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Abstract

As Large Language Models (LLMs) are frequently updated, LoRA weights trained
on earlier versions quickly become obsolete. The conventional practice of retrain-
ing LoRA weights from scratch on the latest model is costly, time-consuming, and
environmentally detrimental, particularly as the diversity of LLMs and downstream
tasks expands. This motivates a critical question: "How can we efficiently leverage
existing LoRA weights to adapt to newer model versions?" To address this, we
propose LoRASuite, a modular approach tailored specifically to various types
of LLM updates. First, we compute a transfer matrix utilizing known parame-
ters from both old and new LLMs. Next, we allocate corresponding layers and
attention heads based on centered kernel alignment and cosine similarity metrics,
respectively. A subsequent small-scale, skillful fine-tuning step ensures numerical
stability. Experimental evaluations demonstrate that LoRASuite consistently
surpasses small-scale vanilla LoRA methods. Notably, on backbone LLMs such
as MiniCPM and Qwen, LoRASuite even exceeds the performance of full-scale
LoRA retraining, with average improvements of +1.4 and +6.6 points on math
tasks, respectively. Additionally, LoRASuite significantly reduces memory con-
sumption by 5.5 GB and computational time by 78.23%.

1 Introduction

LoRA [1]], a prominent parameter-efficient fine-tuning technique, has garnered significant attention
for efficiently adapting pre-trained large language models (LLMs) to specialized downstream tasks
using considerably fewer parameters than traditional full-parameter fine-tuning methods. A practical
example is a mobile device employing an on-device LLM integrated with multiple app-specific LoRA
modules to customize capabilities in mobile agent scenarios [2} 13]].

However, frequent updates to LLM backbones, such as the periodic releases of new versions of
Llama [4} 5] and Qwen [6} [7], quickly render previously trained LoRA weights obsolete. Conse-
quently, developers face two problematic scenarios: (1) if the corresponding LoRA modules are not
promptly updated, app-specific functionalities may degrade or fail; (2) if updated, the prevailing
method typically involves retraining LoRA weights from scratch. This process is time-consuming,
costly, and even environmentally unsustainable. For instance, experimental results from [8] indicate
that fine-tuning a sub-billion-parameter model on a Google Pixel 7 Pro can take several hundred
minutes. Similarly, research by [9] estimated that fine-tuning a sparse Mixtral model with two
million queries on an NVIDIA H100 GPU costs approximately USD 3,460. Additionally, training
a BERT model with 110 million parameters produces about 1,400 pounds of carbon dioxide equiv-
alent—comparable to the emissions from a round-trip transcontinental flight in the United States

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



for one person [[10]. This challenge is expected to escalate as the diversity of large models and the
demand for various downstream tasks continue to increase. Thus, a natural question arises:

“How can we leverage the existing LoRA weights to adapt to
the latest model version with less effort?”

To address this previously unexplored question, we first categorize the upgrades of mainstream
LLM:s into six explicit limitations: vocabulary size, hidden size, intermediate dimensions of up/down-
projection layers, layer depth, attention head count, and attention type. These limitations hinder the
direct reuse of prior LORA weights. Next, we propose LoRASuite, a modular approach designed
to efficiently resolve each of these limitations, in contrast to the current practice of retraining LoRA
weights from scratch. For dimensional mismatches, LoRASuite utilizes known parameters from
both the old and new LLM versions to compute a transfer matrix, enabling initial adaptation. To
address differences in layer depth, we introduce a layer mapping algorithm that maps the LoRA
weights from the ¢-th layer of the original model to the j-th layer of the upgraded model. Specifically,
we apply Centered Kernel Alignment (CKA), a representational similarity method, to measure
the similarities between layers, and then use dynamic programming to maximize the total sum of
CKA similarities. To handle differences in attention head counts, we represent each attention head
using input-independent interaction matrices, denoted as W, ;- and W¢,,. We then introduce a
head mapping algorithm based on the Hungarian method, maximizing the aggregate sum of cosine
similarities. However, the transformed LoRA parameters primarily result from matrix multiplications
rather than backpropagation, which may cause numerical instability and reduced performance. To
mitigate this, we introduce a small-scale, skillful fine-tuning stage to ensure the transformed LoRA
parameters adapt effectively to the upgraded model while maintaining comparable performance.

We evaluated LoRASuite across multiple tasks, including commonsense reasoning and mathe-
matical benchmarks, using various backbone LL.Ms. Experimental results show that LoRASuite
consistently outperforms small-scale vanilla LoRA. Notably, for backbone LL.Ms such as MiniCPM
and Qwen, LoRASuite even exceeds the performance of full-scale LoRA retraining, with average
improvements of +1.4 and +6.6 points on math tasks, respectively. Additionally, LoRASuite
significantly reduces memory usage by 5.5 GB and computational time by 78.23%.

Our key contributions are summarized as follows:

* To the best of our knowledge, this work is the first to systematically address the chal-
lenge of efficient LoORA weight transfer during LLM upgrades, analyzed from six explicit
perspectives.

* We propose LoRASuite, a modular approach tailored to various types of LLM upgrades,
including a layer-mapping strategy based on centered kernel alignment and an attention-head
mapping approach utilizing the Hungarian algorithm.

* LoRASuite consistently outperforms small-scale vanilla LoRA across diverse
tasks—including commonsense reasoning and mathematical evaluations—and, in certain
scenarios, even surpasses full-scale LoRA retraining. Additionally, it significantly reduces
both memory and time consumption.

2 Related Work

Interpretability of LLLM. Mechanistic interpretability in deep neural networks has gained significant
attention in recent years. Prior work has largely focused on analyzing hidden representations through
techniques like probing [[11]], activation patching [12]], and causal tracing [13]], or on interpreting
specific network weights by mapping model components to vocabulary space [14]. Our approach is
based on the latter, and future work can further explore the integration of different methods. For a
comprehensive discussion on mechanistic interpretability in transformer-based LLMs, see [[15].

Efficient Fine-tuning. This work builds on LoRA, a classical and efficient fine-tuning method.
Beyond LoRA, several other parameter-efficient fine-tuning (PEFT) techniques have been proposed.
Adapter tuning [[16] inserts lightweight trainable modules into the frozen backbone. Prompt tun-
ing [17] appends trainable soft tokens to the input sequence, while prefix tuning extends this idea by
inserting soft tokens into each layer’s hidden representations. Hidden state tuning [18], exemplified
by (I A)3, rescales attention keys and values as well as activations in the feed-forward layers. Bias



Table 1: Summary of LLM upgrades with the same architecture (selected mainstream models).
Highlighted cells indicate differences introduced during upgrades.

Architecture Model Vocab. Size | Hidden size | Interm. size | # of layers | # of heads | Attention

Yi-6B 64k 4096 11008 32 32 GQA

LlamaForCausallLM
Yi-1.5-9B 64k 4096 11008 48 32 GQA
pythia-1b 50k 2048 8192 16 8 MHA

GPTNeoXForCausalLM

pythia-1.4b 50k 2048 8192 24 16 MHA
BloomForCausallM bloom-560m 250k 1024 4096 24 16 MHA
bloomz-1b1 250k 1536 6144 24 16 MHA
Llama-2-7b 32k 4096 11008 32 32 MHA

LlamaForCausallLM
Llama-3-8b 128k 4096 14336 32 32 GQA
Qwen-1.5-1.8B 152k 2048 5504 24 16 MHA

Qwen2ForCausallM
Qwen-2.5-3B 152k 2048 11008 36 16 GQA
MiniCPMForCausallM MiniCPM-S-1B 73k 1536 3840 52 24 GQA
MiniCPM-2B 123k 2304 5760 40 36 MHA

tuning [[19] updates only the model’s bias terms or a selected subset. Masked weight learning [20]]
applies a fixed sparse mask to the model’s parameters. Input tuning [21] introduces an adapter at the
embedding layer to adjust input representations.

Optimization for LoRA. LoRA [1]], one of the most effective methods for parameter-efficient
fine-tuning, has gained significant attention in recent years, leading to numerous variants and opti-
mizations. For example, AdaLoRA [22]] dynamically learns the required rank size for each model
layer, LoSparse [23] integrates LoRA to prevent pruning from removing too many expressive neurons,
DoRA [24] adapts LoRA based on magnitude and direction, and PiSSA [25]] tunes the essential
low-rank components while freezing high-rank, nonessential parts. LoRA+ [26] applies different
learning rates to the A and B modules. Our work is orthogonal to these approaches, and future
research can explore more efficient combinations of our method with these variants.

Knowledge Transfer between LLMs. Prior research on knowledge transfer between pre-trained
language models has primarily focused on transferring prompt-based modules [27, 28}, 129]. These
methods typically align overlapping vocabularies between models, which is conceptually similar to
our vocabulary and hidden-size alignment via linear combination described in Section[3.1] While
several studies examine the transferability of LoORA or PEFT modules, they often rely on modifying
the original fine-tuning process or introducing additional training steps, rather than enabling direct and
efficient transfer. For example, Trans-LoRA [30]] improves LoRA transferability through synthetic
data generation, Trans-PEFT [31]] enhances PEFT transfer via modified fine-tuning procedures, and
MUSCLE [32] employs knowledge distillation to transfer adapters across models. Furthermore,
some works [33] 34] investigate continual pre-training as a means of incremental model updat-
ing—analogous to implicit dataset upgrades in our setting—where direct transfer proves to be the
most effective approach.

3 LoRASuite

Given a pre-trained weight matrix W, € R% *o: in the original LLM, LoRA trained on a specific
downstream corpus comprises two low-rank matrices, A, € R7™*de: and B, € R%*" where r <
min(d,,d,,). Typically, matrix B, is initialized with zeros, and A, is with Kaiming Uniform [33]],
ensuring B, A, = 0 initially.

Upon upgrading the LLM backbone to a newer version, as summarized in Table |1} six explicit
factors—vocabulary size, hidden size, intermediate dimension of up/down-projection layers, layer
depth, attention head numbers, and attention type—prevent direct reuse of existing matrices A, and
B, for the new weight matrix W,, € R%»*dn;

Therefore, this section introduces several methods to adapt existing LoRA weights A, and B, to new
matrices A, and B,, without retraining from scratch when upgrading from W, to W,, on the same
corpus. We specifically focus on upgrades within LLMs of identical architecture, as defined in their
respective config. json files. For instance, Phi-1.5 and Phi-2 share the same PhiForCausallLM



architecture, while Phi-3 has a different Phi3ForCausalLM architecture. Consequently, the activation
function remains unchanged in our scenario. Exploring the impact of varying activation functions
represents a promising direction for future research. In addition to the six explicit upgrade factors, we
recognize that implicit upgrades, such as changes in pre-training datasets and post-training methods
(e.g., RLHF), also influence model adaptation. Future research could further investigate the effects of
these implicit factors.

3.1 Methodology

Table 2: Classification for the upgrades concerning
vocabulary size (VS) and hidden size (HS).

Vocabulary Size and Hidden Size. Vocabulary
size and hidden dimension directly influence

the embedding layer weights of a model, with FROM To vS HS

hidden dimension mismatches notably restrict-

ing the direct reuse of existing LoRA weights. PHI-1.5 PHI-2 - 7
LLAMA-2-7B LLAMA-3-8B oo —

Based on variations in vocabulary size and hid-
den dimension, upgrades can be classified into
three scenarios, as detailed in Table@ In the simplest scenario—where only the hidden dimension
changes—the transformation matrix W}, can be directly computed using the embedding weights
of both the original and upgraded models. Assuming that all parameters from both models are
available, the transfer matrix is specifically computed as W, = E 1E,, where E, and E,, denote
the embedding weights of the original and updated models, respectively. For scenarios involving
simultaneous changes in vocabulary size and hidden dimension, an additional intersection step is
required to filter shared tokens, after which the transformation matrix is calculated using the filtered
embedding weights.

MINICPM-1B  MINICPM-2B v v

Intermediate Size. When LoRA target mod-
ules contain up and down projection layers, mis-

Algorithm 1 CKA-based Layer Mapping

matches in intermediate dimensions pose an-
other significant challenge. Following a sim-
ilar strategy, we leverage known parameters
from both models to compute the transforma-
tion matrix W;,. Specifically, W; is calculated
as W; = W, YW, W,, where W, and W, rep-
resent the weights of the original and updated
up/down projection layers, respectively.

Layer Depth. Inspired by prior studies on rep-
resentational similarity, we employ centered ker-
nel alignment (CKA) to quantify the similar-
ity between corresponding layers of two LLMs.
Following [36], we adopt a minibatch implemen-
tation of CKA to reduce memory usage. Based
on the computed CKA similarities, we propose
a novel dynamic programming-based layer map-
ping algorithm, which sequentially aligns cor-
responding layers to maximize the total simi-
larity, subject to a predefined maximum offset
constraint.

CKA [37] provides a robust method for quan-
tifying neural network representations by mea-
suring the similarity between pairs of activation
tensors. Let X € R™*d and Y € Rm*dz
denote the activations of two layers, with d;
and dy neurons, respectively, across the same
set of m examples. The elements of the Gram
matrices K = XX7 and L = YY7 repre-

Input: CKA similarity matrix S € RleX!n,
Original and upgrade layer depth [, and /,,.
Output: path[i][j] with the highest total CKA.
/# Store the maximum sum
Initialize dp[i][j] < —oo for all ¢, j
/# Store path information
Initialize pathli][j] « O for all 4, j
/# Limit maximum offset
for j =0to|l, —I,| do
dp[0][j] « S[O][j]
end for

fort:=1tol, — 1 do
/# Limit maximum offset
for j =itoi+ I, — I, do
maxr_v < —oo
max_t < —1
fork=i¢—1toj—1do
/# Transfer equation
if dp[i — 1][k] + S[é][j] > maz_v then
maz_v < dpli — 1][k] + S[i][j]
maxr_i < k
end if
end for
dpli][j] + max_v
path[i][j] < max_i
end for
end for

sent the pairwise similarities between examples based on X and Y. Using the centering matrix
H=1,—- %HT, the centered Gram matrices K/ = HKH and L' = HLH remove mean ef-
fects. HSIC measures their similarity by flattening the matrices and computing the dot product:



HSICy (K, L) = vec(K') - vec(L')/(m — 1)2. HSIC is invariant to orthogonal transformations and
neuron permutations but remains sensitive to scaling. CKA normalizes HSIC to yield a similarity
index between 0 and 1 that is invariant to isotropic scaling.

B HSICy(K, L)
\/HSIC (K, K)HSICy(L, L)

CKA(K, L) ¢h)

However, computing CKA naively requires storing activations for the entire dataset, which is
impractical for wide and deep LLMs. To reduce memory usage, [36] proposes estimating CKA
by averaging HSIC scores across k minibatches HSICo(K, L) = + Y- HSIC, (X; X[, Y;Y]").
In place of HSICy, which is a biased estimator of HSIC, the usage of an unbiased estimator of
HSIC; [38] makes the value of CKA independent of batch size:

1 - 1TK117L1 2 -
HSICy (K, L) = pYe— (tr(KL) T Dm_2 n_3 KLl) )

where K and L are obtained by setting the diagonal entries of similarity matrices K and L to zero.
This minibatch-based HSIC estimation is equivalent to the bagging block HSIC method in [39] and
converges to the full-dataset HSIC, as proven in [36].

Using the minibatch CKA defined above, we construct a similarity matrix S, where each element
S, ; represents the CKA similarity between the ¢-th layer of the original model and the j-th layer
of the upgraded model. Inspired by dynamic programming, we propose a layer-mapping algorithm
that maximizes the total similarity in .S by optimally aligning corresponding layers. To further guide
the alignment, we impose an ordered mapping constraint, restricting the layer assignment within a
threshold A4y, Which accounts for differences in layer depth between the original and upgraded
models. The detailed procedure is outlined in Algorithm [T}

Head Number. Recall that the attention projection matrices Wg, Wi, and Wy can be split along
the column axis to H parts, denoted as Wé W}( and W{, € RIXd/H for 1 < < H. Similarly,

the output projection matrix W is split along the row axis into H heads, with W/, € RE/H x4 For
each head, we define two input-independent interaction matrix: W, := WoWi € R4*4 and

Wi o = WiWh" € R4 Intuitively, Wk captures the attention strength between token pairs,
while WY, , models how attending to specific tokens influences the subsequent hidden state.

To address differences in attention head counts, we characterize each head using its interaction
matrices and compute a similarity matrix via cosine similarity between heads from the old and new
models, at the layers specified above. When interaction matrix dimensions differ, we align them
by transforming to a common hidden size d,, (typically the new model’s hidden size) using the
embedding-based transformation W},. We then determine the optimal head mapping by maximizing
the sum of similarities, applying the Hungarian algorithm with the similarity matrix treated as a cost
matrix. Further algorithmic details and theoretical analysis are provided in Appendix [A.T]

Changes in attention mechanisms primarily affect the number of W and Wy, heads. For instance,
transitioning from GQA to MHA in MiniCPM-1B to MiniCPM-2B increases the number of K and
V heads from 8 to 36. As in the forward pass, we replicate the K and V heads to match the number
of @) heads before applying the head mapping algorithm.

Head Dimension. Following the attention Table 3: Classification for the upgrades concerning
head granularity used in the model’s for- hidden size (HS), head number (HN), and their ratio
ward pass, we also adapt LoORA weights to head dimension (HD = HS / HN).

the attention head level. As shown in Ta-

ble[3] the hidden size and number of atten- FROM To HS HN HD
tion heads jointly determine the dimension =~ PYTHIA-1B PYTHIA-1.4B — / v
of each head. Similar to earlier steps, we  PHI-1.5 PHI-2 oo — 7
leverage known parameters from both the =~ LLAMA-2-7B LLAMA-2-13B ; ; 7

original and new models to adapt the LoRA ~ PYTHIA-410M  PYTHIA-1B
weights. Specifically, we first compute the




Algorithm 2 Pseudocode of LoRASuite in PyTorch-like style.

/# Load the original LoRA weights.
B,, A, =load_peft_weights (ORIGINAL_LORA_PATH)
/# Calculate the hidden size transformation matrix.
W), = embedding_transform(ORIGINAL_TOKENIZER, NEW_TOKENIZER)
/# CKA-based Layer Mapping, where S;; represents the CKA similarity
between the i-th layer of the original model and the j-th layer of the
upgraded model.
Lg;ct = cka_layer_mapping(S)
for each 7 and j in Lg;.; do

AWo,i = Bo,iAo,z

/* Compute the Hungarian-based head mapping between the ith projection layer of

the original model W, ; and the jth layer of the new model W, ;.*/

Hgj;ct = hungarian_head_mapping(W, ;, Wy, ;)

for each h, and h,, in H4;.; do

/# Head-level transformation based on Equation .
T
AW = WEAW ewle W, Wi

end for

By, j, An,j = SVD(AW, ;)
end for

weight update AW, for each projection matrix by multiplying the corresponding B, and A,, then
split it along the specified axis to extract updates for individual heads. Let (Wé)o and (AW&)O
denote the original weights and weight updates for the i-th head in the original model. Based on the
Hungarian algorithm, the weight update for the j-th head in the new model is computed as:

(AW = Wi - (AW)o - (WH)E - Wi - (W) 3)

where, W}, derived from the embedding weights of both models, is omitted if the hidden size remains
unchanged. Incorporating original weights improves numerical stability, allowing the transformed
LoRA to be directly applied in some cases. Finally, after all head mappings are completed, a single
SVD step decomposes (AW, )y, into its low-rank B, and A,, components.

We employ different strategies for layer and head mapping due to their distinct structural roles. For
layer mapping, we adopt a dynamic programming approach inspired by studies on CNNs, where
different layers capture different levels of abstraction, and higher layers build upon the representations
of lower layers [40]. In contrast, attention heads within the same layer operate in parallel and
independently [41]], so we formulate head mapping as a bipartite matching problem and solve it using
the Hungarian algorithm to obtain the optimal one-to-one correspondence.

3.2 Put All Together: A Final Recipe

Integrating the five components described above, the pseudocode of LoRASuite is presented
in Algorithm [2] The CKA-based layer similarity and head similarity between the original and
upgraded models can be precomputed offline, eliminating the need for repeated calculation during
each adaptation.

Since the transformed LoRA parameters are generated via matrix multiplication rather than back-
propagation, they may introduce numerical instability and degrade performance. To mitigate this, we
introduce a lightweight fine-tuning step to help the upgraded model better adapt. Unlike standard
Transformer Trainer that uses a linear learning-rate scheduler with warm-up to stabilize optimiza-
tion from random initialization [42], our model is initialized with transformed parameters. Therefore,
we omit the warm-up phase and increase the learning rate to compensate.

3.3 Complexity Analysis

The complexity of LoRASuite primarily arises from three key processes: layer mapping using
the CKA method, attention head mapping utilizing the Hungarian algorithm, and the final SVD. As
illustrated in Algorithm 1, the CKA-based layer mapping has a time complexity of O(nlayerAlQayer),



Table 4: Performance on math tasks during the LLM upgrade from MiniCPM-S-1B to MiniCPM-2B.
LFT denotes additional lightweight fine-tuning using small-scale data. Numbers in parentheses

indicate the size of the fine-tuning datasets. "-" represents the performance of the vanilla model. Bold
and underlined entries indicate the best and second-best results, respectively.

Base Model PEFT | AddSub MultiArith SingleEq GSMSK AQUA MAWPS SVAMP | Avg.
. ] 2380  5.17 2362 743 1772 2017 16 | 1627
MiniCPM-S-1B LoRA (10K) 2062 5467 315 1203 827 3193 182 |26.62
- 3329 e 3756 1228 1457 2227 19 2385

LoRASuite w/o LFT | 23.04 47 2815 1236 1417 2227 207 |23.96

MiniCPM-2B LoRA (100) 2076 4033 2854 1198 1535 2395 188 |22.82
LoRASuite w LFT (100) | 54.18 755  56.69 1873 14.17 50.84 365 |43.80

LoRA (10K) 4759 8467 4744 1797 19.69 4748 319 |42.39

Table 5: Performance on commonsense tasks when LLM upgrades from MiniCPM-S-1B to MiniCPM-
2B. LFT denotes additional lightweight fine-tuning using small-scale data. The number in parentheses
represents the scale of fine-tuning datasets. "-" represents the performance of the vanilla model. Bold
and underlined entries indicate the best and second-best results, respectively.

Base Model | PEFT | BoolQ PIQA SIQA HellaSwag WinoG ARC-c ARC-e OBQA | Avg.
MiniCPM-S-1B - 51.9 33.68 13.46 12.09 39.78  9.56 12.16 8.8 |22.68
LoRA (10k) 58.17 27.48 53.74 20.63 59.67 2739 3523 40.6 |40.36

- 53.55 22.8 39.66 14.5 5233  20.14 27.19  31.6 |32.72
LoRASuite w/o LFT | 53.64 22.69 40.17 14.61 52.09 2056 26.77 31 |32.69

MiniCPM-2B LoRA (100) 63.18 31.88 42.37 15.77 5099 285 3527 40.8 |38.60
LoRASuite w LFT (100) | 61.28 43.91 48.21 24 51.07 32.42 39.02 38.8 |42.34
LoRA (10k) 62.35 26.71 50.61 21.17 60.77 27.73 34.64 42.8 |40.85

where 14y denotes the number of layers in the original model, and A4y, represents the differ-
ence in the number of layers between the original and upgraded models. According to [43]], the
Hungarian algorithm exhibits a time complexity of O(n3,, ), Where njcqq indicates the smaller
number of attention heads present either in the original or upgraded model. Based on[44], the
complexity of the SVD process to obtain the By, ;, A, ; in j-th layer is O(n3},;;.,,). Combining
these factors, the total computational complexity becomes O(nlayeT(Alaye,ﬂ2 + Nhead® + N ggen))-
Since Nhidden >> Nheads Diayer, the overall complexity is effectively dominated by the SVD and

. . 3
simplifies t0 O(Niayer™};ggen)-

4 Experiments

Implementation Details. Our implementatiorﬂ builds on the publicly available Huggingface
transformers and peft libraries, with modifications to support initialization from transformed
weights. All experiments were conducted on a Linux server equipped with 80 Intel(R) Xeon(R) Gold
6148 CPU @ 2.40GHz cores, 500 GB RAM, and 8 NVIDIA V100 GPUs.

Experimental Settings. For commonsense reasoning tasks, we evaluate BoolQ [45]], PIQA [46]],
SIQA [47], HellaSwag [48],WinoGrande [49], ARC-e, ARC-c [50], and OBQA [51]]. For math tasks,
we evaluate AQuA [52], GSM8K [53]], MAWPS [54], and SVAMP [53]].

To ensure reproducibility, we use the same training and evaluation datasets as LLM-Adapters [56]].
Both the original and upgraded models’ LoRA (10k) are trained on the full dataset with 10k samples,
whereas LoRA (100) and LoRASuite with LFT (100) are trained on identical, randomly selected
subsets of the LoRA (10k) dataset with 100 samples.

Hyperparameter Settings. Unless otherwise specified, we use the default LoRA settings: rank 32,
alpha 32, and dropout 0. A sensitivity analysis of these parameters is provided in Section4.2} By
default, the target modules include q_proj, k_proj, v_proj, and o_proj, with performance for
other modules detailed in the Appendix[A.3]

"https://github.com/YananLi18/LoR ASuite
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Figure 2: Average performance comparison on math tasks for different types of LLM upgrades.

4.1 Overall Performance

As shown in Table [I] upgrading from MiniCPM-S-1B to MiniCPM-2B involves all six explicit
aspects. Thus, we primarily use MiniCPM to demonstrate LoRASuite’s overall performance.

Accuracy. Tables [ and 5] present performance results for math and commonsense tasks, respectively.
"LoRASuite w/o LFT" denotes LoRASuite’s performance using only the transformed MiniCPM-
S-1B LoRA without further fine-tuning with small-scale data. "LoRASuite w LFT (100)" indicates
LoRASuite with additional fine-tuning at a data scale of 100. For MiniCPM-2B, "LoRA (10k)"
represents LoRA retraining using the complete dataset, while "LoRA (100)" serves as a baseline for
retraining at the same scale. Under the default setting with rank 32 for MiniCPM-2B, the number
of trainable parameters for LoORA (100), LoRASuite with LFT (100), and LoRA (10k) is the
same—23.59M, which is approximately 0.78% of all model parameters. From the tables, we observe:
First, LoRASuite achieves a notable average score of 43.80 on math tasks, nearly doubling the
performance compared to same-scale fine-tuning (22.82) and surpassing full dataset retraining (42.39).
Similarly, in commonsense tasks, LoRASuite outperforms both same-scale LoRA fin-tuning and
full dataset retraining.

Additionally, "LoRASuite w/o LFT" exhibits performance nearly identical to the vanilla MiniCPM-
2B model on both math and commonsense tasks. This result supports the hypothesis that transforma-
tion relying solely on matrix multiplication without backpropagation leads to numerical instability. It
further validates the effectiveness of additional small-scale fine-tuning.

Memory and time consumption. Figure [I]

demonstrates that LoRASuite significantly _>° o] ° 1355
outperforms retraining a new LoRA model, &40 3672 _

achieving memory savings of 5.5GB and reduc- 230} ;s £ 100

ing time consumption by 78.23%. Although § 20 ©

LoRASuite requires a small-scale fine-tuning = E 50 oy

stage, it yields a modest memory reduction of & 10 o '

5.5 GB due to three factors. First, data pipeline 0 0

LoRASuite w/o LFT

I LoRASuite

LORA Retraining

(a)

(b)

overhead and auxiliary states (e.g., DataLoader ) )
prefetching, dataset shuffling, and caching) scale Figure 1: Memory and time comparison between
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steps. Second, preloading the full dataset or pre-tokenized storage directly increases host DRAM
usage. Third, for variable-length inputs, larger datasets increase the likelihood of long-sequence
batches, resulting in excessive padding and transient memory spikes from dynamic allocation. For
"LoRASuite w/o LFT," the memory reduction is more substantial, reaching 36.36% (15.34GB).
This memory efficiency stems from loading only the parameters of the new and old models for
matrix operations, thereby eliminating the overhead associated with optimizer states and gradients.
The notable decrease in time consumption occurs because LoRASuite avoids the need for loading
extensive datasets, performing backpropagation, or training for multiple epochs from scratch. Even
with small-scale fine-tuning, the additional time is only approximately two minutes.

Multiple LLM backbones. Figures[2]and 3] present the average performance comparisons across
math and commonsense tasks, respectively, for different LLM backbones. The required amount of
additional fine-tuning data for LoRASuite varies across different LLM backbones. Henceforth,
we mainly use “LoRASuite” to refer to the variant with lightweight fine-tuning (LoRASuite w
LFT (Small)), which also applies to the comparison method LoRA (Small). Our observations from
these figures are as follows: First, LoRASuite consistently achieves performance comparable to
or exceeding full-scale LoRA retraining in several scenarios. Second, LoRASuite significantly
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Figure 4: Average performance on math tasks under different settings for the MiniCPM-S-1B to
MiniCPM-2B upgrade.

outperforms same-scale LoRA fine-tuning (LoRA (Small)) across all cases, with a notably pronounced
improvement—nearly threefold—in math tasks when upgrading from Qwen-1.5-1.8B to Qwen-
2.5-3B. Additionally, LoRASuite consistently surpasses "LoRASuite w/o LFT," highlighting
lightweight small-scale fintuing’s critical role in enhancing numerical stability. Finally, "LoRASuite
w/o LFT" occasionally achieves performance similar to or slightly better than the vanilla model and
"LoRA (Small)," suggesting that numerical stability may not be a significant concern for certain
models. Future research could focus on developing more robust algorithms that avoid additional
fine-tuning and accommodate diverse model update scenarios.

4.2 Sensitive Analysis

Different rank. Figure[d{a) presents the performance comparison between LoRASuite and baseline
methods on math tasks across varying LoRA ranks. LoRASuite consistently outperforms vanilla
LoRA in both small-scale and full-scale fine-tuning scenarios. Notably, at a LoRA rank of 4,
LoRASuite achieves 93% of the performance obtained from training with 10K samples using only
100 samples. At a LoRA rank of 16, LoRASuite achieves its greatest improvement over full-scale
LoRA, with an average increase of approximately 2.67 points.

Different LFT learning rate. The experimental results depicted in Figure f{b) indicate that Lo-
RASuite is highly sensitive to changes in the learning rate compared to vanilla LoRA (Small).
Specifically, when the learning rate is le-4, LoRASuite marginally outperforms LoRA (Small)
by only 0.27 percentage points on average. However, at a learning rate of 9e-4, LoRASuite sub-
stantially outperforms LoRA (Small) by an average of 21.30 points, representing approximately a
twofold improvement in performance. This sensitivity likely arises because LoRASuite leverages
previously trained LoRa weights to quickly identify crucial task-specific features, creating a steeper
optimization landscape and greater dependence on the chosen learning rate.

Different LFT data scale. When trained on small datasets, LoRASuite maintains stable per-
formance and consistently outperforms LoRA (Small). However, its performance declines with
increasing dataset size, likely due to LoRASuite’s reliance on historically trained LoRA weights,
making it more susceptible to overfitting.

4.3 Application to Other PEFTs

Table[6)and Table 7 report the average performance of two PEFT methods, AdaLoRA and DoRA, on
math tasks when upgrading the LLM from MiniCPM-S-1B to MiniCPM-2B. As shown, LoRASuite
yields a substantial improvement for DoRA adaptation: while the small-scale vanilla LoRA achieves
only 23.54% accuracy, LoRASuite improves this by more than 1.8, reducing the performance



Table 6: Performance on math tasks during the LLM upgrade from MiniCPM-S-1B to MiniCPM-2B
with AdaLoRA. Numbers in parentheses indicate the size of the fine-tuning datasets. Bold and
underlined entries indicate the best and second-best results, respectively.

Base Model | PEFT | AddSub MultiArith SingleEq GSM8K AQuA MAWPS SVAMP | Avg.
MiniCPM-S-1B - 23.80 5.17 23.62 7.43 17.72  20.17 16 16.27
AdaLoRA (10k) 48.61 76.67 58.66 27.29 17.32 52.1 36.2 |45.26

- 23.29 48 27.56 12.28 14.57 2227 19 23.85

LoRASuite w/o LFT 42.28 67.17 50 25.63 13.78  33.19 342 |38.04

MiniCPM-2B AdalLoRA (1k) 52.41 71.67 59.66 28.81 19.29 5294 35.8 |45.80
LoRASuite w LFT (1k) | 59.75 82.67 65.35 3146 2047 56.3 41.20 |51.03

AdaLoRA (10k) 55.44 82.17 65.55 31.69 1457  63.03 40.80 |50.46

Table 7: Performance on math tasks during the LLM upgrade from MiniCPM-S-1B to MiniCPM-2B
with DoRA. Numbers in parentheses indicate the size of the fine-tuning datasets. Bold and underlined
entries indicate the best and second-best results, respectively.

Base Model | PEFT | AddSub MultiArith SingleEq GSM8K AQuA MAWPS SVAMP | Avg.
MiniCPM-S-1B - 23.80 5.17 23.62 7.43 1772 20.17 16 16.27
DoRA (10k) 31.90 60.67 31.89 1259  12.60  32.35 20.80 |28.97

- 23.29 48 27.56 12.28 1457  22.27 19 23.85

LoRASuite w/o LFT 22.03 47 29.13 12.51  16.14  23.11 19.30 |24.17

MiniCPM-2B DoRA (100) 22.53 44 27.76 11.90 15.75 23.53 19.30 |23.54
LoRASuite w LFT (100) | 55.44 71.33 55.91 19.33  11.81 49.16 37.20 |42.88

DoRA (10k) 47.09 87 48.43 17.66 2047 47.06 34.60 |43.19

gap with full-scale LoRA to less than 1%. In contrast, the improvement offered by LoRASuite
over LoRA (Small) is less pronounced for AdalLoRA, although it still surpasses full-scale LoRA
retraining. This discrepancy is likely due to rank incompatibilities between corresponding layers of
the original and upgraded models.

5 Conclusion and Discussion

We propose LoRASuite, a modular framework designed to handle diverse types of LLM upgrades.
To the best of our knowledge, this is the first work to systematically address the challenge of
efficient LoRA weights transfer during LLM upgrades across six explicit perspectives. LoRASuite
consistently outperforms small-scale vanilla LoRA across diverse tasks and, in certain scenarios, even
surpasses full-scale LoRA retraining with both memory and time reduction.

Limitations. Currently, LoRASuite requires an additional small-scale fine-tuning step to achieve
superior performance. Future research could investigate strategies to eliminate this step without
compromising performance, further minimizing memory usage. Additionally, our study primarily
addresses explicit upgrade aspects of LLMs; future investigations could extend to implicit upgrades,
such as variations in pre-training datasets and post-training methods, with knowledge editing meth-
ods [13,157,158]]. Lastly, exploring LoRA adaptation methods applicable to different architectures
remains an open avenue for future work.
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Algorithm 3 Hungarian Algorithm

Require: Cost matrix C of size m x n
Ensure: Optimal assignment permutation
# Phase 1: Matrix Preparation
1: Pad matrix with zeros to make it square (n < max(m,n))
2: C' <« resulting n X n matrix
# Phase 2: Row/Column Reduction

for each row i do
Tmin < min(C[s, :])
Cli,:] < Cli,:] — Tmin
end for

for each column j do

Cmin < min(C[:, j])

C[mﬂ — C[a]] — Cmin
end for
# Phase 3: Initial Matching
11: Find maximum matching M using zeros
12: if matching M is perfect then
13:  return M
14: end if

# Phase 4: Iterative Adjustment

15: repeat
16:  Cover all zeros with minimum lines
17:  k < number of covering lines
18:  if £ = n then
19: return current matching
20:  endif
21: ¢ < min{C[i, j] | uncovered elements}
22:  for all uncovered elements C|¢, j] do

A AN U

Ju—

23: Cli,jl < Cli,j] — ¢

24:  end for

25:  for all doubly covered elements C|[i, j] do
26: Cli,j) < Cli,j]+ 90

27:  end for

28:  Update matching M
29: until perfect matching found

A Appendix

A.1 Details of Hungarian Algorithm

The Hungarian algorithm, also known as the Kuhn-Munkres algorithm, is a combinatorial optimization
technique for solving the assignment problem. It guarantees to find the optimal one-to-one assignment
that minimizes the total cost in a bipartite graph. As shown in the above algorithm, the procedure
mainly consists of four phases: (1) Matrix Preparation: Convert the cost matrix to a square matrix
by zero-padding if necessary. (2) Row/Column Reduction: Subtract the minimum value of each
row from its elements, then repeat for columns, creating at least one zero per row and column. (3)
Initial Matching: Identify a maximum matching using zero-cost entries. If a perfect match is found,
the algorithm terminates. (4) Iterative Adjustment: If unmatched, iteratively (4-a) cover zeros with
minimal lines, (4-b) compute the smallest uncovered element §, (4-c) adjust the matrix by subtracting
0 from uncovered elements and adding § to doubly-covered elements, and (4-d) update the matching.
This loop continues until the number of covering lines equals the matrix dimension, guaranteeing an
optimal assignment. The algorithm operates in O(n?) time [43], where n is the number of nodes in
the smaller partition.
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A.2 Hyperparameters

Tables [8]and [9] detail the hyperparameters of LoORA and LoRASuite for commonsense and math tasks,

respectively.

Table 8: Hyperparameter configurations of LoORA Table 9: Hyperparameter configurations of

for models on the commonsense reasoning tasks.

LoRA for models on the mathematical tasks.

Hyperparameters | LoORA  LoRASuite Hyperparameters | LoORA  LoRASuite
Rank 32 Rank 32
a 32 a 32
Dropout 0 Dropout 0
Optimizer AdamW Optimizer AdamW
LR 3e-4 le-3 LR 3e-4 le-3
LR Scheduler Linear LR Scheduler Linear
Batch Size 16 Batch Size 16
Warmup Ratio 0.1 0 Warmup Steps 100 0
Epochs 3 Epochs 3
Target Module Q.K,V,0 Target Module Q.K,V,0

A.3 Different Target Modules

Figures [5|and[6] present the performance of LoRASuite using q_proj, k_proj, v_proj, o_proj, up_proj,
and down_proj as target modules. As shown, the performance improvement on the math dataset
becomes more pronounced as the number of target modules increases. A likely explanation is that
the commonsense corpus significantly overlaps with the LLM pre-training dataset; consequently,
LoRASuite’s additional small-scale fine-tuning is more impactful for mathematical tasks.
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Figure 5: Performance comparison on math tasks for different LLMs with up_proj and down_proj as
target modules.
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Figure 6: Performance comparison on commonsense tasks for different LLMs with up_proj and
down_proj as target modules.

A.4 Heatmap of Layer Similarity
Figures [7) to [T0] illustrate the CKA layer similarities of various LLM backbones before and after
upgrading. The similarity patterns vary significantly across models, with MiniCPM and Pythia

showing the highest variance. Notably, all models exhibit a clear block structure, similar to the three
distinct representation spaces— ‘beginning,” “middle,” and “end” described in [39].
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A.5 Detailed Results for Different LLLM Backbones

Tables [IOHI9| provide the raw data underlying the aggregated results in Figures 2] and 3]

Table 10: Performance on math tasks when LLM upgrades from Yi-6B to Yi-1.5-9B. The number in
parentheses represents the scale of fine-tuning datasets.

Base Model | PEFT | AddSub MultiArith SingleEq GSM8K AQuA MAWPS SVAMP | Avg.
Yi-6B - 48.86 63 49.02 1721 1378  39.08 379 |3841
LoRA (10k) 68.61 94 72.05 28.51 2244  61.76 449 |56.04

- 78.48 66.67 82.87 4799  41.34  78.57 65.1 65.86

LoRASuite w/o LFT 90.89 76.5 88.98 52.01 3858 86.55 78 73.07

Yi-1.5-9B LoRA (100) 82.78 70.5 86.02 54.66 40.16  81.93 68.9 |69.28
LoRASuite w LFT (100) | 86.58 91.33 89.76 66.26 3031 84.45 75.1 | 74.83

LoRA (10k) 86.84 95.33 91.14 68.54 3228 8529 74.8 |76.32

Table 11: Performance on commonsense tasks when LLM upgrades from Yi-6B to Yi-1.5-9B. The
number in parentheses represents the scale of fine-tuning datasets.

Base Model | PEFT | BoolQ PIQA SIQA HellaSwag WinoG ARC-c ARC-e OBQA | Avg.
Yi-6B - 64.25 36.51 14.94 17.63 4.66 16.13 16.5 17.6 |23.53
LoRA (10k) 69.33 37.92 64.43 52.64 70.72  41.55 51.01 57.40 |55.63

- 61.13 76.39 63.2 66.13 17.36  58.11 66.54 454 |56.78
LoRASuite w/o LFT | 56.94 73.78 77.84 78.41 61.09 77.56 89.48 79.20 |74.29

Yi-1.5-9B LoRA (100) 66.61 7590 65.05 60.13 64.56 7398 80.05 59 ]68.16
LoRASuite w LFT (100) | 69.30 72.09 72.82 48.98 73.09 7355 86.78 69 |70.70
LoRA (10k) 71.71 81.77 78.20 90.69 8248 84.04 9234 838 |83.13
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Table 12: Performance on math tasks when LLM upgrades from Pythia-1B to Pythia-1.4B. The
number in parentheses represents the scale of fine-tuning datasets.

Base Model | PEFT | AddSub MultiArith SingleEq GSM8K AQuA MAWPS SVAMP | Avg.
Pythia-1B - 1.01 2.50 0.98 0.83  21.26 0.84 1.1 4.07
LoRA (10k) 12.66 19.50 12.40 1.97 14.57 7.56 8.30 |10.99

- 1.52 2.67 0.39 1.14 2047 0 0.9 3.87

LoRASuite w/o LFT 0.76 2.33 1.18 0.53  21.65 0 0.8 3.89

Pythia-1.4B LoRA (1k) 2.03 4.83 3.15 1.52 12.6 0.84 2.1 3.87
LoRASuite w LFT (1k) | 10.63 15 9.65 1.82 15.75 7.56 6.2 9.52

LoRA (10k) 27.85 43.67 25.39 356 20.87 21.43 144 | 2245

Table 13: Performance on commonsense tasks when LLM upgrades from Pythia-1B to Pythia-1.4B.
The number in parentheses represents the scale of fine-tuning datasets.

Base Model | PEFT | BoolQ PIQA SIQA HellaSwag WinoG ARC-c ARC-e OBQA | Avg.
Pythia-1B - 54.19 15.56 3.53 8.22 26.05 4.61 4.08 7 15.41
LoRA (10k) 61.65 33.08 34.03 25.06 4949 2329 2462 284 |34.95

- 53.82 11.32 14.48 16.22 22.65 7.51 9.93 10.2 | 18.27

LoRASuite w/o LFT 51.16 1148 13.82 14.91 14.29 8.79 10.1 9.4 16.74

Pythia-1.4B LoRA (100) 57.16 45.76 29.48 22.76 48.07 21.50 22.22 26 34.12
LoRASuite w LFT (100) | 56.06 48.64 32.70 25.05 50.43 2270 2449 2340 |35.43

LoRA (10k) 48.38 45.1 3245 24.99 51.54 23.12 25.21 294 |35.02

Table 14: Performance on math tasks when LLM upgrades from Bloom-560m to Bloomz-1B1. The

number in parentheses represents the scale of fine-tuning datasets.

Base Model | PEFT | AddSub MultiArith SingleEq GSM8K AQuA MAWPS SVAMP | Avg.
Bloom-560m - 0.76 2.17 0.59 0.76 591 0.42 0.80 1.63
LoRA (10k) 8.35 8.17 7.68 2.27 20.47 5.04 2.10 7.73

- 1.77 4.67 0.79 2.65 11.81 2.1 3 3.83

LoRASuite w/o LFT 1.77 4.67 0.79 2.5 12.2 2.1 29 3.85

Bloomz-1B1 LoRA (1k) 2.03 2 2.95 1.97 11.81 4.2 1.7 3.81
LoRASuite w LFT (1k) | 6.84 4 4.72 1.67 17.72 5.88 3 6.26

LoRA (10k) 17.22 16.67 19.09 3.11 19.29  15.13 11.1 14.52

Table 15: Performance on commonsense tasks when LLM upgrades from Bloom-560m to Bloomz-
1B1. The number in parentheses represents the scale of fine-tuning datasets.

Base Model | PEFT | BoolQ PIQA SIQA HellaSwag WinoG ARC-c ARC-e OBQA | Avg.
Bloom-560m - 6.88 854 732 14.43 245 5.46 3.91 44 6.67
LoRA (10k) 54.86 50.76 33.67 25.23 51.38 2406 2538 26.8 |36.52

- 38.65 3536 0.15 23.96 13.89  0.51 0.34 0.60 |14.18

LoRASuite w/o LFT 38.65 35.64 0.15 23.90 13.97  0.60 0.34 0.80 |14.26

Bloomz-1B1 LoRA (100) 56.06 0.71 31.12 2221 3875 19.11 21.76 264 |27.02
LoRASuite w LFT (100) | 62.17 49.67 3291 25.09 50.83 2270 25.08 27.60 |37.01

LoRA (10k) 60.92 51.51 35.21 24.33 51.07 2543 2412 224 |36.87
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Table 16: Performance on math tasks when LLM upgrades from Llama-2-7B to Llama-3-8B. The
number in parentheses represents the scale of fine-tuning datasets.

Base Model | PEFT | AddSub MultiArith SingleEq GSM8K AQuA MAWPS SVAMP | Avg.
Llama-2-7B - 1.77 1.50 1.77 099  21.65 0.84 1.50 4.29
LoRA (10k) 29.11 42.50 28.15 8.11 1142 28.57 18.60 |23.78

- 18.73 16.67 19.09 409 2126 1933 13.3 | 16.07

LoRASuite w/o LFT 18.99 16.33 18.90 3.18 22.05 16.39 12.70 | 15.51

Llama-3-8B LoRA (100) 20.25 20.50 21.46 7.05 21.65 15.97 1490 |17.40
LoRASuite w LFT (100) | 45.82 70 46.85 17.74 2047  44.96 354 ]40.18

LoRA (10k) 55.70 85 56.69 2335 2362 53.78 48.50 |49.52

Table 17: Performance on commonsense tasks when LLM upgrades from Llama-2-7B to Llama-3-8B.
The number in parentheses represents the scale of fine-tuning datasets.

Base Model | PEFT | BoolQ PIQA SIQA HellaSwag WinoG ARC-c ARC-e OBQA | Avg.
Llama-2-7B - 56.21 15.34 17.30 14.68 15.79 5.55 7.11 10.60 | 17.82
LoRA (10k) 63.18 25.46 42.63 31.60 58.72 20.82 2795 3240 |37.85

- 51.44 45.81 34.34 23.09 1247 2722 29.71 26.60 | 31.34

LoRASuite w/o LFT 5226 4597 33.67 23.07 1294 27.05 30.13 26 31.39

Llama-3-8B LoRA (100) 62.29 48.59 42.78 29.25 51.93 35.67 43.86 434 |44.72
LoRASuite w LFT (100) | 62.39 57.67 45.80 26.76 5454 3532 4512 4240 |46.25

LoRA (10k) 7297 5022 51.54 37.3 72.14 3148 34.60 41 48.91

Table 18: Performance on math tasks when LLLM upgrades from Qwen-1.5-1.8B to Qwen-2.5-3B.
The number in parentheses represents the scale of fine-tuning datasets.

Base Model | PEFT | AddSub MultiArith SingleEq GSM8K AQuA MAWPS SVAMP | Avg.

- 3291 5133 5256 970 1102 47.06 3270 |33.90

Quen-1.5-1.88 LoRA (10k) 5291 7967 5925 1274 1417 5504  33.50 |43.90
- 2253 1833 1339 501 2835 798 1590 |16.06

LoRASuite wo LFT | 2329  21.50 1398 584 2559 630  15.10 |15.94

Qwen-2.5-3B LoRA (100) 3013 2583 1555 819 2677 1345 1540 |19.33
LoRASuite w LFT (100) | 53.16 82 6673 4450 3740 5798 5640 |56.88

LoRA (10k) 4228 8867 6240 3290 2480 4496 5620 |50.32

Table 19: Performance on commonsense tasks when LLM upgrades from Qwen-1.5-1.8B to Qwen-
2.5-3B. The number in parentheses represents the scale of fine-tuning datasets.

Base Model ‘ PEFT ‘BoolQ PIQA SIQA HellaSwag WinoG ARC-c ARC-e OBQA‘ Avg.
- 5116 4342 18.17 2413 1855 2014 2201 2340 |27.62

Uwen-1.5-1.88 LoRA (10k) 5275 5452 5855 3248 5704 3746 49.66 51.80 | 48.30
- 6517 5780 4381 3660 5272 3618 4007 40.60 |46.64

LoRASuite wo LFT | 65.72 57.40 4340 3619 5130 3635 4036 40.60 |46.42

Qwen-2.5-3B LoRA (100) 2810 5691 4729 3887 5004 3745 4381 3920 |42.71
LoRASuite w LFT (100) | 63.09 5827 60.70 3373 5446 49.66 6136 54 |5441

LoRA (10k) 6031 5996 5921 4693 6393 49.66 5636 54 |56.30
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A.6 Ablation Studies
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CKA-based Layer Mapping. Figure [T1] compares the performance of different layer mapping
algorithms: "LoRASuite" refers to our CKA-based method described in Section [3.1} "First" maps
layers sequentially from beginning to end; "Medium" spreads mappings outward from the middle;
and "Last" maps from end to beginning. Our CKA-based approach outperforms the others on both
math and commonsense tasks, demonstrating the effectiveness of using representational similarity to
guide layer mapping.

Figure [I2] further evaluates different representational similarity metrics. Canonical Correlation Analy-
sis (CCA) identifies linear projections that maximize correlation between two sets of activations.
Projection-Weighted CCA (PWCCA) [60] extends CCA by weighting individual canonical correla-
tions based on their importance. Procrustes analysis seeks the optimal orthogonal transformation that
minimizes the Frobenius norm between two matrices. Our minibatch CKA-based method achieves
superior performance across both task types, demonstrating the advantage of using minibatch CKA
for guiding layer mapping.

Attention-head Mapping. Figure[T3]compares the performance of different attention head mapping
algorithms. "LoRASuite" refers to our Hungarian-based method described in Section[3.1] while "Lo-
RASuite w/o Head Mapping" uses the default ordering without enforcing one-to-one correspondence
based on cosine similarity, and the "Direct Algebra" method calculates the new LoRA weights by
AW, = W, — W, + AW, + ¢ where c is just a learnable set of weights need to fine-tune. Our
approach consistently outperforms the baseline on both math and commonsense tasks, highlighting
the effectiveness of using input-independent interaction matrices and similarity-based head mapping.
For the direct algebra method, the performance gap, especially on commonsense tasks, suggests
that directly aligning to the trained W, + AW, may discard valuable information encoded in the
new weight W, through its pretraining and post-training. As a result, even with further lightweight
fine-tuning, this method struggles to fully leverage the potential of the stronger target model W,.
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A.7 Loss Convergence

1.41
—e— LoRA (100)
LoRASuite with LFT (100)
1.21
&
o
-
21.04
c
©
=
0.8 1
0.6 1
5 10 15
Steps

Figure 15: Step-wise training loss comparison between "LoRA (100)" and "LoRASuite with LFT
(100)".

In Figure T3] we visualize the step-wise training loss for "LoRA (100)" and "LoRASuite with LFT
(100)" under the settings of batch size = 16 and micro batch size = 4 for MiniCPM-2B. As mentioned
in the Section [3.2] the default linear learning-rate scheduler of vanilla LoRA (100) with a warm-up
phase to stabilize training from random initialization. However, with limited data, a considerable
steps is spent in the warm-up stage, which slows convergence and limits performance. In contrast,
LoRASuite starts with transformed parameters already close to a good solution, allowing us to omit
warm-up and use a higher learning rate to accelerate convergence. This leads to better performance,
especially in low-data regimes.

Table 20: Performance comparison for merged LoRA weights.

Base Model | PEFT Module | Avg. Math Accuracy | Avg. Common Accuracy
MiniCPM-S-1B TIES-merged LoRA 17.45 11.53
MiniCPM-2B | TIES-merged LoRASuite-transformed LoRA 23.90 (1.37x) 22.57 (1.96x)

A.8 Merged LoRA Adaptation

Prior studies, such as DARE [61]] and TIES [62], have demonstrated the feasibility and effectiveness
of merging task-specific LORA modules. In this section, we evaluate whether LoRASuite maintains
its effectiveness when LoRA weights are merged across different tasks.

As shown in Table[20] we merged MiniCPM-S-1B’s math and commonsense LoRA adapters using
TIES with equal weights (0.5 each) and applied the same merging procedure to the LoRASuite-
transformed adapters of MiniCPM-2B. Compared with the simple average of individual task perfor-
mances, the merged LoRASuite-transformed adapters improved math and commonsense scores by
1.37x and 1.96x, respectively, demonstrating that our method remains effective even when merging
weights from distinct tasks.

A.9 More LLM Backbones

Figure [I4](a) presents the performance on math tasks when upgrading LLM backbones from Qwen-
1.5-1.8B to Qwen2-1.5B, covering five major architectural changes: hidden size, intermediate size,
layer depth, head number, and attention type. Similarly, Figure|14|(b) reports results for the upgrade
from Llama-2-13B to Llama-3.1-70B, encompassing all six key architectural changes. In both cases,
LoRASuite remains consistently effective.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our contribution is outlined as a separate paragraph in § [I]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are outlined as a separate paragraph in § 5]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We have provided the time complexity analysis for the algorithms involved in
§[B.3]and § respectively.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Consistent with previous studies, our evaluation employs the widely recognized
open-source benchmark [56].

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use the same open-source dataset as [S6] and our code is available in
https://github.com/YananLi18/LoRASuite,
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* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed instructions on how to reproduce the main experimental
in§

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We primarily report average performance metrics rather than error bars in our
experiments. This choice aligns with prior studies that also emphasize mean performance.
Additionally, due to significant variability across different datasets, reporting deviations
comparable in magnitude to the averages would not yield meaningful insights. Neverthe-
less, we provide comprehensive data, enabling interested readers to compute error bars
independently.
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* The answer NA means that the paper does not include experiments.
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* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide detailed hardware information in § 4}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and believe that our research
conforms to it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper is intended for LoRa adaptation and does not involve high-risk data
or models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have properly cited the original code, data, and models in § [
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: We will provide detailed documentation for the new assets upon acceptance.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects;
therefore, Institutional Review Board (IRB) approval is not applicable.

Guidelines:
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The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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