard prior) 0.729 (0.722, 0.736) 0.507 (0.497, 0.521) 0.748 (0.739, 0.758) 0.448 (0.437, 0.467)
Bayesian (m2d2 prior) (Ours) 0.735 (0.728, 0.742) 0.514 (0.504, 0.528) 0.748 (0.738, 0.760) 0.452 (0.441, 0.472)

(Johnson et al., 2019) collected during the same pa-
tient stay in the intensive care unit for multi-label
classification of acute care conditions.

4.1. Experimental Setup

We follow the pre-processing steps and use the same
neural network architecture (MedFuse) as Hayat et al.
(2022). Φehr is a two-layer LSTM network (Hochreiter
and Schmidhuber, 1997), Φcxr is a ResNet-34 (He
et al., 2015), g(·) is a fully connected layer, and ŷfusion

are the class probabilities obtained by applying a
sigmoid function to g. We use the paired dataset,
such that each sample contains both modalities (i.e.,
there are no missing modalities). Hence, the training,
validation, and test sets consisted of 7756, 877, and
2161 samples, respectively. We construct the context
dataset using the training set.
We train the multimodal network for 400 epochs

using the loss presented in Equation (B.17), with the
Adam optimizer, a batch size of 16, and a learning
rate of 2× 10−4. Further details on the experimental
setup and grid-based hyperparameter tuning can be
found in Appendix B.

4.2. Evaluation Metrics

We evaluate the overall performance of the models on
the test set using the AUROC and Area Under the
Precision-Recall curve (AUPRC) (Hayat et al., 2022).

In addition, we compute selective prediction evalu-
ation metrics to better assess models’ predictive un-
certainty. As shown in Figure 2, selective prediction
modifies the standard prediction pipeline by intro-
ducing a “reject option”, ⊥, via a gating mechanism
defined by selection function s : X → R that deter-
mines whether a prediction should be made for a given
input point x ∈ X (El-Yaniv et al., 2010). For rejec-
tion threshold τ , with s representing the entropy of
x, the prediction model is given by

(p(y | ·, θ; f), s)(x) =

{
p(y |x, θ; f), if s ≤ τ

⊥, otherwise
(2)

To evaluate the predictive performance of a pre-
diction model (p(y | ·, θ; f), s)(x) with a single label,

we compute the AUROC and AUPRC over rejection
thresholds τ = 0%, ..., 99%. We then average the met-
rics across all thresholds, yielding selective prediction
AUROC and AUPRC scores that explicitly incorpo-
rate both a model’s predictive performance and its
predictive uncertainty. For our multi-label classifica-
tion task, we report the average selective prediction
scores across all 25 labels.

4.3. Results

Table 1 summarizes the performance results on the
test set. Additional per-label results are shown in
Appendix C. The Bayesian neural network with an
m2d2 prior achieves a better AUROC and AUPRC
of 0.735 and 0.514, respectively, compared with 0.726
and 0.503 by the deterministic model. It also achieves
a higher selective AUROC and AUPRC of 0.748 and
0.452, respectively, compared with 0.724 and 0.439
by the deterministic model. Our proposed approach
achieves a comparable selective AUROC to when using
a standard prior.
We also observe a decrease in selective AUPRC

compared to the 0%-rejection AUPRC. This can occur
when a model is poorly calibrated: When the AUPRC
for any rejection threshold is below the 0%-rejection
score, the selective AUPRC can be lower than the
0%-rejection score. Overall, the selective prediction
scores reflect the model’s ability to identify samples
that are more likely to be misclassified and should be
reviewed by a clinician, and as such, are valuable in
assessing model reliability in clinical settings.

5. Conclusion

We designed a multimodal data-driven (m2d2) prior
to improve the reliability of multimodal fusion of
clinical time series data and chest X-ray images. We
demonstrated that Bayesian neural networks with
such a prior achieve better performance, in terms
of AUROC, AUPRC, and selective prediction scores,
than deterministic models. For future work, we aim to
evaluate the proposed approach in settings of missing
modalities, on additional tasks, such as in-hospital
mortality prediction, and other multi-modal datasets.
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Supplementary Material

Appendix A. Variational Objective

Let the mapping f in the parametric observation model pY |X,Θ(y |x, θ; f) be defined by f(· ; θ) =̇h(· ; θh)θL.
For a neural network model, h(· ; θh) is the post-activation output of the penultimate layer, ΘL is the set of
stochastic final-layer parameters, Θh is the set of stochastic non-final-layer parameters, and Θ =̇ {Θh,ΘL} is
the full set of stochastic parameters.
To derive an uncertainty-aware prior distribution over the set of random parameters Θ, we start by

specifying an auxiliary inference problem. Let x̃ = {x1, ..., xM} be a set of context points with corresponding
labels ỹ, and define a corresponding likelihood function p̃Y |X,Θ(ỹ | x̃, θ) and a prior over the model parameters,
pΘ(θ). For notational simplicity, we will drop the subscripts as we advance except when needed for clarity.
By Bayes’ Theorem, we can write the posterior under the context points and labels as

p̃(θ | x̃, ỹ) ∝ p̃(ỹ | x̃, θh)p(θh)p(θL). (A.1)

To define a likelihood function that induces a posterior with desirable properties, we start from the same
step as Rudner et al. (2023a) and consider the following stochastic linear model for an arbitrary set of points
x =̇ {x1, ..., xM ′},

Ỹk(x) =̇h(x; θh)Θk + ε with Θk ∼ N (θL;mk, τ
−1
f sk) and ε ∼ N (0, τ−1

f βI)

for output dimensions k = 1, ...,K, where h(· ; θh) is the feature mapping used to define f evaluated at a
set of fixed feature parameters θh, τf and β are variance parameters, and m ∈ RPL and s ∈ RPL are—for
now—fixed parameters for a PL-dimensional final layer. This stochastic linear model induces a distribution
over functions (Rudner et al., 2022a,b; Klarner et al., 2023; Rudner et al., 2023b), which—when evaluated at
x̃—is given by

N (ỹk(x̃);h(x̃; θh)mk, τ
−1
f K(x̃, x̃; θh, s)k), (A.2)

where

K(x̃, x̃; θh, s)k =̇h(x̃; θh)(skI)h(x̃; θh)
⊤ + βI (A.3)

is an M -by-M covariance matrix. Viewing this probability density over function evaluations as a likelihood
function parameterized by θ, we diverge from Rudner et al. (2023a) and define

p̃(ỹk | x̃, θh)=̇N (ỹk;h(x̃; θh)mk, τ
−1
f K(x̃, x̃; θh, s)k), (A.4)

where—unlike in Rudner et al. (2023a)—we do not assume that m = 0 and s = I. If we define the auxiliary
label distribution as pỸ | X̃(ỹ | x̃) =̇ δ({0, ...,0} − ỹ), the likelihood p̃(ỹk | x̃, θh) favors learnable parameters θh
for which the induced distribution over functions has a high likelihood of predicting 0. Letting

p̃(ỹ | x̃, θ) =̇
∏K

k=1
p̃(ỹk | x̃, θ,mk, sk),

and taking the log of the analytically tractable density p̃(ỹ | x̃, θ; f), we obtain

log p̃(ỹ | x̃, θh) ∝−
∑K

k=1

τf
2
(h(x̃; θh)mk)

⊤K(x̃, x̃; θh, s)
−1
k h(x̃; θh)mk,

8
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with proportionality up to an additive constant independent of θ. We define

J (θ,m, s, x̃, ỹ)=̇−
∑K

k=1

τf
2
d2M (h(x̃; θh)mk − ỹ, K(x̃, x̃; θh, s)k) (A.5)

where d2M (∆,K) =̇∆⊤K−1∆ is the squared Mahalanobis distance for ∆ = v − w. We therefore obtain

argmaxθ p̃(θ | x̃, ỹ)=argmaxθ J (θ,m, s, x̃, ỹ)+log p(θ)

and hence, maximizing J (θ,m, s, x̃, ỹ)+ log p(θ) with respect to θ is mathematically equivalent to maximizing
the posterior p̃(θ | x̃, ỹ) and leads to functions that are likely under the distribution over functions induced by
the neural network mapping while being consistent with the prior over the network parameters.

However, since the parameters m and s are fixed and appear in the auxiliary likelihood function but not in
the predictive function f(· ; θ), the objective above is not a good choice if the goal is to find parameters θ
that induce functions that have high predictive uncertainty on the set of context points. To address this
shortcoming, we include these parameters in the observation model as the mean and variance parameters of
the final-layer parameters in f(· ; θ), treat them as random variables M and S, place a prior over them, and
ultimately infer an approximate posterior distribution for both.
In particular, we define a prior over the final-layer parameters ΘL as

pΘL
(θL |m, s) = N (θL;m, sI) (A.6)

and corresponding hyperpriors

pM (m) = N (m;µ0, τ
−1
0 I) (A.7)

pS(s) = Lognormal(s;0, 2τ−1
s I). (A.8)

As before, we will drop subscripts for brevity unless needed for clarity. The full probabilistic model then
becomes

p(y |x, θh, θL; f) p(θ,m, s | x̃, ỹ). (A.9)

with the prior factorizing and simplifying as

p(θ,m, s | x̃, ỹ) = p̃(θh |m, s, x̃, ỹ) p(θL |m, s) p(m) p(s)

∝ p(θL |m, s) p̃(ỹ | x̃, θ; f) p(θh) p(m) p(s),
(A.10)

all of which we can compute analytically. With this prior, we can now derive a variational objective and
perform approximate inference.
We begin by defining a variational distribution,

q(θ,m, s, x̃, ỹ) =̇ q(θh) q(θL |m, s) q(m) q(s) q(x̃, ỹ),

and frame the inference problem of finding the posterior p(θ,m, s, x̃, ỹ |xD, yD) as a problem of optimization,

min
qΘ,M,S,X̃,Ỹ ∈Q

DKL(qΘ,M,S,X̃,Ỹ ∥ pΘ,M,S,X̃,Ỹ |XD,YD
),

where Q is a variational family. If the posterior pΘ,M,S,X̃,Ỹ |XD,YD
is in the variational family Q, then the

solution to the variational minimization problem is equal to the exact posterior. Modifying the inference
problem by defining q(x̃, ỹ) =̇ p(x̃, ỹ) = p(ỹ | x̃)p(x̃), which further constrains the variational family, the
optimization problem simplifies to

min
qΘ,M,S∈Q

EpX̃,Ỹ

[
DKL(qΘ,M,S ∥ pΘ,M,S | X̃,Ỹ ,XD,YD )

]
,

9
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which can equivalently be expressed as maximizing the variational objective

F̄(qΘ, qM , qS) =̇EqΘ,M,S
[log p(yD |xD,Θ; f)]− EpX̃,Ỹ

[DKL(qΘ,M,S ∥ pΘ,M,S | X̃,Ỹ )].

To obtain a tractable expression of the regularization term, we first note that we can write

EpX̃,Ỹ
[DKL(qΘ,M,S ∥ pΘ,M,S | X̃,Ỹ )]] = EpX̃,Ỹ

[
EqΘqMqS [log q(Θ)q(M)q(S)]− EqΘqMqS [log p(Θ,M, S | X̃, Ỹ )]

]
,

(A.11)

where the first term is the negative entropy and the second term is the negative cross-entropy. Using the
same insights as above, we can write

EpX̃,Ỹ
[EqΘqMqS [log p(Θ,M, S | X̃, Ỹ )]] ∝ EpX̃,Ỹ

[
EqΘh

qMqS [log p̃(Ỹ | X̃,Θh,M, S)]

+ EqΘ [log p(Θh) p(ΘL |M,S) p(M) p(S)]
]
,

(A.12)

up to an additive constant independent of θ, and use it to express the KL divergence in Equation (A.11) up
to an additive constant independent of θ as

DKL(qΘ,M,S ∥ pΘ,M,S | X̃,Ỹ ) ∝ −EqMqS [EqΘ [log p̃(Ỹ | X̃,Θh,M, S)]

+DKL(qΘL |M,S ∥ pΘL |M,S)] +DKL(qΘh
∥ pΘh

)

+DKL(qM ∥ pM ) +DKL(qS ∥ pS).

Now, further specifying the variational family as

q(θL |m, s) = N (θL;m, sI)

q(θh) = N (θh;µh,Σh)

q(m) = N (m;µL,ΣL)

q(s) = Lognormal(s; ΣL, σ
2
sI).

(A.13)

with learnable variational parameters µ =̇ {µh, µm} and Σ =̇ {ΣL,ΣL} and fixed parameters {σ2
m, σ

2
s}, we get

DKL(qΘL |M,S ∥ pΘL |M,S) = 0, and the KL divergence simplifies to

DKL(qΘ,M,S ∥ pΘ,M,S | X̃,Ỹ ) ∝ −EqΘh
qMqS [log p̃(Ỹ | X̃,Θh,M, S)] +DKL(qΘh

∥ pΘh
)

+DKL(qM ∥ pM ) +DKL(qS ∥ pS),
(A.14)

where each of the KL divergences can be computed analytically, and we can obtain an unbiased estimator of
the negative log-likelihood using simple Monte Carlo estimation.

Since Θh and qM are both mean-field Gaussian distributions, we can equivalently express the full variational
objective in a simplified form as

F(µ,Σ) =̇ EqΘqMqS [log p(yD |xD,Θ; f)]︸ ︷︷ ︸
Expected log-likelihood

− DKL(qΦ ∥ pΦ)︸ ︷︷ ︸
KL regularization

+EqΘh
qMqS [EpX̃,Ỹ

[log p̃(Ỹ | X̃,Θh,M, S)]]− τs∥ΣL∥22︸ ︷︷ ︸
Uncertainty regularization

,

(A.15)

where we defined Φ =̇ {Θh,M}.We can estimate the expectations in the objective using simple Monte Carlo
estimation, and gradients can be estimated using reparameterization gradients as in Blundell et al. (2015).
Letting pỸ |X̃(ỹ | x̃) = δ(0) to encourage high uncertainty in the predictions on the set of context points,

where δ(·) is the Dirac delta function, we obtain the simplified objective

F(µ,Σ) =̇ EqΘqMqS [log p(yD |xD,Θ; f)]︸ ︷︷ ︸
Expected log-likelihood

− DKL(qΦ ∥ pΦ)︸ ︷︷ ︸
KL regularization

+EqΘh
qMqS [EpX̃

[log p̃(0 | X̃,Θh,M, S)]]− τs∥ΣL∥22︸ ︷︷ ︸
Uncertainty regularization

(A.16)
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Appendix B. Experimental details

B.1. Training details

For model training, we use the joint fusion protocol defined by Hayat et al. (2022) in which the network is
trained end-to-end including the modality specific encoders Φcxr and Φehr using the fully connected layer g(·)
to obtain the multi-label probabilities ŷfusion. Table A1 shows the details of the dataset splits used as input
for our network.

Table A1: Summary of dataset sizes for the unimodal dataset and the combined multimodal dataset. We
note that the size of the multimodal dataset decreases when the two modalities are paired.

Dataset Training Validation Testing Context

Clinical time series data 124,671 8,813 20,747 124,671
Chest X-rays 42,628 4,802 11,914 42,628
Multimodal 7,756 877 2,161 7,756

We use the binary cross-entropy loss (Good, 1952), adapted to the multi-label classification task:

log p(y|x, θ; f) = −
n∑

i=1

(yi log(ŷi) + (1− yi)(log(1− ŷi))), (B.17)

where ŷi =̇ sigmoid(f(xi; θ)). The overall variational objective in our method is given by an expected log-
likelihood term, KL regularization, and uncertainty regularization. In the stochastic setting, as described in
Figure 1, we combine the training and context datasets as the input for the computation of this loss.

B.2. Hyperparameter tuning

Initially, we used the deterministic baseline model to randomly sample a learning rate between 10−5 and
10−3 and selected the model and learning rate that achieved the model checkpoint with the best AUROC on
the respective validation set. The best learning rate obtained was 2× 10−4, validated over 10 random seeds
of training the deterministic model.

For the stochastic model, we performed a standard grid-based search to obtain the best hyper parameters
for the regularization function. Table A2 shows the value ranges for each hyperparameter of our grid, which
consists of 324 different model combinations. We note that this procedure requires more resources due to
the higher number of hyperparameters as compared to the deterministic model. In addition, stochastic
models also have more learnable parameters. In our case two times as many parameters, since the model
has mean and variance parameters, and the regularization term requires performing a forward pass on the
number of context points sampled from the context distribution (which we choose to be fewer points than are
contained in each minibatch). In total, as is the case with every mean-field variational distribution, we have
more learnable parameters than in a deterministic neural network and require more forward passes for every
gradient step.

Table A2: Hyperparameter grid search values for the stochastic model

Hyperparameter Values Best

prior variance [1, 0.1, 0.01] 0.1
prior likelihood scale [1, 0.1, 10] 1
prior likelihood f-scale [0, 1, 10] 10
prior likelihood covariance scale [0.1, 0.01, 0.001, 0.0001] 0.1
prior likelihood covariance diagonal [1, 5, 0.5] 5
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B.3. Model selection

We trained our stochastic model for 400 epochs. Since we have four metrics of interest (i.e., AUROC, AUPRC,
Selective AUROC and Selective AUPRC), we computed the hypervolume using the volume formula of a
4-dimensional sphere as the main aggregated metric to select the best model checkpoint during training.

hypervolume =
π2R4

2
(B.18)

where R is the Euclidian magnitude of a 4-dimensional vector. The hypervolume approach ensures that we
do not overfit to a single metric in the process of finding the best model.

B.4. Technical implementation

Our data loading and pre-processing pipeline was implemented using PyTorch (Paszke et al., 2019) following
the same structure of the code used by Hayat et al. (2022). However, we refactored the original unimodal
and multimodal models, training, and evaluation loops using JAX (Bradbury et al., 2018). This framework
simplifies the implementation of Bayesian neural networks and stochastic training, which are the basis of the
uncertainty quantification methods used in this work. In addition, we obtained a significant reduction in
total training time for the unimodal and multimodal models using JAX, compared to PyTorch.
We note that due to specific caching procedures of the JAX framework, we had to standardize each xehr

instance into 300 time steps for the LSTM encoder to avoid out-of-memory issues. The JAX framework
requires that an LSTM encoder defines a static length of the sequences it is going to process, and then it
caches this model in order to increase the training speed. This means that if different sequence lengths are
used, then JAX would cache an instance of the LSTM encoder for each specific length to be used during each
training cycle. The problem arises when dealing with a dataset that contains sequences of dynamic lengths
that present high variance, i.e many different sequence lengths for every datapoint in the dataset, just as is
the case with MIMIC-IV (Johnson et al., 2021). In comparison, PyTorch does not use this approach and is
able to process sequences of dynamic length with one single instance of the LSTM encoder, however this is
done at the cost of training speed when you compare both frameworks.
All of the experiments were executed using NVIDIA A100 and V100 80Gb Tensor Core GPUs.

12
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Appendix C. Additional Experimental Results

In this section, we provide additional results on the test set. Table A3 presents the results of the stochastic
model for different context batch size values.

Table A3: Performance results on the test set for the stochastic model for varying values for context batch
size.

Context
batch size

AUROC AUPRC
Selective
AUROC

Selective
AUPRC

16 0.732 (0.725, 0.739) 0.511 (0.502, 0.525) 0.740 (0.728, 0.753) 0.447 (0.432, 0.469)
32 0.733 (0.725, 0.739) 0.510 (0.500, 0.524) 0.743 (0.733, 0.756) 0.448 (0.435, 0.466)
64 0.735 (0.728, 0.742) 0.514 (0.504, 0.528) 0.748 (0.738, 0.760) 0.452 (0.441, 0.472)
128 0.733 (0.726, 0.739) 0.512 (0.502, 0.525) 0.728 (0.718, 0.739) 0.401 (0.391, 0.418)

Table A4, Table A5 and Table A6 present the extended results of our experiments for each label for the
deterministic baseline, the Bayesian model with standard prior and the Bayesian model with m2d2 prior,
respectively.

Table A4: Performance results across the different labels on the test set for the deterministic baseline (Hayat
et al., 2022).

Label Prevalence AUROC AUPRC
Selective
AUROC

Selective
AUPRC

1 Acute and unspecified renal failure 0.321 0.753 (0.732, 0.774) 0.574 (0.537, 0.613) 0.775 (0.750, 0.802) 0.655 (0.600, 0.717)
2 Acute cerebrovascular disease 0.078 0.854 (0.819, 0.888) 0.427 (0.353, 0.512) 0.595 (0.526, 0.687) 0.072 (0.066, 0.098)
3 Acute myocardial infarction 0.093 0.692 (0.654, 0.727) 0.189 (0.153, 0.234) 0.634 (0.585, 0.675) 0.089 (0.080, 0.107)
4 Cardiac dysrhythmias 0.379 0.690 (0.668, 0.713) 0.563 (0.530, 0.599) 0.678 (0.649, 0.705) 0.621 (0.573, 0.682)
5 Chronic kidney disease 0.240 0.755 (0.732, 0.779) 0.495 (0.454, 0.541) 0.855 (0.830, 0.878) 0.600 (0.529, 0.689)
6 Chronic obstructive pulmonary disease 0.148 0.735 (0.706, 0.765) 0.338 (0.293, 0.390) 0.814 (0.776, 0.850) 0.431 (0.334, 0.536)
7 Complications of surgical/medical care 0.226 0.677 (0.650, 0.704) 0.382 (0.339, 0.428) 0.583 (0.552, 0.621) 0.212 (0.202, 0.243)
8 Conduction disorders 0.115 0.787 (0.750, 0.822) 0.575 (0.515, 0.636) 0.849 (0.814, 0.882) 0.746 (0.691, 0.800)
9 Congestive heart failure; nonhypertensive 0.295 0.772 (0.750, 0.794) 0.593 (0.554, 0.632) 0.829 (0.808, 0.853) 0.705 (0.652, 0.758)
10 Coronary atherosclerosis and related 0.337 0.764 (0.744, 0.784) 0.624 (0.583, 0.663) 0.842 (0.814, 0.866) 0.700 (0.640, 0.762)
11 Diabetes mellitus with complications 0.120 0.848 (0.823, 0.872) 0.485 (0.417, 0.552) 0.757 (0.704, 0.831) 0.250 (0.205, 0.305)
12 Diabetes mellitus without complication 0.211 0.710 (0.684, 0.737) 0.359 (0.324, 0.402) 0.680 (0.645, 0.731) 0.251 (0.219, 0.306)
13 Disorders of lipid metabolism 0.406 0.694 (0.671, 0.715) 0.593 (0.556, 0.630) 0.749 (0.721, 0.776) 0.671 (0.617, 0.720)
14 Essential hypertension 0.433 0.653 (0.630, 0.676) 0.561 (0.525, 0.595) 0.624 (0.598, 0.653) 0.599 (0.549, 0.653)
15 Fluid and electrolyte disorders 0.454 0.711 (0.689, 0.731) 0.681 (0.649, 0.713) 0.688 (0.664, 0.713) 0.779 (0.746, 0.811)
16 Gastrointestinal hemorrhage 0.071 0.629 (0.583, 0.677) 0.135 (0.100, 0.183) 0.590 (0.542, 0.646) 0.078 (0.066, 0.091)
17 Hypertension with complications 0.222 0.746 (0.720, 0.768) 0.452 (0.407, 0.499) 0.842 (0.810, 0.868) 0.549 (0.451, 0.644)
18 Other liver diseases 0.169 0.684 (0.654, 0.715) 0.336 (0.291, 0.385) 0.701 (0.642, 0.754) 0.375 (0.286, 0.476)
19 Other lower respiratory disease 0.126 0.615 (0.580, 0.651) 0.209 (0.172, 0.256) 0.577 (0.539, 0.612) 0.118 (0.109, 0.141)
20 Other upper respiratory disease 0.054 0.638 (0.585, 0.686) 0.092 (0.068, 0.127) 0.551 (0.489, 0.640) 0.055 (0.049, 0.074)
21 Pleurisy; pneumothorax; pulmonary 0.095 0.665 (0.629, 0.698) 0.182 (0.146, 0.230) 0.607 (0.558, 0.658) 0.088 (0.084, 0.111)
22 Pneumonia 0.185 0.733 (0.707, 0.758) 0.373 (0.327, 0.427) 0.739 (0.698, 0.787) 0.316 (0.261, 0.407)
23 Respiratory failure; insufficiency; 0.282 0.786 (0.766, 0.807) 0.603 (0.566, 0.642) 0.841 (0.817, 0.864) 0.719 (0.671, 0.769)
24 Septicemia (except in labor) 0.227 0.755 (0.731, 0.778) 0.504 (0.460, 0.550) 0.841 (0.809, 0.869) 0.626 (0.558, 0.696)
25 Shock 0.174 0.816 (0.791, 0.840) 0.554 (0.507, 0.604) 0.867 (0.821, 0.903) 0.663 (0.580, 0.728)

13



Informative Priors Improve the Reliability of Multimodal Clinical Data Classification

Table A5: Performance results across the different labels on the test set for the Bayesian (standard prior)
model.

Label Prevalence AUROC AUPRC
Selective
AUROC

Selective
AUPRC

1 Acute and unspecified renal failure 0.321 0.747 (0.726, 0.768) 0.573 (0.537, 0.611) 0.817 (0.790, 0.845) 0.672 (0.618, 0.732)
2 Acute cerebrovascular disease 0.078 0.861 (0.828, 0.893) 0.418 (0.350, 0.498) 0.590 (0.520, 0.678) 0.074 (0.067, 0.101)
3 Acute myocardial infarction 0.093 0.705 (0.670, 0.741) 0.208 (0.166, 0.266) 0.694 (0.656, 0.729) 0.087 (0.078, 0.104)
4 Cardiac dysrhythmias 0.379 0.698 (0.676, 0.721) 0.577 (0.544, 0.615) 0.744 (0.707, 0.776) 0.626 (0.570, 0.688)
5 Chronic kidney disease 0.240 0.739 (0.716, 0.762) 0.476 (0.432, 0.520) 0.808 (0.772, 0.841) 0.574 (0.499, 0.648)
6 Chronic obstructive pulmonary disease 0.148 0.729 (0.700, 0.761) 0.338 (0.290, 0.393) 0.802 (0.762, 0.842) 0.428 (0.334, 0.535)
7 Complications of surgical/medical care 0.226 0.657 (0.627, 0.685) 0.383 (0.338, 0.429) 0.672 (0.627, 0.716) 0.394 (0.321, 0.473)
8 Conduction disorders 0.115 0.817 (0.781, 0.848) 0.596 (0.537, 0.657) 0.871 (0.832, 0.906) 0.734 (0.650, 0.810)
9 Congestive heart failure; nonhypertensive 0.295 0.783 (0.762, 0.805) 0.618 (0.579, 0.656) 0.867 (0.840, 0.892) 0.739 (0.688, 0.787)
10 Coronary atherosclerosis and related 0.337 0.766 (0.745, 0.787) 0.645 (0.605, 0.680) 0.836 (0.802, 0.862) 0.735 (0.686, 0.781)
11 Diabetes mellitus with complications 0.120 0.811 (0.783, 0.837) 0.429 (0.368, 0.495) 0.844 (0.804, 0.874) 0.359 (0.240, 0.444)
12 Diabetes mellitus without complication 0.211 0.691 (0.664, 0.717) 0.354 (0.319, 0.399) 0.642 (0.607, 0.682) 0.222 (0.201, 0.265)
13 Disorders of lipid metabolism 0.406 0.685 (0.662, 0.708) 0.579 (0.545, 0.614) 0.759 (0.730, 0.785) 0.617 (0.564, 0.674)
14 Essential hypertension 0.433 0.660 (0.637, 0.681) 0.576 (0.543, 0.611) 0.716 (0.684, 0.746) 0.632 (0.582, 0.680)
15 Fluid and electrolyte disorders 0.454 0.714 (0.693, 0.734) 0.668 (0.635, 0.700) 0.708 (0.685, 0.736) 0.756 (0.718, 0.796)
16 Gastrointestinal hemorrhage 0.071 0.638 (0.593, 0.682) 0.131 (0.097, 0.177) 0.606 (0.561, 0.676) 0.071 (0.066, 0.092)
17 Hypertension with complications 0.222 0.733 (0.710, 0.757) 0.431 (0.388, 0.479) 0.779 (0.735, 0.818) 0.486 (0.397, 0.579)
18 Other liver diseases 0.169 0.696 (0.664, 0.727) 0.354 (0.305, 0.403) 0.731 (0.680, 0.780) 0.429 (0.345, 0.526)
19 Other lower respiratory disease 0.126 0.604 (0.567, 0.642) 0.181 (0.153, 0.219) 0.582 (0.547, 0.617) 0.123 (0.113, 0.145)
20 Other upper respiratory disease 0.054 0.685 (0.632, 0.739) 0.165 (0.109, 0.236) 0.618 (0.552, 0.685) 0.101 (0.052, 0.205)
21 Pleurisy; pneumothorax; pulmonary 0.095 0.666 (0.629, 0.701) 0.166 (0.135, 0.208) 0.593 (0.543, 0.657) 0.090 (0.082, 0.120)
22 Pneumonia 0.185 0.758 (0.732, 0.781) 0.400 (0.355, 0.455) 0.783 (0.743, 0.829) 0.341 (0.270, 0.436)
23 Respiratory failure; insufficiency; 0.282 0.824 (0.804, 0.843) 0.631 (0.592, 0.675) 0.890 (0.868, 0.909) 0.703 (0.637, 0.771)
24 Septicemia (except in labor) 0.227 0.783 (0.761, 0.805) 0.522 (0.476, 0.572) 0.866 (0.834, 0.892) 0.629 (0.530, 0.703)
25 Shock 0.174 0.826 (0.804, 0.847) 0.552 (0.502, 0.606) 0.888 (0.858, 0.918) 0.582 (0.507, 0.658)

Table A6: Performance results across the different labels on the test set for the Bayesian (m2d2 prior) model.

Label Prevalence AUROC AUPRC
Selective
AUROC

Selective
AUPRC

1 Acute and unspecified renal failure 0.321 0.756 (0.735, 0.779) 0.587 (0.551, 0.627) 0.830 (0.800, 0.857) 0.680 (0.617, 0.740)
2 Acute cerebrovascular disease 0.078 0.870 (0.840, 0.901) 0.459 (0.385, 0.545) 0.664 (0.598, 0.745) 0.088 (0.076, 0.115)
3 Acute myocardial infarction 0.093 0.716 (0.681, 0.754) 0.220 (0.174, 0.277) 0.656 (0.611, 0.698) 0.083 (0.077, 0.104)
4 Cardiac dysrhythmias 0.379 0.687 (0.663, 0.710) 0.570 (0.536, 0.606) 0.737 (0.706, 0.768) 0.654 (0.603, 0.709)
5 Chronic kidney disease 0.240 0.767 (0.744, 0.789) 0.507 (0.464, 0.553) 0.853 (0.825, 0.879) 0.612 (0.534, 0.690)
6 Chronic obstructive pulmonary disease 0.148 0.727 (0.700, 0.757) 0.326 (0.280, 0.377) 0.773 (0.725, 0.814) 0.413 (0.293, 0.503)
7 Complications of surgical/medical care 0.226 0.659 (0.631, 0.686) 0.396 (0.351, 0.444) 0.666 (0.620, 0.708) 0.375 (0.310, 0.462)
8 Conduction disorders 0.115 0.798 (0.763, 0.832) 0.593 (0.532, 0.656) 0.850 (0.814, 0.889) 0.754 (0.689, 0.812)
9 Congestive heart failure; nonhypertensive 0.295 0.788 (0.768, 0.808) 0.600 (0.562, 0.637) 0.874 (0.853, 0.892) 0.722 (0.663, 0.773)
10 Coronary atherosclerosis and related 0.337 0.767 (0.746, 0.787) 0.626 (0.588, 0.665) 0.846 (0.820, 0.869) 0.716 (0.654, 0.769)
11 Diabetes mellitus with complications 0.120 0.842 (0.817, 0.866) 0.461 (0.398, 0.528) 0.821 (0.765, 0.906) 0.344 (0.256, 0.472)
12 Diabetes mellitus without complication 0.211 0.716 (0.690, 0.742) 0.386 (0.345, 0.432) 0.673 (0.634, 0.727) 0.256 (0.223, 0.313)
13 Disorders of lipid metabolism 0.406 0.698 (0.675, 0.720) 0.591 (0.558, 0.628) 0.773 (0.746, 0.798) 0.624 (0.572, 0.685)
14 Essential hypertension 0.433 0.669 (0.646, 0.694) 0.588 (0.555, 0.621) 0.709 (0.677, 0.740) 0.643 (0.588, 0.695)
15 Fluid and electrolyte disorders 0.454 0.717 (0.695, 0.737) 0.679 (0.647, 0.709) 0.739 (0.712, 0.767) 0.771 (0.732, 0.811)
16 Gastrointestinal hemorrhage 0.071 0.667 (0.627, 0.708) 0.134 (0.104, 0.185) 0.596 (0.537, 0.720) 0.068 (0.064, 0.089)
17 Hypertension with complications 0.222 0.760 (0.736, 0.781) 0.475 (0.430, 0.522) 0.843 (0.810, 0.872) 0.574 (0.483, 0.666)
18 Other liver diseases 0.169 0.723 (0.693, 0.750) 0.378 (0.330, 0.428) 0.673 (0.614, 0.743) 0.313 (0.228, 0.423)
19 Other lower respiratory disease 0.126 0.594 (0.560, 0.629) 0.181 (0.154, 0.222) 0.568 (0.533, 0.612) 0.120 (0.114, 0.144)
20 Other upper respiratory disease 0.054 0.670 (0.614, 0.722) 0.133 (0.094, 0.193) 0.540 (0.483, 0.603) 0.052 (0.048, 0.071)
21 Pleurisy; pneumothorax; pulmonary 0.095 0.692 (0.658, 0.726) 0.167 (0.139, 0.207) 0.630 (0.576, 0.707) 0.086 (0.081, 0.109)
22 Pneumonia 0.185 0.756 (0.732, 0.781) 0.411 (0.362, 0.468) 0.808 (0.769, 0.851) 0.395 (0.328, 0.499)
23 Respiratory failure; insufficiency; 0.282 0.811 (0.790, 0.831) 0.633 (0.594, 0.673) 0.876 (0.848, 0.899) 0.733 (0.675, 0.791)
24 Septicemia (except in labor) 0.227 0.774 (0.751, 0.797) 0.513 (0.467, 0.559) 0.818 (0.772, 0.865) 0.582 (0.504, 0.664)
25 Shock 0.174 0.809 (0.786, 0.833) 0.536 (0.486, 0.586) 0.876 (0.838, 0.902) 0.637 (0.546, 0.702)
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