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ABSTRACT

Quality-Diversity (QD) algorithms constitute a branch of optimization that is con-
cerned with discovering a diverse and high-quality set of solutions to an optimiza-
tion problem. Current QD methods commonly maintain diversity by dividing the
behavior space into discrete regions, ensuring that solutions are distributed across
different parts of the space. The QD problem is then solved by searching for the
best solution in each region. This approach to QD optimization poses challenges
in large solution spaces, where storing many solutions is impractical, and in high-
dimensional behavior spaces, where discretization becomes ineffective due to the
curse of dimensionality. We present an alternative framing of the QD problem,
called Soft QD, that sidesteps the need for discretizations. We validate this for-
mulation by demonstrating its desirable properties, such as monotonicity, and by
relating its limiting behavior to the widely used QD Score metric. Furthermore,
we leverage it to derive a novel differentiable QD algorithm, Soft QD Using Ap-
proximated Diversity (SQUAD), and demonstrate empirically that it is competitive
with current state of the art methods on standard benchmarks while offering better
scalability to higher dimensional problems.

1 INTRODUCTION

Optimization in machine learning is typically cast as the search for a single solution that maximizes
performance with respect to some objective. Quality-diversity (QD) optimization (Pugh et al., 2016;
Chatzilygeroudis et al., 2021) challenges this paradigm by instead discovering a collection of solu-
tions that are both high-performing and behaviorally diverse. This perspective is especially powerful
in domains with multiple useful optima, or where robustness and user choice matter as much as raw
performance. To illustrate, consider the task of painting a portrait. A traditional optimizer might
aim for the single image that is most similar to the subject. Conversely, a QD optimizer not only
aims for high fidelity, but also explores a behavior space that captures stylistic dimensions like color
palette, brushstroke texture, and degree of abstraction, yielding a set of portraits that all resemble
the subject while spanning a spectrum of artistic expressions. Such diversity is valuable for human
selection and for escaping the limitations of optimizers (Qian et al., 2024) and imperfect objectives.

In recent years, QD optimization has grown from its roots in evolutionary computation into a broadly
applicable machine learning paradigm. In reinforcement learning, QD has generated diverse policies
that facilitate exploration and improve robustness, in both single (Pierrot et al., 2022; Faldor et al.,
2023; Batra et al., 2024) and multi-agent (Ingvarsson et al., 2023) settings. In the context of large
foundation models, QD has been adopted for red-teaming and safety analysis (Samvelyan et al.,
2024; Wang et al., 2025) as well as diverse content generation (Bradley et al., 2024; Ding et al.,
2024). Beyond these, QD has found applications in scenario generation (Bhatt et al., 2022; Fontaine
& Nikolaidis, 2022; Zhang et al., 2024), creative design (McCormack & Gambardella, 2022; Zammit
et al., 2024), engineering (Sfikas et al., 2023; Hagg et al., 2025), robotics (Huber et al., 2023; Zhong
et al., 2023), and scientific discovery (Boige et al., 2023; Janmohamed et al., 2024).

QD algorithms typically operate by partitioning the behavior space into discrete cells and seeking
the best solution in each cell (a tessellation, together with the stored solutions, is often referred to
as the archive). Progress on this objective is commonly measured by the QD Score (Pugh et al.,
2016), which sums the performance of the best solutions across all occupied cells, thus capturing
both quality and coverage. This approach has fueled much of the progress in QD, including recent
advances that incorporate surrogate models (Gaier et al., 2018; Zhang et al., 2022), gradient informa-
tion (Nilsson & Cully, 2021; Fontaine & Nikolaidis, 2021; 2023), and alternative archive structures
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(Vassiliades et al., 2018; Fontaine & Nikolaidis, 2023; Mouret, 2023). Yet, the formulation also
presents two fundamental limitations. First, the non-differentiable nature of tessellations precludes
direct optimization using gradient-based optimizers that dominate modern machine learning, except
through heuristics (Fontaine & Nikolaidis, 2021; Nilsson & Cully, 2021) Second, discretizing the
behavior space suffers from the curse of dimensionality in high-dimensional setting, as either the
number or the volume of cells will grow exponentially, forcing methods to rely on dimensionality
reduction techniques such as PCA or autoencoders (Paolo et al., 2020; Grillotti & Cully, 2021; He-
dayatian & Nikolaidis, 2025). As a result, QD optimization remains hindered in high-dimensional,
gradient-rich machine learning domains, despite its promise.

We address these challenges by rethinking the formulation of QD optimization itself. We introduce
Soft QD Score as a new objective for QD optimization that measures how well a collection of solu-
tions cover the behavior space with high-quality solutions, without discretizing the behavior space.
Building on it, we derive SQUAD, a novel algorithm that leverages a tractable lower bound of the
Soft QD score to enable end-to-end differentiable optimization. This approach has an intuitive in-
terpretation as finding an equilibrium between attractive forces, which drive solutions toward higher
quality, and repulsive forces, which spread them across the behavior space. Through experiments on
both established and newly designed QD benchmarks, we demonstrate that SQUAD broadens the
applicability of QD and provide further insights into its properties.

Our contributions are threefold: 1. We introduce Soft QD, a new formulation of QD optimization
and analyze its theoretical properties. 2. We develop SQUAD, a differentiable QD algorithm derived
from the aforementioned formulation. 3. We evaluate SQUAD on multiple benchmarks, showing its
effectiveness in high-dimensional and complex optimization settings.

2 BACKGROUND

The quality diversity (QD) problem aims to find a collection of high-quality solutions that are diverse
in their behavior. A QD problem is defined by a solution space Θ, an objective or quality function
f : Θ → R which measures a solution’s quality, and a behavior descriptor function desc : Θ → B
that maps each solution to a point in the behavior space B. The goal is to discover for each point
in B a high-quality solution that exhibits that specific behavior. We can formalize this objective as
finding a set of solutions θ = {θb}b∈B that maximizes the integral of their quality over the behavior
space,

∫
B f(θb) db. The problem is referred to as Differentiable Quality-Diversity (DQD) (Fontaine

& Nikolaidis, 2021) when both the objective and descriptor functions are differentiable.

Since the behavior space B is continuous, QD algorithms often partition it into n cells,
A = {c1, . . . , cn}, known as an archive or tessellation. The QD objective is then framed as finding
a high-quality solution for each cell. This is captured by the QD Score, which is the sum of the
maximum quality found within each cell:

max
θ

QDScoreA(θ) =
∑
c∈A

max{f(θ) : θ ∈ θ, desc(θ) ∈ c}. (1)

Discretizing the behavior space introduces a fundamental challenge in high dimensions due to the
curse of dimensionality. Grid archives (e.g., Cully et al. (2015)) divide the space evenly along each
dimension, which makes the number of cells grow exponentially with the dimensionality of B. This
makes it infeasible to maintain a fine-grained grid when B is high-dimensional. Centroidal Voronoi
Tessellation (CVT) archives (Vassiliades et al., 2018) address this by fixing the number of cells and
defining them around a set of centroids. Each cell contains all points that are closer to its assigned
centroid than to any other centroid, creating an almost uniform partitioning of the space. While
this avoids the exponential increase of the number of cells, the volume of each CVT cell still grows
exponentially with dimensionality. Large cells make it difficult to explore new regions by building on
existing solutions (which is commonly done in QD methods), since reaching a different cell would
likely require substantial changes to a current solution. Consequently, both discretization strategies
face practical limitations in high-dimensional behavior spaces, either requiring an infeasibly large
number of cells or forcing exploration across cells that are too large to navigate effectively.
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3 SOFT QUALITY-DIVERSITY

To overcome the challenges of discretizing the behavior space, we introduce Soft QD Score, an
objective for quality-diversity that forgoes tessellations. Conceptually, our approach builds on the
view of QD algorithms as a form of “illumination” (Cully et al., 2015). We treat each solution as
a light source that illuminates the behavior space, where its brightness is proportional to its quality.
A set of solutions is then evaluated based on how well they illuminate the entire behavior space.
This contrasts with traditional approaches, where a discrete cell is considered fully illuminated by
its single best occupant. In Soft QD, solutions contribute to illuminating multiple regions, with their
influence decaying smoothly as a function of distance. Figure 1 illustrates this difference.

Figure 1: Left: In a discrete archive, each cell is fully illuminated by its highest-quality occupant.
Right: In Soft QD, each solution illuminates the area around with an intensity proportional to its
quality. The smooth scalar field defined by the behavior value vθ(b) is independent of discretization.
Formally, to assess a population of solutions θ = {θ1, . . . , θN}, we first define the behavior value
vθ(b) that it induces at any point b in the behavior space as

vθ(b) = max
1⩽n⩽N

fn exp

(
−∥b− bn∥2

2σ2

)
, (2)

where fn = f(θn) and bn = desc(θn) are the quality and behavior descriptors of solution θn,
respectively, and σ is a kernel width parameter. We use the Gaussian kernel, in line with its standard
application in methods like density estimation (Bishop, 2007), to model a smooth, localized field of
influence for each solution. Intuitively, vθ(b) measures the quality of the best available solution for
a target behavior b, discounted exponentially by its distance in behavior space. If the population
contains a solution whose behavior bn perfectly matches b, the behavior value vθ(b) will be at
least as large as its quality fn. Conversely, vθ(b) approaches zero when there are no high-quality
solutions near b. Figure 2 illustrates how the scalar field of behavior values changes as the solutions
move around in the behavior space.

The total behavior value that a population θ induces over the entire behavior space measures its
combined quality and diversity. We call this quantity Soft QD Score and formally define it as:

S(θ) =

∫
B
vθ(b) db. (3)

The term “Soft” highlights a key difference from the traditional QD Score. Instead of a hard assign-
ment of solutions to discrete cells, here each solution continuously contributes to the illumination
of the behavior space. Soft QD Score captures our expectations of a QD solution. To obtain a high
value, the population must contain high-quality solutions spread across the behavior space. More-
over, adding new solutions to a population will only ever increase the value of the population, and so
does increasing the quality of existing solutions. The following theorem, formally stated and proven
in Appendix B, establishes some of these properties. Furthermore, this theorem provides additional
grounding for Soft QD Score by connecting its limiting behavior to the conventional QD Score.
Theorem 1 (Informally stated). The Soft QD Score, as defined in Eq. 3, satisfies the following
properties:

Monotonicity. The value is non-decreasing with respect to the addition of new solutions and the
improvement of existing solution qualities.
Submodularity. The value is a submodular set function.
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Figure 2: Optimizing Soft QD Score with SQUAD. The plots visualize the behavior value func-
tion, vθ(b), induced by a population of five solutions. The bottom plane represents the behavior
space B, the height corresponding to solution quality, f , and the colored surface shows the induced
behavior value vθ. Initially (left), a cluster of low-quality solutions induces a low behavior value.
As SQUAD improves the population (right), the induced behavior value increases in both magnitude
and coverage, leading to a higher Soft QD Score.

Limiting Equivalence. In the limit as σ → 0, the Soft QD Score converges (up to a constant factor)
to the traditional QD score on a fine-grained archive.

4 SQUAD: SOFT QD USING APPROXIMATED DIVERSITY

Directly maximizing the Soft QD Score of a population, S(θ), is challenging as it involves an
integral over the behavior space. We can, however, maximize a tractable lower bound. Theorem 2
establishes such a bound, which forms the basis of our algorithm.

Theorem 2. Given a population θ = {θn}Nn=1 with qualities {fn}Nn=1 and behavior descriptor
vectors {bn}Nn=1 in behavior space B = Rd, its Soft QD Score S(θ) can be approximated by a
lower bound S̃(θ) defined as:

S̃(θ) = (2πσ2)
d
2

 N∑
n=1

fn −
∑

1⩽i<j⩽N

√
fifj exp

(
−∥bi − bj∥2

8σ2

) (4)

A proof is provided in Appendix A.1.

Our algorithm, Soft QD Using Approximated Diversity (SQUAD), iteratively improves a randomly
initialized population of N solutions by updating its constituent solutions to maximize this lower
bound. For brevity, we drop the leading constant (2πσ2)

d
2 as it does not affect the optima. Fur-

thermore, we rename 8σ2 as γ2 which, as we shall see in Section 5.3, controls the quality-diversity
trade-off. Therefore, with some slight abuse of notation, we define the SQUAD objective S̃(θ) as:

S̃(θ) =

N∑
n=1

fn −
∑

1⩽i<j⩽N

√
fifj exp

(
−∥bi − bj∥2

γ2

)
(5)

Assuming that the quality and behavior descriptor functions (f and desc) are differentiable, this
objective will also be fully differentiable with respect to the solutions’ parameters. Hence, we can
use a modern optimizer like Adam (Kingma & Ba, 2015) to iteratively update a population to im-
prove its combined quality and diversity. This objective also has a remarkably simple interpretation.
Essentially, it is composed of two summation terms:

• A quality term
∑

fn which encourages all solutions to have higher qualities.
• A diversity term that acts as a pairwise repulsion, penalizing solutions that are behaviorally close.

The diversity term penalizes behavioral similarity through a sum over solution pairs. Each pair’s
penalty is the product of two components: the geometric mean of their qualities,

√
fifj , and an

exponential term that increases with their proximity. The combination of these two terms heavily
penalizes high-quality solutions that are behaviorally similar. Notably, the geometric mean term

4
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Algorithm 1 Soft QD Using Approximated Diversity (SQUAD)

Require: Optimizer O, learning rate η, population size N , batch size M , neighbors K, epochs
Tmax, kernel bandwidth γ2.

Require: Differentiable evaluation function Eval(θ) returning quality f and descriptor b.
1: Initialize:
2: Population θ = {θi}Ni=1
3: Evaluations (F,B)← Eval(θ)
4: Optimizer state S ← O.init(θ)
5: for t = 1 to Tmax do
6: for each batch of indices I ⊆ {1, . . . , N} do
7: For each i ∈ I, find neighbor indices Ni ← K-Nearest-Neighbors(bi, B)
8: Compute objective function for batch:

S̃I(θ) ≜
∑

i∈I fi − 1
2

∑
i∈I,j∈Ni

√
fifj exp

(
−∥bi−bj∥2

γ2

)
9: GI ← ∇θI S̃I(θ)

10: Update parameters: (θI ,SI)← O.update(θI , GI ,SI , η)
11: Update evaluations for the batch: (FI , BI)← Eval(θI)
12: end for
13: end for
14: return Final population θ

discounts the similarity penalty for low-quality solutions, allowing them to first prioritize quality
optimization before gradually shifting to optimize for behavioral diversity as qualities increase.

The presence of pairwise interactions in the diversity term is a direct consequence of the second-
order approximation we used to derive the bound in Theorem 2. Although higher-order interactions
between triplets and larger groups of solutions also exist in the full integral, our approximation
considers only the most significant pairwise terms. As our analysis in Appendix A.2 shows, the
component of approximation error originating from ignoring the higher-order interactions decreases
as the solutions spread out. Therefore, as the solutions spread out during optimization, ignoring
higher-order interactions becomes less detrimental to the accuracy of the approximation.

Building on this objective, we next describe two additional components needed for an efficient
algorithm.

Efficient computation with batches and nearest neighbors. A naive implementation of the
SQUAD objective in Eq. 5 requires computing and applying O(N2) pairwise repulsions, which
is computationally prohibitive for large populations. To overcome this, we only compute the repul-
sion for each solution from its k-nearest neighbors in the behavior space. This reduces the number
of gradient updates that needs to be calculated at each iteration to O(Nk). The omission of far-
ther solutions from the calculation is justified by the exponential decay of the repulsive force with
distance, which quickly makes the contribution from distant solutions negligible. Additionally, to
manage the memory and computational cost per gradient step, we update the population in mini-
batches rather than all at once. In Appendix C.2 and C.1 we report the results of ablation studies on
the choice of k and the batch size, which show the robustness of SQUAD to these hyperparameters.

Handling bounded behavior spaces. Our derivation of the SQUAD objective assumes an un-
bounded behavior space B = Rd. However, many problems, including our experiments, have in-
trinsically bounded behavior descriptors. While extending the derivation to bounded domains is
possible, it leads to a significantly more complex and potentially less stable final objective. We
instead adopt a simpler approach: we transform the bounded space into an unbounded one using
the logit function. Specifically, we map each point in the bounded behavior space b ∈ [0, 1]d to
b′ = log b

1−b ∈ Rd. We found this choice to be critical for the success of the algorithm, and ablated
it in Appendix C.3 to confirm its importance.

Putting these pieces together, Algorithm 1 presents a complete pseudocode for SQUAD.

5
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5 EXPERIMENTS

Our experiments are designed to comprehensively evaluate SQUAD and answer three key questions.
First, how does SQUAD scale with the dimensionality of the behavior space? Second, how does it
navigate the fundamental trade-off between solution quality and population diversity? Lastly, how
does SQUAD compare with state-of-the-art methods on complex, high-dimensional optimization
problems? To answer these questions, we evaluate SQUAD and several baselines on three bench-
mark domains, each selected to probe one of these specific aspects.

5.1 EXPERIMENTAL SETUP

Benchmark domains We evaluate different facets of QD optimization on three benchmarks, de-
scribed below and in detail in Appendix D.1.
Linear Projection (LP): Following Fontaine et al. (2020), an algorithm must maximize an objective
while maintaining diversity in a d-dimensional behavior space defined by a linear projection of the
solution vector. We use the multi-modal Rastrigin function (Rastrigin, 1974), making this a simple
yet challenging testbed for analyzing scalability with respect to d.
Image Composition (IC): Inspired by computational creativity tasks (Tian & Ha, 2022; Ibarrola
& Grace, 2023), this benchmark adjusts the parameters of a set of circles (position, radius, color,
transparency) to reconstruct a target image. A solution’s quality is its similarity to the target image,
while a 5-d behavior space encodes properties such as color harmony. The moderately sized behav-
ior space and challenging optimization make it ideal for analyzing the quality-diversity trade-off.
Latent Space Illumination (LSI): Based on Fontaine & Nikolaidis (2021), algorithms search the
latent space of StyleGAN2 (Karras et al., 2020) to generate images matching a target text prompt.
Following Fontaine & Nikolaidis (2023), we target images of “Tom Cruise” while diversifying in
age and hair length. We also propose a harder version with a 7-d behavior space in which we target
images of “a detective from a noir film”. Both objective and behavior descriptors use CLIP (Radford
et al., 2021) embeddings to evaluate the similarity between generated images and given texts. This
serves as our most difficult domain for testing QD algorithms.

Baselines We compare SQUAD against state-of-the-art algorithms for high-dimensional and dif-
ferentiable QD, using the open source pyribs (Tjanaka et al., 2023b) implementations: CMA-
MAEGA (Fontaine & Nikolaidis, 2023), CMA-MEGA (Fontaine & Nikolaidis, 2021), and Sep-
CMA-MAE (Tjanaka et al., 2023a). We also include Gradient-Assisted MAP-Elites (GA-ME),
which adapts the policy-gradient-based algorithm PGA-ME Nilsson & Cully (2021) to the DQD
setting by using direct gradients from the objective function (GA-ME is also similar to the OG-
MAP-Elites (line) baseline in Fontaine & Nikolaidis (2021)). To ensure a fair comparison in high-
dimensional behavior spaces, all baselines use Centroidal Voronoi Tesselation (CVT) to discretize
the behavior space into a fixed-size archive Vassiliades et al. (2018). In addition to these methods, we
also include DNS (Bahlous-Boldi et al., 2025) which is a modern variant of novelty search (Lehman
& Stanley, 2011) used for QD optimization in more complex domains. We also include an improved
variant of it that uses gradient-based updates (similar to GA-ME) to complement its regular muta-
tion operator. We denote this variant as DNS-G. Additional details about the hyperparameters of the
algorithms are presented in Appendix D.3.

Evaluation metrics To provide a thorough analysis of the trade-offs offered by each algorithm,
we use several metrics to measure the quality and diversity of the generated populations.
For quantifying diversity, we primarily use the Vendi Score (VS) (Friedman & Dieng, 2023), which
quantifies the effective number of distinct clusters in a population. We supplement this with Cover-
age which is the percentage of occupied cells in a fixed CVT archive. To understand the quality of
the generated populations, we report the Maximum Quality to assess pure optimization performance
and the Mean Quality to evaluate the overall quality of solutions across the entire population. Fi-
nally, to compare the overall performances, we use QD Score (Pugh et al., 2016) which measures
the sum of qualities in a fixed CVT archive and Quality-weighted Vendi Score (QVS) (Nguyen &
Dieng, 2024) which extends Vendi Score to account for the quality of a population as well. A full
definition of all of the metrics and further discussion is provided in Appendix D.2.
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5.2 SCALABILITY TO HIGH-DIMENSIONAL BEHAVIOR SPACES

To evaluate SQUAD’s scalability to high-dimensional behavior spaces, we conducted three sets of
experiments on the LP benchmark, using 4, 8, and 16-dimensional behavior spaces. As shown in
Figure 3, methods that leverage gradient information from descriptors (SQUAD, CMA-M(A)EGA)
perform much better than methods that do not (Sep-CMA-MAE, GA-ME, DNS) which highlights
the difficulty of exploring high-dimensional behavior spaces without gradients. To assess statistical
significance of the results in Figure 3, we evaluated algorithm performance per task and metric using
Kruskal-Wallis tests (all p < 0.001) followed by Holm-Bonferroni-corrected Mann-Whitney U tests
to compare the best algorithm against the others. All differences were significant (p < 0.001) except
for CMA-MAEGA on medium (d = 8) and hard (d = 16) tasks for QD Scores, where it was not
significantly different from the top-performing algorithms; in the hard domain, this is primarily due
to the high variance of CMA-MAEGA.

While CMA-MEGA and CMA-MAEGA have a slight edge in the 4-dimensional behavior space,
SQUAD closes this gap and noticeably outperforms them in the more challenging versions of the
task. We attribute the initial success of CMA-M(A)EGA to their large archives (104 cells), which
are dense enough to effectively cover the low-dimensional space. However, as the dimensionality
increases, the density of their archives drops exponentially, making the feedback less informative.
This limitation is a key reason for their performance decline in higher-dimensional spaces. SQUAD,
on the other hand, does not discretize the behavior space which enables it to maintain strong per-
formance as dimensionality increases. Furthermore, SQUAD demonstrates greater stability across
all three tasks, with the lowest variance across different evaluations. More detailed results of these
experiments are presented in Appendix E.

easy
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SQUAD CMA-MAEGA CMA-MEGA DNS DNS-G Sep-CMA-MAE GA-ME

Figure 3: QVS (left) and QD Score (right) on LP tasks with increasing behavior descriptor
dimensionality (4, 8, 16). All results are averaged over 10 runs, with error bars depicting the
standard errors. SQUAD’s performance relative to the baselines improves with task complexity,
with it outperforming all other methods on the most challenging 16-d task for both metrics.

5.3 ANALYSIS OF THE QUALITY-DIVERSITY TRADE-OFFS

Obtaining diversity often comes at the expense of quality. In this section, we shed some light on
the quality-diversity tradeoff that SQUAD offers in comparison to baseline algorithms using the IC
domain, which provides a realistic optimization challenge with a moderately sized, 5-d behavior
space. We also examined the bandwidth parameter, γ2, and showed that it acts a as a knob, allowing
SQUAD to effectively trade off quality for diversity.

As the results in Table 1 indicate, SQUAD outperforms the baselines on most metrics. The average
quality of the solutions found by SQUAD is significantly higher than those of the baselines. Further-
more, the high quality of the best solution in SQUAD’s population shows that it is highly capable
in pure quality optimization. On diversity metrics, SQUAD maintains its noticeable lead on Vendi
Score but falls short of CMA-MAEGA on Coverage by a small margin. The discrepancy between
the two diversity metrics can be explained by the fact that Vendi Score takes the shape of the archive
into account. Therefore, while the larger number of solutions found by CMA-MAEGA helps it

7
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Table 1: Performance in the IC domain. Comparing SQUAD (γ2 = 1) with baselines in terms
of the quality (Best Objective, Mean Objective) and diversity (Vendi Score, Coverage). Results are
mean ± standard error averaged over 10 runs, with the best score for each metric shown in bold.

Algorithm Quality Diversity

Mean Objective Max Objective Vendi Score Coverage

SQUAD 83.37± 0.02 93.58± 0.10 5.49± 0.00 5.68± 0.06
CMA-MAEGA 74.83± 0.20 88.79± 0.92 3.93± 0.03 5.85± 0.05
CMA-MEGA 75.98± 0.26 86.18± 1.58 3.25± 0.24 4.54± 0.49
DNS 71.30± 0.15 74.54± 0.18 1.62± 0.01 1.52± 0.02
DNS-G 74.49± 0.03 76.48± 0.11 1.67± 0.00 1.49± 0.03
Sep-CMA-MAE 72.15± 0.21 74.57± 0.04 1.32± 0.01 0.46± 0.02
GA-ME 73.44± 0.41 74.53± 0.45 1.14± 0.04 0.19± 0.03

cover the behavior space more densely, this coverage is concentrated in a smaller region, leading to
its lower Vendi Score. This is further supported by the archive visualizations in Appendix E.
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Figure 4: Controlling the quality-diversity trade-
off with γ2. The plot shows how varying γ2 im-
pacts solution quality, measured by the mean objec-
tive (blue line), and diversity, measured by the Vendi
Score (dashed red line).

Having compared SQUAD with the base-
lines, we examined how to control its quality-
diversity tradeoff via the bandwidth parame-
ter, γ2. As Equation 5 suggests, increasing γ2

boosts the contribution of the diversity term
by increasing its effective range and intensity.
Empirically, we confirmed this by evaluating
SQUAD with different values of γ2 ranging
from 10−3 to 50 in the IC domain. As Figure 4
shows, increasing γ2 indeed improves the di-
versity of the solutions, albeit at the price of
their quality. These results show how SQUAD
lets the users trade off quality for diversity
(and vice versa) by changing the value of a
single hyperparameter.

5.4 PERFORMANCE ON CHALLENGING DQD PROBLEMS

In our last set of experiments, we compared SQUAD with baselines on the challenging LSI domain.
In line with prior work (Fontaine & Nikolaidis, 2023) we searched the latent space of StyleGAN2 for
latents that would generate images of Tom Cruise and are diverse with respect to age and hair length.
Additionally, we also set up a more challenging version of the LSI benchmark with a 7-d behavior
space. In this more difficult task the goal is to generate “photos of a detective from a noir film” and
the images have to be diverse with respect to different attributes including facial expression, pose,
and hair color. Additional details about both versions of LSI is presented in Appendix D.1.3.
Table 2: Performance in the Latent Space Illumination (LSI) domain. Results are averaged over
5 runs and reported as mean ± standard error, with the best scores highlighted in bold. Algorithms
that failed to achieve a positive mean objective (hence, have a zero QVS) are shown with ∗.

Algorithm LSI LSI (Hard)

QD Score (×103) QVS QD Score (×103) QVS

SQUAD 13.41± 0.19 177.0± 2.8 2.55± 0.08 151.3± 0.1
CMA-MAEGA 6.82± 0.10 121.6± 9.7 0.39± 0.07 99.3± 1.0
CMA-MEGA 8.70± 0.07 140.1± 1.7 0.27± 0.05 92.8± 1.5
DNS −9.31± 2.52 0.0± 0.0∗ −11.27± 1.46 0.0± 0.0∗

DNS-G −8.53± 1.50 0.0± 0.0∗ −6.81± 0.47 0.0± 0.0∗

Sep-CMA-MAE −0.59± 0.45 0.0± 0.0∗ 0.02± 0.04 0.0± 0.0∗

GA-ME −14.90± 1.67 0.0± 0.0∗ 0.08± 0.00 0.0± 0.0∗
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The performance of different algorithms are compared in terms of QD Score and Quality-weighted
Vendi Score in Table 2. In both LSI tasks, SQUAD outperforms the baselines by a significant
margin, showcasing its capability in challenging domains. A closer inspection of the data (available
in Appendix E) reveals that SQUAD is particularly adept in exploring the behavior space. Thus,
despite performing similar to the baselines in terms of mean quality, SQUAD’s ability to maintain
a better coverage of the behavior space differentiates it from the baselines. Similar to our prior
results, Sep-CMA-MAE and GA-ME perform poorly on both versions of the LSI task. Here, we
attribute their poor performance to the high-dimensional and non-linear nature of the optimization
landscape, which makes it difficult to navigate the behavior space. Interestingly, GA-ME, despite
using gradient ascent updates, is unable to effectively escape local optima, highlighting the important
role of modern optimizers in more challenging domains.

6 RELATED WORK

Quality-diversity (QD) optimization has recently become a topic of interest in machine learning,
following the introduction of the NSLC (Lehman & Stanley, 2011) and MAP-Elites (Cully et al.,
2015) algorithms. MAP-Elites, as a canonical QD algorithm, uses random mutations to find solu-
tions that occupy different behavioral niches in a tessellated behavior space. This general recipe
is improved by methods that have proposed better discretization schemes (Vassiliades et al., 2018;
Mouret, 2023), incorporated modern evolutionary optimizers (Fontaine et al., 2020; Tjanaka et al.,
2023a; Batra et al., 2024; Choi & Togelius, 2021), and improved the search by using gradient-aware
mutations (Nilsson & Cully, 2021; Pierrot et al., 2022; Faldor et al., 2023) and crossovers (Ing-
varsson et al., 2023). It is worth noting that these advancements rely on discrete archives, which
are known to be sensitive to the archive resolution (Fontaine & Nikolaidis, 2023). To the best of
our knowledge, the only other work that proposes a discretization-free formulation of QD is the
continuous QD Score of Kent et al. (2022). Continuous QD Score is similar to SoftQD Score in
that both compute an integral over the behavior space. However, continuous QD Score employs
a non-smooth kernel, which makes it difficult to approximate analytically and restricts estimation
to Monte Carlo sampling methods. Consequently, it is used exclusively as an evaluation metric
rather than as an optimization objective. Another major contribution was the formulation of differ-
entiable QD (Fontaine & Nikolaidis, 2021) where the quality and behavior descriptor functions are
assumed to be differentiable. This, along with the introduction of gradient arborescence algorithms
(Fontaine & Nikolaidis, 2023) paved the way for QD algorithms to tackle large scale optimization
problems (Yu et al., 2025; Wan et al., 2025). Our work is a continuation of this trend that frames the
whole QD problem as a unified optimization problem, enabling seamless integration with modern
gradient-based optimizers.

The pairwise repulsive term in SQUAD’s objective is reminiscent of the kernel-based repulsion used
in particle variational inference methods such as Stein Variational Gradient Descent (SVGD) (Liu
& Wang, 2016), where particles are simultaneously attracted toward regions of high target density
and repelled from one another to prevent collapse. Unlike QD, these methods aim to approximate
a probability distribution rather than optimize quality while diversifying in a behavior space, which
does not exist in SVGD or its reinforcement learning variant, SVPG (Liu et al., 2017). Nonethe-
less, recent SVGD advances for high-dimensional inference, including message passing (Zhuo et al.,
2018), matrix-valued kernels (Wang et al., 2019), and Newton-like updates (Chen et al., 2019), offer
practical ideas for stabilizing and scaling repulsive forces that could be adapted to SQUAD’s ob-
jective. Lastly, a related example outside variational inference is DOMiNO (Zahavy et al., 2023),
which enforces diversity in reinforcement learning via repulsive forces and a Lagrangian formula-
tion, showing the broader utility of such mechanisms for balancing quality with diversity.

7 CONCLUSION

In this work, we introduced Soft QD as a new formulation of QD optimization that does not require
discretizing the behavior space. Building on it, we proposed SQUAD, a novel QD algorithm tailored
for differentiable domains. Our experiments across multiple benchmarks demonstrated that SQUAD
achieves competitive performance with state-of-the-art methods, and exhibits promising scalability
to higher-dimensional behavior spaces. In addition, we highlighted how it enables a convenient
trade-off between quality and diversity, offering a fresh perspective on the design of QD algorithms.
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Despite the encouraging results, several limitations remain. First, the current formulation of SQUAD
assumes differentiable objectives and behavior descriptors, which may be costly to obtain or unavail-
able in certain domains. Extending Soft QD to reinforcement learning settings with estimated gra-
dients, or to fully non-differentiable domains via evolutionary strategies, represents a promising di-
rection, where issues such as navigating deceptive behavior landscapes may pose unique challenges.
Second, our analysis in Section 5.3 showed the critical role of the kernel bandwidth, γ in shaping
the quality-diversity trade-off of SQUAD. Future work could investigate adaptive or per-solution
schedules for γ, for example by adjusting it based on the distribution of solutions or by annealing it
during training. Moreover, while SQUAD’s second-order approximation of the Soft QD Score of-
fers tractability, it also discards higher-order interactions. Alternatives such as sparsification of the
interactions, message-passing, or Monte Carlo approaches may provide richer modeling of interac-
tions, though potentially at higher computational cost. Lastly, while we use a logit transformation
to handle bounded behavior spaces, exploring alternative transformations could be an avenue for
future work to further improve performance. Taken together, we introduce Soft QD as a powerful
conceptual tool and SQUAD as a practical algorithm, highlighting a new path for quality-diversity
in complex, differentiable domains. We hope this work inspires the community to build upon this
foundation, realizing the full promise of scalable and general purpose QD.
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A LOWER BOUNDING SOFT QD SCORE

A.1 APPROXIMATE SOFT QD SCORE

Here, we will provide a formal proof of Theorem 2.

Similar to the main paper, let Θ be a parameter space and θ = {θ1, . . . , θN} be a set of N solutions
where θn ∈ Θ. Furthermore, let f : Θ→ [0,∞) be an objective function that assigns higher values
to better solutions, and let desc : Θ → Rd be the behavior descriptor function that quantifies the
behavior of each solution with a d-dimensional vector. Throughout the proofs, we use bi and fi as
shorthands for desc(θi) and f(θi), respectively. The Soft QD Score of the population θ is defined
as

S(θ) =

∫
B
vθ(b) db =

∫
B

[
max

1⩽n⩽N
fn exp

(
−∥b− bn∥2

2σ2

)]
db. (6)

Theorem 2. Given a population θ = {θn}Nn=1 with qualities {fn}Nn=1 and behavior descriptor
vectors {bn}Nn=1 in behavior space B = Rd, its Soft QD Score S(θ) can be approximated by a
lower bound S̃(θ) defined as:

S̃(θ) = (2πσ2)
d
2

 N∑
n=1

fn −
∑

1⩽i<j⩽N

√
fifj exp

(
−∥bi − bj∥2

8σ2

) (7)

Proof. To make the notation simpler, let us define the contribution of a single solution θn at a point
b ∈ B as

gn(b) = fn exp

(
−∥b− bn∥2

2σ2

)
. (8)

The behavior value vθ(b) is the maximum of these individual contributions:

vθ(b) = max
n

gn(b) (9)

Using Maximum-minimums identity, we can rewrite this as

vθ(b) = max
n

gn(b) (10)

=
∑
i

gi(b)−
∑
i<j

min (gi(b), gj(b)) +
∑

i<j<k

min (gi(b), gj(b), gk(b)) − . . . (11)

Therefore,

S(θ) =

∫
max
n

gn(b) db (12)

=
∑
i

∫
gi(b) db (13)

−
∑
i<j

∫
min (gi(b), gj(b)) db (14)

+
∑

i<j<k

∫
min (gi(b), gj(b), gk(b)) db (15)

− · · · (16)

To get a tractable lower bound on this, we truncate the series and only consider the first two sums.
This discards the higher-order interactions involving three or more solutions. Intuitively, if the
solutions are well-spread in the behavior space (i.e., ∥bi − bj∥2 ≫ 2σ2) this approximation is
acceptable (detailed error analysis is provided in the next section). The second order-approximation,
S̃(θ), is therefore obtained by only keeping the individual and pairwise effects:

S(θ) ≈ S̃(θ) =
∑
i

∫
gi(b) db−

∑
i<j

∫
min (gi(b), gj(b)) db (17)
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Next, we will derive a closed-form solution for each of the two terms.

The Quality Term (Individual Contributions): The integrals in the first sum are standard Gaussian
integrals and represent the contribution of each solution to the Score, irrespective of other solutions.
We can evaluate them analytically:∫

Rd

gi(b) db =

∫
Rd

fi exp

(
−∥b− bi∥2

2σ2

)
db = fi(2πσ

2)
d
2 (18)

Hence, the first sum in S̃(θ) evaluates to

N∑
i=1

∫
Rd

gi(b) db = (2πσ2)
d
2

N∑
i=1

fi. (19)

The Diversity Term (Pairwise Overlaps): The integrals in the second term are more difficult to
compute and require yet another approximation. Note that for any pair of non-negative numbers
x, y we have min(x, y) ⩽

√
xy (geometric mean). Using this, we have the following upper bound

approximation: ∫
Rd

min(gi(b), gj(b)) db ≈
∫
Rd

√
gi(b)gj(b) db. (20)

Now note that √
gi(b)gj(b) =

√
fi exp

(
−∥b− bi∥2

2σ2

)
fj exp

(
−∥b− bj∥2

2σ2

)
(21)

=
√
fifj exp

(
−∥b− bi∥2 + ∥b− bj∥2

4σ2

)
. (22)

The exponent is a quadratic in b and can be simplified as

∥b− bi∥2 + ∥b− bj∥2 = ∥b∥2 − 2b · bi + ∥bi∥2 + ∥b∥2 − 2b · bj + ∥bj∥2 (23)

= 2∥b∥2 − 2b · (bi + bj) + ∥bi∥2 + ∥bj∥2 (24)

= 2

∥∥∥∥b− bi + bj

2

∥∥∥∥2 − 2

∥∥∥∥bi + bj

2

∥∥∥∥2 + ∥bi∥2 + ∥bj∥2 (25)

= 2

∥∥∥∥b− bi + bj

2

∥∥∥∥2 + 1

2

(
−∥bi∥2 − 2bi · bj − ∥bj∥2 + 2∥bi∥2 + 2∥bj∥2

)
(26)

= 2

∥∥∥∥b− bi + bj

2

∥∥∥∥2 + 1

2
(∥bi∥2 − 2bi · bj + ∥bj∥2) (27)

= 2

∥∥∥∥b− bi + bj

2

∥∥∥∥2 + 1

2
∥bi − bj∥2. (28)

Substituting this back into the exponential, we get

exp

(
− 1

4σ2

[
2

∥∥∥∥b− bi + bj

2

∥∥∥∥2 + 1

2
∥bi − bj∥2

])
= exp

(
−∥bi − bj∥2

8σ2

)
exp

(
−∥b−

bi+bj

2 ∥2
2σ2

)
.

(29)
The overlap integral is therefore∫

Rd

√
gigj db =

√
fifj exp

(
−∥bi − bj∥2

8σ2

)∫
Rd

exp

(
−∥b−

bi+bj

2 ∥2
2σ2

)
db, (30)

where the integral is now just a regular Gaussian integral centered at bi+bj

2 . The whole integral thus
evaluates to √

fifj(2πσ
2)d/2 exp

(
−∥bi − bj∥2

8σ2

)
(31)
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Putting these all together, we establish a closed form approximation (lower bound) of the archive
score:

S̃(θ) = (2πσ2)
d
2

 N∑
n=1

fn −
∑

1⩽i<j⩽N

√
fifj exp

(
−∥bi − bj∥2

8σ2

) (32)

A.2 ANALYSIS OF APPROXIMATION ERROR

The error between the true Soft QD Score of a population and the second order approximation de-
rived above stems from two sources: (1) the truncation of higher-order interaction in the maximum-
minimums equality (Equation 17), and (2) the replacing of pairwise minimums with their geometric
means in the integrals (Equation 20). We will analyze each of these errors and discuss how we can
control them.

Truncation Error: The truncation error for the second order approximation is

ε1 = |S(θ)− S̃(θ)| (33)

=

∣∣∣∣∣∣
∫

max
n

gn(b) db−

∑
i

∫
gi(b) db−

∑
i<j

∫
min (gi(b), gj(b)) db

∣∣∣∣∣∣ (34)

=

∣∣∣∣∣∣
∑

i<j<k

∫
min (gi(b), gj(b), gk(b)) db− · · ·

∣∣∣∣∣∣ (35)

Lemma 1 (Bonferroni Inequalities for the Maximum). Let {x1, . . . , xN} be a set of non-negative
real numbers and let Sm =

∑
|I|=m mini∈I xi. The partial sums of the maximum-minimums equal-

ity, PK =
∑K

m=1(−1)m−1Sm, provide alternating bounds on the maximum value:

• If K is odd, PK ⩾ max(x1, . . . , xN ).

• If K is even, PK ⩽ max(x1, . . . , xN ).

Proof. For bounding the approximation error, we only need to use this lemma with K = 2, 3,
which we shall prove. Without loss of generality, assume that the numbers are sorted such that
x1 ⩾ x2 ⩾ · · · ⩾ xN ⩾ 0. The contribution of xk to the sum Sm is

(
k−1
m−1

)
xk, since xk is the

minimum of a subset of m variables iff the other m − 1 elements are all chosen from the k − 1
elements smaller than it.

The partial sums PK can thus be written as

PK =

K∑
m=1

(−1)m−1Sm =

N∑
k=1

[
K∑

m=1

(−1)m−1

(
k − 1

m− 1

)]
xk. (36)

The inner sum is a partial sum of a binomial expansion. Therefore, using the fact that

m∑
j=0

(−1)j
(
n

j

)
= (−1)m

(
n− 1

m

)
, (37)

(which follows from induction on m) we can see that the coefficient of xk in PK is

C(k,K) =

min(k−1,K−1)∑
j=0

(−1)j
(
k − 1

j

)
= (−1)min(k−1,K−1)

(
k − 2

min(k − 1,K − 1)

)
. (38)

Let us now consider the cases of K = 2 and K = 3 individually.
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Case K = 2: Consider P2 =
∑

i xi −
∑

i<j min(xi, xj). For all k ⩾ 2, the coefficient of xk in P2

is 2− k and x1 is only present once, with coefficient 1 in S1. Therefore, we have

P2 = x1 +

N∑
k=2

(2− k)xk. (39)

Since xk’s are all non-negative and 2− k is non-positive, the sum is non-positive. Therefore,

P2 ⩽ x1 = max(x1, . . . , xN ). (40)

Case K = 3: Consider P3 = P2 +
∑

i<j<k min(xi, xj , xk). For all k ⩾ 3, the coefficient of xk in

P3 is
(
k−2
2

)
= (k−2)(k−3)

2 . Furthermore, x1 is only present once, with coefficient 1 in S1 and x2 is
present only twice, once with a +1 coefficient in S1 and once with coefficient −1 in S2. Therefore,
we have

P3 = x1 + 0 · x2 +

N∑
k=3

(k − 2)(k − 3)

2
xk. (41)

Since xk’s are all non-negative and so are all the coefficients, the sum is non-negative. Therefore,

P3 ⩾ x1 = max(x1, . . . , xN ) (42)

Lemma 2 (Bounding the Truncation Error). The truncation error ε1 is bounded by the sum of the
integrals of the third-order minimums:

ε1 ⩽
∑

i<j<k

∫
min(gi(b), gj(b), gk(b)) db (43)

Proof. The Bonferroni inequality for K = 2 states that for any point b

max
n

gn(b) ⩾
∑
i

gi(b)−
∑
i<j

min(gi(b), gj(b)). (44)

Integrating this pointwise inequality over the domain of b yields:

S(θ) =

∫
max

k
gn(b) db ⩾

∫ ∑
i

gi(b)−
∑
i<j

min(gi(b), gj(b))

 db = S̃(θ) (45)

Therefore, S̃(θ) is indeed a lower bound on S(θ) and we can write the error as ε1 = S(θ)− S̃(θ).
Similarly, the Bonferroni inequality for K = 3 states that for any point b

max
n

gn(b) ⩽
∑
i

gi(b)−
∑
i<j

min(gi(b), gj(b)) +
∑

i<j<k

min(gi(b), gj(b), gk(b)). (46)

Integrating over the domain of b yields:

S(θ) =

∫
max
n

gn(b) db (47)

⩽
∫ ∑

i

gi(b)−
∑
i<j

min(gi(b), gj(b)) +
∑

i<j<k

min(gi(b), gj(b), gk(b))

 db (48)

= S̃(θ) +

∫ ∑
i<j<k

min(gi(b), gj(b), gk(b)) db (49)

=⇒ S(θ)− S̃(θ) ⩽
∫ ∑

i<j<k

min(gi(b), gj(b), gk(b)) db (50)

=⇒ ε1 ⩽
∑

i<j<k

∫
min(gi(b), gj(b), gk(b)) db (51)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Given the above, we use the same technique that we used before and replace minimum with geo-
metric mean to compute the integral. We can see that∫

min(gi(b), gj(b), gk(b)) db ⩽
∫

(gi(b) · gj(b) · gk(b))
1
3 db (52)

= (fifjfk)
1
3

∫
exp

(
−∥b− bi∥2 + ∥b− bj∥2 + ∥b− bk∥2

6σ2

)
db

(53)
The integral is the product of three Gaussians. By completing the square, similar to the pairwise
case, we can rewrite it as a Gaussian centered around bi+bj+bk

3 and a constant term. The result
would be∫

(gi(b) · gj(b) · gk(b))
1
3 db = (fifjfk)

1
3 (3πσ2)

d
2 exp

(
−∥bi − bj∥2 + ∥bj − bk∥2 + ∥bi − bk∥2

18σ2

)
(54)

So, we have

ε1 ⩽
∑

i<j<k

(fifjfk)
1
3 (

2πσ2

3
)

d
2 exp

(
−∥bi − bj∥2 + ∥bj − bk∥2 + ∥bi − bk∥2

18σ2

)
(55)

From this, we conclude that if the solutions are well separated (i.e., the mean squared distance of
any triplet is significantly larger than 6σ2) the error becomes negligible .

Pairwise Integral Approximation Error The pairwise integral approximation error is due to the
estimation of pairwise minimums using geometric means. For every pair of solutions (i, j) this error
is

ϵi,j =

∫
B

(√
gi(b)gj(b)−min (gi(b), gj(b))

)
db. (56)

It follows from the arithmetic-geometric inequality that for every non-negative numbers x and y,√
xy −min(x, y) ⩽ 1

2 |x− y|. Integrating over b preserves this inequality, yielding

ϵi,j ⩽
1

2

∫
B
|gi(b)− gj(b)|db. (57)

Note that the right hand side is just the ℓ1 distance between the functions gi, gj . This distance can be
further simplified by breaking down |gi−gj | using the triangle inequality. Without loss of generality,

assume that fj ⩽ fi, then add and subtract fj exp
(
−∥b−bi∥2

2σ2

)
, we get

|gi(b)−gj(b)| ⩽ |fi−fj | exp
(
−∥b− bi∥2

2σ2

)
+fj

∣∣∣∣exp(−∥b− bi∥2
2σ2

)
− exp

(
−∥b− bj∥2

2σ2

)∣∣∣∣
(58)

Now, if we integrate both sides, the first term in the right hand side is just a multiple of a Gaussian
integral. So we would get∫

|gi(b)− gj(b)|db ⩽ (2πσ2)
d
2

(
|fi − fj |+ fj

∫
B
|pi(b)− pj(b)|db

)
, (59)

where pi(b) is the pdf of a Gaussian centered at bi with covariance σ2I. The remaining integral
is twice the Total Variation distance dTV (pi, pj). Using Pinsker’s inequality, we can transform it

into the KL divergence between two Gaussians, which does have a closed form solution, ∥bi−bj∥2

2σ2 .
Replacing the integral and combining everything, we arrive at the following bound for the error:

ϵi,j ⩽ (2πσ2)
d
2

(
|fi − fj |+min(fi, fj)

∥bi − bj∥
σ

)
(60)

Finally, using the triangle inequality, we see that

ε2 ⩽ (2πσ2)
d
2

∑
i<j⩽K

(
|fi − fj |+min(fi, fj)

∥bi − bj∥
σ

)
. (61)

Putting both of these bounds together, a final application of triangle inequality shows that

|S(θ)− S̃(θ)| ⩽ ε1 + ε2, (62)
where ε1 and ε2 are themselves bounded by Equation 55 and Equation 61, respectively.
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B PROPERTIES OF SOFT QD SCORE

Here, we will further discuss some properties of the Soft QD Score that make it a suitable measure
of quality and diversity. Theorems 3, 4, 5, and 6 formalize and prove the statement of Theorem 1 in
the main paper and show multiple properties of the Soft QD Score.

Theorems 3 and 4 show that SoftQD Score is monotonic with respect to population size and qualities
of members of the population. This means that adding new solutions to a population and improving
the quality of existing ones will never decrease the SoftQD Score. We note that this is a desirable, yet
non-trivial property of a measure of quality and diversity. For instance, neither mean objective value
(as a measure of quality) nor the mean behavior distance (as a measure of diversity) of a population
are monotonic with respect to the population size; that is, adding a new solution can decrease them.

Theorem 5 shows that SoftQD Score is also submodular. Being submodular is particularly conve-
nient as it implies the existence of efficient approximate algorithms for maximizing it under certain
conditions. For instance, it is well known that maximizing a submodular function subject to a cardi-
nality constraint admits a 1− 1

e approximation algorithm (Nemhauser et al., 1978). This is valuable
when we want to select a fixed-size subset of a large population that preserves as much of the Soft
QD Score as possible (e.g., for evaluation or compression).

Lastly, we establish a connection between the traditional QD Score and the limiting behavior of the
Soft QD Score through Theorem 6.

Theorem 3 (Monotonicity with respect to population size). Let θ = {θ1, . . . , θN} be a population
and let θN+1 be any new solution. If θ+ = θ ∪ {θN+1}, then S(θ) ⩽ S(θ+).

Proof. Let fN+1 = f(θN+1) and bN+1 = desc(θN+1). The behavior value for the new population
θ+ can be written as

vθ+(b) = max

(
vθ(b), fN+1 exp

(
−∥b− bN+1∥2

2σ2

))
≥ vθ(b). (63)

Integrating both sides of the above inequality over the behavior space B yields the result:

S(θ+) =

∫
B
vθ+(b) db ⩾

∫
B
vθ(b) db = S(θ). (64)

Theorem 4 (Monotonicity with respect to quality). Let θ = {θ1, . . . , θN} be a population and
θ′ = θ ∪ {θ′n}\{θn} be another population that is identical to θ except that the n-th solution θn
is replaced by θ′n such that desc(θ) = desc(θ′n) = bn and f(θ′n) = f ′

n ⩾ fn = f(θn). Then,
S(θ) ⩽ S(θ′).

Proof. Let the behavior values for θ and θ′ be vθ(b) and vθ′(b), respectively. Since, f ′
n ⩾ fn, for

every b we have f ′
n exp(−∥b−bn∥2

2σ2 ) ⩾ fn exp(−∥b−bn∥2

2σ2 ). Therefore, we can write

vθ′(b) = max

(
vθ(b), f

′
n exp

(
−∥b− bn∥2

2σ2

))
≥ vθ(b). (65)

Integrating both sides of the above inequality yields the result:

S(θ′) =

∫
B
vθ′(b) db ⩾

∫
B
vθ(b) db = S(θ). (66)

Theorem 5 (Submodularity). Let θ = {θ1, . . . , θN} be a population. The Soft QD Score S defined
on subsets of θ is submodular. That is, for any U ⊆ V ⊆ θ and any new solution θ′ /∈ V with
quality f ′ = f(θ′) and behavior vector b′ = desc(θ′),

S(U ∪ {θ′})− S(U) ⩾ S(V ∪ {θ′})− S(V ). (67)
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Proof. For brevity, let us denote U ∪ {θ′} as U ′ and V ∪ {θ′} as V ′. Similar to the argument in
Theorem 3, we have

vU ′(b)− vU (b) = max

(
vU (b), f

′ exp

(
−∥b− b′∥2

2σ2

))
− vU (b) (68)

= max

(
0, f ′ exp

(
−∥b− b′∥2

2σ2

)
− vU (b)

)
. (69)

Similarly, we also have

vV ′(b)− vV (b) = max

(
0, f ′ exp

(
−∥b− b′∥2

2σ2

)
− vV (b)

)
. (70)

Since U ⊆ V , for every b we have vU (b) ⩽ vV (b). Therefore,

vU ′(b)− vU (b) ⩾ vV ′(b)− vV (b) (71)

Integrating both sides yields the result

S(U ′)− S(U) ⩾ S(V ′)− S(V ). (72)

Theorem 6. Let θ = {θ1, . . . , θN} be a population of N solutions with corresponding quality
values f1, . . . , fN and distinct behaviors b1, . . . ,bN in Rd. Let S(θ) be the Soft QD Score defines
as

S(θ) =

∫
Rd

max
1⩽n⩽N

[
fn exp

(
−∥b− bn∥2

2σ2

)]
db (73)

In the limit as the kernel width σ approaches zero, the scaled Soft QD Score converges to the sum of
the qualities of all solutions in the population.

lim
σ→0

S(θ)

(2πσ2)
d
2

=

N∑
n=1

fn (74)

This limit is equivalent to the traditional QD Score calculated on a grid fine enough to isolate each
solution into its own cell.

Proof. Let the scaled Soft QD Score be denoted by L(σ):

L(σ) =
S(θ)

(2πσ2)
d
2

=
1

(2πσ2)
d
2

∫
Rd

max
1⩽n⩽N

[
fn exp

(
−∥b− bn∥2

2σ2

)]
db (75)

Since the sum of a set of non-negative number is at least as large as their maximum, we can replace
the max in the integral with a summation and write

L(σ) ⩽
1

(2πσ2)
d
2

∫
Rd

N∑
n=1

[
fn exp

(
−∥b− bn∥2

2σ2

)]
db (76)

=
1

(2πσ2)
d
2

N∑
n=1

fn

∫
Rd

exp

(
−∥b− bn∥2

2σ2

)
db (77)

=

N∑
n=1

fn. (78)

Note that Eq. 77 holds due to the linearity of integration and Eq. 78 is true since the Gaussian
integrals over the entire domain evaluate to (2πσ2)

d
2 .

Next, let r = 1
2 mini ̸=j ∥bi − bj∥. Following this definition, we can see that the open balls Bn =

{b : ∥b− bn∥ < r} centered at each behavior point with radius r are disjoint.
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The integrand in S(θ) is non-negative, so the integral over Rd is greater than or equal to the integral
over the union of these disjoint balls:

S(θ) ⩾
∫
∪nBn

max
i

[
fi exp

(
−∥b− bi∥2

2σ2

)]
db (79)

=
∑
n

∫
Bn

max
i

[
fi exp

(
−∥b− bi∥2

2σ2

)]
db (80)

For any point b inside a specific ball Bn, the maximum value is always greater than or equal to the
term for n:

max
i

[
fi exp

(
−∥b− bi∥2

2σ2

)]
⩾ fn exp

(
−∥b− bn∥2

2σ2

)
(81)

Substituting this, gives a lower bound for S(θ)

S(θ) ⩾
∑
n

fn

∫
Bn

exp

(
−∥b− bn∥2

2σ2

)
db (82)

Now, we can analyze the limit of the scaled version of this lower bound:

lim
σ→0

L(σ) ⩾ lim
σ→0

∑
n

fn

(2πσ2)
d
2

∫
Bn

exp

(
−∥b− bn∥2

2σ2

)
db (83)

=
∑
n

fn

(
lim
σ→0

1

(2πσ2)
d
2

∫
Bn

exp

(
−∥b− bn∥2

2σ2

)
db

)
(84)

Similar to the integral of Eq. 77, The term in the parenthesis here is the integral of the PDF of
N (bn, σ

2I). Since the ball Bn is a fixed region containing the mean bn, all of the probability mass
concentrates inside Bn as σ → 0. Therefore, the limit of the integral approaches the denominator
and the whole limit will evaluate to one and we have

lim
σ→0

L(σ) ⩾
∑
n

fn (85)

Together, Eq. 85 and Eq. 76 sandwich L(σ). Hence,

lim
σ→0

L(σ) =

N∑
n=1

fn. (86)

Lastly, note that if the solutions in θ all fall into distinct cells of an archive, as is the case with
the populations that conventional QD methods generate or in the limit of having very fine-grained
archives, the sum of the objectives coincides with the QD Score and we have

lim
σ→0

S(θ)

(2πσ2)
d
2

=

N∑
n=1

fn = QDScore(θ) (87)

C ADDITIONAL ABLATIONS

C.1 EFFECT OF BATCH SIZE

SQUAD updates the solutions in its population one batch at a time (Section 4), primarily to reduce
the computational cost of simultaneous updates. To examine the role of batch size M , we performed
an ablation in the IC domain, evaluating SQUAD with M ∈ {4, 8, 16, 32, 64}. Each setting was
repeated three times with different random seeds. The results are reported in Table 3.

Overall, the performance of SQUAD is stable across all tested batch sizes. Smaller batch sizes tend
to yield slightly higher QD scores, whereas larger batch sizes achieve marginally better QVS. How-
ever, these differences are minor compared to the variation observed between algorithms, indicating
that SQUAD is robust to the choice of batch size. All experiments were conducted on a machine
equipped with an NVIDIA GeForce RTX 4090. The approximate runtimes for different batch sizes
were as follows: batch size 4 took 5 hours and 47 minutes, batch size 8 took 2 hours and 55 minutes,
batch size 16 took 2 hours and 42 minutes, batch size 32 took 3 hours and 10 minutes, batch size 64
took 3 hours and 10 minutes.
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Table 3: Effect of batch size on SQUAD. Results report the mean and standard error over three
random seeds for five batch sizes. Experiment in the main paper use M = 64.

Algorithm QD Score (×103) QVS

SQUAD (M = 4) 5.32± 0.05 457.4± 0.4
SQUAD (M = 8) 5.12± 0.04 457.7± 0.4
SQUAD (M = 16) 5.04± 0.16 458.4± 0.5
SQUAD (M = 32) 4.99± 0.09 457.9± 0.3
SQUAD (M = 64) 5.07± 0.05 457.4± 0.1

C.2 EFFECT OF NUMBER OF NEIGHBORS

We ablate the sensitivity of SQUAD to the number of nearest neighbors k used in the diversity term
of the objective. Experiments were run in the IC domain with k ∈ {0, 4, 8, 16, 32} and the results
over three random seeds are reported in Table 4. Note that the case k = 0 removes the diversity term
entirely and therefore corresponds to independently optimizing each solution for quality alone.
Table 4: Effect of nearest neighbors’ count on SQUAD. Results report the mean and standard
error over three random seeds. Experiment in the main paper use k = 16.

Algorithm QD Score (×103) QVS

SQUAD (k = 0) 0.09± 0.00 90.8± 0.0
SQUAD (k = 4) 5.37± 0.06 457.7± 0.4
SQUAD (k = 8) 5.02± 0.03 459.7± 0.5
SQUAD (k = 16) 5.07± 0.05 457.4± 0.1
SQUAD (k = 32) 5.19± 0.04 448.5± 0.6

Two conclusions follow from these results. First, the diversity term is essential as the k = 0 baseline
achieves significantly worse performance in both QD Score and QVS, suggesting a collapse into
a set of nearly identical solutions. Second, for other values of k > 0, the performance is largely
insensitive to the exact number of neighbors, since neither QD Score nor QVS vary largely across
k = 4, 8, 16, 32. In practice, this means that a small k already provides the repulsive pressure needed
to encourage diverse and high quality solutions.

Our hypothesis for this observed insensitivity is that once solutions are separated by distances larger
than the kernel bandwidth γ, which could happen early in the optimization, the kernel contribution
from farther solutions rapidly decays towards zero, so only the closest neighbors exert meaningful
repulsion. This hypothesis, combined with our results indicating the important role that γ plays, also
suggests several promising directions for future work: (1) per-solution or adaptive kernel widths γ
based on the current spread of solutions in the behavior space to control the repulsive force each so-
lution receives; possibly combined with (2) annealing schedules that dampen the diversity term over
training so that exploration is encouraged early on and fine-grained quality optimization dominates
later.

C.3 EFFECT OF BEHAVIOR SPACE TRANSFORMATION

Recall that the derivation of SQUAD’s objective (Equation 5) assumed that the behavior space is
unbounded. To transform the bounded behavior space [0, 1]d that is used in the tasks to Rd, SQUAD
used the logit transformation:

b′ = log
b

1− b
, (88)

where all operations are performed element-wise. In our final ablation, we seek to understand the
impact of this transformation on SQUAD’s performance. To this end, we run SQUAD without using
this transformation with three different random seeds and compare the results with the original ex-
periments that were conducted in Section 5.3 (conducted over ten random seeds). As the comparison
of the results in Table 5 shows, the logit transformation is critical to the successful performance of
SQUAD.
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Table 5: Effect of behavior space transformation on SQUAD. Results report the mean and stan-
dard error over three random seeds for the ablated version and over ten random seeds for the base
version.

Algorithm QD Score (×103) QVS

SQUAD 5.09± 0.05 457.3± 0.2
SQUAD (w/o behavior space transformation) 2.96± 0.04 186.6± 0.8

C.4 EFFECT OF POPULATION SIZE

We also study the impact that role that population size has on the performance of SQUAD. To this
end, we compare the performance of SQUAD in the IC domain with 4 different population sizes
N = 128, 256, 512, 1024. The results, reported in Table 6, conform with our expectation that larger
populations yield better performance. Furthermore, we observed that the runtime of SQUAD had a
linear relation with the population size, with the mean runtimes being 24, 48, 95, 190 minutes for
population sizes of 128, 256, 512, and 1024, respectively (averaged over 3 seeds, with variances less
than 10 seconds).
Table 6: Effect of population size on SQUAD. Results report the mean and standard error over
three random seeds. Experiment in the main paper use N = 1024.

Algorithm QD Score (×103) QVS

SQUAD (N = 128) 3.24± 0.43 390.6± 1.6
SQUAD (N = 256) 4.12± 0.57 422.7± 0.8
SQUAD (N = 512) 4.26± 0.60 445.2± 0.3
SQUAD (N = 1024) 4.50± 0.62 457.5± 0.6

D IMPLEMENTATION DETAILS

D.1 BENCHMARK DOMAINS

D.1.1 LINEAR PROJECTION

We adopt the Linear Projection (LP) domain introduced by Fontaine et al. (2020), using the Rastrigin
objective function (Rastrigin, 1974). The QD search is performed over solution vectors x ∈ Rn,
with dimensionality set to n = 1024. The Rastrigin function is defined as

fRastrigin(x) = 10n+

n∑
i=1

[x2
i − 10 cos(2πxi)]. (89)

Following prior work (Fontaine et al., 2019), we restrict the search space to [−5.12, 5.12]n and
apply an offset so that the global optimum is shifted from the origin to [2.048, . . . , 2.048︸ ︷︷ ︸

n

]T . To

transform the problem from minimization to maximization, we normalize the objective via a linear
transformation

f(x) = 100× M − fRastrigin(x)

M
(90)

where M denotes the maximum value of the Rastrigin function in the search domain. This results
in objective values scaled to the range [0, 100]. A heatmap of the transformed Rastrigin function in
2 dimensions is depicted in Figure 5.

The behavior space is defined by partitioning x = [x1, . . . , xn]
T into d equal-sized chunks and com-

puting the mean of clipped values within each chunk. More formally, the k-dimensional behavior
descriptor is given by

desc(x) =
1

d

 n
d∑

i=1

clip(xi),

2n
d∑

i=n
d +1

clip(xi), . . . ,

n∑
i=

(d−1)n
d +1

clip(xi)


T

, (91)
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where the clipping function is defined as

clip(xi) =

{
xi if − 5.12 ≤ xi ≤ 5.12
5.12
xi

otherwise
(92)

In our experiments, we evaluated behavior spaces of dimensionality d ∈ {4, 8, 16}. For additional
details on this domain, including its challenges in high-dimensional settings, we refer the reader to
Fontaine & Nikolaidis (2021; 2023).

D.1.2 IMAGE COMPOSITION

(a) (Transformed) 2-d Rastrigin function (b) Target image for the IC domain

Figure 5

Image Composition (IC) is a new differentiable QD benchmark we introduce, inspired by related
works (Tian & Ha, 2022; Ibarrola & Grace, 2023). The IC task aims to reconstruct a target image
by composing a large number of simple primitives (circles) on a canvas. The objective is to match
the target as closely as possible while exploring diverse visual effects, which are captured through
five behavioral descriptors. In this task, a solution is a vector of size n × 7, where n denotes the
number of circles (here n = 1024). Each row parameterizes a circle with 7 values: the (x, y) center
coordinates, radius, RGB color values, and an opacity coefficient. All parameters are represented
as unconstrained logits, which are passed through sigmoidal transformations and rescaled to the
appropriate range.

A differentiable renderer composites these circles in sequence onto a canvas of resolution 64 × 64.
Each circle is drawn with smooth edges, controlled by a softness hyperparameter (here set to 10.0).
Rendering is performed by alpha-compositing onto a black canvas.

The objective is defined as the similarity between the rendered image and a fixed target image. We
structural similarity (SSIM) (Wang et al., 2004), normalized to the range [0, 100] to measure this.
The behavioral descriptors are five statistics computed from the circles:

• mean radius of circles,

• variance of radii,

• variety of RGB values in the palette (color spread),

• coherence of circle hues in HSV space (color harmony),

• degree of spatial clustering based on average 5-nearest-neighbor distances.

These descriptors are each normalized to lie in [0, 1], with higher values representing larger radii,
greater diversity, more harmony, or tighter clustering, respectively. Together with the objective, they
define a continuous and differentiable QD landscape. As the target image in our experiments, we use
Johannes Vermeer’s painting Girl with a Pearl Earring (Figure 5), obtained from the freely available
reproduction on Wikimedia Commons.
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D.1.3 LATENT SPACE ILLUMINATION

Latent Space Illumination (LSI) (Fontaine et al., 2021; Fontaine & Nikolaidis, 2021) is a challenging
QD benchmark designed to illuminate the latent space of a generative model by discovering diverse
and high-quality solutions. Following the experimental setup of Fontaine & Nikolaidis (2023);
Tjanaka et al. (2023b), we employ StyleGAN2 Karras et al. (2020) as the generative model and use
CLIP (Radford et al., 2021) to define both the objective and behavior descriptor functions.

Each solution in LSI is represented as a 9216-dimensional vector corresponding to a point in the
latent space of StyleGAN2. To evaluate solution quality, we pass the vector through StyleGAN2
to generate an image, which is then compared to a target text prompt using CLIP embeddings.
Behavior descriptors are similarly computed by comparing the generated image against pairs of
descriptor sentences, one positive and one negative. Our implementation is based on JAX (Bradbury
et al., 2018), and we rely on publicly available JAX-based implementations of both StyleGAN2 and
CLIP.

We define two task variants:

• Base version. This setup follows Fontaine & Nikolaidis (2023) and uses the prompt “A
photo of Tom Cruise” as the objective. Behavior descriptors are specified by two sentence
pairs:

– (“Photo of Tom Cruise as a small child”, “Photo of Tom Cruise as an elderly person”)
– (“Photo of Tom Cruise with long hair”, “Photo of Tom Cruise with short hair”)

• Hard version. To increase task difficulty, we use the objective prompt “A photo of a
detective from a noir film” and define seven behavior descriptor pairs:

– (“Photo of a young kid”, “Photo of an elderly person”)
– (“Photo of a person with long hair”, “Photo of a person with short hair”)
– (“Photo of a person with dark hair”, “Photo of a person with white hair”
– (“Photo of a person smiling”, “Photo of a person frowning”)
– (“Photo of a person with a round face”, “Photo of a person with an oval face”)
– (“Photo of a person with thin, sparse hair”, “Photo of a person with thick, full hair”)
– (“Photo of a person looking directly into the camera”, “Photo of a person looking

sideways”)

D.2 EVALUATION METRICS

We used multiple evaluation metrics in our experiments, which we shall explain here in more detail.

Vendi Score (Friedman & Dieng, 2023) is a widely applicable metric of diversity in machine learn-
ing. Given a set of samples and a pairwise similarity function, Vendi Score can be interpreted as the
effective number of unique elements in the set. Formally, it is defined as

VS(K) = exp

(
−tr( 1

n
K log

1

n
K)

)
= exp

(
−

n∑
i=1

λi log λi

)
, (93)

where K ∈ Rn×n is a positive semi-definite similarity matrix and λi are the eigenvalues of 1
nK. In

our case, the similarity matrix is derived by applying the Gaussian kernel on the distance between
the behavior descriptors of solutions. That is, for solutions i and j with behavior descriptors bi,bj

we define: Kij = exp
(
−∥bi−bj∥2

σ2
v

)
where σv is a kernel bandwidth. For a d dimensional behavior

space, we choose σ2
v = d

6 in our evaluations. This (heuristic) choice is motivated by the fact that
the mean squared distance between two uniformly selected vectors in [0, 1]d is d

6 . Since in all of
our experiments the behavior space is defined as [0, 1]d, this ensures that the similarity between two
random vectors in the behavior space will be e−1 ≈ 0.37.

Quality-weighted Vendi Score (QVS) (Nguyen & Dieng, 2024) extends Vendi Score to also incor-
porate the quality of solutions. It is computed by multiplying the Vendi Score by the mean quality
of the solutions:

QVS(K, (f1, . . . , fn)) =
1

n

n∑
i=1

fi VS(K), (94)
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where fi is the quality of the i-th solutions. We use QVS to capture the joint effect of quality and
diversity in a population. Importantly, the mean quality of the solutions must be non-negative for
the metric to be meaningful. While in our domains the objectives are normalized such that sensible
solutions have objectives in the [0, 100] range, it is still possible for out-of-bound solutions in the
LP and LSI domains to obtain negative values, since, theoretically, their objective functions are
unbounded from below. In cases where the mean objective of the solutions were negative (which
only happened with Sep-CMA-MAE and GA-ME in LSI), we report the QVS as 0.0 and report the
fine-grained statistics, including the mean objective and Vendi Score, in Appendix E.

We also leverage a discretization of the behavior space using CVT (Vassiliades et al., 2018) and
report traditional QD metrics such as QD Score (Pugh et al., 2016) and Coverage. Even though
the exponentially growing volume of the cells hinders the performance of optimization algorithms
that leverage such archives (as noted in the paper), we can still use them for evaluation. To compute
these metrics, we discretize the behavior space into a fixed number of cells (1024 for IC and 512 for
LP and LSI) and insert the solutions from a population into the resulting archive, keeping only the
best solution that lands in a cell. The Coverage is then defined as the fraction of cells that are filled
with solutions and captures the diversity of the population. In a same manner QD Score is defined
as the sum of the qualities (objectives) of all the solutions in the resulting archive, and captures both
quality and diversity.

Lastly, we also use Mean Objective and Max Objective to measure the quality of populations.
These are simply defined as the mean (and respectively maximum) of the qualities (objectives) of
the solutions in a population.

D.3 HYPERPARAMETERS

The full set of hyperparameters that we used for the experiments can be found in the accompanying
code. Here, we will go over the most important choices.

D.3.1 BASELINES

All baselines use a CVT archive with 104 cells in LP and IC domains and a finer archive with 4×104
cells in the LSI domain. In LP and IC domains we ran a grid search for each algorithm on the most
important hyperparameters and selected the configuration that yielded the highest QD Score.

• For CMA-MEGA, we searched over initial step size of the ES (σ0) and the optimizer learn-
ing rate.

• For CMA-MAEGA we searched over initial step size of the ES (σ0), optimizer learning
rate, and archive learning rate.

• For Sep-CMA-MAE we searched over initial step size of the ES (σ0) and archive learning
rate.

• For GA-ME we tuned iso and line sigma parameters and the gradient step size.

For LSI, we used the default hyperparameters from Fontaine & Nikolaidis (2023) used in the pyribs
(Tjanaka et al., 2023b) implementation, with the only difference being the batch size, where we use
16 instead of 32 due to computational constraints. Furthermore, for DNS, we ran a similar grid
search over the iso and line sigma parameters, the number of nearest neighbors (k), as well as the
learning rate (for the DNS-G variant) in the IC domain to determine appropriate hyperparameters.
We also chose the number of iterations such that all algorithms use (roughly) the same number of
solution evaluations.

D.3.2 SQUAD

By default, SQUAD uses the values presented in Table 7 for its hyperparameters and uses Adam
(Kingma & Ba, 2015) to optimize its objective. Below, we will discuss the exceptions to these
default values.

1. LSI domain: Due to computational constraints, we use a population size of 256 and a
batch size of 8. We use γ2 = 0.01 for the base version of the task and γ2 = 0.1 for the
hard version. We also use a larger learning rate of 0.1 for the Adam optimizer.
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2. LP domain: We use γ2 = 0.1 for the easy version, γ2 = 0.5 for the medium version, and
γ2 = 1.0 for the hard version.

Table 7: Default SQUAD parameters

Parameter Value
Population Size (N ) 1024
Batch Size (M ) 64
No. Neighbors (K) 16
Learning Rate 0.05

We train SQUAD for 1000 iterations in LP and IC and for 175 iterations in LSI. The number of
training iterations of baselines were set such that they use at least as many evaluations as SQUAD
in all domains.

E ADDITIONAL EXPERIMENTAL RESULTS

Here we provide more fine-grained statistics from the main experiments in the paper. Table 8 and 9
report the mean and max objectives, Vendi Score, and Coverage statistics of each algorithm in the
LP and LSI domains, respectively. Table 10 reports the QD Score and QVS from the IC experiments.
As noted in the paper, LP and IC results are averaged over 10 seeds and LSI results are averaged
over 5 seeds.

We also provide hand-picked samples of the solutions found by SQUAD as well as the two best
baselines, CMA-MEGA and CMA-MAEGA, in both LSI tasks (Figure 6 and Figure 7) and the IC
domain (Figure 8). Lastly, Figure 9 compares the solutions found by SQUAD and CMA-M(A)EGA
in the LSI domain when they are put in a traditional CVT archive. Since this domain has a 2-d
behavior space, we can provide CVT archive visualizations for it.

Table 8: Additional statistics from LP experiments.

Algorithm Mean Objective Max Objective Vendi Score Coverage
easy (d = 4)

SQUAD 68.36± 0.02 89.28± 0.15 6.55± 0.01 86.4± 0.3
CMA-MAEGA 66.02± 0.28 91.00± 0.43 6.93± 0.05 98.7± 0.2
CMA-MEGA 66.40± 0.26 94.54± 0.38 7.61± 0.10 99.5± 0.2
DNS 68.07± 0.06 78.06± 0.04 1.63± 0.00 8.1± 0.2
DNS-G 78.23± 0.12 92.51± 0.09 1.35± 0.01 4.0± 0.1
Sep-CMA-MAE 69.81± 0.28 78.71± 0.29 1.25± 0.01 1.8± 0.0
GA-ME 69.76± 0.95 79.42± 0.21 1.07± 0.01 0.9± 0.0

medium (d = 8)

SQUAD 69.41± 0.02 87.70± 0.36 9.17± 0.02 93.1± 0.2
CMA-MAEGA 62.12± 0.20 84.41± 0.33 9.27± 0.05 100.0± 0.0
CMA-MEGA 62.13± 0.67 86.76± 0.70 7.58± 0.19 99.9± 0.1
DNS 66.87± 0.08 77.61± 0.07 1.67± 0.00 13.4± 0.2
DNS-G 75.96± 0.07 91.41± 0.22 1.43± 0.00 7.5± 0.2
Sep-CMA-MAE 66.49± 1.42 77.04± 0.13 1.25± 0.02 1.1± 0.15
GA-ME 69.48± 1.08 78.99± 0.16 1.07± 0.01 0.6± 0.0

hard (d = 16)

SQUAD 72.86± 0.01 83.92± 0.21 6.61± 0.01 91.1± 0.2
CMA-MAEGA 64.76± 2.04 81.27± 0.66 4.59± 0.73 71.8± 13.3
CMA-MEGA 58.11± 0.39 76.19± 0.38 3.73± 0.08 99.8± 0.1
DNS 66.19± 0.04 77.13± 0.07 1.69± 0.00 60.5± 0.8
DNS-G 74.29± 0.09 90.54± 0.15 1.45± 0.00 56.2± 0.7
Sep-CMA-MAE 65.04± 0.84 78.87± 0.11 1.33± 0.01 4.7± 0.6
GA-ME 78.83± 0.66 89.76± 0.17 1.08± 0.00 3.8± 0.5
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Table 9: Additional statistics from LSI experiments.

Algorithm Mean Objective Max Objective Vendi Score Coverage
LSI

SQUAD 79.56± 0.45 83.81± 0.09 2.22± 0.03 32.4± 0.5
CMA-MAEGA 77.18± 3.96 86.98± 0.45 1.57± 0.07 15.9± 2.0
CMA-MEGA 83.38± 0.89 87.46± 0.06 1.68± 0.01 19.7± 0.2
DNS −221.24± 28.01 84.10± 0.11 1.39± 0.00 10.2± 0.3
DNS-G −288.33± 26.12 85.22± 0.05 1.36± 0.00 9.3± 0.0
Sep-CMA-MAE −476.62± 241.08 −139.05± 135.77 1.01± 0.01 0.4± 0.1
GA-ME −558.40± 68.50 83.72± 0.10 1.25± 0.01 6.8± 0.3

LSI (hard)

SQUAD 82.51± 0.01 84.26± 0.09 1.83± 0.00 6.0± 0.2
CMA-MAEGA 81.55± 1.25 87.05± 0.12 1.22± 0.02 0.9± 0.2
CMA-MEGA 84.24± 0.52 85.98± 0.2 1.10± 0.02 0.6± 0.1
DNS −222.68± 12.24 84.02± 0.04 1.38± 0.00 10.2± 0.2
DNS-G −214.70± 35.08 85.17± 0.03 1.35± 0.01 9.1± 0.2
Sep-CMA-MAE −37.6± 94.16 16.74± 42.55 1.00± 0.00 0.2± 0.0
GA-ME −168.09± 217.38 83.46± 0.14 1.04± 0.01 0.2± 0.0

Table 10: Additional statistics from IC experiments.

Algorithm QD Score QVS
SQUAD 5086.2± 54.7 457.35± 0.23
CMA-MAEGA 4605.8± 40.5 294.07± 1.96
CMA-MEGA 3565.7± 386.2 246.89± 17.7
DNS 1128.4± 15.7 115.17± 0.65
DNS-G 1148.0± 24.2 124.72± 0.33
Sep-CMA-MAE 348.9± 17.6 94.735± 0.8
GA-ME 140.9± 23.2 83.43± 2.97

F STATEMENT ON GENERATIVE AI USAGE

Generative AI tools were used as an aid to improve clarity and style in the writing of this paper.

G RUNTIME ANALYSIS

Table 11 summarizes the wall clock runtimes for SQUAD and all baselines on the three domains
we consider. The most influential factor in SQUAD’s runtime is the cost of gradient computation.
In the Rastrigin domains this cost is relatively small. Therefore, even in the hard setting where
the behavior space has dimension 16, SQUAD completes all 1000 iterations in under one minute.
In these domains the computational structure is simple and backpropagation is inexpensive, which
leads to very fast overall runtime.

In contrast, the IC and LSI domains require gradients that must be backpropagated through signif-
icantly more complex computational pipelines. In IC, each gradient step involves differentiation
through a differentiable renderer. In LSI, gradients pass through both StyleGAN and CLIP, which
are large networks and therefore incur substantial computational overhead. As a result, the wall
clock times for SQUAD in these two domains are noticeably higher.

It is important to emphasize that these higher runtimes do not indicate inefficiency of SQUAD. In
fact, SQUAD converges very quickly to high-quality solutions. Figure 10 shows the training curves
of SQUAD together with the final performance of all baselines in terms of QD Score and QVS
in the IC domain. SQUAD surpasses all baselines in both metrics in fewer than 200 iterations.
Nevertheless, we ran SQUAD for 1000 iterations primarily to ensure an equal evaluation budget
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Generated Samples

SQUAD

CMA-MEGA

CMA-MAEGA

Figure 6: Qualitative comparison of SQUAD against two baselines in LSI. Each row corresponds to
one algorithm, with five representative samples handpicked from the populations.

Generated Samples

SQUAD

CMA-MEGA

CMA-MAEGA

Figure 7: Qualitative comparison of SQUAD against two baselines in LSI (hard). Each row corre-
sponds to one algorithm, with five representative samples handpicked from the populations.

across algorithms. In practice, one can use SQUAD with a far smaller number of iterations and still
obtain superior results, which directly reduces the wall clock time below the values reported in the
table above.
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Figure 8: Qualitative comparison of SQUAD against two baselines in IC. Each row corresponds to
one algorithm, with five representative samples handpicked from the populations.

Table 11: Wall clock runtime (in minutes) of SQUAD and all baselines across the three domains.
For Rastrigin we report runtimes for the easy, medium, and hard settings. For LSI we report the base
and hard settings.

Rastrigin IC LSI

Method Easy Medium Hard Base Hard

SQUAD <1 <1 <1 190 732 1316
GA-ME 1 3 17 66 403 707
CMA-MAEGA 45 78 66 8 222 339
CMA-MEGA 64 66 106 8 233 337
DNS 5 8 10 6 15 25
DNS-G 3 4 5 50 207 355
Sep-CMA-MAE 1 3 33 5 8 10
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(a) SQUAD (b) CMA-MEGA

(c) CMA-MAEGA

Figure 9: Final CVT archives of SQUAD, CMA-MEGA, and CMA-MEGA in the LSI domain.
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Figure 10: Training curves for SQUAD compared with the final QD Score and QVS values of
all baselines in the IC domain. SQUAD exceeds all baselines on both metrics in fewer than 200
iterations.
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