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Abstract

Emergency responders managing hazardous material (HAZMAT) incidents face1

critical, time-sensitive decisions, manually navigating extensive chemical guide-2

lines. We investigate whether today’s language models can assist responders by3

rapidly and reliably understanding critical information, identifying hazards, and4

providing recommendations. We introduce the Chemical Emergency Response5

Evaluation Framework (ChEmREF), a new benchmark comprising questions on6

1,035 HAZMAT chemicals from the Emergency Response Guidebook and the7

PubChem Database. ChEmREF is organized into three tasks: (1) translation of8

chemical representation between structured and unstructured forms (e.g., converting9

“C2H6O” to “ethanol”), (2) emergency response generation (e.g., recommending10

appropriate evacuation distances) and (3) domain knowledge question answering11

from chemical safety and certification exams. Our best evaluated models received12

an exact match of 68.0% on unstructured HAZMAT chemical representation trans-13

lation, a LLM Judge score of 52.7% on incident response recommendations, and a14

multiple-choice accuracy of 63.9% on HAZMAT examinations. These findings sug-15

gest that while language models show potential to assist emergency responders in16

various tasks, they require careful human oversight due to their current limitations.17

1 Introduction18

In a hazardous material (HAZMAT) incident, “the decisions made and actions taken in the first few19

minutes of a response will often establish the character of the overall response – and ultimately20

its success or failure [U.S. HHS, 2024b].” During the critical “golden hour,” first responders must21

quickly assess the nature and scale of the incident, establish safety protocols, and request resources22

while protecting themselves and the public. In current practice, first responders rely extensively on23

the HAZMAT Emergency Response Guidebook (ERG; U.S. DoT, 2024)1: a printed manual of 40024

pages that links common HAZMAT chemicals with their corresponding incident response guidelines.25

A major challenge in emergency response is navigating the extensive content of the ERG quickly26

and accurately to identify the appropriate response measures. In addition, first responders are often27

required to draw inferences from environmental cues, placards, databases, container labels, victim28

symptoms, and other contextual information. This adds complexity to the task, demanding skills and29

interdisciplinary knowledge that were not explicitly documented in the ERG.30

Language models (LMs) today have acquired extensive knowledge through large scale pre-training31

and can synthesize vast amounts of information to generate responses that adhere to complex and32

dynamic contexts. Given this progress, we ask: can language models assist chemical emergency33

responders in HAZMAT incidents by automating parts of their workflow? We believe that the broad34

1See §C for a glossary of important terms related to HAZMAT and emergency response.
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A container labeled 

H₂SO₄ is leaking 
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around the spill, establish a 300-

foot exclusion zone downwind .

30 seconds

What are necessary evacuation 

procedures for an incident 

involving Sulfuric Acid?

1 minute

I'm first on scene with no fire 

extinguisher. What's the safest way 

to handle a Sulfuric Acid fire?

Use a dry chemical instead of 

a CO₂ fire extinguisher.

Task I: Chemical Translation Task II: Incident Response Task III: HazMat QA

Am I ready to 

provide support 

rapidly and reliably?

30 seconds 30 seconds 30 seconds

Find “Sulfuric Acid” in a 400-

page Emergency Response 

Guidebook (ERG) .

Search in 

chemical databases.

Wait for experts with more 

resources or experience to arrive.
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Figure 1: LLM Assistants in Emergency Response. In HAZMAT emergencies, timely decisions
during scene size-up are critical [EMT Training Base, 2019]. This figure compares the traditional
chemical response timeline with one aided by an LLM. While LLMs may accelerate decision-making,
they can also produce incorrect guidance. These dynamics informed the design of ChEmREF.

Task I: Chemical Representation Translation (§A.1)
Question: What is the SMILES format for C4H10O?
Answer: CC(C)(C)O

Task II: Emergency Incident Response (§A.2)
Scenario: A leak of chlorine gas has occurred near a populated area. Describe immediate public safety and
evacuation steps necessary to manage the situation effectively.
Recommendation: Stage emergency vehicles 300 feet away from the edge of the spill site...

Task III: HAZMAT Examination (§A.3)
Question: When transporting hazardous materials, when must the driver check the vehicle’s tires?
Answer Choices: A) Only at the start of the trip. B) Every 150 miles or every three hours, whichever comes
first. C) Only if the tire pressure warning light turns on. D) After reaching the destination.
Answer: B) Every 150 miles or every three hours, whichever comes first.

Table 1: Overview of Three Core Tasks in ChEmREF (Section 2). This table provides representa-
tive examples for each of the three core tasks evaluated in our framework.

knowledge capacity, strong information synthesize ability and accessible interface of LMs open up35

new possibilities for supporting this task. Additionally, their fast information processing speed may36

help save valuable time in high-pressure, time-critical decision-making scenarios.37

To this end, we introduce ChEmREF: a framework for evaluating whether LMs have the capabilities to38

assist first responders in chemical emergencies. Our framework consists of three tasks: (1) Chemical39

Representation Translation, which tests whether models can accurately convert between different40

unstructured (e.g., UN-Number, Common Name, and Synonyms) or structured (e.g., Molecular41

Formula, InChI, SMILES, and IUPAC Name2 ) chemical representations (see Table 3); (2) Incident42

Response Recommendation, which measures the ability of LMs to generate relevant safety measures,43

evacuation distances, and containment strategies based on incident context; and (3) HAZMAT44

Examination, which assesses performance on general-knowledge multiple-choice questions from45

real-world certification exams for first responders and chemical safety tests. We present abbreviated46

examples of each tasks in Table 1. By covering 1,035 HAZMAT chemicals, 8 chemical representation47

types, 6 emergency response dimensions and 6 HAZMAT exam categories, ChEmREF provides a48

comprehensive evaluation of LMs in this high-stakes domain.49

We evaluate six recent general-purpose and domain-specific large language models on ChEmREF50

Overall, our results suggest that language models show potential to assist first responders in HAZMAT51

emergencies, but must be used with great caution and under the supervision of trained professionals,52

2IUPAC Name is set by the International Union of Pure and Applied Chemistry. InChI refers to International
Chemical Identifier. SMILES refers to Simplified Molecular Input Line Entry System.
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given the high-stakes nature of these situations. We will publicly release the data and code for53

ChEmREF and hope that future work will build on it to advance research in this critical domain.54

2 Evaluating LMs on ChEmREF55

In this section, we first introduce tasks in ChEmREF and their task-specific prompting strategies56

in §2.1. We describe experiment details such as evaluated models and evaluation metrics in §2.2.57

Finally, we report model performance on ChEmREF and summarize our key observations in §2.3.58

2.1 Tasks in ChEmREF59

Task I: Chemical Representation Translation. Task I comprises two settings: structured and60

unstructured translation (described in detail in subsection A.1). We conducted a pilot study (Ap-61

pendix G.1.1) to determine the most suitable prompt format for this task.62

For structured translation, we adopt one-shot chain-of-thought prompting, as intermediate reason-63

ing steps often aid in breaking down complex chemical terms (e.g., translating “sodium” to “Na” and64

“superoxide” to “O2”). For unstructured translation, we employ direct zero-shot prompting, as we65

observed no consistent improvement from including demonstrations or reasoning steps. We provide66

prompt examples in Appendix E.67

Task II: Incident Response Recommendation. We evaluate models on Task II with direct 0-shot68

prompting that queries models to provide recommendations in one of the six key dimensions (e.g.,69

fire or explosion hazards, public safety). We provide an example prompt in Appendix E.70

Task III: HAZMAT Examination. Task III involves answering multiple-choice questions with71

inputs presented in a standardized format: Question: ... Answer Choices: ... Answer:. We use direct72

zero-shot prompting without examples or intermediate reasoning.73

2.2 Experiment Details74

Evaluated Models. We evaluate five open-weight LMs on ChEmREF: three general-purpose (PHI-75

3 3.8B [Abdin et al., 2024a], PHI-4 14B [Abdin et al., 2024b], LLAMA-3.1 70B [Grattafiori et al.,76

2024]) and two domain-specialized (CHEMLLM 7B [Zhang et al., 2024], MED42 70B [Christophe77

et al., 2024]). CHEMLLM is SFT from INTERN-LM-2 7B [Cai et al., 2024], and MED42 from78

LLAMA-2 70B [Touvron et al., 2023]. We also include GPT-4O [Hurst et al., 2024] as a closed-79

source baseline.80

Evaluation Metrics. For Task I: Chemical Representation Translation, we use Exact Match81

(EM): a prediction receives credit only if it exactly matches the target representation.82

For Task II: Incident Response Recommendation, we adopt three complementary metrics: (1) LLM83

Judge for correctness (Incorrect/Partial/Correct), (2) BERTScore-F1 for semantic similarity, and (3)84

Cautiousness via Mean Absolute Relative Error (MARE) for numerical outputs such as distances and85

durations. We also present a human evaluation on the model outputs as outlined in subsection B.2.86

For Task III: HAZMAT Examination, we evaluate model performance using standard accuracy on87

multiple-choice questions.88

2.3 Overall Results89

GPT-4O is the best overall performer, with MED42 and LLAMA-3.1 following closely. We90

present the ChEmREF evaluation results in Table 2. In addition to performance on individual tasks,91

we compute an overall average score over all columns (excluding cautiousness MARE) for high-level92

comparison of different models. We found that GPT-4O achieves the highest overall average score of93

71.4%, followed by MED42 (68.0%) and LLAMA-3.1 (67.2%).94

Models exhibit distinct strengths and weaknesses. In Figure 2, we visualize the results in Table 2,95

with each metric column normalized to the range of [0,1] to enable clearer model-wise comparison.96

3



Model I. Translation II. Incident Response III. Exam Avg. (↑)
Struc. EM (↑) Unst. EM (↑) LLM Judge (↑) BERTScore (↑) MARE (↓) Acc. (↑)

Phi-3 (3.8B) 93.7 60.0 42.7 52.0 3.8 49.0 59.5
ChemLLM (7B) 79.9 56.8 46.3 79.7 120.0 47.3 62.0
Phi-4 (14B) 97.2 48.7 25.2 79.9 2.8 60.0 62.2
Med42 (70B) 88.7 61.9 50.8 80.5 3.7 58.0 68.0
Llama-3.1 (70B) 93.1 67.3 50.7 64.9 5.1 60.0 67.2
GPT-4o 92.4 68.0 52.7 80.2 2.0 63.9 71.4

Table 2: ChEmREF Evaluation Results. Bold and underlined values indicate the best and
second-best performance in each column. EM stands for exact match. Average is computed over all
columns except for MARE.

We observe that individual models often excel in specific tasks while under-performing in others.97

For example, PHI-4 achieves the highest score in Structured Translation (97.2% EM) but performs98

the worst in Incidence Response (25.2% LLM Judge Score). These trade-offs manifest as skewed99

or imbalanced shapes in Figure 2. While GPT-4O, MED42, and LLAMA-3.1 show promising100

overall performance, it is important to remain aware of each model’s distinct weaknesses. Their101

outputs should always be used with human oversight to ensure safe and reliable decision-making in102

emergency response.103

Limitations of domain-specific training. CHEMLLM and MED42 are two models we evaluated104

that have undergone domain-specific supervised fine-tuning (SFT). Our results suggest that such105

domain-specific training does not always guarantee successful application in chemical emergency106

response. Notably, despite being trained on 7 million chemistry-related QA pairs, ChemLLM ranks107

the worst in structured chemical translation and second-worst in unstructured chemical translation.108

0%

100%

Task I:
Struct. EM

Task I:
Unstruct. EM

Task II:
LLM Judge

Task II:
BERTScore

Task III:
Accuracy

Phi-3 (3.8B)
ChemLLM (7B)
Phi-4 (14B)

Med42 (70B)
Llama-3.1 (70B)
GPT-4o

Figure 2: ChEmREF Evaluation Results With
Per-Metric Normalization. To facilitate clearer
model comparison, we normalize each column in
Table 2 to the [0,1] range.

Notably, general-purpose models including GPT-109

4O, LLAMA-3.1 and PHI-4 outperform domain-110

specialized models on Task III: HAZMAT Exam.111

We hypothesize that this is due to the interdis-112

ciplinary nature of the task, as it may require113

knowledge spanning chemistry, medicine, emer-114

gency response, numerical reasoning, and more.115

General-purpose models likely benefit from its116

broader knowledge coverage, whereas domain-117

specialized models may lose access to such gen-118

eral knowledge after domain-specific training.119

These results also highlight the complexity of120

chemical emergency response and the limitations121

of current domain-specific training technique.122

We leave the exploration of more effective do-123

main or task specific training strategies as future124

work.125

3 Conclusion126

In this work, we introduce ChEmREF, an evalua-127

tion framework for LLMs covering three tasks re-128

lated to chemical emergencies. Our results show129

that while models perform well with structured130

representations, used in the Task I: Chemical Representation Translation and the Task II: Incident131

Response Recommendation, they struggle with the chemical representations that are less struc-132

tured but more commonly used in human colloquial communication. Addressing this human-AI133

communication gap should be a key consideration in the design of future AI-assisted emergency134

response systems. Our results on Task III: Hazmat Examination, suggest that current domain-specific135

post-training approaches may lead to a loss of general capabilities, making them less suitable for136

highly interdisciplinary domains like chemical emergency response. More broadly, we believe LLMs137

have the potential to assist with chemical identification and incident response, but they should be138

used with caution and positioned as a complement to, rather than a replacement for, human experts in139

emergency response.140
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A Extended ChEmREF Description and Metrics301

A.1 Task I: Chemical Representation Translation302

Unstructured Representations Structured Representations

Common Name tert-Butyl alcohol IUPAC Name 2-methylpropan-2-ol
UN-Number 1120 Molecular Formula C4H10O
Synonyms Trimethylcarbinol InChI InChI=1S/C4H10O/c1-4(2,3)5/h5H,1-3H3

2-Methyl-2-propanol SMILES CC(C)(C)O

Table 3: Different Chemical Representations of tert-Butyl alcohol, a sample hazardous material.
In Task I: Chemical Representation Translation (subsection A.1) we evaluate LMs on translating
between these representations, with a focus on translating to/from Common Name, which is most
frequently used in chemical emergency correspondence and guidebooks.

On receiving a dispatch call, first responders must rapidly and accurately identify the emergency303

chemicals involved, often based on descriptions of placards, container labels, and other cues. However304

this process can be complicated by the existence of multiple representations for the same chemical. In305

Table 3, we provide 7 different representations for the HAZMAT chemical named tert-Butyl alcohol.306

In practice, first responders may spend a few minutes consulting the ERG or electronic databases307

to obtain the representation required for subsequent decision-making. Task I investigates whether308

LLMs can assist in this critical task at a fast speed.309

To build this task, we first subsample 100 random chemicals from the 1,035 hazardous materials310

listed in the 2024 Emergency Response Guidebook (ERG) and collect their corresponding chemical311

representations by cross-referencing the PubChem database. For each chemical, we consider both312

structured and unstructured translation settings, resulting in 19 source-target translation pairs in total.313

• Structured translation (12 pairs) involves bi-directional, pairwise translation among the 4 struc-314

tured representations (IUPAC Name, Molecular Formula, InChI and SMILES3). This setting315

evaluates whether LLMs can reason over the structure of hazardous chemicals.316

• Unstructured translation (7 pairs) focuses on translating to/from Common Name, as it is most317

frequently used in emergency communication. This includes translations between {UN-Num-318

ber, IUPAC Name, Molecular Formula} ⇆ Common Name (6 pairs) and Synonyms → Common319

Name (1 pair).320

We evaluate model performance using exact match (EM). A prediction receives full credit when the321

output matches the target chemical representation exactly, and zero otherwise.322

A.2 Task II: Incident Response Recommendation323

Once the chemical involved in the incident has been identified and the suitable chemical representation324

is found (Task I), emergency responders must analyze the incident and provide appropriate safety325

3Regarding SMILES evaluation, we rely on the single SMILES string that PubChem now provides for every
compound. PubChem has deprecated the separate canonical and isomeric fields in favor of a unified SMILES
that is both canonicalized and stereo-/isotope-explicit. For each compound, this hybrid and unique canonicalized
form is the isomeric SMILES and was used verbatim during both training and evaluation. As such, the task is
designed to reproduce PubChem’s published representation, not to normalize across equivalent non-canonical
variants which do not have unique representations (i.e., one non-cannocalized form can represent multiple
chemicals).
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recommendations. For example, in the event of an anhydrous ammonia leak (commonly referred to326

as “ammonia gas”), the responder may advice on safe evacuation distances (e.g., 330 feet), protective327

gear (e.g., self-contained breathing apparatus, or SCBA) and containment procedures (e.g., applying328

water spray to reduce vapors). Task II evaluates whether LMs can assist first responders in drafting329

emergency response recommendations.330

To construct this task, we extract the official recommendations from the 2024 Emergency Response331

Guidebook (ERG; U.S. DoT 2024). For each chemical, the ERG provides detailed guidance across332

six key dimensions: fire or explosion, health, public safety, protective clothing, spill or leak, and first333

aid. Following this, we prompt LLMs to generate recommendations for each of these six aspects334

through separate queries. For efficient evaluation, we randomly subsample 100 chemicals across the335

4 structured representation types from the 1,035 chemicals in Task I, resulting in a total of 2,400336

queries for Task II.337

For evaluation, we compare the model generated recommendations and the ground-truth recommen-338

dations in the ERG using two metrics: (1) LLM Judge [Zheng et al., 2023]: We use GPT-4-Turbo as339

an automatic evaluator for the quality of each generation. It assigns either Incorrect (0), Partially340

Correct (0.5), or Perfect (1) to each generation. Details on the judging prompts and setup can be341

found in the §F. (2) BERTScore-F1 [Zhang et al., 2020]. We use BERTScore-F1 as a secondary342

metric to capture semantic similarity and surface-level variation in phrasing.343

We introduce a separate metric named (3) Cautiousness for queries involving numerical outputs such344

as length, time, and volume (e.g., recommending a 330-foot evacuation distance, recommending not345

to enter the accident site for 24 hours). This metric quantifies how closely model-generated values346

align with the ERG. Specifically, we compute an Mean Absolute Relative Error (MARE) metric347

between the predicted (ŷi) and ground truth (yi) values.348

MARE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ =
1

n

n∑
i=1

∣∣∣∣eiyi
∣∣∣∣ .

A.3 Task III: HAZMAT Examination349

Beyond translation and emergency response recommendation, a fundamental understanding of350

HAZMAT concepts is also essential for first responders. Such knowledge can be evaluated through351

question-answering tasks that more closely reflect real-world scenarios. In practice, first responders,352

along with other professionals like lab technicians, truck drivers, and warehouse managers, are353

required to pass HAZMAT certification exams. These exams offer a valuable benchmark for evaluating354

a model’s understanding of HAZMAT chemicals.355

In Task III, we collect a total of 865 multiple-choice questions from 46 publicly available quizzes on356

ProProfs.4 These quizzes cover a wide range of topics, including HAZMAT Awareness, Workplace357

Safety, Transportation Safety and more. Each quiz provides answer keys and explanations that have358

been reviewed by both educators and learners preparing for the exam. Additionally, we manually359

filtered and verified the questions to ensure quality. We evaluate LLMs on these questions and report360

standard accuracy.361

B Analyzing LLM performance on ChEmREF362

In this section, we further break down model performance on the three core tasks and analyze363

common failure cases and limitations. We highlight several key observations, with additional364

discussion deferred to Appendix G.365

B.1 Analyzing Task I: Chemical Representation Translation366

In Figure 3, we break down the performance on Task I by source and target chemical representa-367

tions. The reported performance is averaged with all six evaluated models. We have the following368

observations:369

4https://www.proprofs.com/quiz-school/
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Figure 3: Task I Performance Breakdown. Left/Right: Structured/Unstructured Translation.
For brevity, we use “Mole.” to denote Molecular Formula. We report EM scores for each source-target
pair, averaged across all evaluated models.

Structured Translation vs. Unstructured Translation. We observe that models perform signifi-370

cantly better when translating between structured chemical formats such as IUPAC Name, Molecular371

Formula, InChI, and SMILES, compared to translation involving unstructured forms like Common372

Name, UN-Name, and Synonyms. For example, PHI-4 achieves a EM of 97.2% on structured373

translation, but the performance drops to 48.7% on unstructured translation. Similar trends are374

observed on other models, highlighting the model’s limitation on grounding and normalization when375

working with less structured or colloquial names.376

We have several hypotheses for this performance gap. (1) The structured representations are rule-377

based and systematic, making them more suitable for step-by-step reasoning through chain-of-thought378

prompting. In contrast, unstructured translation tends to rely more on the model’s memorization379

than on logical reasoning. (2) Structured representations are defined by international standards and380

are likely to appear more frequently in chemical databases and online resources, making them more381

prevalent in the model’s pretraining data. In contrast, unstructured forms like Synonyms are often long-382

tail, ambiguous, and geographically dependent. In general, while unstructured representations are383

more accessible to humans, structured representations are more machine-actionable. This observation384

should inform the future design of AI-assisted emergency response systems and effective human-AI385

collaboration.386

To Common Name vs. From Common Name. Translation to Common Name is a critical step in387

the emergency response workflow, as it often serves as the entry point for subsequent actions such388

as consulting the Emergency Response Guidebook (see Figure 1). In Figure 3 (Right), we observe389

that models perform better when translating to Common Name than from it, which we view as a390

promising sign. However, the average EM score on these translation pairs is 72.3%, which remains391

insufficient.392

Self-translation as a sanity check. Self-translations (e.g., from SMILES to SMILES) is a simple393

extension from the translation task. We additionally evaluate models on self-translation on the394

four structured representations, as a sanity check. We report the detailed model-specific results in395

Fig. 7. LLAMA-3.1 achieved the highest EM score (98.6%), followed closely by PHI-4 (97.8%) and396

MED42 (95.0%). Surprisingly, CHEMLLM achieves a lower score of 86.3% on this task, suggesting397

a lack of basic understanding of chemical representation types. We also observe that model rankings398

on self-translation are consistent with their ranking on structured translation in Table 2, suggesting399

that this simple check can serve as an early-stage evaluation for filtering out less suitable models.400

B.2 Analyzing Task II: Incident Response Recommendation401

Evaluating quantitative recommendations and cautiousness. Many emergency response actions402

rely on quantitative recommendations, e.g., advising an 330-foot evacuation radius. While examining403

the model outputs in Task II, we first observe that models often neglect to generate quantitative404

recommendations when expected. Among queries where the ground-truth recommendation includes a405
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numerical value, models produce values in the correct category (e.g., length, mass, time, concentration)406

in only 20% of cases.407

For outputs that include valid numerical values, we further compute the mean absolute relative408

error (MARE) metric (defined in §A.2) as a measurement of model’s cautiousness. CHEMLLM409

demonstrates the most cautious behavior, with an MARE of 120.03. Our manual inspection reveals410

its tendency to overestimate values, meaning that the quantities recommended by ChemLLM are on411

average 120 times higher than the groundtruth, which could place unnecessary strain on response412

efforts. GPT-4O has the lowest MARE of 2.0, which is significantly lower than 120.0. While413

overestimation still occurs, it is far less severe and likely more manageable in practical settings.414

Our analysis on cautiousness also emphasize the limitations of automatic metrics like LLM Judge or415

BERTScore. In high-stakes domains like chemical emergency response, it is essential to assess not416

only the overall plausibility of a recommendation, but also whether it produces a quantitative value417

when needed, and whether that value is accurate.418

Verbose outputs may hinder time-sensitive decision-making. In our manual review of 20 recom-419

mendations generated by GPT-4O, we find that the model frequently produces outputs that extend420

beyond the scope of the prompt. For example (§G.2.2), when asked specifically about the fire or421

explosion hazards of a given chemical, GPT-4O additionally generates guidance on personal protec-422

tive equipment (PPE) and continuous assessment of hazards, resulting in outputs that are longer and423

less focused. While such comprehensive responses demonstrate the model’s broad knowledge, this424

verbosity may pose challenges in time-sensitive scenarios, where concise and actionable information425

is preferred.426

Human evaluation by a first responder shows alignment with the LLM-Judge. We emphasize427

that Tasks 1 and 3 have verifiable answers that can be evaluated deterministically: Task 1 uses428

Exact/Partial Match on chemical representations, while Task 3 relies on Multiple Choice Answer Keys.429

Only Task 2 requires long-form responses, where the gold-standard outputs were not LLM-generated430

but instead obtained directly from the federally standardized Emergency Response Guidebook (ERG),431

the authoritative reference for emergency responders.432

For Task 2, we adopt a combination of Exact Match, BERTScore, and LLM-based judgment as a433

starting point. We acknowledge, however, that these automated metrics cannot fully substitute for434

human validation. In particular, using GPT-4 as a judge when GPT-4o is one of the evaluated models435

raises potential bias concerns. To mitigate this, one of the authors—a certified EMT with HAZMAT436

training and five years of field experience—conducted multiple rounds of testing to refine and validate437

outputs. While large-scale human validation was beyond the scope of this initial study, we consider it438

a critical next step as we expand to more complex emergency scenarios.439

The LLM Judge score measures alignment between a model’s response and the ERG reference. For440

example, a score of 52.7% indicates that while models can capture the broad contours of appropriate441

guidance (e.g., recognizing that PPE is required), they often lack specificity or completeness (e.g.,442

omitting gloves or eye protection). Such partial correctness can present real-world risks, underscoring443

the importance of human oversight for emergency response applications.444

To further probe reliability, we conducted a small-scale human validation study of Task 2 responses.445

We sampled 96 responses across six prompt types, focusing on the top two performing models and446

the lowest performing model. Both the LLM-Judge and a HAZMAT-certified EMT independently447

reviewed each prompt, model output, and corresponding ERG section. Additional relevant but448

accurate information was accepted, while omissions of significant ERG content or introduction of449

inaccuracies were penalized.450

Model Agreement LLM-Annotator Avg (%) Human Avg (%)

Llama3 88.5 69.8 62.0
Phi4 94.8 86.5 84.4
GPT4o 76.0 69.3 68.8

Table 4: Comparison of Task 2 evaluation between LLM-Judge and human validator (HAZMAT-
certified EMT with 5 years of experience).
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B.3 Analyzing Task III: HAZMAT Examination451

Category Average Accuracy Number of Exams
CBRN & Chemical Safety 46.5 3
HAZMAT Awareness & Operations 51.9 15
HAZMAT Lesson Plans 70.8 8
Hazard Communication & Workplace Safety 75.6 9
IMDG & Transportation Safety 66.7 1
Incident Management & Reporting 62.6 10

Total Exam Cohort 62.0 46
Table 5: Task III Accuracy by Category. We report mean accuracy across all evaluated models.
Models perform better on categories with instructional content, but struggle with technical and
risk-related topics, highlighting their limitations in these specialized domains.

Performance varies across HAZMAT exam categories. When gathering HAZMAT-related exams452

from ProProfs, we manually group them into six major exam categories. In Table 5, we report the453

accuracy on different exam categories. Models perform well on instructional content, such as Hazard454

Communication and Workplace Safety (Accuracy: 75.6%) and HAZMAT Lesson Plans (Accuracy:455

70.8%), but struggle with more technical and risk-related topics, including CBRN & Chemical Safety456

(Accuracy: 46.5%) and HAZMAT Awareness & Operations (Accuracy: 51.9%). This discrepancy457

highlights limitations in current models’ ability to handle complex, high-stakes topics that require458

deeper domain understanding.459

Contamination check. To ensure that model performance reflects understanding and generalization460

instead of memorization, we conducted exact-match searches using the Infini-gram engine [Liu461

et al., 2024] over several open pretraining corpora—Dolma-v1.7 [Soldaini et al., 2024], RedPajama462

[Weber et al., 2024], Pile-train [Gao et al., 2020], and C4-train [Raffel et al., 2020]. No overlaps463

were found with our multiple-choice QA dataset.464
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C Glossary465

Term Definition
Hazardous Materials (HAZMAT) Substances that pose a risk to health, property, or the environment, often

requiring special handling and regulations.

Emergency Response Guidebook
(ERG)

A resource used by first responders to identify hazardous materials and
guide their response during transport incidents.

International Union of Pure and Ap-
plied Chemistry (IUPAC)

A global organization that sets standards for chemical nomenclature,
terminology, and measurement.

Simplified Molecular Input Line En-
try System (SMILES)

A notation system that allows the representation of a molecular structure
using a linear string of text.

International Chemical Identifier
(InChI)

A textual identifier that provides a unique representation of chemical
substances to facilitate data sharing and searchability.

UN-Number A UN number is a four-digit code used to identify hazardous materials
for safe transportation and emergency response, regulated by frame-
works such as the International Maritime Dangerous Goods (IMDG)
Code, International Air Transport Association (IATA) Dangerous Goods
Regulations, U.S. Department of Transportation (DOT) Regulations,
and the European Agreement concerning the International Carriage of
Dangerous Goods by Road (ADR).

Commercial Driver’s License
(CDL)

A specialized license required for individuals operating large, heavy, or
hazardous material-carrying commercial vehicles.

Compound Identifier (CID) A unique numerical identifier assigned to chemical substances in the
PubChem database for reference and research purposes.

Personal Protective Equipment
(PPE)

Gear and clothing designed to protect individuals from hazardous mate-
rials, contamination, or injury in various environments.

National Registry of Emergency
Medical Technicians (NREMT)

A certification organization that ensures emergency medical personnel
meet national training and competency standards.

Table 6: Key Definitions. A glossary of important terms related to HAZMAT and emergency response.
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D Related Work466

Evaluating LMs on Chemistry Knowledge. Language technologies have long been applied to467

the chemistry domain, with Thorne and Akhondi [2024] providing a comprehensive review. Recent468

benchmarks like ChemLLMBench [Guo et al., 2023] and ChemBench [Mirza et al., 2024] evaluate469

large language models (LLMs) on a range of chemistry knowledge and skills, demonstrating their470

potential while also highlighting limitations such as difficulties with SMILES representations, hallu-471

cinations, and overconfident predictions. Complementary to these works, our work offers a distinct472

perspective by focusing on the critical and specific domain of HAZMAT chemicals. Furthermore,473

we move beyond memorizing chemicals properties to actively reasoning about and applying them in474

real-world HAZMAT emergency response.475

Adapting and Augmenting LMs for Chemistry. While general-purpose LMs show promise476

in chemistry, further specialization is possible through techniques like continued pre-training or477

instruction tuning [Zhang et al., 2024, Christofidellis et al., 2023]. Separately, researchers have478

explored incorporating molecular structure as a distinct modality [Edwards et al., 2022] with con-479

trastive learning [Liu et al., 2023], or augmenting general-purpose LMs with chemistry-specific480

tools [M. Bran et al., 2024]. Han et al. [2025] provide a recent overview of this area. In this work, we481

focus on single-modality LMs due to their prevalence. We benchmark both general-purpose LMs and482

domain-specialized LMs to investigate the impact of domain-specific training on HAZMAT-related483

tasks.484

NLP for Emergency Response. The NLP community has a history of exploratory contributions to485

various aspects of emergency response. For example, Watanabe et al. [2013] developed a system to486

automatically extract key information from emergency management logs for database construction.487

Katsakioris et al. [2021] investigated the problem of converting natural language descriptions of an488

incident location into GPS coordinates. Other work, such as Anikina [2023], has focused on dialogue489

act classification and slot tagging for emergency response dialogues. These works demonstrate the490

potential of language technology in the domain of emergency response. With the advent of large491

language models, we revisit this potential and explore their applicability to HAZMAT emergency492

response.493

Existing Software. While automated tools have been developed to offer support in emergency494

response, they are often limited to specific cases or lack integration with the latest language tech-495

nologies. For example, CHEMM [U.S. HHS, 2024a] provides an automated chemical identification496

tool based on patient vitals, such as pupil size and skin condition. However, this functionality is497

limited to later steps in the response sequence and excludes earlier-stage scenarios like dispatch498

communications [EMT Training Base, 2019]. Another tool, CAMEO [U.S. EPA, 2024], offers web499

interfaces with database search, threat zones modeling and incident site mapping, but lacks modern500

language technologies like flexible keyword matching or a question-answering interface. To this day,501

first responders still largely resort to the physical Emergency Response Guidebook (ERG). LLMs,502

with their extensive knowledge capacity and user-friendly interfaces, have the potential to bridge this503

gap and enhance decision-making during these critical moments.504

Efforts in CV and Robotics Research Communities. Beyond the scope of natural language505

processing and language models, fields such as computer vision and robotics also hold promise506

for improving emergency response. Naim et al. [2021] discuss the integration of AI agents in507

emergency response applications, emphasizing their potential to enhance situational awareness508

and decision-making during critical incidents. Sharifi et al. [2020] introduced DeepHAZMAT, a509

deep learning-based robot designed for hazardous materials sign detection and segmentation under510

constrained computational resources. This approach uses convolutional neural networks (CNNs)511

to identify hazardous materials in complex environments, facilitating faster and more accurate512

scene assessments. Furthermore, Cai et al. [2020] demonstrated the effectiveness of incorporating513

geometric prior knowledge into CNN-based planar object detection, which can significantly improve514

the accuracy of identifying hazardous materials and related objects in emergency scenarios.515
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E Example Prompts and Outputs516

Previously in Table 1, we used redacted examples due to space limit. In this section, we provide517

examples of full inputs and expected outputs (marked in blue) for each of the three tasks in ChEmREF.518

E.1 Translation Task519

E.1.1 Unstructured Translation520

You are an expert chemist. Question: What is the molecular formula of Sodium superoxide?521

Answer: NaO2.522

E.1.2 Structured Translation523

You are an expert chemist. Question: What is the molecular formula of Sodium superoxide?524

Answer: Let’s think step by step.525

Sodium (Na) is an alkali metal with a +1 oxidation state.526

Superoxide is an ion with the formula O−
2 and a -1 charge.527

To balance the charges, one sodium ion (Na+) will pair with one superoxide ion (O−
2 ).528

Therefore, the molecular formula is NaO2.529

E.2 Incident Response Task530

Scenario: A fire has started involving Mercuric nitrate (IUPAC-name).531

Prompt: Provide recommendations on fire control, explosion risks, and necessary evacuation532

procedures for the substance involved, referencing the hazmat guide where appropriate.533

Answer:534

Fire Control535

Use water spray or fog to cool the area and prevent fire spread.536

Avoid direct water streams that may spread contamination.537

Use dry chemical powder or CO2 for fire suppression.538

539

Explosion Risks540

Mercuric nitrate is a strong oxidizer that can intensify fires.541

Keep it away from combustible materials.542

543

Evacuation Procedures544

Evacuate all non-essential personnel at least 100 meters away.545

Ensure emergency responders wear PPE, including self-contained breathing apparatus.546

E.3 Hazmat Examination Task547

Reason through this question carefully and provide the answer as the correct multiple-choice letter.548

Question: What amount of chlorine being transported requires the driver to stop before railroad549

crossings?550

A. An amount requiring a Table 2 placard.551

B. Any amount.552

C. Any amount when combined with explosives A.553

D. 1000 lbs or more.554

Answer: The correct answer is B. Any amount.555

F LLM Judge Setup and Evaluation Protocol556

To evaluate model-generated responses against official guidelines, we developed an automated557

evaluation pipeline that uses GPT-4o as an LLM judge. The task involved comparing model responses558

to official guidance from the Emergency Response Guidebook (ERG) in six categories:559

• Fire or Explosion Hazard: Focuses on whether the model correctly identifies flammability,560

reactivity, or explosiveness.561
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• Health Hazard: Assesses accuracy in toxicity, corrosiveness, or inhalation danger details.562

• Public Safety and Evacuation: Evaluates evacuation distances, containment zones, and563

timing, considering whether the model is overly cautious or not cautious enough.564

• Protective Clothing: Ensures that the model recommends appropriate personal protective565

equipment (PPE) as indicated in the guide.566

• Spill or Leak: Focuses on containment strategies such as diking, neutralization, or absorp-567

tion.568

• First Aid: Evaluates whether the advice aligns with ERG guidance for eye, skin, or569

inhalation exposure.570

F.1 Evaluation Prompt Design571

Each evaluation prompt was designed to guide GPT-4o in judging the model’s output relative to the572

ERG recommendations. The system prompt positioned the LLM as a hazardous materials safety573

expert tasked with verifying whether the model output correctly covered the major information574

required under the specified category.575

You are a hazardous materials safety expert. Your task is576

to evaluate a model-generated hazmat safety recommendation577

against the official Emergency Response Guide (ERG) guid-578

ance. Your goal is to check whether the model covers the579

major information from the ERG under the given category. It580

is acceptable if the model includes extra relevant information581

not in the ERG, as long as it is accurate. Only penalize if582

something significant from the ERG is missing or if the model583

includes incorrect information.584

Use one of these labels:585

• Incorrect: Key points are missing or wrong.586

• Partial: Some important points are correct, but others587

are missing or incorrect.588

• Correct: Most or all important ERG details are present589

and accurate.590

For each one of the six categories mentioned above, we supplement the LLM Judge with specific591

judging instructions. For example, the judging instructions for “Fire or Explosion Hazard” category592

encourages the LLM Judge to prioritize flammability, reactivity, and explosiveness in its assessment.593

G Extended Results594

In this section, we provide supplementary figures and analysis for the Task I: Translation and Task II:595

Incident Response.596

G.1 Analyzing Task I: Chemical Representation Translation597

G.1.1 Prompting Methods598

For Task I, we ran a pilot experiment using four different prompting strategies, including (1) zero-shot599

chain-of-thought (“Let’s think step by step”; Kojima et al. 2022), (2) zero-shot chain-of-thought with600

directions, (3) one-shot chain-of-thought prompting [Wei et al., 2022], and (4) one-shot chain-of-601

thought prompting with directions. Combining the four prompting strategies with the 16 source-target602

translation pairs by chemical representation type, we experiment with 64 settings for each model603

for each chemical. In Figure 4 and Figure 5, we report the average of the exact match over the 16604

source-target pairs.605
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Performance is slightly sensitive to the prompt format across models; the best prompt format606

varies with the model. As shown in Figure 4, the impact of prompt format on performance607

varies significantly by model. As we provide the model with less examples, for a model like608

ChemLLM, prompt format can mean an improved score of up to 14% on HAZMAT chemicals.609

Alternatively, a model like Phi-4 shows minimal performance variation across prompt formats for610

HAZMAT chemicals, but exhibits significant variation on non-HAZMAT data, achieving performance611

comparable to ChemLLM on HAZMAT data. We hypothesize that including too much chemical612

instruction in the prompt can sometimes lead the model to produce outputs that closely mirror the613

examples provided, rather than generating more generalizable responses. Interestingly, models such614

as Llama-3.1, Med42, and Phi-3 exhibit moderate variation in performance on HAZMAT data,615

suggesting that structured prompting can enhance accuracy , but the extent of this benefit varies616

by model. These findings underscore the importance of tailoring prompt strategies to the specific617

architecture and reasoning capabilities of each model.618

Insights from this pilot study informed our decision in Section 4.1 to adopt one-shot Chain-of-619

Thought (CoT) prompting for the structured translation task. This approach served as a balanced620

middle ground among prompt types, providing sufficient contextual guidance without excessive621

complexity. Alternatively, for the unstructured translation task in our main experiments, we employed622

zero-shot prompting. This choice was motivated by the substantial variation between Common Name623

and Synonyms, where prior examples offer little insight into representation patterns, unlike in the624

structured translation setting.625

G.1.2 Chemical Properties626

The provided heatmaps in Figure 6 compare the performance of various models across nine distinct627

chemical categories: Acid, Aromatic, Base, Inorganic, Macromolecule, Nonpolar, Organic, Polar,628

and Salt.629

Phi-4 consistently outperforms the other models, achieving nearly perfect performance in the Base630

category and maintaining high accuracy across the remaining categories. ChemLLM lags behind631

the other models, particularly in the Inorganic, Nonpolar, and Salt categories, with scores generally632

below 0.81. While it performs well for simpler categories like Aromatic and Base, it struggles with633

more complex chemical types.634

Certain categories display clear performance patterns across models. The Base and Aromatic635

categories achieve consistently high exact match (EM) scores, with five-model averages of 0.975 and636

0.951, respectively, indicating that these chemical types are reliably easier for models to translate.637

In contrast, the Inorganic and Nonpolar categories present greater challenges, with lower average638

EM scores of 0.912 and 0.876, and notable drops in models like ChemLLM (0.809 and 0.757,639

respectively). Categories such as Macromolecule and Polar demonstrate moderate variability, with640

EM scores ranging from 0.757 to 0.960 for Macromolecule and 0.818 to 0.979 for Polar. These641

variations highlight that while some chemical representations are universally well-handled, others642

reveal weaknesses in certain models, particularly lower-performing ones like ChemLLM and Med42.643
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Figure 6: Exact Match Scores for Model Performance on hazmat Data Across Chemical Cate-
gories. This heatmap illustrates how different models perform when translating hazardous material
data, highlighting variations in accuracy across chemical types.

Overall, this suggests that model architecture and training significantly influence performance on644

more complex or diverse chemical categories.645

G.1.3 Input-Output Types646

Translation performance rarely varies with source chemical representation type for structured647

representation types. Figure 7 provides a overall summary of all structured input-output combina-648

tions. For CHEMLLM, we see that that an input-output combination of SMILES to InChI is the most649

difficult translation.650

Translation performance significantly varies with source chemical representation type for651

unstructured representation types. Although Common Name and UN-Number are the only652

representations provided in the ERG, we observe that most models struggle to accurately identify653

a UN-Number and translate from a Common Name. Comparing the worst and best performing654

models, PHI-3 and GPT-4O, respectively, we see that both models perform better when tasked with655

translating to a Common Name, which is encouraging for potential use by first responders. However,656

when translating away from a Common Name, models tend to perform better when translating to657

structured forms like IUPAC Name or Molecular Formula rather than to a UN-Number. Despite this,658

performance when translating away from Common Name remains significantly lower, achieving only659

about half the accuracy observed when translating between structured forms, where models exhibit660

near-perfect performance.661

Interestingly, the high translation scores on Synonyms suggest that models are more adept at recog-662

nizing alternative names for the same chemical, providing additional motivation for their use by first663

responders. Synonym recognition can be critical in high-stakes situations where rapid identification of664

hazardous materials is essential. By leveraging this strength, models can assist emergency personnel665

in identifying chemicals accurately, even when encountering less familiar terms, ultimately enhancing666

response efficiency and safety.667

G.1.4 HAZMAT Chemicals v.s. Non-HAZMAT chemicals.668

Translation of more common HAZMAT chemicals is easier than non-HAZMAT chemicals. In669

this section, we compare Chemical Familiarity by HAZMAT vs Non-HAZMAT data. Non-HAZMAT670

Data was acquired from the PubChem database, and a subset of 100 chemicals were selected.671
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Overall, in Figure 10, the Translation Task on HAZMAT data received a 90.9%, whereas the Transla-672

tion task on Non-HAZMAT data scored a 77.7%. The significant improvement in chemical compre-673

hension and translation accuracy are encouraging towards the use of LLMs for HAZMAT scenarios,674

because they suggest that general-models have more knowledge on HAZMAT data than that of the non-675

HAZMAT corpus. The improved performance on HAZMAT data suggests that even general-purpose676

models can effectively capture the complexities of hazardous materials—an essential capability677

for safety-critical applications like emergency response, chemical spill mitigation, and regulatory678

oversight.679

G.2 Analyzing Task II: Incident Response680

G.2.1 Chemical Guides681
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Figure 12: Incident Response Task Model Per-
formance: Evaluation Using BERTScore-F1, av-
erage scores across all models.

Observing ERG Guide numbers allow us to pin-682

point performance by chemical properties. Each683

HAZMAT chemical is linked to one of hundreds684

of guides in the ERG, explaining what to do in685

case of a chemical emergency. There can be more686

than one chemical linked to the same ERG guide,687

as many substances share similar hazards and re-688

sponse protocols. These guides provide critical689

information on fire and explosion risks, health690

hazards, protective measures, spill containment,691

and first aid procedures. Emergency responders692

rely on them to determine safe evacuation dis-693

tances, recommended PPE, and appropriate miti-694

gation strategies. Given the vast number of chem-695

icals and their potential dangers, efficiently asso-696

ciating a chemical with the correct ERG guide is697

essential for rapid and effective decision-making698

in emergency situations. In Figure 13, we can699

see that there is a fairly even distribution across700

guides (between 77.5% - 80.5%) in terms of most701

answered correctly and incorrectly, suggesting that models may not be partial to solely flammable or702

toxic chemicals.703

G.2.2 Models Often Provide Additional Information Beyond ERG Guidance704

As noted in the main text, models frequently generate responses that go beyond the explicit guidance in705

the Emergency Response Guidebook (ERG), often including supplementary safety recommendations.706

Upon manually analyzing a subset of 20 model outputs from GPT-4O, we observed that the models707

tend to generate extended responses that incorporate multiple safety protocols, regardless of the708

specific prompt category.709

For instance, The following example illustrates how when prompted with a query about Fire or710

Explosion Hazard for Sodium superoxide, GPT-4o not only provided fire suppression guidance but711

also included additional considerations such as evacuation distances, personal protective equipment712

(PPE), and hazard assessment protocols. Despite the prompt explicitly asking for information relevant713

to fire or explosion hazards, the model integrated relevant details from other ERG guide subcategories,714

demonstrating an implicit understanding of the intersectional nature of hazardous material incidents.715

716
In dealing with a fire involving Sodium superoxide (NaO2), it is essential717

to consider its chemical properties and associated hazards. Sodium718

superoxide is a powerful oxidizer and can react vigorously with719

combustible materials, leading to potential fire and explosion risks.720

Here are my recommendations:721

722

### Fire Control723

1. **Use of Appropriate Extinguishing Agents:**724

- **Do Not Use Water:** Sodium superoxide reacts with water to produce725

sodium hydroxide and oxygen gas, which can exacerbate the fire.726
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Moreover, the heat generated during this reaction can cause further727

thermal decomposition, releasing more oxygen.728

- **Avoid Carbon Dioxide and Foam:** These are ineffective because729

sodium superoxide can decompose them, potentially leading to further730

reactions.731

- **Use Dry Powder Extinguishers:** Class D fire extinguishers (732

specifically designed for metal fires) containing dry powder agents733

such as sodium chloride or graphite are recommended. These agents can734

smother the fire without providing additional fuel (oxygen or moisture).735

736

737

2. **Isolation of Fuel Sources:**738

- Remove or isolate any nearby combustible materials to prevent further739

reaction and fire spread.740

741

### Explosion Risks742

1. **Reactivity with Combustibles:** Sodium superoxide can react743

explosively with organic materials (e.g., paper, wood) and certain744

metals. Ensure that such materials are not present in the vicinity or745

are removed promptly.746

2. **Controlled Ventilation:**747

- Ensure adequate ventilation to prevent the accumulation of oxygen-rich748

atmospheres that can increase the risk of explosion.749

3. **Temperature Control:**750

- Cool surrounding areas with inert gases (if available) or non-reactive751

cooling methods to prevent the decomposition of sodium superoxide,752

which releases oxygen.753

754

### Evacuation Procedures755

1. **Initial Evacuation Radius:**756

- Establish an initial evacuation perimeter of at least 150 meters (500757

feet) to account for potential explosions and toxic smoke.758

2. **Hazard Assessment:**759

- Conduct a continuous hazard assessment to determine the need for760

expanding the evacuation zone. Factors include the fire’s intensity,761

wind direction, and presence of hazardous materials.762

3. **Personnel Protection:**763

- Ensure that all responders and personnel in the vicinity are equipped764

with appropriate personal protective equipment (PPE), including self-765

contained breathing apparatus (SCBA) to protect against inhalation of766

toxic fumes.767

4. **Communication:**768

- Maintain clear and constant communication with emergency personnel and769

responders about the status of the fire.770771

Evaluation Summary The model output provides a detailed and accurate description of the fire and772

explosion hazards associated with Sodium superoxide, including its reactivity with combustibles and773

the need for appropriate extinguishing agents. It also covers the potential for explosive reactions and774

the importance of controlling ventilation and temperature. However, it does not explicitly mention775

the possibility of containers exploding when heated or the risk of runoff creating a fire or explosion776

hazard, which are key points in the ERG guidance. This highlights how models tend to extrapolate777

relevant safety protocols even when not explicitly requested. The LLM Judge, scored this a Partial778

(0.5).779
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Figure 7: Average Translation Task EM hazmat Scores Across Input/Output Representation
Type. This figure presents Exact Match (EM) scores for the Translation Task, grouped by model.
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Figure 10: EM Averages for HAZMAT Data across Input and Output Representation Types.
Each heatmap cell corresponds to a translation task from an input type (top row) to an output type
(bottom column). Note that these results are based on a different evaluation cohort (100 distinct
chemicals) compared to Fig. 7, leading to variation in EM scores.
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Figure 11: EM Averages for Non-HAZMAT Data across Input and Output Representation Types.
Similar to Fig. 10, this heatmap reflects translations between input (top row) and output (bottom
column) types using a separate cohort of PubChem chemicals.
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Figure 13: Translation Task Model Performance: Evaluation Across Molecule Types. This
figure illustrates how model performance varies when translating chemical representations for dif-
ferent molecule types. Each HAZMAT molecule is associated with a specific guide number, which
categorizes chemicals based on shared safety characteristics such as flammability, toxicity, and
reactivity. Since multiple chemicals can correspond to the same guide number, these guides serve as
a standardized way to group similar substances, providing a structured framework for understanding
performance variations across molecular categories.

24


	Introduction
	Evaluating LMs on ChEmREF
	Tasks in ChEmREF
	Experiment Details
	Overall Results

	Conclusion
	Extended ChEmREF Description and Metrics
	Task I: Chemical Representation Translation
	Task II: Incident Response Recommendation
	Task III: HazMat Examination

	Analyzing LLM performance on ChEmREF
	Analyzing Task I: Chemical Representation Translation
	Analyzing Task II: Incident Response Recommendation
	Analyzing Task III: HazMat Examination

	Glossary
	Related Work
	Example Prompts and Outputs
	Translation Task
	Unstructured Translation
	Structured Translation

	Incident Response Task
	Hazmat Examination Task

	LLM Judge Setup and Evaluation Protocol
	Evaluation Prompt Design

	Extended Results
	Analyzing Task I: Chemical Representation Translation
	Prompting Methods
	Chemical Properties
	Input-Output Types
	HazMat Chemicals v.s. Non-HazMat chemicals.

	Analyzing Task II: Incident Response
	Chemical Guides
	Models Often Provide Additional Information Beyond ERG Guidance



