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Abstract

Emergency responders managing hazardous material (HAZMAT) incidents face
critical, time-sensitive decisions, manually navigating extensive chemical guide-
lines. We investigate whether today’s language models can assist responders by
rapidly and reliably understanding critical information, identifying hazards, and
providing recommendations. We introduce the Chemical Emergency Response
Evaluation Framework (ChEmREF), a new benchmark comprising questions on
1,035 HAZMAT chemicals from the Emergency Response Guidebook and the
PubChem Database. ChEmREF is organized into three tasks: (1) translation of
chemical representation between structured and unstructured forms (e.g., converting
“C2HgO” to “ethanol”), (2) emergency response generation (e.g., recommending
appropriate evacuation distances) and (3) domain knowledge question answering
from chemical safety and certification exams. Our best evaluated models received
an exact match of 68.0% on unstructured HAZMAT chemical representation trans-
lation, a LLM Judge score of 52.7% on incident response recommendations, and a
multiple-choice accuracy of 63.9% on HAZMAT examinations. These findings sug-
gest that while language models show potential to assist emergency responders in
various tasks, they require careful human oversight due to their current limitations.

1 Introduction

In a hazardous material (HAZMAT) incident, “the decisions made and actions taken in the first few
minutes of a response will often establish the character of the overall response — and ultimately
its success or failure [U.S. HHS, 2024b].” During the critical “golden hour,” first responders must
quickly assess the nature and scale of the incident, establish safety protocols, and request resources
while protecting themselves and the public. In current practice, first responders rely extensively on
the HAZMAT Emergency Response Guidebook (ERG; U.S. DoT, 2024)!: a printed manual of 400
pages that links common HAZMAT chemicals with their corresponding incident response guidelines.
A major challenge in emergency response is navigating the extensive content of the ERG quickly
and accurately to identify the appropriate response measures. In addition, first responders are often
required to draw inferences from environmental cues, placards, databases, container labels, victim
symptoms, and other contextual information. This adds complexity to the task, demanding skills and
interdisciplinary knowledge that were not explicitly documented in the ERG.

Language models (LMs) today have acquired extensive knowledge through large scale pre-training
and can synthesize vast amounts of information to generate responses that adhere to complex and
dynamic contexts. Given this progress, we ask: can language models assist chemical emergency
responders in HAZMAT incidents by automating parts of their workflow? We believe that the broad
knowledge capacity, strong information synthesize ability and accessible interface of LMs open up

'See §C for a glossary of important terms related to HAZMAT and emergency response.
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Figure 1: LLM Assistants in Emergency Response. In HAZMAT emergencies, timely decisions
during scene size-up are critical [EMT Training Base, 2019]. This figure compares the traditional
chemical response timeline with one aided by an LLM. While LLMs may accelerate decision-making,
they can also produce incorrect guidance. These dynamics informed the design of ChEmREF.

Task I: Chemical Representation Translation (§A.1)

Question: What is the SMILES format for C4H,O?
Answer: CC(C)(C)O

Task II: Emergency Incident Response (§A.2)

Scenario: A leak of chlorine gas has occurred near a populated area. Describe immediate public safety and
evacuation steps necessary to manage the situation effectively.
Recommendation: Stage emergency vehicles 300 feet away from the edge of the spill site...

Task III: HAZMAT Examination (§A.3)

Question: When transporting hazardous materials, when must the driver check the vehicle’s tires?

Answer Choices: A) Only at the start of the trip. B) Every 150 miles or every three hours, whichever comes
first. C) Only if the tire pressure warning light turns on. D) After reaching the destination.

Answer: B) Every 150 miles or every three hours, whichever comes first.

Table 1: Overview of Three Core Tasks in ChREmREF (Section 2). This table provides representa-
tive examples for each of the three core tasks evaluated in our framework.

new possibilities for supporting this task. Additionally, their fast information processing speed may
help save valuable time in high-pressure, time-critical decision-making scenarios.

To this end, we introduce ChEmREF: a framework for evaluating whether LMs have the capabilities to
assist first responders in chemical emergencies. Our framework consists of three tasks: (1) Chemical
Representation Translation, which tests whether models can accurately convert between different
unstructured (e.g., UN-Number, Common Name, and Synonyms) or structured (e.g., Molecular

Formula, InChl, SMILES, and IUPAC Name? ) chemical representations (see Table 3); (2) Incident
Response Recommendation, which measures the ability of LMs to generate relevant safety measures,
evacuation distances, and containment strategies based on incident context; and (3) HAZMAT
Examination, which assesses performance on general-knowledge multiple-choice questions from
real-world certification exams for first responders and chemical safety tests. We present abbreviated
examples of each tasks in Table 1. By covering 1,035 HAZMAT chemicals, 8 chemical representation
types, 6 emergency response dimensions and 6 HAZMAT exam categories, ChEmREF provides a
comprehensive evaluation of LMs in this high-stakes domain.

We evaluate six recent general-purpose and domain-specific large language models on ChEmREF
Overall, our results suggest that language models show potential to assist first responders in HAZMAT
emergencies, but must be used with great caution and under the supervision of trained professionals,

JUPAC Name is set by the International Union of Pure and Applied Chemistry. InChI refers to International
Chemical Identifier. SMILES refers to Simplified Molecular Input Line Entry System.



given the high-stakes nature of these situations. We will publicly release the data and code for
ChEmREF and hope that future work will build on it to advance research in this critical domain.

2 Evaluating LMs on ChEmREF

In this section, we first introduce tasks in ChEmREF and their task-specific prompting strategies
in §2.1. We describe experiment details such as evaluated models and evaluation metrics in §2.2.
Finally, we report model performance on ChEmREF and summarize our key observations in §2.3.

2.1 Tasks in ChEmREF

Task I: Chemical Representation Translation. Task I comprises two settings: structured and
unstructured translation (described in detail in subsection A.1). We conducted a pilot study (Ap-
pendix G.1.1) to determine the most suitable prompt format for this task.

For structured translation, we adopt one-shot chain-of-thought prompting, as intermediate reason-
ing steps often aid in breaking down complex chemical terms (e.g., translating “sodium” to “Na” and
“superoxide” to “O,”). For unstructured translation, we employ direct zero-shot prompting, as we
observed no consistent improvement from including demonstrations or reasoning steps. We provide
prompt examples in Appendix E.

Task II: Incident Response Recommendation. We evaluate models on Task II with direct 0-shot
prompting that queries models to provide recommendations in one of the six key dimensions (e.g.,
fire or explosion hazards, public safety). We provide an example prompt in Appendix E.

Task III: HAZMAT Examination. Task III involves answering multiple-choice questions with
inputs presented in a standardized format: Question: ... Answer Choices: ... Answer:. We use direct
zero-shot prompting without examples or intermediate reasoning.

2.2 Experiment Details

Evaluated Models. We evaluate five open-weight LMs on ChEmREF: three general-purpose (PHI-
3 3.8B [Abdin et al., 2024a], PHI-4 14B [Abdin et al., 2024b], LLAMA-3.1 70B [Grattafiori et al.,
2024]) and two domain-specialized (CHEMLLM 7B [Zhang et al., 2024], MED42 70B [Christophe
et al., 2024]). CHEMLLM is SFT from INTERN-LM-2 7B [Cai et al., 2024], and MED42 from
LLAMA-2 70B [Touvron et al., 2023]. We also include GPT-40 [Hurst et al., 2024] as a closed-
source baseline.

Evaluation Metrics. For Task I: Chemical Representation Translation, we use Exact Match
(EM): a prediction receives credit only if it exactly matches the target representation.

For Task II: Incident Response Recommendation, we adopt three complementary metrics: (1) LLM
Judge for correctness (Incorrect/Partial/Correct), (2) BERTScore-F1 for semantic similarity, and (3)
Cautiousness via Mean Absolute Relative Error (MARE) for numerical outputs such as distances and
durations. We also present a human evaluation on the model outputs as outlined in subsection B.2.

For Task III: HAZMAT Examination, we evaluate model performance using standard accuracy on
multiple-choice questions.

2.3 Overall Results

GPT-40 is the best overall performer, with MED42 and LLAMA-3.1 following closely. We
present the ChEmREF evaluation results in Table 2. In addition to performance on individual tasks,
we compute an overall average score over all columns (excluding cautiousness MARE) for high-level
comparison of different models. We found that GPT-40 achieves the highest overall average score of
71.4%, followed by MED42 (68.0%) and LLAMA-3.1 (67.2%).

Models exhibit distinct strengths and weaknesses. In Figure 2, we visualize the results in Table 2,
with each metric column normalized to the range of [0,1] to enable clearer model-wise comparison.



L. Translation 11. Incident Response II1. Exam

Model Avg. (1)
Struc. EM (1) Unst. EM (1) LLM Judge (1) BERTScore (1) MARE (|) Acc. (1)
Phi-3 (3.8B) 93.7 60.0 42.7 52.0 3.8 49.0 59.5
ChemLLM (7B) 79.9 56.8 46.3 79.7 120.0 473 62.0
Phi-4 (14B) 97.2 48.7 252 79.9 2.8 60.0 62.2
Med42 (70B) 88.7 61.9 50.8 80.5 3.7 58.0 68.0
Llama-3.1 (70B) 93.1 67.3 50.7 64.9 5.1 60.0 67.2
GPT-40 924 68.0 52.7 80.2 2.0 63.9 714

Table 2: ChEmREF Evaluation Results. Bold and underlined values indicate the best and
second-best performance in each column. EM stands for exact match. Average is computed over all
columns except for MARE.

We observe that individual models often excel in specific tasks while under-performing in others.
For example, PHI-4 achieves the highest score in Structured Translation (97.2% EM) but performs
the worst in Incidence Response (25.2% LLM Judge Score). These trade-offs manifest as skewed
or imbalanced shapes in Figure 2. While GPT-40, MED42, and LLAMA-3.1 show promising
overall performance, it is important to remain aware of each model’s distinct weaknesses. Their
outputs should always be used with human oversight to ensure safe and reliable decision-making in
emergency response.

Limitations of domain-specific training. CHEMLLM and MED42 are two models we evaluated
that have undergone domain-specific supervised fine-tuning (SFT). Our results suggest that such
domain-specific training does not always guarantee successful application in chemical emergency
response. Notably, despite being trained on 7 million chemistry-related QA pairs, ChemLLLM ranks
the worst in structured chemical translation and second-worst in unstructured chemical translation.

Notably, general-purpose models including GPT-

40, LLAMA-3.1 and PHI-4 outperform domain- —— Phi-3 (3.88) Med42 (70B)
specialized models on Task III: HAZMAT Exam. — ChemlLM (78) —— Llama-3.1(70B)
We hypothesize that this is due to the interdis- Phi-4 (148) GPT-do
ciplinary nature of the task, as it may require Task I:
knowledge spanning chemistry, medicine, emer- Unstruct. EM

. . Task II:
gency response, numerical reasoning, and more. LLM Judge

General-purpose models likely benefit from its
broader knowledge coverage, whereas domain-
specialized models may lose access to such gen-
eral knowledge after domain-specific training.
These results also highlight the complexity of

chemical emergency response and the limitations
Task II:

of current domain-specific training technique. BERTScore

We leave the exploration of more effective do- Task lI:
main or task specific training strategies as future Accuracy
work.

Figure 2: ChEmREF Evaluation Results With
Per-Metric Normalization. To facilitate clearer
3 Conclusion model comparison, we normalize each column in
Table 2 to the [0,1] range.

In this work, we introduce ChEmREF, an evalua-

tion framework for LLMs covering three tasks re-

lated to chemical emergencies. Our results show

that while models perform well with structured

representations, used in the Task I: Chemical Representation Translation and the Task II: Incident
Response Recommendation, they struggle with the chemical representations that are less struc-
tured but more commonly used in human colloquial communication. Addressing this human-Al
communication gap should be a key consideration in the design of future Al-assisted emergency
response systems. Our results on Task III: Hazmat Examination, suggest that current domain-specific
post-training approaches may lead to a loss of general capabilities, making them less suitable for
highly interdisciplinary domains like chemical emergency response. More broadly, we believe LLMs
have the potential to assist with chemical identification and incident response, but they should be
used with caution and positioned as a complement to, rather than a replacement for, human experts in
emergency response.
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A Extended ChEmREF Description and Metrics

A.1 Task I: Chemical Representation Translation

Unstructured Representations | Structured Representations
Common Name | tert-Butyl alcohol IUPAC Name 2-methylpropan-2-ol
UN-Number 1120 Molecular Formula | C4H;(O
Synonyms Trimethylcarbinol InChl InChl=1S/C4H;o0O/c1-4(2,3)5/h5H,1-3H3
2-Methyl-2-propanol | SMILES CC(O)(O)0O

Table 3: Different Chemical Representations of tert-Butyl alcohol, a sample hazardous material.
In Task I: Chemical Representation Translation (subsection A.1) we evaluate LMs on translating
between these representations, with a focus on translating to/from Common Name, which is most
frequently used in chemical emergency correspondence and guidebooks.

On receiving a dispatch call, first responders must rapidly and accurately identify the emergency
chemicals involved, often based on descriptions of placards, container labels, and other cues. However
this process can be complicated by the existence of multiple representations for the same chemical. In
Table 3, we provide 7 different representations for the HAZMAT chemical named fert-Butyl alcohol.
In practice, first responders may spend a few minutes consulting the ERG or electronic databases
to obtain the representation required for subsequent decision-making. Task I investigates whether
LLMs can assist in this critical task at a fast speed.

To build this task, we first subsample 100 random chemicals from the 1,035 hazardous materials
listed in the 2024 Emergency Response Guidebook (ERG) and collect their corresponding chemical
representations by cross-referencing the PubChem database. For each chemical, we consider both
structured and unstructured translation settings, resulting in 19 source-target translation pairs in total.

* Structured translation (12 pairs) involves bi-directional, pairwise translation among the 4 struc-
tured representations (IUPAC Name, Molecular Formula, InChl and SMILES?). This setting
evaluates whether LLMs can reason over the structure of hazardous chemicals.

* Unstructured translation (7 pairs) focuses on translating to/from Common Name, as it is most
frequently used in emergency communication. This includes translations between {UN-Num-
ber, [IUPAC Name, Molecular Formula} = Common Name (6 pairs) and Synonyms — Common
Name (1 pair).

We evaluate model performance using exact match (EM). A prediction receives full credit when the
output matches the target chemical representation exactly, and zero otherwise.

A.2 Task II: Incident Response Recommendation

Once the chemical involved in the incident has been identified and the suitable chemical representation
is found (Task I), emergency responders must analyze the incident and provide appropriate safety

Regarding SMILES evaluation, we rely on the single SMILES string that PubChem now provides for every
compound. PubChem has deprecated the separate canonical and isomeric fields in favor of a unified SMILES
that is both canonicalized and stereo-/isotope-explicit. For each compound, this hybrid and unique canonicalized
form is the isomeric SMILES and was used verbatim during both training and evaluation. As such, the task is
designed to reproduce PubChem’s published representation, not to normalize across equivalent non-canonical
variants which do not have unique representations (i.e., one non-cannocalized form can represent multiple
chemicals).
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recommendations. For example, in the event of an anhydrous ammonia leak (commonly referred to
as “ammonia gas”), the responder may advice on safe evacuation distances (e.g., 330 feet), protective
gear (e.g., self-contained breathing apparatus, or SCBA) and containment procedures (e.g., applying
water spray to reduce vapors). Task II evaluates whether LMs can assist first responders in drafting
emergency response recommendations.

To construct this task, we extract the official recommendations from the 2024 Emergency Response
Guidebook (ERG; U.S. DoT 2024). For each chemical, the ERG provides detailed guidance across
six key dimensions: fire or explosion, health, public safety, protective clothing, spill or leak, and first
aid. Following this, we prompt LLMs to generate recommendations for each of these six aspects
through separate queries. For efficient evaluation, we randomly subsample 100 chemicals across the
4 structured representation types from the 1,035 chemicals in Task I, resulting in a total of 2,400
queries for Task II.

For evaluation, we compare the model generated recommendations and the ground-truth recommen-
dations in the ERG using two metrics: (1) LLM Judge [Zheng et al., 2023]: We use GPT-4-Turbo as
an automatic evaluator for the quality of each generation. It assigns either Incorrect (0), Partially
Correct (0.5), or Perfect (1) to each generation. Details on the judging prompts and setup can be
found in the §F. (2) BERTScore-F1 [Zhang et al., 2020]. We use BERTScore-F1 as a secondary
metric to capture semantic similarity and surface-level variation in phrasing.

We introduce a separate metric named (3) Cautiousness for queries involving numerical outputs such
as length, time, and volume (e.g., recommending a 330-foot evacuation distance, recommending not
to enter the accident site for 24 hours). This metric quantifies how closely model-generated values
align with the ERG. Specifically, we compute an Mean Absolute Relative Error (MARE) metric
between the predicted (¢;) and ground truth (y;) values.
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A.3 Task III: HAZMAT Examination

Beyond translation and emergency response recommendation, a fundamental understanding of
HAZMAT concepts is also essential for first responders. Such knowledge can be evaluated through
question-answering tasks that more closely reflect real-world scenarios. In practice, first responders,
along with other professionals like lab technicians, truck drivers, and warehouse managers, are
required to pass HAZMAT certification exams. These exams offer a valuable benchmark for evaluating
a model’s understanding of HAZMAT chemicals.

In Task III, we collect a total of 865 multiple-choice questions from 46 publicly available quizzes on
ProProfs.* These quizzes cover a wide range of topics, including HAZMAT Awareness, Workplace
Safety, Transportation Safety and more. Each quiz provides answer keys and explanations that have
been reviewed by both educators and learners preparing for the exam. Additionally, we manually
filtered and verified the questions to ensure quality. We evaluate LLMs on these questions and report
standard accuracy.

B Analyzing LLM performance on ChEmREF

In this section, we further break down model performance on the three core tasks and analyze
common failure cases and limitations. We highlight several key observations, with additional
discussion deferred to Appendix G.

B.1 Analyzing Task I: Chemical Representation Translation

In Figure 3, we break down the performance on Task I by source and target chemical representa-
tions. The reported performance is averaged with all six evaluated models. We have the following
observations:

*https://www.proprofs.com/quiz-school/
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Figure 3: Task I Performance Breakdown. Left/Right: Structiifed/URStructured Translation.
For brevity, we use “Mole.” to denote Molecular Formula. We report EM scores for each source-target
pair, averaged across all evaluated models.

Structured Translation vs. Unstructured Translation. We observe that models perform signifi-
cantly better when translating between structured chemical formats such as [UPAC Name, Molecular
Formula, InChl, and SMILES, compared to translation involving unstructured forms like Common
Name, UN-Name, and Synonyms. For example, PHI-4 achieves a EM of 97.2% on structured
translation, but the performance drops to 48.7% on unstructured translation. Similar trends are
observed on other models, highlighting the model’s limitation on grounding and normalization when
working with less structured or colloquial names.

We have several hypotheses for this performance gap. (1) The structured representations are rule-
based and systematic, making them more suitable for step-by-step reasoning through chain-of-thought
prompting. In contrast, unstructured translation tends to rely more on the model’s memorization
than on logical reasoning. (2) Structured representations are defined by international standards and
are likely to appear more frequently in chemical databases and online resources, making them more
prevalent in the model’s pretraining data. In contrast, unstructured forms like Synonyms are often long-
tail, ambiguous, and geographically dependent. In general, while unstructured representations are
more accessible to humans, structured representations are more machine-actionable. This observation
should inform the future design of Al-assisted emergency response systems and effective human-Al
collaboration.

To Common Name vs. From Common Name. Translation to Common Name is a critical step in
the emergency response workflow, as it often serves as the entry point for subsequent actions such
as consulting the Emergency Response Guidebook (see Figure 1). In Figure 3 (Right), we observe
that models perform better when translating to Common Name than from it, which we view as a
promising sign. However, the average EM score on these translation pairs is 72.3%, which remains
insufficient.

Self-translation as a sanity check. Self-translations (e.g., from SMILES to SMILES) is a simple
extension from the translation task. We additionally evaluate models on self-translation on the
four structured representations, as a sanity check. We report the detailed model-specific results in
Fig. 7. LLAMA-3.1 achieved the highest EM score (98.6%), followed closely by PHI-4 (97.8%) and
MED42 (95.0%). Surprisingly, CHEMLLM achieves a lower score of 86.3% on this task, suggesting
a lack of basic understanding of chemical representation types. We also observe that model rankings
on self-translation are consistent with their ranking on structured translation in Table 2, suggesting
that this simple check can serve as an early-stage evaluation for filtering out less suitable models.

B.2 Analyzing Task II: Incident Response Recommendation

Evaluating quantitative recommendations and cautiousness. Many emergency response actions
rely on quantitative recommendations, e.g., advising an 330-foot evacuation radius. While examining
the model outputs in Task II, we first observe that models often neglect to generate quantitative
recommendations when expected. Among queries where the ground-truth recommendation includes a
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numerical value, models produce values in the correct category (e.g., length, mass, time, concentration)
in only 20% of cases.

For outputs that include valid numerical values, we further compute the mean absolute relative
error (MARE) metric (defined in §A.2) as a measurement of model’s cautiousness. CHEMLLM
demonstrates the most cautious behavior, with an MARE of 120.03. Our manual inspection reveals
its tendency to overestimate values, meaning that the quantities recommended by ChemLLM are on
average 120 times higher than the groundtruth, which could place unnecessary strain on response
efforts. GPT-40 has the lowest MARE of 2.0, which is significantly lower than 120.0. While
overestimation still occurs, it is far less severe and likely more manageable in practical settings.

Our analysis on cautiousness also emphasize the limitations of automatic metrics like LLM Judge or
BERTScore. In high-stakes domains like chemical emergency response, it is essential to assess not
only the overall plausibility of a recommendation, but also whether it produces a quantitative value
when needed, and whether that value is accurate.

Verbose outputs may hinder time-sensitive decision-making. In our manual review of 20 recom-
mendations generated by GPT-40, we find that the model frequently produces outputs that extend
beyond the scope of the prompt. For example (§G.2.2), when asked specifically about the fire or
explosion hazards of a given chemical, GPT-40 additionally generates guidance on personal protec-
tive equipment (PPE) and continuous assessment of hazards, resulting in outputs that are longer and
less focused. While such comprehensive responses demonstrate the model’s broad knowledge, this
verbosity may pose challenges in time-sensitive scenarios, where concise and actionable information
is preferred.

Human evaluation by a first responder shows alignment with the LLM-Judge. We emphasize
that Tasks 1 and 3 have verifiable answers that can be evaluated deterministically: Task 1 uses
Exact/Partial Match on chemical representations, while Task 3 relies on Multiple Choice Answer Keys.
Only Task 2 requires long-form responses, where the gold-standard outputs were not LLM-generated
but instead obtained directly from the federally standardized Emergency Response Guidebook (ERG),
the authoritative reference for emergency responders.

For Task 2, we adopt a combination of Exact Match, BERTScore, and LLM-based judgment as a
starting point. We acknowledge, however, that these automated metrics cannot fully substitute for
human validation. In particular, using GPT-4 as a judge when GPT-40 is one of the evaluated models
raises potential bias concerns. To mitigate this, one of the authors—a certified EMT with HAZMAT
training and five years of field experience—conducted multiple rounds of testing to refine and validate
outputs. While large-scale human validation was beyond the scope of this initial study, we consider it
a critical next step as we expand to more complex emergency scenarios.

The LLM Judge score measures alignment between a model’s response and the ERG reference. For
example, a score of 52.7% indicates that while models can capture the broad contours of appropriate
guidance (e.g., recognizing that PPE is required), they often lack specificity or completeness (e.g.,
omitting gloves or eye protection). Such partial correctness can present real-world risks, underscoring
the importance of human oversight for emergency response applications.

To further probe reliability, we conducted a small-scale human validation study of Task 2 responses.
We sampled 96 responses across six prompt types, focusing on the top two performing models and
the lowest performing model. Both the LLM-Judge and a HAZMAT-certified EMT independently
reviewed each prompt, model output, and corresponding ERG section. Additional relevant but
accurate information was accepted, while omissions of significant ERG content or introduction of
inaccuracies were penalized.

Model  Agreement LLM-Annotator Avg (%) Human Avg (%)

Llama3 88.5 69.8 62.0
Phi4 94.8 86.5 84.4
GPT40 76.0 69.3 68.8

Table 4: Comparison of Task 2 evaluation between LLM-Judge and human validator (HAZMAT-
certified EMT with 5 years of experience).
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B.3 Analyzing Task III: HAZMAT Examination

Category Average Accuracy Number of Exams
CBRN & Chemical Safety 46.5 3
HAZMAT Awareness & Operations 51.9 15
HAZMAT Lesson Plans 70.8 8

Hazard Communication & Workplace Safety 75.6 9

IMDG & Transportation Safety 66.7 1

Incident Management & Reporting 62.6 10

Total Exam Cohort 62.0 46

Table 5: Task III Accuracy by Category. We report mean accuracy across all evaluated models.
Models perform better on categories with instructional content, but struggle with technical and
risk-related topics, highlighting their limitations in these specialized domains.

Performance varies across HAZMAT exam categories. When gathering HAZMAT-related exams
from ProProfs, we manually group them into six major exam categories. In Table 5, we report the
accuracy on different exam categories. Models perform well on instructional content, such as Hazard
Communication and Workplace Safety (Accuracy: 75.6%) and HAZMAT Lesson Plans (Accuracy:
70.8%), but struggle with more technical and risk-related topics, including CBRN & Chemical Safety
(Accuracy: 46.5%) and HAZMAT Awareness & Operations (Accuracy: 51.9%). This discrepancy
highlights limitations in current models’ ability to handle complex, high-stakes topics that require
deeper domain understanding.

Contamination check. To ensure that model performance reflects understanding and generalization
instead of memorization, we conducted exact-match searches using the Infini-gram engine [Liu
et al., 2024] over several open pretraining corpora—Dolma-v1.7 [Soldaini et al., 2024], RedPajama
[Weber et al., 2024], Pile-train [Gao et al., 2020], and C4-train [Raffel et al., 2020]. No overlaps
were found with our multiple-choice QA dataset.
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C Glossary

Term

Definition

Hazardous Materials (HAZMAT)

Substances that pose a risk to health, property, or the environment, often
requiring special handling and regulations.

Emergency Response Guidebook
(ERG)

A resource used by first responders to identify hazardous materials and
guide their response during transport incidents.

International Union of Pure and Ap-
plied Chemistry (IUPAC)

A global organization that sets standards for chemical nomenclature,
terminology, and measurement.

Simplified Molecular Input Line En-
try System (SMILES)

A notation system that allows the representation of a molecular structure
using a linear string of text.

International Chemical Identifier
(InChl)

A textual identifier that provides a unique representation of chemical
substances to facilitate data sharing and searchability.

UN-Number

A UN number is a four-digit code used to identify hazardous materials
for safe transportation and emergency response, regulated by frame-
works such as the International Maritime Dangerous Goods (IMDG)
Code, International Air Transport Association (IATA) Dangerous Goods
Regulations, U.S. Department of Transportation (DOT) Regulations,
and the European Agreement concerning the International Carriage of
Dangerous Goods by Road (ADR).

Commercial Driver’s License

(CDL)

A specialized license required for individuals operating large, heavy, or
hazardous material-carrying commercial vehicles.

Compound Identifier (CID)

A unique numerical identifier assigned to chemical substances in the
PubChem database for reference and research purposes.

Personal Protective

(PPE)

Equipment

Gear and clothing designed to protect individuals from hazardous mate-
rials, contamination, or injury in various environments.

National Registry of Emergency
Medical Technicians (NREMT)

A certification organization that ensures emergency medical personnel
meet national training and competency standards.

Table 6: Key Definitions. A glossary of important terms related to HAZMAT and emergency response.
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D Related Work

Evaluating LMs on Chemistry Knowledge. Language technologies have long been applied to
the chemistry domain, with Thorne and Akhondi [2024] providing a comprehensive review. Recent
benchmarks like ChemLLMBench [Guo et al., 2023] and ChemBench [Mirza et al., 2024] evaluate
large language models (LLMs) on a range of chemistry knowledge and skills, demonstrating their
potential while also highlighting limitations such as difficulties with SMILES representations, hallu-
cinations, and overconfident predictions. Complementary to these works, our work offers a distinct
perspective by focusing on the critical and specific domain of HAZMAT chemicals. Furthermore,
we move beyond memorizing chemicals properties to actively reasoning about and applying them in
real-world HAZMAT emergency response.

Adapting and Augmenting LMs for Chemistry. While general-purpose LMs show promise
in chemistry, further specialization is possible through techniques like continued pre-training or
instruction tuning [Zhang et al., 2024, Christofidellis et al., 2023]. Separately, researchers have
explored incorporating molecular structure as a distinct modality [Edwards et al., 2022] with con-
trastive learning [Liu et al., 2023], or augmenting general-purpose LMs with chemistry-specific
tools [M. Bran et al., 2024]. Han et al. [2025] provide a recent overview of this area. In this work, we
focus on single-modality LMs due to their prevalence. We benchmark both general-purpose LMs and
domain-specialized LMs to investigate the impact of domain-specific training on HAZMAT-related
tasks.

NLP for Emergency Response. The NLP community has a history of exploratory contributions to
various aspects of emergency response. For example, Watanabe et al. [2013] developed a system to
automatically extract key information from emergency management logs for database construction.
Katsakioris et al. [2021] investigated the problem of converting natural language descriptions of an
incident location into GPS coordinates. Other work, such as Anikina [2023], has focused on dialogue
act classification and slot tagging for emergency response dialogues. These works demonstrate the
potential of language technology in the domain of emergency response. With the advent of large
language models, we revisit this potential and explore their applicability to HAZMAT emergency
response.

Existing Software. While automated tools have been developed to offer support in emergency
response, they are often limited to specific cases or lack integration with the latest language tech-
nologies. For example, CHEMM [U.S. HHS, 2024a] provides an automated chemical identification
tool based on patient vitals, such as pupil size and skin condition. However, this functionality is
limited to later steps in the response sequence and excludes earlier-stage scenarios like dispatch
communications [EMT Training Base, 2019]. Another tool, CAMEO [U.S. EPA, 2024], offers web
interfaces with database search, threat zones modeling and incident site mapping, but lacks modern
language technologies like flexible keyword matching or a question-answering interface. To this day,
first responders still largely resort to the physical Emergency Response Guidebook (ERG). LLMs,
with their extensive knowledge capacity and user-friendly interfaces, have the potential to bridge this
gap and enhance decision-making during these critical moments.

Efforts in CV and Robotics Research Communities. Beyond the scope of natural language
processing and language models, fields such as computer vision and robotics also hold promise
for improving emergency response. Naim et al. [2021] discuss the integration of Al agents in
emergency response applications, emphasizing their potential to enhance situational awareness
and decision-making during critical incidents. Sharifi et al. [2020] introduced DeepHAZMAT, a
deep learning-based robot designed for hazardous materials sign detection and segmentation under
constrained computational resources. This approach uses convolutional neural networks (CNNs)
to identify hazardous materials in complex environments, facilitating faster and more accurate
scene assessments. Furthermore, Cai et al. [2020] demonstrated the effectiveness of incorporating
geometric prior knowledge into CNN-based planar object detection, which can significantly improve
the accuracy of identifying hazardous materials and related objects in emergency scenarios.
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E Example Prompts and Outputs

Previously in Table 1, we used redacted examples due to space limit. In this section, we provide
examples of full inputs and expected outputs (marked in blue) for each of the three tasks in ChEmREF.

E.1 Translation Task

E.1.1 Unstructured Translation

You are an expert chemist. Question: What is the molecular formula of Sodium superoxide?
Answer: NaOs.

E.1.2 Structured Translation

You are an expert chemist. Question: What is the molecular formula of Sodium superoxide?
Answer: Let’s think step by step.

Sodium (Na) is an alkali metal with a +1 oxidation state.

Superoxide is an ion with the formula O, and a -1 charge.

To balance the charges, one sodium ion (Na*) will pair with one superoxide ion (05).
Therefore, the molecular formula is NaOs.

E.2 Incident Response Task

Scenario: A fire has started involving Mercuric nitrate IUPAC-name).

Prompt: Provide recommendations on fire control, explosion risks, and necessary evacuation
procedures for the substance involved, referencing the hazmat guide where appropriate.

Answer:

Fire Control

Use water spray or fog to cool the area and prevent fire spread.

Avoid direct water streams that may spread contamination.

Use dry chemical powder or CO, for fire suppression.

Explosion Risks
Mercuric nitrate is a strong oxidizer that can intensify fires.
Keep it away from combustible materials.

Evacuation Procedures
Evacuate all non-essential personnel at least 100 meters away.
Ensure emergency responders wear PPE, including self-contained breathing apparatus.

E.3 Hazmat Examination Task

Reason through this question carefully and provide the answer as the correct multiple-choice letter.
Question: What amount of chlorine being transported requires the driver to stop before railroad
crossings?

A. An amount requiring a Table 2 placard.

B. Any amount.

C. Any amount when combined with explosives A.

D. 1000 Ibs or more.

Answer: The correct answer is B. Any amount.

F LLM Judge Setup and Evaluation Protocol

To evaluate model-generated responses against official guidelines, we developed an automated
evaluation pipeline that uses GPT-40 as an LLM judge. The task involved comparing model responses
to official guidance from the Emergency Response Guidebook (ERG) in six categories:

* Fire or Explosion Hazard: Focuses on whether the model correctly identifies flammability,
reactivity, or explosiveness.
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» Health Hazard: Assesses accuracy in toxicity, corrosiveness, or inhalation danger details.

* Public Safety and Evacuation: Evaluates evacuation distances, containment zones, and
timing, considering whether the model is overly cautious or not cautious enough.

* Protective Clothing: Ensures that the model recommends appropriate personal protective
equipment (PPE) as indicated in the guide.

 Spill or Leak: Focuses on containment strategies such as diking, neutralization, or absorp-
tion.

* First Aid: Evaluates whether the advice aligns with ERG guidance for eye, skin, or
inhalation exposure.

F.1 Evaluation Prompt Design

Each evaluation prompt was designed to guide GPT-40 in judging the model’s output relative to the
ERG recommendations. The system prompt positioned the LLM as a hazardous materials safety
expert tasked with verifying whether the model output correctly covered the major information
required under the specified category.

You are a hazardous materials safety expert. Your task is

to evaluate a model-generated hazmat safety recommendation
against the official Emergency Response Guide (ERG) guid-
ance. Your goal is to check whether the model covers the
major information from the ERG under the given category. It
is acceptable if the model includes extra relevant information
not in the ERG, as long as it is accurate. Only penalize if
something significant from the ERG is missing or if the model
includes incorrect information.

Use one of these labels:

* Incorrect: Key points are missing or wrong.

* Partial: Some important points are correct, but others
are missing or incorrect.

* Correct: Most or all important ERG details are present
and accurate.

For each one of the six categories mentioned above, we supplement the LLM Judge with specific
judging instructions. For example, the judging instructions for “Fire or Explosion Hazard” category
encourages the LLM Judge to prioritize flammability, reactivity, and explosiveness in its assessment.

G Extended Results

In this section, we provide supplementary figures and analysis for the Task I: Translation and Task II:
Incident Response.

G.1 Analyzing Task I: Chemical Representation Translation
G.1.1 Prompting Methods

For Task I, we ran a pilot experiment using four different prompting strategies, including (1) zero-shot
chain-of-thought (“Let’s think step by step”’; Kojima et al. 2022), (2) zero-shot chain-of-thought with
directions, (3) one-shot chain-of-thought prompting [Wei et al., 2022], and (4) one-shot chain-of-
thought prompting with directions. Combining the four prompting strategies with the 16 source-target
translation pairs by chemical representation type, we experiment with 64 settings for each model
for each chemical. In Figure 4 and Figure 5, we report the average of the exact match over the 16
source-target pairs.
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Figure 4: Translation Task Model Perfor- Figure 5: Translation Task Model Perfor-
mance Across Prompt Types: Performance mance Across Prompt Types: Performance
heatmap using HAZMAT data. heatmap using Non-Hazmat chemical data.

Performance is slightly sensitive to the prompt format across models; the best prompt format
varies with the model. As shown in Figure 4, the impact of prompt format on performance varies
significantly by model. For example, ChemLLM achieves 62% accuracy with directions included in
the prompt, compared to 76% without directions—an improvement of 14% when instructions are
omitted on HAZMAT chemicals. In contrast, Phi-4 shows little difference on HAZMAT data (74%
with vs. 75% without), but exhibits large variation on non-HAZMAT data, sometimes surpassing
ChemLLM on HAZMAT. Empirically, this suggests that providing explicit chemical directions can
worsen performance in some cases. We hypothesize that when prompts include detailed instructions,
models may overfit to the structure of the examples, producing responses that mirror the prompt rather
than generalizing more effectively. Interestingly, models such as Llama-3.1, Med42, and Phi-3
exhibit moderate variation in performance on HAZMAT data, suggesting that structured prompting
can enhance accuracy , but the extent of this benefit varies by model. These findings underscore the
importance of tailoring prompt strategies to the specific architecture and reasoning capabilities of
each model.

This choice was motivated by the substantial variation between Common Name and Synonyms, where
prior examples offer little insight into representation patterns, unlike in the structured translation

setting.
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Figure 6: Exact Match Scores for Model Performance on hazmat Data Across Chemical Cate-
gories. This heatmap illustrates how different models perform when translating hazardous material
data, highlighting variations in accuracy across chemical types.
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G.1.2 Chemical Properties

The provided heatmaps in Figure 6 compare the performance of various models across nine distinct
chemical categories: Acid, Aromatic, Base, Inorganic, Macromolecule, Nonpolar, Organic, Polar,
and Salt.

Phi-4 consistently outperforms the other models, achieving nearly perfect performance in the Base
category and maintaining high accuracy across the remaining categories. ChemLLM lags behind
the other models, particularly in the Inorganic, Nonpolar, and Salt categories, with scores generally
below 0.81. While it performs well for simpler categories like Aromatic and Base, it struggles with
more complex chemical types.

Certain categories display clear performance patterns across models. The Base and Aromatic
categories achieve consistently high exact match (EM) scores, with five-model averages of 0.975 and
0.951, respectively, indicating that these chemical types are reliably easier for models to translate.
In contrast, the Inorganic and Nonpolar categories present greater challenges, with lower average
EM scores of 0.912 and 0.876, and notable drops in models like ChemLLM (0.809 and 0.757,
respectively). Categories such as Macromolecule and Polar demonstrate moderate variability, with
EM scores ranging from 0.757 to 0.960 for Macromolecule and 0.818 to 0.979 for Polar. These
variations highlight that while some chemical representations are universally well-handled, others
reveal weaknesses in certain models, particularly lower-performing ones like ChemLLM and Med42.
Overall, this suggests that model architecture and training significantly influence performance on
more complex or diverse chemical categories.

G.1.3 Input-Output Types

Translation performance rarely varies with source chemical representation type for structured
representation types. Figure 7 provides a overall summary of all structured input-output combina-
tions. For CHEMLLM, we see that that an input-output combination of SMILES to InChlI is the most
difficult translation.

Translation performance significantly varies with source chemical representation type for
unstructured representation types. Although Common Name and UN-Number are the only
representations provided in the ERG, we observe that most models struggle to accurately identify
a UN-Number and translate from a Common Name. Comparing the worst and best performing
models, PHI-3 and GPT-40, respectively, we see that both models perform better when tasked with
translating to a Common Name, which is encouraging for potential use by first responders. However,
when translating away from a Common Name, models tend to perform better when translating to
structured forms like TUPAC Name or Molecular Formula rather than to a UN-Number. Despite this,
performance when translating away from Common Name remains significantly lower, achieving only
about half the accuracy observed when translating between structured forms, where models exhibit
near-perfect performance.

Interestingly, the high translation scores on Synonyms suggest that models are more adept at recog-
nizing alternative names for the same chemical, providing additional motivation for their use by first
responders. Synonym recognition can be critical in high-stakes situations where rapid identification of
hazardous materials is essential. By leveraging this strength, models can assist emergency personnel
in identifying chemicals accurately, even when encountering less familiar terms, ultimately enhancing
response efficiency and safety.

G.1.4 HAZMAT Chemicals v.s. Non-HAZMAT chemicals.

Translation of more common HAZMAT chemicals is easier than non-HAZMAT chemicals. In
this section, we compare Chemical Familiarity by HAZMAT vs Non-HAZMAT data. Non-HAZMAT
Data was acquired from the PubChem database, and a subset of 100 chemicals were selected.

Overall, in Figure 10, the Translation Task on HAZMAT data received a 90.9%, whereas the Transla-
tion task on Non-HAZMAT data scored a 77.7%. The significant improvement in chemical compre-
hension and translation accuracy are encouraging towards the use of LLMs for HAZMAT scenarios,
because they suggest that general-models have more knowledge on HAZMAT data than that of the non-
HAZMAT corpus. The improved performance on HAZMAT data suggests that even general-purpose
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models can effectively capture the complexities of hazardous materials—an essential capability
for safety-critical applications like emergency response, chemical spill mitigation, and regulatory
oversight.

G.2 Analyzing Task II: Incident Response
G.2.1 Chemical Guides

Observing ERG Guide numbers allow us to pin-
point performance by chemical properties. Each
HAZMAT chemical is linked to one of hundreds Fire or Explosion Hazard s

of guides in the ERG, explaining what to do in First A|d. .
case of a chemical emergency. There can be more Health Hazard-
than one chemical linked to the same ERG guide,
as many substances share similar hazards and re-
sponse protocols. These guides provide critical ~ Public Safety & Evacuation- s o o [

BERTScore F1 Scort

Protective Clothing- o= RIS o

information on fire and explosion risks, health Spill or Leak | n o I
hazards, protective measures, spill containment, S o 5
and first aid procedures. Emergency responders &K & \\3/ S
. . c \% kS, Q\ 6(\
rely on them to determine safe evacuation dis (SRS
tances, recommended PPE, and appropriate miti- \Szv \\}’&
gation strategies. Given the vast number of chem- o\e}’
icals and their potential dangers, efficiently asso- <&

ciating a chemical with the correct ERG guide is
essential for rapid and effective decision-making
in emergency situations. In Figure 13, we can
see that there is a fairly even distribution across
guides (between 77.5% - 80.5%) in terms of most
answered correctly and incorrectly, suggesting that models may not be partial to solely flammable or
toxic chemicals.

Figure 12: Incident Response Task Model Per-
formance: Evaluation Using BERTScore-F1, av-
erage scores across all models.

G.2.2 Models Often Provide Additional Information Beyond ERG Guidance

As noted in the main text, models frequently generate responses that go beyond the explicit guidance in
the Emergency Response Guidebook (ERG), often including supplementary safety recommendations.
Upon manually analyzing a subset of 20 model outputs from GPT-40, we observed that the models
tend to generate extended responses that incorporate multiple safety protocols, regardless of the
specific prompt category.

For instance, The following example illustrates how when prompted with a query about Fire or
Explosion Hazard for Sodium superoxide, GPT-40 not only provided fire suppression guidance but
also included additional considerations such as evacuation distances, personal protective equipment
(PPE), and hazard assessment protocols. Despite the prompt explicitly asking for information relevant
to fire or explosion hazards, the model integrated relevant details from other ERG guide subcategories,
demonstrating an implicit understanding of the intersectional nature of hazardous material incidents.

In dealing with a fire involving Sodium superoxide (Na02), it is essential
to consider its chemical properties and associated hazards. Sodium
superoxide is a powerful oxidizer and can react vigorously with
combustible materials, leading to potential fire and explosion risks.
Here are my recommendations:

### Fire Control
1. *xUse of Appropriate Extinguishing Agents:*x*

- *xDo Not Use Water:** Sodium superoxide reacts with water to produce
sodium hydroxide and oxygen gas, which can exacerbate the fire.
Moreover, the heat generated during this reaction can cause further
thermal decomposition, releasing more oxygen.

- x*xAvoid Carbon Dioxide and Foam:** These are ineffective because
sodium superoxide can decompose them, potentially leading to further
reactions.
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- x*Use Dry Powder Extinguishers:** Class D fire extinguishers (
specifically designed for metal fires) containing dry powder agents
such as sodium chloride or graphite are recommended. These agents can
smother the fire without providing additional fuel (oxygen or moisture).

2. *xIsolation of Fuel Sources:*x*
- Remove or isolate any nearby combustible materials to prevent further
reaction and fire spread.

### Explosion Risks
1. **Reactivity with Combustibles:** Sodium superoxide can react
explosively with organic materials (e.g., paper, wood) and certain
metals. Ensure that such materials are not present in the vicinity or
are removed promptly.
2. *xControlled Ventilation:**
- Ensure adequate ventilation to prevent the accumulation of oxygen-rich
atmospheres that can increase the risk of explosion.
3. *xTemperature Control:*x*
- Cool surrounding areas with inert gases (if available) or non-reactive
cooling methods to prevent the decomposition of sodium superoxide,
which releases oxygen.

### Evacuation Procedures
1. **Initial Evacuation Radius:**

- Establish an initial evacuation perimeter of at least 150 meters (500

feet) to account for potential explosions and toxic smoke.
2. xxHazard Assessment:*x*

- Conduct a continuous hazard assessment to determine the need for
expanding the evacuation zone. Factors include the fire’s intensity,
wind direction, and presence of hazardous materials.

3. **Personnel Protection:**

- Ensure that all responders and personnel in the vicinity are equipped
with appropriate personal protective equipment (PPE), including self-
contained breathing apparatus (SCBA) to protect against inhalation of
toxic fumes.

4. **Communication:**

- Maintain clear and constant communication with emergency personnel and

responders about the status of the fire.

Evaluation Summary The model output provides a detailed and accurate description of the fire and
explosion hazards associated with Sodium superoxide, including its reactivity with combustibles and
the need for appropriate extinguishing agents. It also covers the potential for explosive reactions and
the importance of controlling ventilation and temperature. However, it does not explicitly mention
the possibility of containers exploding when heated or the risk of runoff creating a fire or explosion
hazard, which are key points in the ERG guidance. This highlights how models tend to extrapolate
relevant safety protocols even when not explicitly requested. The LLM Judge, scored this a Partial
(0.5).
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Figure 7: Average Translation Task EM hazmat Scores Across Input/Output Representation
Type. This figure presents Exact Match (EM) scores for the Translation Task, grouped by model.
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Figure 10: EM Averages for HAZMAT Data across Input and Output Representation Types.
Each heatmap cell corresponds to a translation task from an input type (top row) to an output type
(bottom column). Note that these results are based on a different evaluation cohort (100 distinct
chemicals) compared to Fig. 7, leading to variation in EM scores.
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Figure 11: EM Averages for Non-HAZMAT Data across Input and Output Representation Types.
Similar to Fig. 10, this heatmap reflects translations between input (top row) and output (bottom
column) types using a separate cohort of PubChem chemicals.
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Figure 13: Translation Task Model Performance: Evaluation Across Molecule Types. This
figure illustrates how model performance varies when translating chemical representations for dif-
ferent molecule types. Each HAZMAT molecule is associated with a specific guide number, which
categorizes chemicals based on shared safety characteristics such as flammability, toxicity, and
reactivity. Since multiple chemicals can correspond to the same guide number, these guides serve as
a standardized way to group similar substances, providing a structured framework for understanding
performance variations across molecular categories.
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