
A Near Linear Query Lower Bound for Submodular Maximization

Binghui Peng 1 Aviad Rubinstein 2

Abstract
We revisit the problem of selecting k-out-of-n el-
ements with the goal of optimizing an objective
function, and ask whether it can be solved ap-
proximately with sublinear query complexity. For
objective functions that are monotone submodu-
lar, [Li, Feldman, Kazemi, Karbasi, NeurIPS’22;
Kuhnle, AISTATS’21] gave an Ω(n/k) query
lower bound for approximating to within any con-
stant factor. We strengthen their lower bound to a
nearly tight Ω̃(n). This lower bound holds even
for estimating the value of the optimal subset.
When the objective function is additive, we prove
that finding an approximately optimal subset still
requires near-linear query complexity, but we can
estimate the value of the optimal subset in Õ(n/k)
queries, and that this is tight up to polylog factors.

1. Introduction
We consider the problem of selecting the “best” k-out-of-n
elements, e.g. selecting k locations to place sensors, select-
ing k features to include in data analysis, or selecting k
samples for training a model. We are particularly interested
in the case where:

Expensive query access We are not given an explicit func-
tion to compute what makes one subset “better” than an-
other: rather we have expensive query access to an oracle
that evaluates different candidate subsets (e.g. estimating the
quality of prediction from a subset of features or samples
by training a smaller model on them).

Sublinear query complexity Motivated by the expensive
query constraint and large problem sizes in machine learn-
ing applications, we ask whether it is possible to obtain
approximately optimal subsets with query complexity that

1Department of Computer Science, Stanford Univer-
sity, United States 2Department of Computer Science,
Stanford University, United States. Correspondence to:
Binghui Peng <binghuip@stanford.edu>, Aviad Rubinstein
<aviad@cs.stanford.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

scales sublinearly with n.

In full generality, it is clearly hopeless to find an approxi-
mately optimal k-subset without querying all

(
n
k

)
subsets

(not to mention sublinear query complexity), so as is com-
mon in the literature we restrict our attention to monotone
submodular objective functions, i.e. we assume that the
marginal contribution from each additional element is di-
minishing, yet it is always non-negative (see Section 2 for
a formal definition). Since our result for worst-case func-
tions in this class is quite negative, we also consider the
most important special case: (monotone) additive objective
functions, i.e. f(S) =

∑
i∈S wi for unknown wi ≥ 0.

Monotone submodular maximization has important appli-
cations in machine learning (see e.g. the recent survey
of Bilmes (2022) and references therein), and the prob-
lem sizes in those machine learning applications increases
rapidly. This inspired over the past decade an extensive
effort in obtaining sublinear time algorithms for approxi-
mate submodular maximization by parallelization (Balkan-
ski et al., 2016; Balkanski & Singer, 2018; Balkanski et al.,
2018; 2019; Chekuri & Quanrud, 2019a;b; Chen et al., 2019;
Ene & Nguyen, 2019; Fahrbach et al., 2019; Kazemi et al.,
2019a; Breuer et al., 2020; Ene & Nguyen, 2020; Balkan-
ski et al., 2022a;b). In contrast, in this work we look for
algorithms whose total work (specifically, total query com-
plexity) is sublinear. Indeed, this is motivated in part by the
increasing monetary and environmental cost of total work
of state-of-the-art machine learning algorithms that already
achieve significant parallelization. Beyond these important
connections to applications in machine learning, submodu-
lar maximization itself is generally a fundamental problem
in optimization.

The question of sublinear-query algorithms for submodular
maximization was considered by Li et al. (2022); Kuhnle
(2021), who showed that any constant factor approxima-
tion algorithm requires query complexity Ω(n/k); Li et al.
(2022) additionally proved a lower bound of Ω(n

log(n)) for
the special case of k = Θ(n). Hence, for the special case
of k = Θ(1) and k = Θ(n), previous work rules out truly
sublinear query complexity algorithms.

Our first result strengthens this impossibility result by rul-
ing out approximate submodular maximization in sublinear
query complexity for any k ≪ n, even if we’re just inter-

1

Lower bound for submodular maximization

ested in estimating the value of the optimal subset:

Theorem (Submodular: informal version of Theorem 3.9).
With a monotone submodular objective function and for
any k = o(n), no Õ(n)-query complexity algorithm can
approximate the value of the optimal k-subset to within any
constant factor.

We note for typical applications of submodular maximiza-
tion (e.g. dataset selection – selecting a small dataset to train
a model; influence maximization – selecting a small subset
of influential users), the subset size k is neither linear in
the entire dataset, nor a small constant that can be ignored.
Comparing with previous work (Li et al., 2022; Kuhnle,
2021), we obtain improved (and optimal) lower bound for
the critical regime of polylog(n) ≤ k ≤ n

polylog(n) . Our
lower bound rules out sublinear query algorithms over all
possible regimes of k and fully resolves the query complex-
ity of monotone submodular maximization (up to polylog
factor), a fundamental question in optimization theory.

Given this sweeping negative result, we turn our attention to
characterizing the complexity of selecting an approximately
optimal k-subset with an additive objective function. Here,
we have a mix of negative/positive results, where the key
difference depends on whether we just want to estimate the
value of the optimal subset, or actually find it:

Theorem (Additive: Informal version of Theo-
rems 3.7, 4.1, 4.7).

With a monotone additive objective function and for any
k = o(n),

• No Õ(n)-query complexity algorithm can find an ap-
proximately optimal k-subset, for any constant approx-
imation factor (Theorem 3.7).

• For any constant ϵ > 0, there exists an (1 ± ϵ)-
approximation algorithm for estimating the value of
the optimal k-subset using only Õ(n/k) queries (The-
orem 4.1).

– Furthermore, this query complexity is nearly tight
for any algorithm obtaining any constant factor
approximation (Theorem 4.7).

Our algorithm uses sublinear queries and estimates the value
of the optimal k-subset, this is a standard goal in the field
of sublinear algorithms, see (Chen et al., 2022; Charikar
et al., 2023; Behnezhad, 2023; Behnezhad et al., 2023; Bhat-
tacharya et al., 2024) and reference there in. To motivate
this, consider a scenario where one needs to select a sub-
set from a large dataset under a budget constraint. Our
algorithm can first be used to assess whether the dataset is
sufficiently valuable – that is, whether it contains elements
with large values. If the dataset meets this criterion, one

can proceed with further analysis or selection; otherwise,
unnecessary efforts can be avoided.

Query complexity vs. Runtime The focus of this paper
is on the query complexity, which is standard in the liter-
ature. Our algorithm uses sublinear queries (i.e., Õ(n/k))
and linear computation time (i.e. Õ(n)), both of which
are optimal1. The motivation for studying query complex-
ity arises from practical concerns in training large models
using only a subset of the data. Even under the simplest
assumption—an additive function – we lack explicit input
specifying each data point’s marginal value. Instead, we
estimate the value of a subset by, for example, training a
smaller model from scratch. Related applications include
data valuation (Ilyas et al., 2022), where a query to subset S
corresponds to training a neural network over set [n] \ S; in-
fluence maximization (Kempe et al., 2003), where a query to
subset S corresponds to a simulation or a social experiment
using S as the seed set. In all these settings, queries are
significantly more expensive than individual computational
steps: while linear computation time (e.g., loading or pro-
cessing the full dataset) is feasible, making a linear number
of queries (e.g., training n different models) is impractical.

Additional related work The query complexity of mono-
tone submodular maximization has been studied in the lit-
erature. The greedy algorithm (Fisher et al., 1978) finds an
(1− 1/e)-approximate solution using O(nk) queries. The
query complexity can be improved, the stochastic greedy al-
gorithm (Mirzasoleiman et al., 2015) makes O(n log(1/ϵ))
queries and return an (1−1/e−ϵ) approximate solution; (Li
et al., 2022) gives a deterministic algorithm using O(n/ϵ)
queries. Despite of extensive research, the only query lower
bound known is Ω(n/k) from the recent work of (Li et al.,
2022; Kuhnle, 2021).

In addition to previously mentioned work on parallel al-
gorithms for submodular maximization, our work is also
related to algorithms for submodular maximization in other
sublinear models such as dynamic (where the update time
needs to be sublinear) (Chen & Peng, 2022; Peng, 2021;
Peng & Rubinstein, 2023; Lattanzi et al., 2020; Monem-
izadeh, 2020; Dütting et al., 2023; Agarwal & Balkanski,
2023; Banihashem et al., 2024; 2023) and streaming (where
the space needs to be sublinear) (Badanidiyuru et al., 2014;
Feldman et al., 2023; Chakrabarti & Kale, 2015; Chekuri
et al., 2015; Feldman et al., 2021; Huang et al., 2021; Liu
et al., 2021; Shadravan, 2020; Norouzi-Fard et al., 2018;
Alaluf & Feldman, 2019; Agrawal et al., 2018; Kazemi et al.,

1It is easy to see that linear computation time is necessary:
Imagine there is one (unknown) element that has huge value com-
paring to all other elements, an algorithm needs to at least load
that element to estimate its value, which takes Ω(n) time in expec-
tation.

2

Lower bound for submodular maximization

2019b; Huang et al., 2022; Feldman et al., 2018; Alaluf et al.,
2022; McGregor & Vu, 2019; Indyk & Vakilian, 2019).

1.1. Technique Overview

The linear lower bound for submodular maximization
The key idea driving our approach for proving lower bounds
is to relate the query complexity of submodular maximiza-
tion to the communication complexity of distributed set de-
tection problem.

We first describe the communication problem of distributed
set detection task. The distributed set detection is a multi-
party communication problem, where each party observes
the outcome of n coins. Among these n coins, k coins are
fair and have mean 1/2, while the rest n−k coins are biased
and have small mean vallue. The goal of these parties is
to collectively identify a small fraction (e.g. 0.1k) of fair
coins. We prove that the distributed set detection requires
Ω̃(n) communication cost using the distributed strong data
process inequality (SDPI) and a direct-sum argument.

Our key observation is that the linear communication lower
bound for distributed set detection yields a linear query
lower bound of submodular maximization. To this end, con-
sider a linear function whose weight on the i-th element
equals the summation of the outcome of the i-th coin. The
optimal k-subset is exactly the k fair coins, given the num-
ber of parties is roughly Θ(log(n)). The crucial observation
is one could simulate the query algorithm in the communi-
cation model, with only polylog(n) overheads: If the query
algorithm asks for the value of f(S) for some set S, then
all parties just locally compute the summation of coins in
S and broadcast their results, it takes at most O((log(n))2)
communication bits (O(log(n)) parties and log(n) bits per
party). This proves that finding the optimal k-subset requires
Ω̃(n) queries due to the Ω̃(n) communication lower bound
of distributed set detection.

When the goal is to estimate the value of the optimal k-
subset, the above hard instance fails because the query algo-
rithm could easily find one fair coin using Õ(n/k) queries.
To this end, we construct a monotone submodular function
by applying two levels of truncation to the above linear
function. Roughly speaking, the optimal k-subset still corre-
sponds to the k fair coins in distributed set detection, but the
two-level truncation over the linear function (see Eq. (2)(3))
masks off useful information on large sets and requires the
detection of a non-trivial fraction of the fair coins (see Sec-
tion 3.2 for detailed description).
Remark 1.1 (Comparison with previous work (Li et al., 2022;
Kuhnle, 2021)). The previous work (Li et al., 2022; Kuhnle,
2021) prove a lower bound of Ω̃(n/k) and (Li et al., 2022)
additionally has a lower bound of Ω̃(n) when k = Θ(n).
Our approach yields significantly stronger lower bound, e.g.
when k =

√
n, our lower bound (i.e., Ω̃(n)) is quadratically

better than (Li et al., 2022; Kuhnle, 2021) (i.e., Ω̃(
√
n)).

From a technical point of view, all previous lower bounds
are proved using counting arguments. Our technique is
completely different from them, it is based on novel ideas,
including (1) the query to communication reduction, (2) a
communication lower bound using information complexity
and distributed data-processing inequality, and (3) a new
construction of the hard submodular function with two-level
truncation.

Sublinear algorithm for linear function Our algorithm
is a multi-scale combination of two base subroutines. The
first subroutine is to randomly select a set of size n/m and
estimate the value of each individual element. This sub-
routine yields a good estimate on the top m-th quantile of
the ground set, but fails to give an accurate estimation on
top o(m) elements (to see this, imagine there are o(m) ele-
ments that have super large value, then one can observe their
value only after sampling≫ n/m elements). The second
subroutine is to partition the ground set into m subsets and
estimate the value of each subset. Intuitively, this subrou-
tine alleviates the weakness of the first subroutine – if there
are o(m) elements that have super large value, then most
of them would fall into different subsets and we can have
a good sense of their value after querying the value of m
subsets. Nevertheless, the second subroutine could fail if
the top o(m) elements are not significantly larger than rest
elements (say they have value 2 and the rest have value 0
or 1, then querying the value of m subsets gives negligible
hints on the value of top o(m) elements).

Intuitively, both subroutine have their own weakness, but
they are somewhat complementary to each other. We wish
to combine them in a careful manner to get an optimal sub-
linear algorithm. The real situation gets complicated due to
the possible intricate choice of the top k elements, so we
only sketch our final solution here. Indeed, we compose the
two base subroutines in multiple scales. Let kr = (1 + ϵ)r,
at each level r, the algorithm randomly partitions the ground
set into nkr/k subsets and estimates the kr-th quantile
of these subsets (hence each level takes Õ(n/k) queries).
Roughly speaking, we expect the top kr-th subsets to be as
valuable as the top kr-th element + an average bucket. Our
final estimate is a weighted average over the output at each
scale. See Section 4 for details.

Organization of the paper We describe notations and
models in Section 2. The lower bound for submodular max-
imization is presented in Section 3, and the algorithm for
additive function is in Section 4. Due to space constraints,
we defer detailed proof to the appendix.

3

Lower bound for submodular maximization

2. Preliminary
Notation We write [n] = {1, 2, . . . , n}. For random vari-
ables X,Y , we use I(X;Y) to denote the mutual infor-
mation of X,Y , h(X;Y) to denote the Hellinger distance,
TV(X;Y) to denote the total variation distance. For any
value p ∈ [0, 1], let Bp the Bernoulli distributions with
mean p.

Submodular maximization Let f : {0, 1}n → R+ be
a nonnegative set function. For any sets A,B ⊆ [n], let
fA(B) := f(A ∪B)− f(A) be the marginal value of a set
B w.r.t. a set A. The function is monotone if f(B) ≥ f(A)
for any A ⊆ B. The function is said to be submodular if
fA(u) ≥ fB(u) holds for every sets A ⊆ B ⊆ [n] and
every element u ∈ [n] \ B. In a constrained monotone
submodular maximization problem, there is a budget k ∈
[n] and the goal is find a subset S ⊆ [n] of size at most
k that (approximately) maximizes the function value, i.e.,
maxS⊆[n],|S|≤k f(S). The problem is studied in the query
oracle model, where each time the algorithm submit a query
V ⊆ [n] and the oracle returns the function value f(V).

Let S∗ := argmaxS⊆[n],|S|≤k f(S) be the optimum solu-
tion set (breaking ties arbitrarily). In the search problem,
the goal is to find an (approximately) optimal solution, and
we say the algorithm finds an α-approximate solution if
it returns a set S (|S| ≤ k) such f(S) ≥ αf(S∗). In
the decision problem, the goal is to determine the opti-
mal value, given a value OPT, we say an algorithm is
α-approximate if it can distinguish between f(S∗) ≥ OPT
vs. f(S∗) ≤ αOPT.

We have the following basic fact about submodular func-
tions.

Fact 2.1. We have the following basic facts about submod-
ular functions: (1) A linear function is submodular; (2) If
f, g are submodular, then f + g is submodular; and (3) If
f is monotone submodular, Let c > 0 be any constant, and
let g(S) = min{f(S), c} for any S ⊆ [n], then g is also
submodular.

Information theory To establish communication lower
bounds, we need a few basic facts of information theory.

Fact 2.2 (Hellinger v.s. total variation). For any two distri-
butions P,Q, we have

h2(P,Q) ≤ TV(P,Q) ≤
√
2h(P,Q).

Fact 2.3. Suppose A,B are independent when conditioned
on C, then we have

I(D;A|C) + I(D;B|C) ≤ I(D;A,B|C)

3. Lower Bound for Submodular
Maximization

We prove that the distributed set detection requires Ω̃(n)
communication cost in Section 3.1, using the distributed
SDPI inequality and a direct sum argument. In Section 3.2,
we give a simple reduction from distributed set detection
to submodular maximization, which rules out the possi-
bility of approximately finding the optimal k-subset using
sublinear query (and it holds even for additive function).
In Section 3.3, we present a more involved reduction that
proves the hardness of approximating the value of optimal
k-subset.

3.1. Communication Lower Bound

A key ingredient of our proof is a communication lower
bound on the distributed set detection problem. The dis-
tributed set detection is a multi-party communication prob-
lem and we study it under the blackboard model, where
every party can write and read over a common blackboard.

Definition 3.1 (Distributed set detection). Let n, k,m be in-
put parameters, D0,D1 be two Bernoulli distributions with
mean µ0, µ1. m is the number of parties, who communi-
cate in the blackboard model. Let I ⊆ [n] be an index set
of size [k/2, k]. The input of the t-th party (t ∈ [m]) is a
vector Xt ∈ {0, 1}n, such that for any i ∈ [n], Xt,i ∼ D0

if i ∈ [n]\I and Xt,i ∼ D1 if i ∈ I. The goal is to output
a set Î ⊆ [n] (|Î| = k) that maximizes the intersection
|I ∩ Î|.

The main goal of this section is to establish the following
communication lower bound of distributed set detection.

Theorem 3.2 (Communication lower bound). Let ϵ ∈ (0, 1),
n, k,m be integers and satisfy k ≤ ϵn/4. Let c ≥ 1 be
some constant and 1

cµ0 ≤ µ1 ≤ cµ0. For the problem of
distributed set detection, any (randomized) communication
protocol that outputs ϵ-fraction of the index set (i.e., |I ∩
Î| ≥ ϵk) in expectation has communication complexity at
least Ω(ϵ2n/c).

With the goal of proving Theorem 3.2, we first introduce
the distributed detection problem, where each party only
receives one coordinate and the goal is to detect whether
they come from D0 or D1.

Definition 3.3 (Distributed detection). Let V ∼ B1/2 and
D0,D1 be two Bernoulli distributions with mean µ0, µ1.
There are m parties communicate in the blackboard model
and each party receives a single bit Zt ∼ DV independently
drawn from DV (with the same V for all parties). The goal
is to determine the value of V .

The distributed detection problem has large information
cost.

4

Lower bound for submodular maximization

• Using public randomness, the m parties sample
a set I = {i1, . . . , ik} ⊆ [n].

• For any t ∈ [m], the t-th party constructs the
vector Xt ∈ {0, 1}n as follow:

Xt,i ∼

D0 i ∈ [n]\I
D1 i ∈ {i2, . . . , iK}
zt i = i1

• Then the m parties follow the communication
protocol of distributed set detection, and they
output 1 if i1 ∈ Î.

Figure 1. Communication protocol for distributed detection

Lemma 3.4 (Distributed SDPI, Theorem 1.1 in (Braverman
et al., 2016)). Suppose 1

cµ0 ≤ µ1 ≤ cµ0, β(µ0, µ1) ≤ 1 be
the SDPI constant of µ0, µ1. Let Π be the communication
transcript, Π|V=0 (resp. Π|V=1) be the transcript when
V = 0 (resp. V = 1). In the distributed detection problem,
we have the following distributed strong data processing
inequality,

h2(Π|V=0,Π|V=1) ≤ K · cβ(µ0, µ1)·
min{I(Π;Z1 . . . Zm|V = 0), I(Π;Z1 . . . Zm|V = 1)}

for some fixed constant K > 0.

We apply a direct sum argument and prove the information
cost for distributed set detection is Ω(n) times the informa-
tion cost of distributed detection. To this end, consider the
communication protocol in Figure 1 for distributed detec-
tion.

Let Π be the transcript of distributed set detection. Let R
be the public randomness used by the distributed set detec-
tion, R′ = (R, I) be the public randomness of distributed
detection. The information cost of distributed set detection
is defined as

IC = max
I⊆[n],k/2≤|I|≤k

I(Π;X1, . . . , Xm|I, R). (1)

The information cost is also a lower bound on the communi-
cation cost of distributed set detection.

We have the following direct-sum theorem on the informa-
tion cost, the proof is similar to Proposition 5.2 in (Braver-
man et al., 2016).
Lemma 3.5. For any k ≥ 2, we have

I(Π, R′;Z1, . . . , Zm|V = 0) ≤ IC

n− k + 1
.

We next analyse the correctness of the protocol.

Lemma 3.6. Suppose the communication protocol of dis-
tributed set detection outputs ϵ-fraction of the index set, then
the protocol in Figure 1 correctly guesses the value of V
with probability at least 1

2 + ϵ
4 .

Combining Lemma 3.4 – 3.6, we can prove Theorem 3.2.

3.2. Lower Bound for Search Problem

We start with a simpler linear query lower bound for the
search problem. It is worth noting that the lower bound
holds even when the function is additive.

Theorem 3.7. Let n be the size of the ground set, k ∈ [n]
be the cardinality constraint, α ∈ (0, 1) be the approxima-
tion ratio and k ≤ O(αn). A randomized algorithm must
make at least Ω(α5n/ log2(n)) queries in order to find an
α-approximate solution for submodular maximization under
the cardinality constraint.

We reduce from the distributed set detection problem. Let

ϵ = α/15, m =
100 log n

ϵ2
,

and
µ0 = ϵ, µ1 = 1/2 c = 1/2ϵ

Given an instance of distributed set detection with input
X1, . . . , Xm ∈ {0, 1}n, consider the following function

f(S) =
∑
i∈S

∑
t∈[m]

Xt,i ∀S ⊆ {0, 1}n.

It is clear that the function f is non-negative, monotone,
submodular since it is a linear function. Furthermore, its
optimal solution satisfies

Lemma 3.8. With probability at least 1 − 1/n10, for any
α-approximate solution set S ⊆ [n] (|S| ≤ k), we have
|S ∩ I| ≥ ϵk.

The proof of Theorem 3.7 follows from Lemma 3.8 and the
communication lower bound of distribution set detection
(Theorem 3.2).

3.3. Lower Bound for Decision Problem

We next prove a linear query lower bound for the decision
problem.

Theorem 3.9. Let n be the size of the ground set, k ∈ [n]
be the cardinality constraint, α ∈ (0, 1) be the approxima-
tion ratio, OPT ∈ R+ and k ≤ O(α2n). A randomized
algorithm must make at least Ω(α11n/ log2(n)) queries in
order to distinguish between

• YES Instance f(S∗) ≥ OPT

• NO Instance f(S∗) ≤ αOPT

5

Lower bound for submodular maximization

We present a reduction from the distributed set detection
problem. The construction of the submodular function and
the choice of parameters are slightly different from Theo-
rem 3.7. Let

ϵ =
α2

800
, m =

100 log n

ϵ2

and
µ0 = ϵ, µ1 = 1/2, c = 1/2ϵ

Given an instance of distributed set detection with input
X1, . . . , Xm ∈ {0, 1}n, consider the following functions

fyes(S) = min
{ ∑

i∈S∩I

∑
t∈[m]

Xt,i +
∑

i∈S∩[n]\I

∑
t∈[m]

Xt,i

+
αm|S|
20

,mk
}

(2)

and

fno(S) = min
{
min

{ ∑
i∈S∩I

∑
t∈[m]

Xt,i,
αmk

10

}
+

∑
i∈S∩[n]\I

∑
t∈[m]

Xt,i +
αm|S|
20

,mk
}
. (3)

It is easy to see that both fyes, fno are monotone and
submodular, because linear combination and minimum
with a constant keep submodularity and monotonicity (see
Fact 2.1).

We first make a few simple observations.

Lemma 3.10. With probability at least 1− 1/n10, we have∑
t∈[m]

Xt,i ∈ [(1/2− ϵ)m, (1/2 + ϵ)m] ∀i ∈ I (4)

and ∑
t∈[m]

Xt,i ∈ (ϵm/2, 2ϵm) ∀i ∈ [n]\I (5)

In the rest of the proof, we would condition on the high
probability event of Lemma 3.10. Let OPT = mk/5. We
have the following observation on the optimal value of fyes
and fno.

Lemma 3.11. We have (1) maxS∗⊆[n],|S∗|=k fyes(S
∗) ≥

OPT; and fno(S) ≤ αOPT for any S ⊆ [n], |S| = k.

Now we can proceed to prove Theorem 3.9.

Proof of Theorem 3.9. Suppose there exists an algorithm
ALG that makes at most R queries and distinguishes be-
tween the YES/NO instance. Consider the communica-
tion protocol in Algorithm 1 for distributed set detection.

From a high level, the communication proceeds in (at
most) R rounds. At the r-th round, the m parties look
at the r-th query Sr ⊆ [n] of ALG, they either decide
an output set or construct the value oracle f(Sr). Con-
cretely, if the size of Sr is large, they set f(Sr) = mk
and proceed to the next round/query. Otherwise, they par-
tition the set Sr = Sr,1 ∪ · · · ∪ Sr,20/α into 20/α sub-
sets, each of size at most k. The m parties then com-
pute the value of

∑
i∈Sr,τ

∑
t∈[m] Xt,i for each subset

Sr,τ (τ ∈ [20/α]). If the value is large, they return
the set Î ← Sr,τ ; otherwise, they set the oracle value
f(Sr) = min{

∑
t∈[m]

∑
i∈Sr

Xt,i + αk|Sr|/20,mk} and
proceed to the next round/query.

Algorithm 1 Reduction: From submodular maximization
to distributed set detection

1: Input: Input X1, . . . , Xm ∈ {0, 1}n, submodular max-
imization algorithm ALG,

2: for r = 1, 2, . . . , R do
3: Let Sr ⊆ [n] be the r-th query of ALG
4: if |Sr| ≥ 20k/α then
5: f(Sr)← mk
6: else
7: Partition Sr = Sr,1 ∪ · · · ∪ Sr,20/α

8: for τ = 1, 2 . . . , 20/α do
9: if

∑
i∈Sr,τ

∑
t∈[m] Xt,i ≥ α2mk/200 then

10: Î ← Sr,τ and return
11: end if
12: end for
13: f(Sr) ← min{

∑
i∈Sr

∑
t∈[m] Xt,i +

αm|Sr|/20,mk}
14: end if
15: end for

Correctness First, we prove the correctness of the proto-
col. We divide into two cases.

Case 1. Algorithm 1 returns a set Î ← Sr,τ at some round
r ∈ [R] and τ ∈ [20/α]. Then we prove it must satisfy
|Sr,τ ∩ I| ≥ ϵk.

We have

α2mk/200 ≤
∑

i∈Sr,τ

∑
t∈[m]

Xt,i

=
∑

i∈Sr,τ∩I

∑
t∈[m]

Xt,i +
∑

i∈Sr,τ∩[n]\I

∑
t∈[m]

Xt,i

≤ |Sr,τ ∩ I| · (1/2 + ϵ)m+ k · 2ϵm.

Here the first step follows from the assumption, the third
step follows from Lemma 3.10. Plugging in the value of
α, ϵ, we have that

|Sr,τ ∩ I| ≥
α2/200− 2ϵ

1/2 + ϵ
k ≥ ϵk.

6

Lower bound for submodular maximization

Case 2. Suppose Algorithm 1 never returns anything, i.e.,
the if condition at Line 9 of Algorithm 1 is never satisfied.
Then we prove f(Sr) = fyes(Sr) = fno(Sr) holds for
every r ∈ [R].

Fix a round r ∈ [R], if |Sr| ≥ 20k/α, then we have
fyes(Sr) = fno(Sr) = mk = f(Sr) due to Line 5 of
Algorithm 1. Now suppose |Sr| < 20k

α , we have

f(Sr) = min

∑
i∈Sr

∑
t∈[m]

Xt,i + αm|Sr|/20,mk

= fyes(Sr)

Meanwhile, by the assumption of the second case, we also
have∑
i∈Sr∩I

∑
t∈[m]

Xt,i ≤
∑
i∈Sr

∑
t∈[m]

Xt,i

=
∑

τ∈[20/α]

∑
i∈Sr,τ

∑
t∈[m]

Xt,i

≤ (20/α) · (α2mk/200) = αmk/10,

Hence, we also have fno(Sr) = fyes(Sr) (see the definition
in Eq. (2)(3)). This proved that fyes(Sr) = fno(Sr) =
f(Sr) for any r ∈ [R].

In summary, we conclude that in Case 1, the reduction
outputs a set Î with |I ∩ I| ≥ ϵk, while in Case 2, the
transcript of ALG is the same for fyes and fno. Since we
assume ALG is able to distinguish between fyes, fno after
R queries, then we must fall into Case 1. This proves the
correctness of Algorithm 1.

Communication complexity Next we analyse the com-
munication complexity. At each round r ∈ [R], the m par-
ties need to compute

∑
t∈[m]

∑
i∈Sr,τ

Xt,i for τ ∈ [20/α].
For each τ ∈ [20/α], the t-th party (t ∈ [m]) could com-
pute the partial sum

∑
i∈Sr,τ

Xt,i locally, and then write
it on the blackboard. Hence, the total communication cost
per round is at most τ ·m · log(n) = O(log2(n)/αϵ2) =
O(log2(n)/α5) There are at most R rounds, so the total
communication cost over R rounds are O(R log2(n)/α5).
By Theorem 3.2, we must have

R log2(n)/α5 ≥ Ω(ϵ2n/c) ⇒ R ≥ Ω(α11n/ log2(n)).

4. Sublinear Algorithm for Additive Function
Theorem 4.1. Let n be the size of ground set, k be the con-
straint, ϵ ∈ (0, 1/8) be a constant. Suppose f is monotone
and additive, then there is an algorithm that approximates
the value of maxS∗∈[n],|S|=k f(S) within (1 ± ϵ) factor
using (n/k) · poly(log(n), ϵ−1) number of queries and suc-
ceeds with probability at least 4/5.

Parameters and notation Let wi = f(i) ≥ 0 and we
have f(S) =

∑
i∈S wi for all S ⊆ [n]. For parameters

R,R1, R2 defined below, we define a set {kr}r of scales
ranging from k1 = 1 to kR+R1+R2

= k. Specifically,
we let R = 100 log(n)/ϵ2, R1 = log1+ϵ(k/R

3), R2 =
log1+ϵ(R

2). Let kr = r for r ≤ R, and kr = R(1 + ϵ)r−R

for r ∈ [R+ 1 : R+R1 +R2].

Algorithm description Our approach is de-
picted as LINEARSUM (Algorithm 2). From a
high level, LINEARSUM divides the largest k ele-
ments into multiple scales. For the largest scales,
kr ∈ {kR+R1+1, . . . , kR+R1+R2

}, LINEARSUM di-
rectly estimates the kr-th quantile and it takes roughly
Õ(n/kr) = Õ(n/k) samples.

For smaller scales, kr ∈ {k1, . . . , kR+R1
}, we cannot

directly use this naive estimation approach as we can-
not afford Õ(n/kr) query complexity for smaller kr. To
avoid this increase in query complexity, LINEARSUM ran-
domly partitions the ground set [n] into nkr/k buckets
Ar,1, . . . , Ar,nkr/l. Define fr(i) := f(Ar,i) for i ∈
[nkr/k], LINEARSUM estimates the kr-th largest element
of fr. Roughly speaking, we expect the top kr-th bucket
to be as valuable as the top kr-th element + an average
bucket, so LINEARSUM further subtracts the average value
of a bucket to get an estimate of the contribution just from
the top kr elements.

Algorithm 2 LINEARSUM(f, k)

1: for r = 1, 2, . . . , R+R1 do
2: Random partition [n] = Ar,1 ∪ · · · ∪ Ar,nkr/k into

nkr/k subsets
3: Define fr(i) := f(Ar,i) for ∀i ∈ [nkr/k]
4: br ← ESTIMATEQUANTILE(fr, kr)
5: cr ← br − k

nkr
f([n])

6: end for
7: cr ← ESTIMATEQUANTILE(f, kr) for r ∈ [R+R1 +

1 : R+R1 +R2]

8: Return
∑R+R1+R2

r=1 (kr − kr−1)cr

Algorithm 3 ESTIMATEQUANTILE(g, t)

1: if t > 100 log(n)/ϵ2 then
2: Random sample a set S ⊆ [m] of size

100m log(n)/tϵ2

3: Query g(i) for all i ∈ S and let bt be the
100 log(n)/ϵ2-th largest element of {g(i)}i∈S

4: Return bt
5: else
6: Query g and Return the t-th largest element
7: end if

7

Lower bound for submodular maximization

4.1. Analysis

We relabel the ground set elements such that w1 ≥ · · · ≥
wn for convenience; note that LINEARSUM is oblivious to
the labeling of ground set elements so this is without loss of
generality.

We first prove that ESTIMATEQUANTILE(g, t) gives a good
estimate on the value of the top t-th element of g.

Lemma 4.2. Given any function g : [m] → R+, and
let b̂1 ≥ b̂2 ≥ · · · b̂m be the descending ordering
of {g(i)}i∈[m]. For any t ∈ [m], the output bt of
ESTIMATEQUANTILE(g, t) satisfies

b̂(1+ϵ)t ≤ bt ≤ b̂(1+ϵ)−1t

for t > 100 log(n)/ϵ2 with probability at least 1 − 1/n4,
and bt = b̂t for t ≤ 100 log(n)/ϵ2.

In the rest of the proof, it is convenient to assume k divides
n, and further that

(log(n)/ϵ)8 ≤ k ≤ n · (ϵ/ log(n))8. (6)

This assumption is without loss of generality as we could
just add dummy elements to the ground set.

The key step is to prove that cr gives a good estimate on the
kr-th largest element of f .

Lemma 4.3. For r ≤ R, with probability at least 1− 1
100R

wkr −
2ϵ

R

∑
j≤k

wj ≤ cr ≤ wkr
+

2ϵ

R

∑
j≤k

wj . (7)

and for r ∈ [R + 1 : R + R1], with probability at least
1− 1

n4 , we have

w(1+2ϵ)kr
− 2

kr

∑
j≤k

wj ≤ cr ≤ w(1−2ϵ)kr
+

2

kr

∑
j≤k

wj .

(8)

The detailed proof of Lemma 4.3 can be found at Appendix
B and we sketch the high level idea here. In the proof of
Lemma 4.3, fix a value of r, let tr = log3(n)/ϵ3 when
r ≤ R and tr = kr log

2(n)/ϵ when r ∈ [R+ 1 : R+R1].
For each subset i ∈ [nkr/k], we decompose f(Ar,i) into
three parts

f(Ar,i) =
∑

j∈Ar,i

wj

=
∑

j∈Ar,i

wj1j≤tr +
∑

j∈Ar,i

wj1tr<j≤k +
∑

j∈Ar,i

wj1j>k.

From a high level, we wish to prove that (1) there is at most
one element contributes the first term; (2) the second term
is negligible; and (3) the last term concentrates on its mean.

Fix a partition Ar,1∪· · ·∪Ar,nkr/k. For any subset S ⊆ [n],
the number of collisions among S is defined as the total
number of elements in S that are allocated to subsets with
more than one element of S. We first prove that (with
sufficiently high probability) there are few collisions among
the largest tr elements.

Lemma 4.4. We have

• For r ≤ R, with probability at least 1 − 1
100R , there

are no collisions among the top tr elements.

• For r ∈ [R + 1 : R + R1], with probability at least
1 − 1/n4, the number of collisions among the top tr
elements are at most is at most ϵkr

We next prove
∑

j∈Ar,i
wj1tr<j≤k is negligible.

Lemma 4.5. For any r ∈ [R + R1], i ⊆ [nkr/k], with
probability at least 1− 1/n4, we have∑

j∈Ar,i

wj1tr<j≤k ≤
log2(n)

tr

∑
j≤k

wj .

Finally, we prove
∑

j∈Ar,i
wj · 1j>k concentrates around

the mean.

Lemma 4.6. For any r ∈ [R+R1] and i ∈ [nkr/k], with
probability at least 1− 1/n5,∑

j∈Ai,r

wj · 1j>k =
k

nkr

∑
j>k

wj ±
√

k

kr
log(n)wk.

We can obtain Lemma 4.3 from Lemma 4.4 – Lemma 4.6,
and obtain Theorem 4.1 using Lemma 4.3.

4.2. A Nearly-matching Lower Bound

We present a matching lower bound to Theorem 4.1 whose
proof can be found at the Appendix.

Theorem 4.7. Let f be an additive function, n be the size
of ground set, k be the constraint, α ∈ (0, 1) be a con-
stant. Then it takes Ω(α3n/k log(n)) queries to distinguish
between

• YES Instance: f(S∗) ≥ OPT

• NO Instance: f(S∗) ≤ αOPT

Acknowledgement
The authors would like to thank Yair Carmon for useful
discussion over the project. The work is supported by
NSF CCF-1954927, a David and Lucile Packard Fellowship,
AFOSR award FA95502310251 and ONR award number
N000142212771.

8

Lower bound for submodular maximization

Impact Statement
This is a theoretical paper and it does not present foreseeable
negative social impacts.

References
Agarwal, A. and Balkanski, E. Learning-augmented

dynamic submodular maximization. arXiv preprint
arXiv:2311.13006, 2023.

Agrawal, S., Shadravan, M., and Stein, C. Submodu-
lar secretary problem with shortlists. arXiv preprint
arXiv:1809.05082, 2018.

Alaluf, N. and Feldman, M. Making a sieve random: Im-
proved semi-streaming algorithm for submodular maxi-
mization under a cardinality constraint. arXiv preprint
arXiv:1906.11237, 2019.

Alaluf, N., Ene, A., Feldman, M., Nguyen, H. L., and Suh,
A. An optimal streaming algorithm for submodular max-
imization with a cardinality constraint. Mathematics of
Operations Research, 47(4):2667–2690, 2022.

Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., and
Krause, A. Streaming submodular maximization: Mas-
sive data summarization on the fly. In Proceedings of the
20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 671–680, 2014.

Balkanski, E. and Singer, Y. The adaptive complexity
of maximizing a submodular function. In Diakoniko-
las, I., Kempe, D., and Henzinger, M. (eds.), Proceed-
ings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA,
USA, June 25-29, 2018, pp. 1138–1151. ACM, 2018.
doi: 10.1145/3188745.3188752. URL https://doi.
org/10.1145/3188745.3188752.

Balkanski, E., Rubinstein, A., and Singer, Y. The power
of optimization from samples. In Lee, D. D., Sugiyama,
M., von Luxburg, U., Guyon, I., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing
Systems 2016, December 5-10, 2016, Barcelona, Spain,
pp. 4017–4025, 2016.

Balkanski, E., Breuer, A., and Singer, Y. Non-monotone sub-
modular maximization in exponentially fewer iterations.
In Bengio, S., Wallach, H. M., Larochelle, H., Grauman,
K., Cesa-Bianchi, N., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pp. 2359–2370, 2018.

Balkanski, E., Rubinstein, A., and Singer, Y. An exponential
speedup in parallel running time for submodular maxi-
mization without loss in approximation. In Chan, T. M.
(ed.), Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pp. 283–302.
SIAM, 2019. doi: 10.1137/1.9781611975482.19.

Balkanski, E., Rubinstein, A., and Singer, Y. An optimal
approximation for submodular maximization under a ma-
troid constraint in the adaptive complexity model. Oper.
Res., 70(5):2967–2981, 2022a. doi: 10.1287/OPRE.2021.
2170.

Balkanski, E., Rubinstein, A., and Singer, Y. The limitations
of optimization from samples. J. ACM, 69(3):21:1–21:33,
2022b. doi: 10.1145/3511018.

Banihashem, K., Biabani, L., Goudarzi, S., Hajiaghayi, M.,
Jabbarzade, P., and Monemizadeh, M. Dynamic con-
strained submodular optimization with polylogarithmic
update time. In International Conference on Machine
Learning, pp. 1660–1691. PMLR, 2023.

Banihashem, K., Biabani, L., Goudarzi, S., Hajiaghayi,
M., Jabbarzade, P., and Monemizadeh, M. Dynamic
algorithms for matroid submodular maximization. In
Proceedings of the 2024 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 3485–3533. SIAM,
2024.

Behnezhad, S. Dynamic algorithms for maximum matching
size. In Proceedings of the 2023 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 129–162.
SIAM, 2023.

Behnezhad, S., Roghani, M., and Rubinstein, A. Sublinear
time algorithms and complexity of approximate maxi-
mum matching. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, pp. 267–280, 2023.

Bhattacharya, S., Kiss, P., Saranurak, T., and Wajc, D. Dy-
namic matching with better-than-2 approximation in poly-
logarithmic update time. Journal of the ACM, 71(5):1–32,
2024.

Bilmes, J. A. Submodularity in machine learning and arti-
ficial intelligence. CoRR, abs/2202.00132, 2022. URL
https://arxiv.org/abs/2202.00132.

Braverman, M., Garg, A., Ma, T., Nguyen, H. L., and
Woodruff, D. P. Communication lower bounds for sta-
tistical estimation problems via a distributed data pro-
cessing inequality. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pp.
1011–1020, 2016.

9

https://doi.org/10.1145/3188745.3188752
https://doi.org/10.1145/3188745.3188752
https://arxiv.org/abs/2202.00132

Lower bound for submodular maximization

Breuer, A., Balkanski, E., and Singer, Y. The FAST al-
gorithm for submodular maximization. In Proceedings
of the 37th International Conference on Machine Learn-
ing, ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research, pp.
1134–1143. PMLR, 2020.

Chakrabarti, A. and Kale, S. Submodular maximization
meets streaming: matchings, matroids, and more. Mathe-
matical Programming, 154:225–247, 2015.

Charikar, M., Chen, B., Ré, C., and Waingarten, E. Fast
algorithms for a new relaxation of optimal transport. In
The Thirty Sixth Annual Conference on Learning Theory,
pp. 4831–4862. PMLR, 2023.

Chekuri, C. and Quanrud, K. Parallelizing greedy for
submodular set function maximization in matroids and
beyond. In Charikar, M. and Cohen, E. (eds.), Pro-
ceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ,
USA, June 23-26, 2019, pp. 78–89. ACM, 2019a. doi:
10.1145/3313276.3316406.

Chekuri, C. and Quanrud, K. Submodular function max-
imization in parallel via the multilinear relaxation. In
Chan, T. M. (ed.), Proceedings of the Thirtieth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-
9, 2019, pp. 303–322. SIAM, 2019b. doi: 10.1137/
1.9781611975482.20. URL https://doi.org/10.
1137/1.9781611975482.20.

Chekuri, C., Gupta, S., and Quanrud, K. Streaming algo-
rithms for submodular function maximization. In Au-
tomata, Languages, and Programming: 42nd Interna-
tional Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part I 42, pp. 318–330. Springer,
2015.

Chen, L., Feldman, M., and Karbasi, A. Unconstrained
submodular maximization with constant adaptive com-
plexity. In Charikar, M. and Cohen, E. (eds.), Pro-
ceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ,
USA, June 23-26, 2019, pp. 102–113. ACM, 2019. doi:
10.1145/3313276.3316327.

Chen, X. and Peng, B. On the complexity of dynamic sub-
modular maximization. In Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing, pp.
1685–1698, 2022.

Chen, X., Jayaram, R., Levi, A., and Waingarten, E. New
streaming algorithms for high dimensional emd and mst.
In Proceedings of the 54th Annual ACM SIGACT Sympo-
sium on Theory of Computing, pp. 222–233, 2022.

Dütting, P., Fusco, F., Lattanzi, S., Norouzi-Fard, A., and
Zadimoghaddam, M. Fully dynamic submodular maxi-
mization over matroids. In International Conference on
Machine Learning, pp. 8821–8835. PMLR, 2023.

Ene, A. and Nguyen, H. L. Submodular maximization with
nearly-optimal approximation and adaptivity in nearly-
linear time. In Chan, T. M. (ed.), Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pp. 274–282. SIAM, 2019. doi:
10.1137/1.9781611975482.18.

Ene, A. and Nguyen, H. L. Parallel algorithm for
non-monotone dr-submodular maximization. In Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event, volume 119 of Proceedings of Machine
Learning Research, pp. 2902–2911. PMLR, 2020.
URL http://proceedings.mlr.press/v119/
ene20a.html.

Fahrbach, M., Mirrokni, V. S., and Zadimoghaddam,
M. Submodular maximization with nearly optimal
approximation, adaptivity and query complexity. In
Chan, T. M. (ed.), Proceedings of the Thirtieth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-
9, 2019, pp. 255–273. SIAM, 2019. doi: 10.1137/1.
9781611975482.17. URL https://doi.org/10.
1137/1.9781611975482.17.

Feldman, M., Karbasi, A., and Kazemi, E. Do less, get more:
Streaming submodular maximization with subsampling.
Advances in Neural Information Processing Systems, 31,
2018.

Feldman, M., Liu, P., Norouzi-Fard, A., Svensson, O., and
Zenklusen, R. Streaming submodular maximization un-
der matroid constraints. arXiv preprint arXiv:2107.07183,
2021.

Feldman, M., Norouzi-Fard, A., Svensson, O., and Zen-
klusen, R. The one-way communication complexity of
submodular maximization with applications to streaming
and robustness. Journal of the ACM, 70(4):1–52, 2023.

Fisher, M. L., Nemhauser, G. L., and Wolsey, L. A. An
analysis of approximations for maximizing submodular
set functions—II. Springer, 1978.

Huang, C.-C., Thiery, T., and Ward, J. Improved multi-pass
streaming algorithms for submodular maximization with
matroid constraints. arXiv preprint arXiv:2102.09679,
2021.

10

https://doi.org/10.1137/1.9781611975482.20
https://doi.org/10.1137/1.9781611975482.20
http://proceedings.mlr.press/v119/ene20a.html
http://proceedings.mlr.press/v119/ene20a.html
https://doi.org/10.1137/1.9781611975482.17
https://doi.org/10.1137/1.9781611975482.17

Lower bound for submodular maximization

Huang, C.-C., Kakimura, N., Mauras, S., and Yoshida, Y.
Approximability of monotone submodular function maxi-
mization under cardinality and matroid constraints in the
streaming model. SIAM Journal on Discrete Mathematics,
36(1):355–382, 2022.

Ilyas, A., Park, S. M., Engstrom, L., Leclerc, G., and Madry,
A. Datamodels: Predicting predictions from training data.
In Proceedings of the 39th International Conference on
Machine Learning, 2022.

Indyk, P. and Vakilian, A. Tight trade-offs for the maximum
k-coverage problem in the general streaming model. In
Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pp. 200–
217, 2019.

Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi,
S., and Karbasi, A. Submodular streaming in all its glory:
Tight approximation, minimum memory and low adap-
tive complexity. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 3311–3320. PMLR,
2019a. URL http://proceedings.mlr.press/
v97/kazemi19a.html.

Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi,
S., and Karbasi, A. Submodular streaming in all its glory:
Tight approximation, minimum memory and low adaptive
complexity. In International Conference on Machine
Learning, pp. 3311–3320. PMLR, 2019b.

Kempe, D., Kleinberg, J., and Tardos, É. Maximizing the
spread of influence through a social network. In Proceed-
ings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 137–146,
2003.

Kuhnle, A. Quick streaming algorithms for maximization
of monotone submodular functions in linear time. In
International Conference on Artificial Intelligence and
Statistics, pp. 1360–1368. PMLR, 2021.

Lattanzi, S., Mitrović, S., Norouzi-Fard, A., Tarnawski,
J. M., and Zadimoghaddam, M. Fully dynamic algo-
rithm for constrained submodular optimization. Advances
in Neural Information Processing Systems, 33:12923–
12933, 2020.

Li, W., Feldman, M., Kazemi, E., and Karbasi, A. Submod-
ular maximization in clean linear time. In Koyejo, S.,
Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and
Oh, A. (eds.), Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022, 2022.

Liu, P., Rubinstein, A., Vondrák, J., and Zhao, J. Cardi-
nality constrained submodular maximization for random
streams. Advances in Neural Information Processing
Systems, 34:6491–6502, 2021.

McGregor, A. and Vu, H. T. Better streaming algorithms for
the maximum coverage problem. Theory of Computing
Systems, 63:1595–1619, 2019.

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrák,
J., and Krause, A. Lazier than lazy greedy. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

Monemizadeh, M. Dynamic submodular maximization.
Advances in Neural Information Processing Systems, 33:
9806–9817, 2020.

Norouzi-Fard, A., Tarnawski, J., Mitrovic, S., Zandieh,
A., Mousavifar, A., and Svensson, O. Beyond 1/2-
approximation for submodular maximization on massive
data streams. In International Conference on Machine
Learning, pp. 3829–3838. PMLR, 2018.

Peng, B. Dynamic influence maximization. Advances
in Neural Information Processing Systems, 34:10718–
10731, 2021.

Peng, B. and Rubinstein, A. Fully-dynamic-to-incremental
reductions with known deletion order (eg sliding window).
In Symposium on Simplicity in Algorithms (SOSA), pp.
261–271. SIAM, 2023.

Shadravan, M. Improved submodular secretary problem
with shortlists. arXiv preprint arXiv:2010.01901, 2020.

11

http://proceedings.mlr.press/v97/kazemi19a.html
http://proceedings.mlr.press/v97/kazemi19a.html

Lower bound for submodular maximization

A. Missing Proof from Section 3
We first prove Lemma 3.5.

Proof of Lemma 3.5. First, we have

I(Π, R′;Z1, . . . , Zm|V = 0) = I(Π;Z1, . . . , Zm|R′, V = 0)

= I(Π;X1,I1
, . . . , Xm,I1

|R, I, V = 0)

= E
i2,...,ik

[I(Π;X1,I1
, . . . , Xm,I1

|R, I1, I2 = i2, . . . , Ik = ik, V = 0). (9)

The first step follows because the public randomness R′ is independent of Z1, . . . , Zm conditioning on V = 0, the second
step follows from R′ = (R, I), and Z1, . . . , Zm are embedded to the I1-th coordinate. The third step follows from the
definition of condition mutual information.

For any fixed i2, . . . , ik, we bound the RHS of Eq. (9) and our goal is to prove

I(Π;X1,I1 , . . . , Xm,I1 |R, I1, I2 = i2, . . . , Ik = ik, V = 0) ≤ IC

n− k + 1
. (10)

To this end, we have

I(Π;X1,I1
, . . . , Xm,I1

|R, I1, I2 = i2, . . . , Ik = ik, V = 0)

=
1

n− k + 1

∑
i∈[n]\{i2,...,ik}

I(Π;X1,I1 , . . . , Xm,I1 |R, I1 = i, I2 = i2, . . . , Ik = ik, V = 0)

=
1

n− k + 1

∑
i∈[n]\{i2,...,ik}

I(Π;X1,i, . . . , Xm,i|R, I2 = i2, . . . , Ik = ik, V = 0)

≤ 1

n− k + 1
I(Π; {X1,i, . . . , Xm,i}i∈[n]\{i2,...,ik}|R, I2 = i2, . . . , Ik = ik, V = 0)

≤ 1

n− k + 1
I(Π;X1, . . . , Xm|R, I2 = i2, . . . , Ik = ik, V = 0). (11)

The first step holds since the choice of I1 is uniform over [n]\{i2, . . . , ik}. The second step holds since the distribution of
X1,i, . . . , Xm,i for i ∈ [n]\{i2, . . . , ik} does not depend on i (because they are drawn from Dm

0), and the transcript Π is
oblivious of I1. The third step holds due to X1,i, . . . Xm,i are independent across i ∈ [n]\{i2, . . . , ik} and Fact 2.3.

Finally, for any i2, . . . , ik, we have

I(Π;X1, . . . , Xm|R, I2 = i2, . . . , Ik = ik, V = 0) ≤ IC (12)

holds for any k ≥ 2 due to the definition of information cost (see Eq. (1)).

We have proved Eq. (10) combining Eq. (11)(12), and combining with Eq. (9), we complete the proof.

We next prove Lemma 3.6

Proof of Lemma 3.6. When V = 1, note {X1,i, . . . , Xm,i}i∈I are drawn from the same distribution, hence we have

Pr[i1 ∈ I] =
|I ∩ Î|
|I|

≥ ϵk

|I|
≥ ϵ.

When V = 0, note {X1,i, . . . , Xm,i}i∈[n]\{i2,...,ik} have the same distribution, hence we have

Pr[i1 ∈ I] =
|Î|

n− k + 1
=

k

n− k + 1

Combining the above two cases, the success probability is at least

1

2
· ϵ+ 1

2
· (1− k

n− k + 1
) ≥ 1

2
+

ϵ

4
.

Here we use the fact that k ≤ ϵn/4.

12

Lower bound for submodular maximization

Now we provide the proof of Theorem 3.2

Proof of Theorem 3.2. By Lemma 3.6, we have that TV(Π|V=0,Π|V=1) ≥ ϵ
4 , and therefore,

h2(Π|V=0,Π|V=1) ≥
1

2
TV2(Π|V=0,Π|V=1) ≥

ϵ2

32
.

Here, the first step follows from Fact 2.2.

By Lemma 3.4 and the fact that the SDPI constant β(µ0, µ1) is at most 1, we have

I(Π;Z1, . . . , Zm|V = 0) ≥ Ω(1/c) · h2(Π|V=0,Π|V=1) = Ω(ϵ2/c).

By Lemma 3.5, we have IC ≥ Ω(ϵ2n/c). This completes the proof since the communication cost is at least the information
cost.

Next we prove lower bound for submodular maximization. We first prove Lemma 3.8.

Proof of Lemma 3.8. By Chernoff bound, we have

f(i) =
∑
t∈[m]

Xt,i ∈ [(1/2− ϵ)m, (1/2 + ϵ)m] ∀i ∈ I (13)

and

f(i) =
∑
t∈[m]

Xt,i ≤ 2ϵm ∀i ∈ [n]\I (14)

holds with probability at least 1− 1/n10. Hence, we have

f(S∗) ≥ f(I) =
∑
i∈I

f(i) ≥ (k/2)(1/2− ϵ)m. (15)

The first two steps follow from the definition, the last step follows from |I| ≥ k/2 and Eq. (13).

On the other hand, for any set S ⊆ [n] with size k, we have

f(S) = f(S ∩ I) + f(S \ I) ≤ |S ∩ I| · (1
2
+ ϵ) ·m+ k · 2ϵm. (16)

The first step follows from the definition of f . The second step follows from Eq. (13)(14). Combining Eq. (15)(16), we can
conclude that for any α-approximate solution S,

f(S)

f(S∗)
≥ α = 15ϵ ⇒

|S ∩ I| · (12 + ϵ) ·m+ k · 2ϵm
(k/2)(1/2− ϵ)m

≥ 15ϵ ⇒ |S ∩ I| ≥ ϵk.

We next prove Theorem 3.7

Proof of Theorem 3.7. Suppose there exists an algorithm ALG that makes at most R queries and outputs an α-approximate
solution S for the submodular maximization problem. Consider the following communication protocol: The protocol
proceeds in R rounds, where in the r-th round (r ∈ [R]), suppose ALG queries set Sr, then the m parties collectively
compute the value of f(Sr). Since

f(Sr) =
∑
i∈Sr

∑
t∈[m]

Xt,i =
∑
t∈[m]

∑
i∈Sr

Xt,i,

13

Lower bound for submodular maximization

it suffices for the t-th party to compute
∑

i∈Sr
Xt,i locally and writes it on the blackboard. Given the knowledge of

S1, . . . , Sr, f(S1), . . . , f(Sr), m parties can simulate ALG and determine the next query Sr+1, and therefore, continue the
protocol. Finally, m parties output the solution set Î = S.

The communication cost at each round equals m · log(n) = O(log2(n)/ϵ2), and there is a sequence of R queries, so
there are O(R log2(n)/ϵ2) bits of communication in total. Moreover, ALG guarantees the output solution Î = S is
α = 15ϵ-approximate, by Lemma 3.8, we know that |Î ∩ I| ≥ ϵk. By Theorem 3.2, we must have

R log2(n)/ϵ2 ≥ Ω(ϵ2n/c) ⇒ R ≥ Ω(ϵ5n/ log2(n)) = Ω(α5n/ log2(n)).

We next prove Lemma 3.10 and Lemma 3.11.

Proof of Lemma 3.10. This follows directly from Chernoff bound. For any i ∈ I, Xt,i ∼ B1/2, and therefore

Pr

∣∣∣∣∣∣
∑
t∈[m]

Xt,i −m/2

∣∣∣∣∣∣ ≥ ϵm

 ≤ 2 exp(−2mϵ2) =
2

n200

and for any i ∈ [n]\I, Xt,i ∼ Bϵ,

Pr

∣∣∣∣∣∣
∑
t∈[m]

Xt,i − ϵm

∣∣∣∣∣∣ ≥ ϵm/2

 ≤ 2 exp(−mϵ2/2) =
2

n50
.

Proof of Lemma 3.11. For the YES instance, we have

max
S∗⊆[n],|S∗|=k

fyes(S
∗) ≥ fyes(I) ≥ min

∑
i∈I

∑
t∈[m]

Xt,i,mk

 ≥ (k/2)(1/2− ϵ)m ≥ OPT

where the second step follows from the definition of fyes (see Eq. (2)), the third step follows from Eq. (4) and the last step
holds since OPT.

For the NO instance, for any set S of size at most k, we have

fno(S) ≤ min

 ∑
i∈S∩I

∑
t∈[m]

Xt,i,
αmk

10

+
∑

i∈S∩[n]\I

∑
t∈[m]

Xt,i +
αmk

20

≤ αmk/10 + k · 2ϵm+ αmk/20 ≤ αOPT

where the first step follows from the definition of fno (see Eq. (3)), and the second step holds due to Eq. (5) and |S| ≤ k.
The last step follows from the choice of parameters.

B. Missing Proof from Section 4
We first prove Lemma 4.2.

Proof of Lemma 4.2. We focus on the non-trivial case of t > 100 log(n)/ϵ2. By Chernoff bound, we have

Pr[bt ≤ b̂(1+ϵ)t] = Pr

[
|S ∩ [(1 + ϵ)t]| ≤ 100 log(n)

ϵ2

]
= exp

(
−ϵ2 · 100 log(n)

ϵ2
· 1
2

)
≤ 1

n50

14

Lower bound for submodular maximization

here the second step follows from Chernoff bound and

E[|S ∩ [(1 + ϵ)t]|] = 100m log(n)

tϵ2
· (1 + ϵ)t

m
= (1 + ϵ) · 100 log(n)

ϵ2

Similarly,

Pr[bt ≥ b̂(1+ϵ)−1t] = Pr

[
|S ∩ [(1 + ϵ)−1t]| ≥ 100 log(n)

ϵ2

]
= exp

(
−
(ϵ

1 + ϵ

)2
· 100 log(n)
(1 + ϵ)ϵ2

· 1
3

)
≤ 1

n4
.

where the second step follows from Chernoff bound and

E[|S ∩ [(1 + ϵ)−1t]|] = 100m log(n)

tϵ2
· t

(1 + ϵ)m
=

100 log(n)

(1 + ϵ)ϵ2
.

We next prove Lemma 4.4 – 4.6

Proof of Lemma 4.4. For r ≤ R, the probability that is there are no collisions among [tr] equals

1 ·
(
1− k

krn

)
· · ·
(
1− (tr − 1)k

krn

)
≥ 1− t2r ·

k

krn
≥ 1− 1

100R

(here the last inequality uses (6)).

For r ∈ [R+ 1 : R+R1], consider the random process that j = 1, 2, 3, . . . , tr are randomly put into Ar,1, . . . , Ar,nkr/k.
Let Xj indicates if j falls into the same set as some element j′ < j, i.e.,

Xj =

{
1 j ∈ Ar,i, j

′ ∈ Ar,i for some j′ < j, i ∈ [nkr/k]
0 otherwise

We know that E[Xj] ≤ tr · k
krn

, and

E

∑
j≤tr

Xt

 ≤ t2r ·
k

krn
= (kr log

2(n)/ϵ)2 · k

krn
=

k log4(n)

nϵ2
· kr ≤ ϵkr/4

where the last step holds since we assume k ≤ ϵ8n/ log8(n).

By Azuma-Hoeffding bound, we have

Pr

∑
j≤tr

Xj ≥ ϵkr/2

 ≤ exp(−ϵkr/12) ≤ 1/n5.

This completes the proof.

Proof of Lemma 4.5. For any r ∈ [R+R1], for any subset i ⊆ [nkr/k], we have

E

 ∑
j∈Ai,r

wj1tr<j≤k

 =
k

nkr

∑
tr<j≤k

wj ≤
log2(n)

2tr

∑
j≤k

wj ,

where the second step follows from the choice of parameters. By Chernoff bound, we have

Pr

 ∑
j∈Ar,i

wj1tr<j≤k ≥
log2(n)

tr

∑
j≤k

wj

 ≤ exp

−∑
j≤k

wj log
2(n)/6trwtr

≤ exp(− log2(n)/6) ≤ 1/n6

where the second step follows from wtr ≤ 1
tr

∑
j≤tr

wj ≤ 1
tr

∑
j≤t wj .

15

Lower bound for submodular maximization

Proof Lemma 4.6. We have

E

 ∑
j∈Ar,i

wj · 1j>k

 =
k

nkr

∑
j>k

wj ,

We use Chernoff bound. If k
nkr

∑
j>k wj ≥

√
k/kr log(n)wk, then we have

Pr

∣∣∣∣∣∣
∑

j∈Ar,i

wj · 1j>k −
k

nkr

∑
j>k

wj

∣∣∣∣∣∣ ≤√k/kr log(n)wk

≥ 1− 2 exp

(
− log2(n)k/kr
3k
∑

j>k wj/nkrwk

)

≥ 1− exp(− log2(n)/3) ≥ 1− 1

n5
.

Otherwise, If k
nkr

∑
j>k wj <

√
k/kr log(n)wk, then we have

Pr

∣∣∣∣∣∣
∑

j∈Ar,i

wj · 1j>k −
k

nkr

∑
j>k

wj

∣∣∣∣∣∣ ≤√k/kr log(n)wk

≥ 1− 2 exp

(
− log2(n)k/3kr

)
≥ 1− exp(− log2(n)/3) ≥ 1− 1

n5
.

Now we can finish the proof of Lemma 4.3.

Proof of Lemma 4.3. Fix a value of r, for each subset i ∈ [nkr/k], we would decompose f(Ar,i) into three parts

f(Ar,i) =
∑

j∈Ar,i

wj =
∑

j∈Ar,i

wj1j≤tr +
∑

j∈Ar,i

wj1tr<j≤k +
∑

j∈Ar,i

wj1j>k. (17)

CASE 1: r ∈ [R+ 1 : R+R1]

We first consider the case that r ∈ [R + 1 : R + R1] and prove Eq. (8). For the LHS of Eq. (8), let I ⊆ [nkr/k] be the
collection of subsets such that contain the top (1 + 2ϵ)kr elements, i.e. [(1 + 2ϵ)kr] ⊆ ∪i∈IAr,i. By Lemma 4.4, we know
that |I| ≥ (1 + ϵ)kr. We have

br ≥ min
i∈I

 ∑
j∈Ar,i

wj

= min

i∈I

 ∑
j∈Ar,i

wj1j≤tr +
∑

j∈Ar,i

wj1tr<j≤k +
∑

j∈Ar,i

wj1j>k

≥ w(1+2ϵ)kr

+ 0 +
k

nkr

∑
j>k

wj −
√

k/kr log(n)wk

≥ w(1+2ϵ)kr
+

k

nkr

∑
j>k

wj −
1

kr

∑
j≤k

wj (18)

The first step follows from the guarantee of QUANTILEESTIMATE (see Lemma 4.2), the third step follows from Lemma 4.6,
the last step follows from kr ≤ k/ log2(n).

16

Lower bound for submodular maximization

Meanwhile, we have

k

nkr
f([n]) =

k

nkr

n∑
j=1

wj =
k

nkr

∑
j≤k

wj +
k

nkr

∑
j>k

wj ≤
1

kr

∑
j≤k

wj +
k

nkr

∑
j≥k

wj (19)

Combining Eq. (18)(19), we have

cr = br −
k

nkr
f([n]) ≥ w(1+2ϵ)kr

− 2

kr

∑
j≤k

wr

For the RHS of Eq. (8). Let Ir ⊆ [nkr/k] be the top (1− ϵ)kr subsets of {Ar,i}i∈[nkr/k]. By Lemma 4.4, we know that
there exists ir ∈ Ir, such that, either |Ar,ir ∩ [tr]| = 0, or jr = Ar,ir ∩ [tr] and jr ≥ (1− 2ϵ)kr. Therefore, we have

br ≤
∑

j∈Ar,ir

wj

=
∑

j∈Ar,ir

wj1j≤tr +
∑

j∈Ar,ir

wj1tr<j≤k +
∑

j∈Ar,ir

wj1j>k

≤ w(1−2ϵ)kr
+

log2(n)

tr

∑
j≤k

wj +
k

nkr

∑
j>k

wj +
√
k/kr log(n)wk

≤ wkr
+

k

nkr

∑
j>k

wj +
1 + 1

kr

∑
j≤k

wj

The first step follows from the guarantee of QUANTILEESTIMATE (see Lemma 4.2), the third step follows from Lemma 4.5
and Lemma 4.6, the last step follows from the choice of parameters.

Hence, we have

cr = br −
k

nkr
f([n])

≤ w(1−2ϵ)kr
+

k

nkr

∑
j>k

wj +
2

kr

∑
j≤k

wj −
k

nkr

∑
j≥k

wj

≤ w(1−2ϵ)kr
+

2

kr

∑
j≤k

wj .

CASE 2: r ≤ R

We next study the case that r ≤ R. The proof is similar. For the LHS of Eq. (7), let I ⊆ [nkr/k] be the collection of subsets
such that in [kr] ⊆ ∪i∈IAr,i. By Lemma 4.4, we know that |I| = pkr. We have

br ≥ min
i∈I

 ∑
j∈Ar,i

wj

= min

i∈I

 ∑
j∈Ar,i

wj1j≤tr +
∑

j∈Ar,i

wj1tr<j≤k +
∑

j∈Ar,i

wj1j>k

≥ wkr

+ 0 +
k

nkr

∑
j>k

wj −
√
k/kr log(n)wk

≥ wkr +
k

nkr

∑
j>k

wj −
ϵ

R

∑
j≤k

wj (20)

17

Lower bound for submodular maximization

The first step follows from the guarantee of QUANTILEESTIMATE (see Lemma 4.2), the third step follows from Lemma 4.5,
the last step follows from the choice of parameters.

Meanwhile, we have

k

nkr
f([n]) =

k

nkr

n∑
j=1

wj =
k

nkr

∑
j≤k

wj +
k

nkr

∑
j>k

wj ≤
ϵ

R

∑
j≤k

wj +
k

nkr

∑
j≥k

wj (21)

Combining Eq. (20)(21), we have proved

cr = br −
k

nkr
f([n]) ≥ wkr

− 2ϵ

R

∑
j≤k

wr.

For the RHS of Eq. (7). Let Ir ⊆ [nkr/k] be the top kr subsets of {Ar,i}i∈[nkr/k]. By Lemma 4.4, we know that there
exists ir ∈ Ir, such that, either |Ar,ir ∩ [tr]| = 0, or jr = Ar,ir ∩ [tr] and jr ≥ kr. Therefore, we have

br ≤
∑

j∈Ar,ir

wj

=
∑

j∈Ar,ir

wj1j≤tr +
∑

j∈Ar,ir

wj1tr<j≤k +
∑

j∈Ar,ir

wj1j>k

≤ wkr
+

log2(n)

tr

∑
j≤k

wj +
k

nkr

∑
j>k

wj +
√

k/kr log(n)wk

≤ wkr +
k

nkr

∑
j>k

wj +
2ϵ

R

∑
j≤k

wj

. The first step follows from the guarantee of QUANTILEESTIMATE (see Lemma 4.2), the third step follows from Lemma 4.5
and Lemma 4.6, the last step follows from the choice of parameters.

Consequently, we have

cr = br −
k

nkr
f([n])

≤ wkr +
k

nkr

∑
j>k

wj +
2ϵ

R

∑
j≤k

wj −
k

nkr

∑
j≥k

wj

≤ wkr
+

2ϵ

R

∑
j≤k

wj .

This completes the proof.

Now we can wrap up the proof of Theorem 4.1

Proof of Theorem 4.1. We prove LINEARSUM(f, k) approximates the optimal value within (1±O(log(n)ϵ)) factor with
probability at least 4/5, and it draws at most (n/k) · poly(n, ϵ−1) samples.

For the correctness guarantee, we condition on the event of Lemma 4.3, which holds with probability at least 5/6. For
r ≤ R, by Lemma 4.3, we have

R∑
r=1

(kr − kr−1)cr =

R∑
j=1

wj ± 2ϵ
∑
j≤k

wj . (22)

18

Lower bound for submodular maximization

For j ∈ [R+ 1, R+R1], we have

R+R1∑
r=R+1

(kr − kr−1)cr ≤
R+R1∑
r=R+1

(kr − kr−1)w(1−2ϵ)kr
+ 2 log(n)ϵ

∑
j≤k

wj

≤
kR+R1∑
j=kR+1

wj +O(log(n)ϵ)
∑
j≤k

wj (23)

where the first step follows from Lemma 4.3 and kr − kr−1 ≤ ϵkr. Similarly, we have

R+R1∑
r=R+1

(kr − kr−1)cr ≥
R+R1∑
r=R+1

(kr − kr−1)w(1+2ϵ)kr
− 2 log(n)ϵ

∑
j≤k

wj

≥
kR+R1∑
j=kR+1

wj −O(log(n)ϵ)
∑
j≤k

wj (24)

Finally, for r ∈ [R+R1 + 1 : R+R1 +R2], by the guarantee of ESTIMATEQUANTILE (see Lemma 4.2)

R+R1+R1∑
r=R+R1+1

(kr − kr−1)cr =

kR+R1+R2∑
j=kR+R1

+1

wj ±O(ϵ) ·
∑
j≤k

wj (25)

Combining Eq. (22)–(25), we have

R+R1+R2∑
r=1

(kr − kr−1)cr =

k∑
j=1

wj ±O(log(n)ϵ) ·
∑
j≤k

wj

For the sample complexity, for r ∈ [R+R1], the total number of samples to obtain {br}r∈[R+R1] is at most

R+R1∑
r=1

100(nkr/k) log(n)/krϵ
2 = (n/k) · poly(log(n), ϵ−1),

for r ∈ [R+R1 + 1 : R+R1 +R2], the total number of samples to obtain {br}r∈[R+R1+1:R+R1+R2] is at most

R+R1+R2∑
r=R+R1+1

100n log(n)/krϵ
2 = (n/k) · poly(log(n), ϵ−1).

This completes the proof.

Next we prove Theorem 4.7. We reduce from a decision version of the distributed set detection problem.

Definition B.1 (Distributed index detection). Let n,m be input parameters, D0,D1 be two Bernoulli distributions with
mean µ0, µ1. m is the number of parties, who communicate in the blackboard model. The input of the t-th party (t ∈ [m])
is a vector Xt ∈ {0, 1}n such that

• YES Instance: Xt,i ∼ D0 for i ∈ [n]\{i∗} and Xt,i∗ ∼ D1;

• NO Instance: Xt,i ∼ D0 for all i ∈ [n]

The goal is to distinguish between the YES/NO instance.

The communication complexity of distributed index detection is at least Ω(n/c log(n)), because there is an Ω(n/c) lower
bound of finding the index i∗ in the YES instance (taking k = 1, ϵ = 1/2 in Theorem 3.2), and one could find the index i∗

by performing binary search using O(log(n)) calls to distributed index detection.

19

Lower bound for submodular maximization

Proof of Theorem 4.7. Given n, k, α, suppose there exists an algorithm ALG that makes at most R queries and approximates
the value of optimal solution. Consider an instance of distributed index detection with

ϵ = α/15, n′ = n/k, m =
10 log(n)

ϵ2
, µ0 = ϵ, µ1 = 1/2.

Let X1, . . . , Xm ∈ {0, 1}n
′

be the input of distributed index detection. Consider the following function f : [n]→ R+,

f(S) =
∑
i∈S

f(i) and f(i) =
∑
t∈[m]

Xt,i (mod n′).

It is easy to see that f is additive and monotone. By Lemma 3.10, in the YES instance, by taking S∗ = {i : i = i∗ (mod n′)},
we have

fyes(S
∗) ≥ kf(i∗) ≥ (1/2− ϵ)mk. (26)

In the NO instance, for any set S of size at most k, we have we

fno(S) ≤ 2ϵmk. (27)

Let OPT = (1/2− ϵ)mk. Consider the following communication protocol: The protocol proceeds in R rounds, where in
the r-th round (r ∈ [R]), suppose ALG queries set Sr, then the m parties collectively compute the value of f(Sr). Since

f(Sr) =
∑
i∈Sr

∑
t∈[m]

Xt,i (mod n′) =
∑
t∈[m]

∑
i∈Sr

Xt,i (mod n′),

it suffices for the t-th party to compute
∑

i∈Sr
Xt,i (mod n′) locally and write it on the blackboard. Given the knowledge

of S1, . . . , Sr, f(S1), . . . , f(Sr), m parties can simulate ALG and determine the next query Sr+1, and therefore, continue
the protocol. Finally, m parties could distinguish between (1) f(S∗) ≥ OPT = (1/2− ϵ)mk and (2)f(S∗) ≤ αOPT =
α(1/2− ϵ)mk, and therefore, resolve the distributed index detection task (see Eq. (26)(27)).

The communication cost at each round equals m · log(n) = O(log2(n)/ϵ2), and there is a sequence of R queries, so there
are O(R log2(n)/ϵ2) bits of communication in total. Hence, we have

R log2(n)/ϵ2 ≥ ϵn′/ log(n) ⇒ R ≥ α3n/k log3(n).

20

