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Abstract
Social media platforms are hubs for multimodal001
information exchange, encompassing text, im-002
ages, and videos, making it challenging for003
machines to comprehend the information or004
emotions associated with interactions in online005
spaces. Multimodal Large Language Models006
(MLLMs) have emerged as a promising so-007
lution to address these challenges, yet strug-008
gle with accurately interpreting human emo-009
tions and complex contents like misinforma-010
tion. This paper introduces MM-SOC, a com-011
prehensive benchmark designed to evaluate012
MLLMs’ understanding of multimodal social013
media content. MM-SOC compiles prominent014
multimodal datasets and incorporates a novel015
large-scale YouTube tagging dataset, targeting016
a range of tasks from misinformation detection,017
hate speech detection, and social context gener-018
ation. Through our exhaustive evaluation on ten019
size-variants of four open-source MLLMs, we020
have identified significant performance dispar-021
ities, highlighting the need for advancements022
in models’ social understanding capabilities.023
Our analysis reveals that, in a zero-shot set-024
ting, various types of MLLMs generally ex-025
hibit difficulties in handling social media tasks.026
However, MLLMs demonstrate performance027
improvements post fine-tuning, suggesting po-028
tential pathways for improvement. Our code029
and data are available at Anonymous GitHub1030

1 Introduction031

Social media platforms have become the epicenter032

of multimodal information exchange, blending var-033

ious formats of content such as text, images, and034

videos. These platforms not only serve as chan-035

nels for sharing news and personal experiences036

but also for spreading rumors and shaping public037

opinions (Ferrara, 2020; Vosoughi et al., 2018).038

The inherent multimodality of social media con-039

tent requires users to not only interpret individual040

1https://anonymous.4open.science/r/
MLLMEval-875E
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Figure 1: The MM-SOC benchmark includes 10 multi-
modal tasks, including 7 image-text classification tasks
(misinformation detection, tagging, sarcasm, offensive-
ness, sentiment analysis, hate speech detection, and
humor), 2 generative task (image description and social
context description) and a text extraction task (OCR).

modalities such as text or images but also to un- 041

derstand the interplay between them, pushing the 042

boundaries of how machines comprehend human 043

communication in online spaces. 044

Multimodal Large Language Models (MLLMs) 045

have recently emerged as powerful tools for bridg- 046

ing the understanding of natural language and vi- 047

sual cues, showcasing their potential in a range 048

of tasks ranging from image captioning to com- 049

plex question answering (Ramos et al., 2023; Liu 050

et al., 2023c,b). Despite these advancements, the 051

complexity of tasks such as understanding hu- 052
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man emotions, memes, and verifying misinforma-053

tion presents significant evaluation challenges to054

MLLMs. These tasks require not only combining055

signals extracted from both textual and visual do-056

mains, but also considering various social contexts057

upon making a decision regarding contextual ap-058

propriateness or correctness, which often require059

knowledge of cultural contexts and subjective inter-060

pretations (Ruch, 2010; Jacobi, 2014). For instance,061

the task of explaining visual memes requires not062

only proficiency in image recognition and language063

generation, but also capability of understanding064

the underlying situation of the image on why it065

should be considered humorous. Given that large066

language models struggle at solving tasks requiring067

social knowledge (Choi et al., 2023), we anticipate068

multimodal social tasks to prove an even harder069

challenge.070

The complexity of multimodal tasks from so-071

cial media demands a benchmark that can evaluate072

MLLMs on their understanding of the different073

data domains as well as the social context. Such074

a benchmark would not only highlight the current075

limitations of MLLMs, but also lead to future inno-076

vations aimed at bridging the gap between human077

and machine understanding of multimodal content.078

This Work. This paper introduces MM-SOC,079

a novel multimodal benchmark to rigorously as-080

sess the capabilities of MLLMs across diverse081

tasks typical of social media environments. Along082

with existing prominent multimodal datasets, we083

add a large-scale, newly collected YouTube tag-084

ging dataset, resulting in ten tasks across five085

datasets. Our analysis primarily targets open-086

source MLLMs, recognizing their advantages in087

terms of rapid deployment, reduced operational088

costs, and superior capacity for maintaining data in-089

tegrity compared to centralized proprietary models.090

Through MM-SOC, we conduct a thorough and091

systematic examination of MLLMs, exploring and092

validating new methodologies to augment MLLM093

efficacy in handling multimodal tasks. Finally, we094

provide a detailed discussion on the performances,095

shedding light on the implications of our findings096

for future MLLM development and deployment.097

Contributions. Our contributions are summa-098

rized as follows. First, we introduce MM-SOC,099

a comprehensive benchmark to holistically eval-100

uate MLLMs’ capability in tackling multimodal101

tasks derived from online social networks. Second,102

we perform a comprehensive evaluation and bench-103

mark 10 representative open-source MLLMs on104

MM-SOC, comparing their performances with fine- 105

tuned LLM baselines. Third, we conduct two case 106

studies on MM-SOC for testing the effectiveness of 107

two methods: self-improvement and explanation- 108

augmented finetuning. We find that, while zero- 109

shot MLLMs often fall short in achieving compara- 110

ble performances compared to fine-tuned models, 111

their performances can be improved via specific 112

fine-tuning strategies. We aim to facilitate ongoing 113

research and development in the field by releasing 114

all of our code, data, and tools upon the acceptance 115

of this work. 116

2 The MM-SOC Benchmark 117

Overview. The deployment of Multimodal Large 118

Language Models (MLLMs) as general-purpose as- 119

sistants across social networks marks a significant 120

shift from traditional, specialized models designed 121

for singular tasks. This transition necessitates a 122

comprehensive skill set enabling these models to 123

navigate the multifaceted challenges presented by 124

user-generated content. 125

Motivated by this, we design MM-SOC, which 126

spans both natural language understanding and gen- 127

eration tasks. These tasks are designed to test the 128

models’ abilities to interact with user-generated 129

content encountered online. The selection includes 130

binary classification, multi-class classification, text 131

extraction, and text generation tasks, aiming to 132

cover a wide range of interactions MLLMs might 133

encounter with online content. To ensure a compre- 134

hensive evaluation, we employ a variety of 10 tasks 135

that mirror the complexity of real-world scenarios, 136

from understanding online video contents, identi- 137

fying misinformation to detecting hate speech in 138

memes. The statistics of the dataset are in Table 1. 139

Tagging. In digital content management, the abil- 140

ity to accurately predict appropriate tags for online 141

content is particularly significant given their diverse 142

and multimodal nature, which includes textual nar- 143

ratives, visual features, and cultural contexts. Ef- 144

fective tagging enhances content discoverability, 145

facilitates content moderation, and significantly im- 146

proves the user experience. 147

To this end, we introduce YouTube2M, a novel 148

dataset comprising 2 million YouTube videos, 149

specifically curated to assess models’ proficiency 150

in predicting tags from a predefined set in Table 7 151

based on video titles, descriptions, and visual con- 152

tent. We retrieved the URLs of all YouTube videos 153

shared on Reddit over 12 years spanning from 2011 154
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Dataset Domain Modality Size

PolitiFact misinformation news content, online posts,
images, user metadata

485
GossipCop 12,840

Hateful Memes hate speech, OCR images, embedded text 12,143

Memotion sentiment, humor, OCR, offensiveness, sarcasm images, embedded text 10,000

YouTube tagging images, text, channels 1,963,697

Table 1: Statistics of the MM-SOC benchmark.

to 2022. Subsequently, we used YouTube Data155

API 2 to collect comprehensive metadata of the156

YouTube videos, including their titles, descriptions,157

channels, publish timestamps, restrictions, default158

languages, topic categories, and embeddability sta-159

tus. Additionally, we compiled extensive statistics160

for each video, covering aspects such as duration,161

and the number of comments, likes, and views they162

garnered. To ensure the quality and relevance of163

the dataset, we filtered the dataset and retained164

only videos with valid tags and thumbnail images,165

resulting in a dataset with 1,963,697 videos.166

Misinformation Detection. Misinformation detec-167

tion represents a critical challenge as the prolifer-168

ation of multimodal misinformation across online169

platforms can undermine trust in digital ecosystems170

and lead to real-world harm (Swire-Thompson171

et al., 2020; Yang et al., 2022; Jin et al., 2022; He172

et al., 2023). Here, we formulate misinformation173

detection as a binary classification problem and174

utilize the PolitiFact and GossipCop datasets (Shu175

et al., 2020). The task aims at evaluating a model’s176

ability to accurately differentiate between true news177

and misinformation, leveraging both the textual178

content and the associated images of news articles.179

Hate Speech Detection. The prevalence of hate180

speech in online platforms has several detrimental181

effects, both on the individual user-level and on182

the platform as a whole (Mondal et al., 2017; He183

et al., 2021). To support research targeted at curb-184

ing the spread of harmful content and abusive lan-185

guage, we incorporate the Hateful Memes (Kiela186

et al., 2020) dataset. This dataset evaluates the abil-187

ity to recognize messages that attack or demean188

a group based on attributes such as race, religion,189

ethnic origin, sexual orientation, disability, or gen-190

der. Such ability is essential for creating inclusive191

online environments, protecting users from harm,192

and complying with legal standards.193

Emotion Analysis. The interactions among users194

in online social media platforms often contain rich195

2https://developers.google.com/youtube/v3

and diverse exchanges of emotions. These emo- 196

tions include not only sentiment but also humor, 197

sarcasm, and offensiveness. Coupled with multi- 198

modal means of expressions such as memes, it can 199

be challenging for MLLMs to accurately capture 200

the true emotion conveyed through the message. 201

Therefore, we include the Memotion (Sharma et al., 202

2020) dataset which focuses on sentiment and emo- 203

tion analysis within online memes, presenting a 204

multifaceted challenge that spans sentiment analy- 205

sis and the detection of humor, sarcasm, and offen- 206

sive contents. 207

OCR. Optical character recognition (OCR) refers 208

to the task of extracting text within images into 209

machine-encoded text. A model’s OCR proficiency 210

is directly related to its ability to access and in- 211

terpret online information such as infographics, 212

memes, and screenshots of textual conversations, 213

which are prevalent forms of communication and 214

information dissemination online (Zannettou et al., 215

2018). We use the Hateful Memes and Memotion 216

datasets to evaluate OCR capabilities. 217

Image & Social Context Description. Image de- 218

scription assesses a model’s ability to generate ac- 219

curate, contextually relevant, and coherent natural 220

language descriptions of images. The capability to 221

accurately describe an image in natural language 222

aids in the understanding of the visual content, 223

which both provides an intermediary step in rea- 224

soning about the multimodal inputs and also aids 225

human users in understanding their decisions in an 226

interpretable way. Previous studies have demon- 227

strated that commercial models such as GPT-4/3.5 228

possess extensive domain knowledge in various 229

fields, including social sciences, and have shown 230

promising results in data annotation, surpassing the 231

performance of human annotators (Savelka et al., 232

2023; Gilardi et al., 2023; Zhu et al., 2023a). Thus, 233

for each example in the dataset, we employed GPT- 234

4V as a strong teacher to generate descriptions of 235

images and their associated social contexts. For 236

each example within the dataset, we instructed 237

the model to provide a comprehensive description 238
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of the image, encompassing its foreground, back-239

ground, major subjects, colors, and textures, as well240

as the social context for each example, such as cul-241

tural backgrounds, possible interpretations within242

various societal groups, and the potential target de-243

mographics. These examples served as references244

for evaluating MLLMs’ capabilities to understand245

both the image contents and social knowledge.246

3 Model Selection247

We consider 10 prominent open-source mod-248

els spanning four different distinct architectures:249

LLaVA-v1.5 (Liu et al., 2023b), BLIP2 (Li et al.,250

2023b), InstructBLIP (Dai et al., 2023), and251

LLaMA-Adapter-v2 (Zhang et al., 2023b). Details252

on model parameter volumes are in Table 10. The253

models are selected to cover diverse model sizes.254

We apply our prompts (Table 6) to test the perfor-255

mances of MLLMs in a zero-shot setting. For tasks256

in which ground-truth texts are available as inputs,257

we compare MLLMs’ performances with five uni-258

modal discriminative models in a full fine-tuning259

setting, including BERT (Kenton and Toutanova,260

2019), RoBERTa-Base/Large (Liu et al., 2019), De-261

BERTa (He et al., 2020), and MiniLM (Wang et al.,262

2020). These text-only models have shown com-263

petitive performances in text classification. Imple-264

mentation details can be found in Appendix B.2.265

4 Benchmark Results266

Table 2 shows the overall performances across 10267

tasks. Here, we use a unified score for each task268

to facilitate a high-level performance comparison269

across diverse tasks. For text classification and ex-270

traction tasks, we use the macro-F1 score as the271

aggregated measure. For text generation tasks in-272

cluding image description (ID) and social context273

description (SCD), we use ROUGE-L (Lin, 2004).274

The results for misinformation detection are av-275

eraged across PolitiFact and GossipCop, and the276

results for OCR are averaged across Memotion and277

Hateful Memes. The complete evaluation results278

can be found in Appendix B.1.279

Zero-shot MLLMs are on par with random280

guesses. Despite their large model sizes and ex-281

tensive training corpus, all MLLMs demonstrate282

underwhelming performances in zero-shot settings,283

often paralleling and sometimes falling short of the284

random baseline. This trend is especially evident285

on the offensiveness detection task, where none of286

the 10 models surpass the random baseline, with an287

average macro F1 score of 0.402 compared to the 288

baseline of 0.493. A similar pattern emerges in hu- 289

mor detection, with eight models underperforming 290

the baseline. The tasks in our benchmark which 291

simulate real-life interactions in social media are 292

indeed challenging for most MLLMs. 293

Zero-shot MLLMs underperform fully fine- 294

tuned models in most settings. We next focus on 295

the misinformation detection task, which takes a 296

binary classification form and can thus be evaluated 297

using encoder-only LLMs such as BERT. Table 5 298

reveals a consistent underperformance of MLLMs 299

compared to fully fine-tuned LLMs which only use 300

textual information. To our surprise, DeBERTa 301

emerges as the top-performing model with only 302

98 million parameters, whereas zero-shot MLLMs 303

achieve significantly inferior performances. 304

The low performances of zero-shot MLLMs can 305

be attributed primarily to two reasons: 1) The di- 306

vergence in training objectives. Unlike discrim- 307

inative models, which are explicitly fine-tuned to 308

predict correct labels, MLLMs are oriented towards 309

maximizing cross-modal alignment and instruction- 310

following abilities. Their training regimes are de- 311

signed to enhance text generation capabilities based 312

on input images. Such an alignment does not cater 313

to misinformation detection, which demands not 314

only multimodal reasoning but also the ability to 315

evaluate the reliability of sources and incorporate 316

extensive external knowledge. 2) Disparity in the 317

training corpus content. MLLMs are predomi- 318

nantly trained for tasks such as object detection, 319

image captioning and visual question answering 320

(VQA) (Dai et al., 2023; Liu et al., 2023c), which 321

rarely encompass tasks in social knowledge reason- 322

ing. The lack of tasks requiring subjective reason- 323

ing may inherently limit the MLLMs’ performance 324

regarding these tasks, and is further supported by 325

the fact that performing task-specific fine-tuning 326

on even much smaller models that use only limited 327

information significantly outperforms MLLMs. 328

LLaVA achieves highest performance among 329

all MLLMs in most tasks. Among the tested 330

MLLMs, LLaVA-v1.5-13b/7b achieve the best and 331

second best overall performances with average 332

scores of 0.402 / 0.368, a 18.9% / 8.9% improve- 333

ment over InstructBLIP Vicuna 13B. The perfor- 334

mance gap is most significant on the text generation 335

tasks, including ID and SCD as shown in Table 2, 336

where LLaVA-v1.5-13B reaches a performance im- 337

provement of 76.9% and 55.7% compared with the 338

other models. This advantage could result from 339
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Model Misinfo Hate Humor Sarc. Off. Sent. Tag OCR ID SCD Avg.

llava-v1.5-7b 0.494 0.490 0.450 0.452 0.484 0.250 0.068 0.514 0.260 0.218 0.368
llava-v1.5-13b 0.642 0.578 0.534 0.436 0.451 0.291 0.071 0.542 0.259 0.216 0.402
instructblip-vicuna-7b 0.311 0.442 0.246 0.481 0.477 0.251 / 0.611 0.048 0.033 0.322
instructblip-vicuna-13b 0.435 0.528 0.435 0.437 0.417 0.262 0.050 0.701 0.097 0.020 0.338
instructblip-flan-t5-xl 0.455 0.470 0.282 0.274 0.464 0.185 0.057 0.652 0.041 0.046 0.293
instructblip-flan-t5-xxl 0.463 0.570 0.406 0.447 0.282 0.335 0.128 0.627 0.043 0.023 0.332
blip2-opt-2.7b 0.261 0.369 0.309 0.389 0.411 0.291 0.022 0.723 0.141 0.140 0.306
blip2-flan-t5-xl 0.467 0.400 0.183 0.497 0.282 0.245 0.157 0.718 0.147 0.137 0.323
blip2-flan-t5-xxl 0.373 0.587 0.200 0.512 0.282 0.295 0.188 0.676 0.133 0.113 0.336
llama-adapter-v2 0.553 0.524 0.556 0.453 0.471 0.268 0.021 0.111 0.098 0.139 0.319

random 0.459 0.500 0.467 0.460 0.493 0.286 / / / / /

Table 2: Performance comparison across all models on the tasks. Best and 2nd best performances among the
MLLMs are highlighted in bold and underline, respectively. “ID” and “SCD” stand for the image description task
and the social context description task, respectively. Note that instructblip-vicuna-7b fails to generate valid answers
on the tagging task. A full comparison of all models on all metrics can be found in Appendix B.1.

PolitiFact GossipCop
Setting Model F1macro Acc AUC SR% F1macro Acc AUC SR%

zero-shot

llava-v1.5-7b 0.488 0.740 0.534 100.0 0.499 0.812 0.524 100.0
llava-v1.5-13b 0.749 0.827 0.721 100.0 0.534 0.773 0.535 100.0
instructblip-vicuna-7b 0.376 0.388 0.511 76.9 0.246 0.251 0.466 70.5
instructblip-vicuna-13b 0.434 0.485 0.441 94.2 0.435 0.503 0.468 90.0
instructblip-flan-t5-xl 0.418 0.718 0.500 99.0 0.492 0.811 0.521 98.1
instructblip-flan-t5-xxl 0.519 0.543 0.537 100.0 0.406 0.429 0.497 100.0
blip2-opt-2.7b 0.213 0.227 0.429 21.2 0.309 0.309 0.437 11.2
blip2-flan-t5-xl 0.419 0.721 0.500 100.0 0.514 0.819 0.534 100.0
blip2-flan-t5-xxl 0.545 0.548 0.634 100.0 0.200 0.215 0.481 100.0
llama-adapter-v2 0.550 0.553 0.613 87.5 0.556 0.673 0.581 83.6

finetuned

bert-base-uncased 0.850 0.875 0.850 100.0 0.769 0.869 0.797 100.0
roberta-base 0.894 0.923 0.894 100.0 0.812 0.879 0.824 100.0
roberta-large 0.846 0.885 0.825 100.0 0.820 0.858 0.820 100.0
MiniLM-v2 0.793 0.827 0.806 100.0 0.777 0.858 0.785 100.0
deberta-v3-large 0.952 0.962 0.952 100.0 0.817 0.895 0.792 100.0

random / 0.471 0.500 0.494 / 0.448 0.500 0.500 /

Table 3: Results of fine-tuning and zero-shot misinformation detection on PolitiFact and GossipCop (Shu et al.,
2020). The best and 2nd best performances of each category is highlighted in bold and . We report the Macro
F1-score (F1), Accuracy (Acc), Area Under the Curve (AUC), and Success Rate (SR). As the number of parameters
in the model increases, the model is better at following instructions as seen from their increasing success rate.

both having a wider range of training data and340

pretraining objectives — multiturn conversation,341

detailed description, and complex reasoning. For342

example, the complex reasoning objective typically343

requires a step-by-step reasoning process by fol-344

lowing rigorous logic. Figure 2 shows the perfor-345

mances of the strongest models under each model346

architecture. The scores are normalized in the 0-347

1 range. Interestingly, we found that no single348

model achieves the best performance across all349

tasks. LLaVA-v1.5-13B performs the best on text350

generation such as ID or SCD as well as tasks that351

require social reasoning like misinformation de-352

tection, but its ability in tagging is relatively poor.353

BLIP2 is best on OCR and discriminative tasks354

like sarcasm and hate speech detection, whereas its355

generative abilities are relatively poor.356

Larger models exhibit better instruction-357

Raw Performances MisinformationHate Speech Humor Sarcasm Offensive Sentiment
llava-v1.5-7b 0.494 0.49 0.45 0.452 0.484 0.25
llava-v1.5-13b 0.642 0.578 0.534 0.436 0.451 0.291
instructblip-vicuna-7b 0.311 0.442 0.246 0.481 0.477 0.251
instructblip-vicuna-13b 0.435 0.528 0.435 0.437 0.417 0.262
instructblip-flan-t5-xl 0.455 0.47 0.282 0.274 0.464 0.185
instructblip-flan-t5-xxl 0.463 0.57 0.406 0.447 0.282 0.335
blip2-opt-2.7b 0.261 0.369 0.309 0.389 0.411 0.291
blip2-flan-t5-xl 0.467 0.4 0.183 0.497 0.282 0.245
blip2-flan-t5-xxl 0.373 0.587 0.2 0.512 0.282 0.295
llama-adapter-v2 0.553 0.524 0.556 0.453 0.471 0.268

min 0.261 0.369 0.183 0.274 0.282 0.185
max 0.642 0.587 0.556 0.512 0.484 0.335
max-min 0.381 0.218 0.373 0.238 0.202 0.15

Normalized PerformancesOffensive MisinformationHumor Hate Speech Sarcasm Sentiment
llava-v1.5-7b 1 0.61154856 0.71581769 0.55504587 0.74789916 0.43333333
llava-v1.5-13b 0.83663366 1 0.94101877 0.9587156 0.68067227 0.70666667
instructblip-vicuna-7b 0.96534653 0.1312336 0.1689008 0.33486239 0.8697479 0.44
instructblip-vicuna-13b0.66831683 0.45669291 0.67560322 0.7293578 0.68487395 0.51333333
instructblip-flan-t5-xl 0.9009901 0.50918635 0.26541555 0.46330275 0 0
instructblip-flan-t5-xxl 0 0.53018373 0.59785523 0.92201835 0.72689076 1
blip2-opt-2.7b 0.63861386 0 0.33780161 0 0.48319328 0.70666667
blip2-flan-t5-xl 0 0.54068241 0 0.14220183 0.93697479 0.4
blip2-flan-t5-xxl 0 0.29396325 0.04557641 1 1 0.73333333
llama-adapter-v2 0.93564356 0.7664042 1 0.71100917 0.75210084 0.55333333

ID

SCD

Chart Title

llava-v1.5-7b llava-v1.5-13b

instructblip-vicuna-13b instructblip-flan-t5-xl

blip2-opt-2.7b blip2-flan-t5-xl

llama-adapter-v2

Misinformation

Humor

Hate Speech

Sarcasm

SentimentTagging

OCR

ID

SCD

llava-v1.5-13b instructblip-flan-t5-xxl
blip2-flan-t5-xxl llama-adapter-v2

Figure 2: Performances of the 4 representative models
on the MM-SOC benchmark.

following abilities. To quantify an LLM’s adher- 358

ence to predefined content constraints, we leverage 359

a success rate metric, defined as the percentage 360

of responses from a model that aligns with the re- 361

quested formats. We see a compelling positive 362
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Image Description Social Context Description
Model M R-1 R-2 R-L Len M R-1 R-2 R-L Len

instructblip-vicuna-7b 0.016 0.053 0.008 0.048 3.0 0.014 0.034 0.007 0.033 1.7
instructblip-vicuna-13b 0.040 0.113 0.020 0.097 6.6 0.010 0.021 0.002 0.020 1.9
instructblip-flan-t5-xl 0.014 0.044 0.005 0.041 2.7 0.022 0.050 0.006 0.046 3.0
instructblip-flan-t5-xxl 0.014 0.048 0.005 0.043 2.5 0.009 0.023 0.003 0.023 1.6
blip2-opt-2.7b 0.076 0.158 0.025 0.141 21.2 0.081 0.163 0.021 0.140 16.3
blip2-flan-t5-xl 0.065 0.172 0.026 0.147 9.8 0.069 0.156 0.024 0.137 9.5
blip2-flan-t5-xxl 0.058 0.151 0.025 0.133 9.7 0.066 0.132 0.014 0.113 10.4
llama-adapter-v2 0.041 0.110 0.019 0.098 9.1 0.113 0.152 0.020 0.139 128.5

llava-v1.5-7b 0.223 0.288 0.074 0.260 78.2 0.229 0.247 0.057 0.218 110.1
+ FT 0.217 0.285 0.074 0.253 85.9 0.217 0.249 0.052 0.215 101.1
+ FT w/ explanations 0.240 0.322 0.104 0.289 67.4 0.242 0.280 0.069 0.247 80.9

Improvement 7.7% 12.0% 40.5% 11.0% -13.8% 5.6% 13.4% 20.9% 13.4% -26.5%

llava-v1.5-13b 0.223 0.293 0.079 0.259 71.0 0.239 0.247 0.059 0.216 111.5
+ FT 0.207 0.282 0.068 0.252 68.7 0.213 0.246 0.050 0.218 97.3
+ FT w/ explanations 0.248 0.323 0.103 0.294 68.1 0.239 0.278 0.066 0.244 80.8

Improvement 11.0% 10.2% 30.5% 13.5% -4.1% 0.0% 12.7% 11.6% 13.1% -27.5%

Table 4: Results on the image description (ID) and social context description (SCD) tasks. We report METEOR (M),
ROUGE-1 (R-1), ROUGE-2 (R-2), ROUGE-L (R-L), and the length of responses (Len), calculated as the number
of words in the responses. “FT” represents fine-tuning with the ground-truth, and “FT w/ explanations” represents
fine-tuning with both the ground-truth and the explanations. The Improvement row indicates performance gain
for the FT w/ explanations setting w.r.t. zero-shot baselines. LLaVA-v1.5-7B/13B consistently achieve the best
performances among all MLLMs, and exhibit improved performances after fine-tuning on explanations.
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Figure 3: Success Rate (left) and macro-F1 scores (right)
of varying input lengths on PolitiFact. The instruction
following abilities of MLLMs remains stable across
varying input lengths, and exhibit improvements as
model size increases.

correlation between the parameter size of the text363

encoder and its ability to follow instructions and364

precisely classify news content. Table 5 shows365

that the macro F1-score on PolitiFact for Instruct-366

BLIP increases from 0.376 to 0.434 when the text367

encoder changes from Vicuna-7B to Vicuna-13B,368

and improves from 0.418 to 0.519 when changing369

from FlanT5-XL to FlanT5-XXL. This correlation370

indicates that models with larger parameter sizes371

are equipped with more complex reasoning abil-372

ities and a sophisticated understanding of social373

knowledge, which are essential components for374

accurately evaluating the veracity of news articles.375

Online content ranges from concise and engag-376

ing social media posts and microblogs to detailed377
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Figure 4: Left: Pairwise similarity between responses
at adjacent rounds; right: similarity between response
of each round and the ground-truth.

and extensive narratives found in news articles and 378

in-depth blog posts. This diversity in content length 379

poses a significant challenge for MLLMs, as it re- 380

quires the models to maintain their generative ca- 381

pabilities over varying context sizes and a wide 382

range of information densities (Peng et al., 2023; 383

Peysakhovich and Lerer, 2023). To address these 384

concerns, we vary the number of tokens used as 385

input to detect misinformation on the PolitiFact 386

dataset from 16 to 512 tokens. The results, as de- 387

picted in Figure 3, provide compelling evidence of 388

the MLLMs’ stable instruction-following abilities. 389

Notably, we observed an increase in the macro-F1 390

score as the input length expanded, suggesting that 391

MLLMs are able to leverage evidence from longer 392

contexts for enhanced reasoning and performances. 393
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Figure 5: Results of finetuned LLaVA-v1.5-7/13B. Com-
pared to the zero-shot baseline, finetuning with expla-
nations (FT w/ Expl.) and standard finetuning (FT)
improves performance across different sets of tasks.

5 Illustrative Uses of MM-SOC394

The MM-SOC benchmark can be used to exper-395

iment with new methods for enhancing MLLMs396

in solving multimodal reasoning and generation397

tasks. We conduct two case studies, proposing new398

directions for strengthening MLLM capabilities.399

5.1 Can MLLMs Self-improve Its Answers?400

The ability of MLLMs to self-improve – enhanc-401

ing their answers iteratively without external super-402

vised signals – can help generate increasingly con-403

sistent and robust answers, diminishing the need404

for human oversight. Using our benchmark, we405

investigate the self-improvement capabilities of406

MLLMs. The initial phase involves the model gen-407

erating an answer for each question. Subsequent408

iterations, starting from the second round, require409

the model to produce new answers conditioned410

on the multimodal inputs and its prior responses.411

The iterative process is performed for six rounds.412

To quantitatively assess the evolution of answers413

across these iterations, we employed three estab-414

lished similarity metrics: BERTScore (Zhang et al.,415

2019), sentence embeddings similarity (Reimers416

and Gurevych, 2019), and bigram similarity (Kon-417

drak, 2005). These metrics enabled us to measure418

the consistency of answers from one round to the419

next, as well as their fidelity to the ground truth.420

Figure 4 displays a notable trend towards conver-421

gence in the model’s answers with each iteration.422

For instance, the average BERTScore between an-423

swers from consecutive rounds (first to second, and424

second to third) exhibited a significant increase,425

from 0.699 to 0.910. Meanwhile, over 55% of all426

answer pairs between the second and third rounds427

achieved a sentence embedding similarity score ex-428

ceeding 0.99. Despite improvements in internal429

consistency, our analysis revealed a gradual diver-430

gence from the ground truth over successive itera- 431

tions. This was evidenced by a decrease in sentence 432

embedding similarity between MLLM-generated 433

answers and the ground-truth (0.887 → 0.854), sig- 434

naling a potential limitation in the model’s ability 435

to maintain factual accuracy in iterative generation. 436

5.2 Does finetuning MLLMs Improve Overall 437

Performance? 438

We examine whether MLLMs can improve on MM- 439

SOC via additional fine-tuning steps. Instead of 440

fine-tuning models on separate tasks, we use the 441

data across all different tasks at once for train- 442

ing and examine whether this setting still can con- 443

tribute towards improvements for each task. 444

We employed two distinct strategies for fine- 445

tuning. The first approach directly fine-tunes the 446

model using the default input and output data, anal- 447

ogous to a standard fine-tuning setting. In the sec- 448

ond approach, we leverage GPT-4(V) as a strong 449

teacher to generate explanations after each ground 450

truth answer for each sample. Along with the origi- 451

nal input data, the GPT-generated explanations are 452

augmented as additional training data. 453

Figure 5 shows the performances of fine-tuned 454

LLaVA-7B and 13B models along with baselines; 455

details can be found in Appendix B.3. With stan- 456

dard fine-tuning, we observe notable gains in de- 457

tecting misinformation, offensiveness, and senti- 458

ment, but also drops in hate, humor, and sarcasm de- 459

tection. Meanwhile, fine-tuning with explanations 460

improved performance across a broader spectrum 461

of tasks, e.g., increases of 18.2% in hate speech de- 462

tection and 12.7% in sentiment analysis. Notably, 463

text generation tasks such as image description and 464

social context demonstrated greater gains. 465

Table 4 further reinforces the positive effects 466

of finetuning with explanations for text generation 467

tasks. Compared to the zero-shot baseline, both the 468

7B & 13B LLaVA models achieve higher ROUGE- 469

2 scores on image description (40.5% for 7B and 470

30.5% for 13B). Similarly, for social context de- 471

scription, we observe improvements of 20.9% and 472

11.6% respectively. These improvements are ac- 473

companied by a reduction in response verbosity, 474

highlighting the importance of explanations and ra- 475

tionales for improving multimodal text generation 476

tasks. Interestingly, finetuning without explana- 477

tions performs worse than the baseline, indicating 478

that the standard finetuning approach may not be 479

sufficient to learn the tasks in MM-SOC and sig- 480

naling the need for refined finetuning strategies. 481
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PolitiFact GossipCop
Setting Model F1macro Acc AUC SR% F1macro Acc AUC SR%

zero-shot

llava-v1.5-7b 0.488 0.740 0.534 100.0 0.499 0.812 0.524 100.0
llava-v1.5-13b 0.749 0.827 0.721 100.0 0.534 0.773 0.535 100.0
instructblip-vicuna-7b 0.376 0.388 0.511 76.9 0.246 0.251 0.466 70.5
instructblip-vicuna-13b 0.434 0.485 0.441 94.2 0.435 0.503 0.468 90.0
instructblip-flan-t5-xl 0.418 0.718 0.500 99.0 0.492 0.811 0.521 98.1
instructblip-flan-t5-xxl 0.519 0.543 0.537 100.0 0.406 0.429 0.497 100.0
blip2-opt-2.7b 0.213 0.227 0.429 21.2 0.309 0.309 0.437 11.2
blip2-flan-t5-xl 0.419 0.721 0.500 100.0 0.514 0.819 0.534 100.0
blip2-flan-t5-xxl 0.545 0.548 0.634 100.0 0.200 0.215 0.481 100.0
llama-adapter-v2 0.550 0.553 0.613 87.5 0.556 0.673 0.581 83.6

finetuned

bert-base-uncased 0.850 0.875 0.850 100.0 0.769 0.869 0.797 100.0
roberta-base 0.894 0.923 0.894 100.0 0.812 0.879 0.824 100.0
roberta-large 0.846 0.885 0.825 100.0 0.820 0.858 0.820 100.0
MiniLM-v2 0.793 0.827 0.806 100.0 0.777 0.858 0.785 100.0
deberta-v3-large 0.952 0.962 0.952 100.0 0.817 0.895 0.792 100.0

random / 0.471 0.500 0.494 / 0.448 0.500 0.500 /

Table 5: Results of fine-tuning and zero-shot misinformation detection on PolitiFact and GossipCop (Shu et al.,
2020). The best and 2nd best performances of each category is highlighted in bold and . We report the Macro
F1-score (F1), Accuracy (Acc), Area Under the Curve (AUC), and Success Rate (SR). As the number of parameters
in the model increases, the model is better at following instructions as seen from their increasing success rate.

6 Related Works482

Multimodal Large Language Models: Multi-483

modal Large Language Models (MLLMs) have484

demonstrated exceptional natural language under-485

standing and generation abilities by integrating486

visual information with textual inputs (Awadalla487

et al., 2023; Yu et al., 2023; Liu et al., 2023a;488

Verma et al., 2023). Models such as LLaVA (Liu489

et al., 2023b,c), BLIP2 (Li et al., 2023b), In-490

structBLIP (Dai et al., 2023), and LLaMA-491

Adapter (Zhang et al., 2023b; Gao et al., 2023) have492

showcased their superior performance in a range of493

applications. The success of MLLMs suggests their494

potential for widespread use in scenarios requir-495

ing not only factual analysis and comprehension496

but also subjective judgment and decision-making497

based on a nuanced understanding of social con-498

texts and human perceptions. Our study reveals that499

current MLLMs still fall short in fully grasping and500

responding to complex social scenarios with the501

required depth of understanding and sensitivity.502

Benchmarking Large Language Models: The503

evaluation of LLMs is crucial for uncovering504

their capabilities and identifying potential risks505

associated with their deployment in sensitive do-506

mains (Wang et al., 2024; Liu et al., 2020; Zhang507

et al., 2023a; Zhao et al., 2023). Benchmark-508

ing efforts across various domains such as le-509

gal (Deroy et al., 2023), healthcare (Jin et al.,510

2023), finance (Zhou et al., 2023), psychology (Li511

et al., 2023a) have provided valuable insights into512

LLMs such as their reliability (Shu et al., 2023), 513

robustness (Zhu et al., 2023b), and ethical impli- 514

cations (Sun et al., 2023). Despite these efforts, 515

there remains a notable gap in the development of 516

comprehensive multimodal benchmarks for social 517

domains. In this work, we create a holistic multi- 518

modal benchmark that captures the broad spectrum 519

of social language and interactions. 520

7 Conclusion 521

Our study presents a comprehensive evaluation of 522

4 leading MLLMs on 10 carefully constructed mul- 523

timodal social media tasks from diverse domains 524

such as misinformation, hate speech, memes, and a 525

novel YouTube dataset, which comprises our pro- 526

posed MM-SOC benchmark. Our evaluation of 527

the current capabilities presents the following in- 528

sights: (i) zero-shot capabilities of certain MLLMs 529

are near-random and underperform drastically in 530

comparison to smaller fully fine-tuned models, (ii) 531

LLaVA-v1.5 is the most competitive open-source 532

MLLM so far, and (iii) instruction following capa- 533

bilities of MLLMs improve with their size. MM- 534

SOC also enables quantitative case studies, two of 535

which were illustrated in this work and revealed (a) 536

the limitations of MLLMs in self-improving their 537

accuracy and (b) the effectiveness of fine-tuning 538

MLLMs with labeled data. As benchmarks high- 539

light current limitations and guide future research, 540

we intend to expand MM-SOC’s coverage to more 541

models and social media tasks to encourage reliable 542

applicability of MLLMs in online spheres. 543
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8 Limitations544

We address some limitations of the current study545

settings, while discussing potential directions for546

future works.547

8.1 Exclusion of Proprietary Models548

We excluded models like GPT4V and Gemini from549

our study for specific reasons. First, this research550

aims to spotlight the constraints of open-source551

MLLMs in tackling multimodal tasks derived from552

social media contexts. This emphasis on open-553

source models is driven by our commitment to554

enhancing privacy protection. Unlike proprietary555

models that aggregate data of multiple platforms556

onto a central server, posing significant privacy557

risks and operational costs, open-source models558

are able to process data in a decentralized way (Fan559

et al., 2023; Zhang et al., 2023c). This distinction560

not only ensures better privacy safeguards but also561

resonates with our objective to spotlight and scru-562

tinize the limitations inherent within open-source563

frameworks when deployed in complex, real-world564

scenarios like social media. By doing so, we hope565

that the research community can dedicate resources566

towards the development of more sophisticated567

open-source models that address these gaps, pro-568

moting the ethos of open science. Second, propri-569

etary models like Gemini reject images containing570

people and prompts associated with misinforma-571

tion and hate speech. These restrictions present572

significant barriers to a comprehensive analysis of573

MLLMs’ performance in handling the diverse and574

often complex content found on social media plat-575

forms.576

8.2 Scope of Datasets Included in Benchmark577

Online platforms facilitate several well-being dis-578

cussions and provide support to potentially vul-579

nerable members of the community (Alghowinem580

et al., 2016; Sindoni, 2020). While our current581

datasets consider applications of MLLMs for some582

safety-critical tasks like misinformation and hate583

detection, extensions of MM-SOC should include584

datasets and tasks that cover applications that pro-585

mote inclusivity and support-offering on online586

platforms. The current version of the benchmark is587

not “open-world, universal, and neutral,” the likes588

of which have been contested to exist (Raji et al.,589

2021), but an evolving-effort to contextualize the590

progress in MLLMs with respect to widely-used591

social media tasks.592

9 Ethical Considerations & Broader 593

Impacts 594

MLLMs are recognized for exhibiting decision- 595

making biases, a direct consequence of biases 596

present within their training datasets. These in- 597

clude but are not limited to, biases in core sociode- 598

mographic categories such as gender, race, and 599

religion (Janghorbani and De Melo, 2023; Ruggeri 600

and Nozza, 2023). This can cause severe issues 601

during downstream applications of MLLMs, partic- 602

ularly in contexts where decisions can significantly 603

affect individual choices. 604

A significant portion of the biases in MLLMs 605

may be attributed to the data it is trained on. The 606

annotation of subjective tasks in NLP benchmarks 607

also requires consideration, as highlighted in var- 608

ious studies (Aroyo and Welty, 2015; Waseem, 609

2016; Al Kuwatly et al., 2020). The interpretation 610

of humor or offensive content can significantly vary 611

across different cultural and societal backgrounds, 612

and thus benchmarks should incorporate a broader 613

spectrum of human viewpoints. This is also appli- 614

cable to certain tasks within our benchmark, where 615

the labels of our questions are reflective of the view- 616

points of a hypothetical "average Twitter user." 617

We recognize the importance of this diversity and 618

inclusivity. Our hope is for subsequent research 619

leveraging our benchmark to hopefully develop and 620

include datasets that are more representative of so- 621

cial diversity and inclusiveness, thereby addressing 622

these disparities. 623

One consistent theme throughout our empirical 624

investigations is that the current performances of 625

MLLMs in general are suboptimal. Notably, cer- 626

tain zero-shot MLLMs exhibit lower accuracy com- 627

pared to both LLMs fine-tuned exclusively on tex- 628

tual data and even random scores. This underper- 629

formance is likely attributable to the insufficient 630

training of MLLMs on tasks requiring subjective 631

judgment and comprehension of social context. For 632

MLLMs to achieve broader and more reliable appli- 633

cability, future versions should be trained on more 634

tasks that cover ethical, social, and cultural dimen- 635

sions, thereby ensuring a more comprehensive un- 636

derstanding and interaction capability in diverse 637

contexts. 638
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A Details on Datasets 945

A.1 Tagging 946

The tagging task focuses on predicting appropriate 947

“topic categories” for YouTube videos, chosen from 948

a predefined set as listed in Table 7. These topics 949

make it easier for users to find videos that match 950

their interests but also enhance the overall content 951

management strategy. This dataset exemplifies the 952

necessity of multimodal understanding in catego- 953

rizing online video content. The dataset is licensed 954

under the Apache 2.0 License3. 955

3https://opensource.org/license/mit/
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Task Prompt Tags
Misinformation Detection Is the following news misinforma-

tion? [NEWS]
misinformation, not misinforma-
tion

Hate Speech Detection Is the following meme hateful? hateful, not_hateful
Humor Is the following meme humorous? humorous, not_humorous
Sarcasm Is the following meme sarcastic? sarcastic, not_sarcastic
Offensiveness Is the following meme offensive? offensive, not_offensive
Sentiment Analysis What is the overall sentiment ex-

pressed through this meme?
positive, neutral, negative

OCR What is the text in the image? /
Image Description Describe the scene, such as its ma-

jor subjects, colors, and texture.
/

Social Context Description Describe the cultural and social
context of the image. What par-
ticular groups is the image and text
targeting at?

/

Tagging Predict the tags of the following
online video given its title, descrip-
tion, and thumbnail image. Differ-
ent tags must be separated by com-
mas.
Title: [TITLE]
Description: [DESCRIPTION]

(See Table 7 for the list of tags for
YouTube videos)

Table 6: Prompts and possible values for each task.

YouTube Tags
action-adventure_game, action_game, american_football, association_football, baseball, basketball,
boxing, business, casual_game, christian_music, classical_music, country_music, cricket, elec-
tronic_music, entertainment, fashion, film, food, golf, health, hip_hop_music, hobby, humour,
ice_hockey, independent_music, jazz, knowledge, lifestyle, military, mixed_martial_arts, motor-
sport, music, music_of_asia, music_of_latin_america, music_video_game, performing_arts, pet, physi-
cal_attractiveness, physical_fitness, politics, pop_music, professional_wrestling, puzzle_video_game,
racing_video_game, reggae, religion, rhythm_and_blues, rock_music, role-playing_video_game, simu-
lation_video_game, society, soul_music, sport, sports_game, strategy_video_game, technology, televi-
sion_program, tennis, tourism, vehicle, video_game_culture, volleyball

Table 7: Set of tags for YouTube videos

A.2 Misinformation datasets956

We consider two datasets under the misinformation957

detection theme: PolitiFact and GossipCop. Both958

datasets were curated by Shu et al. (2020), dis-959

tributed under the CC-BY-SA License, and are pub-960

licly available for download at https://github.961

com/KaiDMML/FakeNewsNet/.962

A.2.1 PolitiFact 963

This dataset contains news content from the fact- 964

checking website PolitiFact4, which focuses on 965

political discourse, and contains the title, body, im- 966

ages, and user metadata from news articles. The 967

dataset contains 485 news articles. Each article is 968

annotated into one of the two categories: ‘fake’ and 969

‘real.’ 970

4https://www.politifact.com/
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A.2.2 GossipCop971

This dataset contains news content from Gossip-972

Cop, which targets the realm of entertainment news,973

and includes the title, body, images, from the news974

articles. The article contains 12,840 new articles,975

each of which is categorized into one of the two976

categories: ‘fake’ and ‘real.’977

A.3 Hateful Memes978

The Hateful Memes dataset contains 12,840 memes979

that were designed to include meme-like visuals980

with text laid over them. Since a unimodal classi-981

fier (i.e., text-only or image-only) would struggle982

to make an inference about the hateful nature of983

the memes without considering both the modali-984

ties, they present a unique opportunity to test the985

multimodal reasoning capabilities of MLLMs. The986

designed memes were manually annotated to be987

in one of the two categories: ‘hateful’ or ‘benign.’988

The dataset is distributed under the MIT License.989

A.4 Memotion990

The Memotion dataset comprises 12,143 memes,991

each meticulously annotated with labels that cate-992

gorize the memes according to their sentiment (pos-993

itive, negative, neutral), the type of emotion they994

convey (sarcastic, funny, offensive, motivational),995

and the intensity of the expressed emotion. The996

emotion class and the overall sentiment were man-997

ually labeled by Amazon Mechanical Turk (AMT)998

workers. The dataset is distributed under the Com-999

munity Free Resource License5.1000

B Details on Experiments1001

B.1 Evaluation Metrics1002

Classification. For classification tasks, we employ1003

metrics including macro precision, macro recall,1004

macro F1-score, accuracy (Acc), and Area Under1005

the Curve (AUC), reflecting the comprehensive as-1006

sessment of the models’ tagging proficiency.1007

Tagging. For the tagging task, we additionally1008

leverage Hamming Loss and Jaccard index. Ham-1009

ming loss (LHamming) is used to measure the frac-1010

tion of labels that are incorrectly predicted:1011

LHamming =
1

N

N∑
i=1

1

|L|

|L|∑
j=1

XOR(yij , ŷij) (1)1012

where yij ∈ {0, 1} is a binary variable that indi-1013

cates whether example i has label j. ŷij ∈ {0, 1} is1014

5https://www.figma.com/legal/
community-free-resource-license/

the predicted binary variable. N is the number of 1015

examples in the dataset, and L is the set of labels. 1016

Jaccard index is defined as the size of the in- 1017

tersection between the predicted labels and the 1018

ground-truth divided by the size of their union: 1019

Jaccard =
1

N

N∑
i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

(2) 1020

where N is the total number of examples. Ŷi and 1021

Yi are the set of predicted and ground-truth labels 1022

for example i. 1023

OCR. We use word error rate (WER), character 1024

error rate (CER), and BLEU scores (Papineni et al., 1025

2002). The word error rate (WER) and character 1026

error rate (CER) are derived from the Levenshtein 1027

distance (Levenshtein et al., 1966), defined as: 1028

WER =
|WS |+ |WD|+ |WI |

|W |
(3) 1029

CER =
|CS |+ |CD|+ |CI |

|C|
(4) 1030

where |W | and |C| are the number of words and 1031

characters in the ground-truth. |WS |, |WD|, and 1032

|WI | are the number of substitutions, deletions, and 1033

insertions at the word, and |CS |, |CD|, and |CI | are 1034

at the character level. 1035

Text Generation. We use n-gram-based metrics in- 1036

cluding BLEU (Papineni et al., 2002) ROUGE (Lin, 1037

2004), METEOR (Lavie et al., 2004), and n-gram 1038

similarity (Kondrak, 2005). These metrics eval- 1039

uate the MLLMs by measuring the lexical over- 1040

lap between the generated text and the reference 1041

text. Meanwhile, we use two established simi- 1042

larity metrics based on pretrained language mod- 1043

els, including BERTScore (Zhang et al., 2019) 1044

and sentence embedding similarity (Reimers and 1045

Gurevych, 2019), to measure the high-level se- 1046

mantic overlap between two answers. Specifically, 1047

BERTScore leverages contextualized word embed- 1048

dings to capture a token’s usage in a sentence and 1049

encode sequence information. Sentence embedding 1050

similarity simsent is defined as the cosine similarity 1051

between the sentence embeddings of two answers: 1052

simsent (si, sj) =
si · sj

∥si∥∥sj∥
, (5) 1053

where si is the embedding of the i-th response. 1054

Additionally, we calculate the length of response, 1055

defined as the number of words in a model-generate 1056

response. 1057
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Memotion Pmacro Rmacro F1macro WER CER BLEU1 BLEU2 BLEU3 BLEU4

llava-v1.5-7b 0.651 0.455 0.535 46.7 40.8 0.495 0.454 0.410 0.365
llava-v1.5-13b 0.665 0.470 0.551 45.0 39.2 0.521 0.481 0.437 0.396
instructblip-flan-t5-xl 0.850 0.482 0.615 46.3 42.2 0.490 0.449 0.405 0.363
instructblip-flan-t5-xxl 0.808 0.441 0.571 50.0 45.3 0.445 0.406 0.365 0.326
instructblip-vicuna-7b 0.853 0.558 0.675 38.7 35.1 0.569 0.534 0.497 0.459
instructblip-vicuna-13b 0.834 0.451 0.585 48.9 44.9 0.459 0.425 0.387 0.350
blip2-opt-2.7b 0.774 0.562 0.651 40.7 35.1 0.537 0.493 0.451 0.407
blip2-flan-t5-xl 0.825 0.593 0.690 37.8 31.3 0.606 0.546 0.488 0.432
blip2-flan-t5-xxl 0.791 0.623 0.697 36.3 27.8 0.632 0.569 0.507 0.448
llama-adapter-v2 0.183 0.084 0.115 94.5 82.2 0.059 0.036 0.027 0.021

Hateful Memes Pmacro Rmacro F1macro WER CER BLEU1 BLEU2 BLEU3 BLEU4

LLaVA-v1.5-7b 0.560 0.441 0.493 42.3 34.1 0.535 0.500 0.468 0.412
LLaVA-v1.5-13b 0.619 0.469 0.534 40.3 32.8 0.568 0.536 0.506 0.450
instructblip-flan-t5-xl 0.839 0.584 0.689 34.6 27.3 0.618 0.572 0.524 0.467
instructblip-flan-t5-xxl 0.829 0.536 0.651 39.7 32.7 0.550 0.506 0.465 0.408
instructblip-vicuna-7b 0.835 0.644 0.727 29.7 22.5 0.670 0.629 0.587 0.529
instructblip-vicuna-13b 0.824 0.564 0.670 37.1 30.2 0.592 0.552 0.507 0.451
blip2-opt-2.7b 0.759 0.653 0.702 29.4 21.7 0.646 0.599 0.551 0.494
blip2-flan-t5-xl 0.810 0.690 0.745 26.4 17.0 0.726 0.661 0.596 0.527
blip2-flan-t5-xxl 0.777 0.721 0.748 26.0 14.6 0.734 0.662 0.597 0.521
llama-adapter-v2 0.118 0.099 0.108 94.5 78.5 0.075 0.042 0.031 0.024

Table 8: OCR results on Memotion and Hateful Memes. We report macro precision (Pmacro), macro recall (Rmacro),
macro F1 (F1macro), word error rate (WER), character error rate (CER), and BLEU-1/2/3/4 (Papineni et al., 2002).

Model Pre Rec F1 Jaccard LHamming ↓

instructblip-flan-t5-xl 0.045 0.326 0.057 0.036 0.500
instructblip-flan-t5-xxl 0.092 0.376 0.128 0.078 0.161
instructblip-vicuna-13b 0.044 0.230 0.050 0.032 0.429
blip2-opt-2.7b 0.027 0.037 0.022 0.013 0.223
blip2-flan-t5-xl 0.196 0.191 0.157 0.112 0.092
blip2-flan-t5-xxl 0.176 0.350 0.188 0.122 0.085
llama-adapter-v2 0.028 0.029 0.021 0.012 0.137

llava-v1.5-7b 0.048 0.345 0.068 0.041 0.406
+ finetuning on ground-truth 0.162 0.373 0.209 0.148 0.063
+ finetuning on explanations 0.562 0.491 0.494 0.400 0.027

llava-v1.5-13b 0.052 0.361 0.071 0.043 0.342
+ finetuning on ground-truth 0.123 0.441 0.167 0.113 0.104
+ finetuning on explanations 0.533 0.473 0.474 0.387 0.027

Table 9: Results of tagging on the YouTube dataset. “FT-Labels” and “FT-Explanations” represent the models
fine-tuned on the ground-truth labels and explanations, respectively. A “↓” next to the metric indicates that lower
values represent better performances. instructblip-vicuna-7b fails to produce valid predictions in this context.

B.2 Details on Models1058

Table 10 contains the names and number of param-1059

eters of the language encoder and vision encoder1060

for each of the models used in our study. Table 111061

contains the accuracy scores of every classification1062

task in our benchmark, examined across all of the1063

zero-shot MLLMs.1064

B.3 Implementation Details 1065

Benchmark Evaluation For inference, we use Nu- 1066

cleus Sampling (Holtzman et al., 2019) with a prob- 1067

ability threshold of 0.9, a temperature of 1.0, and 1068

a maximum output length of 256 tokens. To ac- 1069

count for the randomness in the generation process, 1070

we run each experiment with 3 random seeds and 1071

report the average results. All experiments were 1072

conducted on a server with 5 A100 80GB GPUs. 1073
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Model Language Encoder Vision Encoder

llava-v1.5-7b LLaMA-2-7B-Chat CLIP ViT-L/14 (0.43B)
llava-v1.5-13b LLaMA-2-13B-Chat CLIP ViT-L/14 (0.43B)
instructblip-vicuna-7b Vicuna-7B EVA-ViT-G (1.3B)
instructblip-vicuna-13b Vicuna-13B EVA-ViT-G (1.3B)
instructblip-flan-t5-xxl Flan-T5-XXL (11.3B) EVA-ViT-G (1.3B)
blip2-opt-2.7b OPT-2.7B EVA-ViT-G (1.3B)
blip2-flan-t5-xxl Flan-T5-XXL (11.3B) EVA-ViT-G (1.3B)
llama-adapter-v2 LLaMA-7B CLIP ViT-L/14 (0.43B)

Table 10: Multimodal large language models (MLLMs) we evaluated in the experiment.

Model Misinfo Hate Humor Sarc. Off. Sent. Avg.

llava-v1.5-7b 0.776 0.526 0.763 0.721 0.492 0.485 0.627
llava-v1.5-13b 0.800 0.580 0.767 0.775 0.591 0.327 0.640
instructblip-vicuna-7b 0.319 0.534 0.771 0.638 0.481 0.547 0.549
instructblip-vicuna-13b 0.494 0.550 0.776 0.775 0.599 0.443 0.606
instructblip-flan-t5-xl 0.765 0.508 0.226 0.560 0.393 0.387 0.473
instructblip-flan-t5-xxl 0.486 0.587 0.762 0.777 0.393 0.471 0.579
blip2-opt-2.7b 0.268 0.508 0.543 0.393 0.418 0.637 0.461
blip2-flan-t5-xl 0.770 0.500 0.224 0.597 0.393 0.373 0.476
blip2-flan-t5-xxl 0.775 0.600 0.767 0.674 0.393 0.420 0.605
llama-adapter-v2 0.613 0.548 0.721 0.770 0.473 0.455 0.597

random 0.500 0.500 0.510 0.502 0.499 0.326 0.473

Table 11: Accuracy of all models on the tasks. Best and 2nd best performances among the MLLMs are highlighted
in bold and underline, respectively. “ID” and “SCD” stand for the image description task and the social context
description task, respectively.

The models are implemented using the Trans-1074

formers library (Wolf et al., 2020). We use the1075

NLTK package (Loper and Bird, 2002) to calcu-1076

late BLEU scores, the rouge6 package to calculate1077

ROUGE scores and the sentence-bert7 package1078

to calculate sentence embedding similarities, re-1079

spectively.1080

Model Finetuning. We finetuned the models for 11081

epoch using a batch size of 16, a warmup ratio of1082

0.03, a learning rate of 2e-4 and a cosine annealing1083

learning rate scheduler.1084

6https://github.com/pltrdy/rouge
7https://github.com/UKPLab/

sentence-transformers
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The split-frame image contrasts two 
significant periods in Elon Musk’s life, 
symbolizing not only personal 
transformation but also financial success 
over time.

The left side of the image is set in 1999, 
with a backdrop of a modest, unadorned 
office space that reflects the early struggles 
and humble beginnings. Elon, a then young 
entrepreneur, was portrayed in a simple 
attire with thinning hair, embodying the 
initial phase of his journey under financial 
constraints. The colors in this part of the 
image are muted—grays, browns, and dull 
greens—highlighting the austerity of this 
period. 

The image shows a man in black and white suit.

Two men in black suits and hats

The scene features two men, one on the left and the other on the right, both smiling and posing for 
the camera. They are the main subjects of the image. The background consists of a black and yellow 
color scheme, which adds a contrasting element to the scene. The men are wearing ties, which 
further emphasizes their formal attire. The overall atmosphere of the image is positive and 
engaging, with both men appearing to be enjoying the moment.

The scene features a man with a beard, who is wearing a suit and tie, standing next to a photo of 
himself from 20 years ago. The older photo is in black and white, while the current photo is in color. 
The man appears to be looking at the older photo, possibly reflecting on his life journey or 
comparing the differences between the two images. The overall atmosphere of the scene is 
contemplative and thought-provoking.

InstructBLIP
FlanT5-XXL

InstructBLIP
FlanT5-XXL

LLaMA 
Adapter-v2

LLaVA v1.5 
13B

GPT-4(V)

On the right side, the scene transitions to the present day, showcasing Elon in a modern, sleek office 
environment that signifies success, innovation, and achievement. The figure now displays a full 
head of hair, a testament to the personal and financial growth achieved over the years. This 
transformation is not just physical but also a symbol of the ability to afford high-end cosmetic 
procedures like hair transplant surgery, which represents the pinnacle of his financial success. The 
colors here are vibrant and rich—blues, silvers, and whites.

Figure 6: Example generation by GPT-4(V) and the four strongest MLLMs under each model architecture.
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