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Abstract—Good generalization of learning-based robotic grasp-
ing systems to unknown target data domains requires training
on large-scale datasets. However, collecting such datasets is very
costly and time-consuming. In addition, these systems often have
limited zero-shot performance, especially when they are trained
on synthetic data. To overcome these limitations of passive robot
learning, we establish a novel active learning framework to enable
fast and sample-efficient adaptation to a new real-world target
data domain. Our proposed learning framework uses synthetic
data as a starting point and then selects the most informative
real-world target data samples for incremental domain adaptation.
For this purpose, we propose a novel query strategy, MetaMVUC,
which leverages multi-view uncertainty and metadata diversity.
Our strategy uses multiple viewpoints of the scene to reason about
model uncertainty by matching predictions across viewpoints and
identifying samples with the highest uncertainty. Additionally,
since robots in industry or logistics often operate in environments
rich in metadata, MetaMVUC utlizes this metadata to sample
diverse and well-distributed samples. Experimental results on the
MGNv2 dataset and in our physical robot cell clearly demonstrate
the effectiveness and the robustness of our proposed learning
framework built upon MetaMVUC. Real grasp experiments
show that with only 16 out of 324 annotated data samples, our
system achieves successful grasp rates of more than 87% for seen
objects and 80% for novel objects. When the annotation budget
is increased to 40 samples, the robot is able to grasp successfully
more than 90% of the time for both seen and novel objects.

I. INTRODUCTION

Grasping unknown objects in unstructured environments still
represents a highly challenging task for robotic systems. Over
the last years, data-driven deep learning methods have been
proven to solve such tasks effectively and are being increasingly
applied in real-world robotic systems for industry or logistics.
However, in order to generalize to unknown target data domains,
such passively trained grasping systems usually rely on large
datasets, which are costly to collect and can result in limited
zero-shot performance, especially when using synthetic data.
This need for large training datasets is a significant bottleneck
for current data-driven robotic systems.

In response to this training data challenge, our work proposes
a sample-efficient learning framework for a grasping robot
based on active learning. Building up on prior knowledge
from simulation data, our proposed methodology enables

Fig. 1: Our established active learning framework for a
grasping robot, enabling sample-efficient sim-to-real domain
adaptation. Starting from synthetic data, the model parameters
are incrementally adapted to the real-world target data domain.
The proposed query strategy, MetaMVUC, iteratively queries
a pool of unlabeled samples leveraging multi-view uncertainty
and metadata diversity to select a set of informative and well
distributed samples to learn from in each learning round.

cost-effective adaptation to the real-world target data domain,
thereby improving grasp performance and deployment time. In
our active learning framework, the robot perception system ac-
tively queries a pool of unlabeled data for the most informative
data points from which to learn. This methodology assumes
that some data samples provide more value to the training
process than others, given the current state of the model. By
focusing on these informative data samples, an active learning-
based robotic system has the potential to quickly learn new
tasks or adapt to new data domains in a more efficient and
cost-effective manner.



In our work, we establish a novel active learning framework
specifically designed for robotic grasping systems (cf. Fig. 1).
Synthetic pre-training of robotic systems has shown promising
capabilities for zero-shot transfer to the real world, providing a
potentially cost-effective and robust initial knowledge base for
active learning strategies. Robots equipped with arm-mounted
cameras can actively sense their environment from multiple
viewpoints. Often operating in metadata-rich domains such
as agriculture, industry, or logistics, these robots are ideally
suited to exploit active learning techniques based on advanced
uncertainty or diversity measures. A pivotal element of every
active learning system is the implemented query strategy. Our
proposed query function, MetaMVUC, focuses on multi-view
uncertainty and leverages metadata knowledge to select both
informative and well-distributed data points to learn from. We
base our approach on the assumption that inconsistencies in
model predictions across different camera viewpoints serve as
a reliable measure of model uncertainty. A concept which
has been previously demonstrated in [34] for the task of
semantic segmentation of indoor scenes. While exploiting
model uncertainty to query informative samples is a common
strategy for active learning, its use can result in poor data
distribution coverage due to a lack of diversity consideration in
the query strategy, particularly evident in early training episodes
(cold start problem) [8]. To mitigate this issue, we employ
synthetic pre-training as a ’warm start’ strategy, enabling more
effective deployment in real-world applications. Furthermore,
we conclude that in many real-world robotic applications,
metadata, including the classes and quantities of objects present
in the grasp scene is often available, as it is needed for
higher-level tasks. Inspired by the recent trend towards hybrid
active learning methods that combine uncertainty and diversity
measures, our proposed query strategy, MetaMVUC, shows
how such metadata can improve the sample diversity of our
active learning framework.

Our contributions can be summarized as follows:
• We design a novel, hybrid query strategy, MetaMVUC,

which leverages our proposed multi-view uncertainty
scoring combined with metadata diversity scoring.

• We establish an active learning framework for bin picking
which enables fast model adaptation on real robots.

• We evaluate our methods on the MGNv2-Real dataset,
as well as through physical grasping experiments in high
clutter in our physical robot cell.

II. RELATED WORK

A. Scene-Aware Robot Grasping

Reliable robotic grasping requires a vision system capable
of detecting objects of interest, inferring suitable grasp poses,
and reasoning about suitable object manipulation sequences.

Vacuum Grasp Detection: In automation and logistics, data-
driven vacuum grasping has become a standard practice due to
its versatility and effectiveness in handling common challenges
such as flat bags, tightly packed items, and narrow bins. Besides
their compact design, the rotational symmetry of vacuum

suction cups simplifies grasp pose detection by reducing the
degrees of freedom to four, presenting a simpler alternative to
parallel-jaw gripper or multi-fingered hands, which often have
seven or more degrees of freedom. Vacuum grasp detection
is commonly framed either as a pixel-wise regression task of
grasp quality heatmaps indicating suctionable areas for the
whole image in a single shot [6, 23, 16] or two-stage sample-
based approaches [27, 43, 44], where samples are ranked by
their respective score [26].

Object Relationship Reasoning: Challenges in robotic
grasping arise when items are arranged in clutter and overlap,
leading to accidental simultaneous grasping of multiple items
or failed attempts due to excessive contact forces [29]. Recent
work addresses this object layout challenge by various means,
including the detection of a full object relationship tree
[40, 41, 42, 47, 9], amodal instance segmentation masks [2], or
more simply by assessing the occlusion properties of individual
objects without considering their adjacent relationships [16].
For goal-directed grasping of potentially occluded target
objects (singulation task), it is crucial to understand the full
relationship among objects based on amodal segmentation
masks or relationship trees. However, research shown in [16]
indicates that for the task of reliably emptying a cluttered scene
of objects (decluttering task), focusing solely on the detection
of occlusion properties of objects is sufficient.

Proposed approach: Our grasping pipeline is based on [16].
Object instances are detected together with their occlusion class.
Vacuum grasp detection is framed as pixel-wise regression task
of a grasp quality heatmap for the whole image.

B. Active Learning for Computer Vision

The primary objective of active learning is to optimize
model performance while minimizing the costs associated
with annotating training data [31]. Given the intensive data
requirements of deep learning models, active learning has
become crucial for reducing the labeling effort involved in
the supervised training of such deep learning models. Over
time, a variety of deep active learning methods have been
developed which can be categorized based on the availability
of the unlabeled data (pool-based vs. stream-based) [5], the
presence of initial model knowledge (cold start vs. warm start)
[24], or the type of query function employed [28]. Query
functions are often categorized into uncertainty and hybrid
query strategies, diversity-based methods, or meta-learning-
based approaches. This review concentrates on pool-based
active learning methods, commonly applied in robotics [37, 11]
and autonomous driving [21] due to their straightforward
implementation. For a extended review about stream-based
active learning methods we refer to [5].

Diversity-Based Query Strategies: Diversity-based query
strategies aim to select a subset of samples that best represent
the entire data distribution. They are based on the assumption
that a good data coverage in the selected subset effectively
filters out redundant samples or irrelevant outliers. Prominent
methods for diversity-based active learning work by either
jointly selecting a subset of samples that best covers the data



in feature space [32, 1, 19], or by iteratively selecting the most
representative samples [17, 37, 35].

Uncertainty-Based and Hybrid Query Strategies:
Uncertainty-based query strategies aim to select a subset
of samples where the model is most uncertain about. They
assume that data samples where the model already shows
high confidence contribute less to the training than samples
where the model’s prediction are uncertain. Defining metrics
for uncertainty in deep neural network’s prediction has been
ongoing research for many years [15]. Within the context of
active learning, uncertainty-based query strategies commonly
employ methods based on information entropy [31, 33],
Bayesian models [25, 22, 12, 13], ensembles [3], learning
loss [38], and consistency [34, 10, 18, 14, 39]. Hybrid query
strategies combine the idea of uncertainty- and diversity-based
sampling in one method, aiming for both informative and at
the same time representative samples to query [30, 36, 45].

Proposed Approach: Our hybrid query strategy uses multi-
view uncertainty and metadata diversity scoring for sample-
efficient learning. It is related to ViewAL [34], which applies
multi-view uncertainty to active learning for semantic segmen-
tation, and CALD [39], which uses consistency across original
and augmented images for bounding box detection.

III. METHOD

The training of an occlusion-aware object detection network
fOD based on Mask-RCNN [20] architecture and a vacuum
grasp detection network fSC based on DeepLabv3 [7], both
introduced in [16], with real-world data is expensive and time-
consuming. While simulation-based data is inexpensive to
generate, it often suffers from a significant sim-to-real domain
gap, resulting in limited zero-shot performance. In our work,
we tackle this issue via active domain adaptation. Our proposed
active learning framework adapts fOD and fSC, both networks
pretrained on source data domain (synthetic data), to a new
target data domain (real-world data) by using a small amount
of labeled target data. To select the most informative target
data domain samples to learn from, we introduce a novel query
strategy, MetaMVUC, which will be described in detail in the
following subsections.

A. Problem Statement: Active Domain Adaptation

Let us denote S for the source data domain, which con-
tains sensor data XLS and their corresponding labels YLS .
Meanwhile, T represents the target data domain, which at
the beginning only contains unlabeled data samples XUT .
Throughout the active learning process, selected samples XUT
are annotated by a user XUT → (XLT , YLT ) and added to
the labeled target domain data set {(XLT , YLT )}.

In an active domain adaptation setup, the learning algorithm
initially has access to S, containing samples {(XLS , YLS)}.
Following the pool-based active learning approach, the static
pool of unlabeled data samples XUT is available from the
start. In total, the learner has a query budget B which is much
smaller than the amount of unlabeled data B ≪ |XUT |. For
each learning round Rn, n = 1 . . . N , and with a per-round

query budget of B/N , the learner queries a subset of samples
from the pool of XUT and requests the user to annotate them
XUT → (XLT , YLT ). Consequently, in each learning round
Rn, the learner gains access to an by B/N incremented set
of annotated target samples XLT , while the pool of target
samples XT = XLT ∪XUT remains static.

The goal of the learning algorithm is to optimize performance
in object detection and grasp point detection within the new
target data domain, while keeping the number of annotated
samples |XLT | small.

B. Multi-View Uncertainty Scoring

To obtain a good estimate of the uncertainty in the network
prediction, we exploit the active vision capabilities of robotic
arms equipped with hand-mounted cameras. Our pipeline for
multi-view consistency-based uncertainty scoring (MVUC) is
divided into the following steps, which will be described
in more detail below (cf. Fig. 2): For a given object scene,
the robot arm moves to two different camera viewpoints and
captures sensor images. Network inference on both viewpoint-
specific data samples is performed to predict vacuum grasp
heatmaps and objects together with their occlusion properties.
Reasoning about underlying network uncertainty is done by
matching network predictions across both viewpoints.
Step 1: Multi-View Data Acquisition
Each object scene is observed from two different camera
viewpoints Ci, i = 1, 2, defined as transformation matrix
TW
Ci

relative to a chosen world coordinate system W . The
first camera viewpoint TW

C1
is positioned overhead, and the

second viewpoint TW
C2

is randomly selected from pre-configured
viewpoints, varying in distance, pitch, and yaw angles. At each
camera viewpoint Ci, a color image Xi

RGB and a depth image
Xi

D are captured, stored along with the corresponding pose of
the camera TW

Ci
.

Step 2: Network Inference
For each camera viewpoint Ci, i = 1, 2, object instances
together with their occlusion classes are detected given the color
image Xi

RGB of the scene. Following the SSMP methodology
proposed in [16], the object detection network fOD detects
object instances Oi

l = fOD(X
i
RGB) pixel-wise along with their

occlusion class: unoccluded, less than 10% occlusion, and
greater than 10% occlusion. Additionally, a vacuum grasp
heatmap V i is predicted for each viewpoint using the depth
image Xi

D of the scene. Following the SSMP grasp approach
from [16], we interpret vacuum grasp detection as a pixel-
wise vacuum graspability learning problem. The vacuum grasp
heatmap V is obtained as a pixel-wise classification task across
25 bins, representing score values in the range of [0, 1]:

V i = argmax (V̂ i) = argmax
(
softmax

(
fSC(X

i
D)
))
. (1)

For more details, we refer to [16].
Step 3: Multi-View Uncertainty
In order to calculate the uncertainty based on multi-view
predictions, it’s necessary to match corresponding pixels across
camera viewpoints Ci, i=1, 2. We are interested in knowing
which pixels in image X1 and in X2 cross-project to the



Fig. 2: Overview of the proposed multi-view consistency-based uncertainty scoring (MVUC) pipeline, divided into three
subsequent steps: 1. Multi-view data acquisition using arm-mounted camera, 2. Network inference for both vacuum grasp
detection and occlusion-aware object detection, and 3. Multi-view uncertainty estimation.

same real-world point PW (cf. Fig. 2). Using the depth image
Xi

D and the intrinsic camera matrix, we can project all pixels
from image X1 and X2 into 3D space. As a result, we obtain
two point clouds Pi = {(xk, yk, zk)Ci | k = 1,. . . ,K}, each
containing points relative to the respective camera coordinate
system C1 and C2. Given the poses of the camera viewpoints
TW
C1

and TW
C2

, all points from P1 and P2 can be projected
into the common world coordinate system W . By aligning
the points from both viewpoints into a common coordinate
system W , it is possible to match points in P1 and P2 based
on their relative distance in 3D space (ICP algorithm in [46]).
Knowing the 2D pixel coordinates of registered points in 3D
space, we achieve pixel-wise cross-projection across images
X1 and X2, captured at camera viewpoints C1 and C2.

For the proposed multi-view uncertainty scoring, we are
interested in knowing how consistently the network predicts
across viewpoints. When it comes to vacuum grasping, inspired
by [34], given a reference viewpoint i, the mean softmax dis-
tribution of cross-projected vacuum predictions V̂ is computed.
We calculate the pixel-wise entropy H of the mean softmax,
and obtain the multi-view vacuum entropy map Ωi as:

Ωi(u, v) = H

(
V̂ i(u, v) + V̂ j(x, y)

2

∣∣∣∣∣Xj
D(x, y) cross−

projectsXi
D(u, v)

)
,

(2)
where j = 3− i for i = 1, 2. Here, (x, y)j stands for a cross-
projected pixel from viewpoint j, given a pixel (u, v)i in the
reference viewpoint i (cf. Fig. 2 for i= 2). Ωi is computed
for both viewpoints i = 1, 2 and we obtain as a result the
multi-view vacuum entropy (MVVH) score as:

MVVH =
1

2

(
1

|Ω1|

H∑
v=1

W∑
u=1

Ω1 +
1

|Ω2|

H∑
v=1

W∑
u=1

Ω2

)
, (3)

where W and H are the width and height of the image Xi
D.

Besides evaluating MVVH, we propose a metric to assess the
consistency of semantic instance predictions across viewpoints,
which is crucial for occlusion-aware instance segmentation or
other instance segmentation tasks. Unlike semantic segmenta-
tion, which classifies pixels into semantic classes independently,
instance segmentation additionally groups pixels into coherent
sets (instances) that share a common identifier. Our method
focuses on computing the consistency of instance predictions
across viewpoints. We assume that the network is confident
about an object if it is detected coherently from both viewpoints.

To quantify the instance consistency Φi
l for a detected object

instance Oi
l in a reference viewpoint i, the Jensen-Shannon

divergence (JSD) is utilized. It measures the similarity between
corresponding instance probability distributions ϕil and ϕ̃jl :

Φi
l = JSD

(
ϕil, ϕ̃

j
l

)
, (4)

where j = 3 − i for i = 1, 2. Here, ϕ̃jl characterizes the
distribution of corresponding instance predictions in viewpoint
j, given a detection Oi

l in the reference viewpoint i. To compute
ϕ̃jl , we adopt a pixel-wise approach. Specifically, we count
the number of cross-projected pixels associated with each
instance prediction in viewpoint j, given the detection Oi

l in
the reference viewpoint i. In cases where cross-projected pixels
have no detection in viewpoint j, these pixels are categorized as
background pixels. The resulting counts are normalized by the
total sum of the cross-projected pixels and sorted in descending
order, yielding a probability distribution ϕ̃jl for viewpoint j
(cf. Fig. 2, illustrated for i= 2 and j = 1). Φi

l is computed
for all detected object instances Oi

l in both viewpoints i=1, 2
and we obtain as a result the multi-view instance consistency
(MVIC) score as:

MVIC =
1

2

(
1

N

N∑
l=1

Φ1
l +

1

M

M∑
l=1

Φ2
l

)
, (5)

where N and M are the total number of detected object
instances in image X1

RGB and X2
RGB, respectively.



Our methodology further extends to quantify the multi-
view consistency of class probability distributions for detected
object instances across viewpoints. Given a reference viewpoint
i, the multi-view class consistency Ψi

l for a detected object
instance Oi

l in the reference viewpoint i is calculated using the
Jensen-Shannon divergence. It measures the similarity between
corresponding class probability distributions ψl:

Ψi
l = JSD

(
ψi
l , ψ̃

j
l

)
, (6)

where j = 3 − i for i = 1, 2. Here, ψ̃j
l characterizes the

class probability distributions of corresponding object instance
predictions in the second viewpoint j, given a detection Oi

l with
a class probability distribution ψi

l in the reference viewpoint
i. To obtain Ψi

l , all detections in viewpoint j corresponding
to the reference detection Oi

l are weighted according to their
pixel-surface area compared to the total sum of cross-projected
pixels. Ψi

l is computed for all detected object instances Oi
l in

both viewpoints i=1, 2 and we obtain the multi-view class
consistency (MVCC) score as:

MVCC =
1

2

(
1

N

N∑
l=1

Ψ1
l +

1

M

M∑
l=1

Ψ2
l

)
, (7)

where N and M are the total number of detected object
instances in image X1

RGB and X2
RGB, respectively.

These proposed metrics – MVVH, MVIC, and MVCC – serve
as robust tools for evaluating the consistency and uncertainty
of vacuum grasps and semantic instance detections using a
robot’s multi-view sensing capabilities. In our active learning
framework, for each query round, we apply these metrics to all
samples in XUT . The results are sorted in descending order,
yielding individual rankings νΩ, νΦ, and νΨ for MVVH, MVIC,
and MVCC, respectively.

C. Metadata Diversity Scoring

Research has shown that solely using uncertainty-based query
functions often results in redundant sample selection [32]. To
address this, diversity-based query methods (cf. Sec. II-B)
often aim to identify the most representative samples in a
data distribution. This is often done by transforming samples
into high-dimensional feature vectors and applying distance
metrics for clustering [32, 30]. However, these approaches fre-
quently encounter the curse of dimensionality, where increased
dimensions tend to make distance metrics less informative.

In our work, we use metadata for diversity scoring, taking
into account its widespread availability in many logistics and
industrial applications, as such data is often required to perform
higher-level tasks. We propose a scoring algorithm which
makes use of such information to effectively query diverse
and balanced set of samples. Specifically, we assume prior
knowledge of each object’s semantic class, the number of
class instances in a scene, and the primary material of an
object. Our proposed algorithm iterates through all unlabeled
samples XUT ,j , j=1. . .|XUT | and ranks the contribution of
each sample XUT ,j in terms of semantic class distribution ρC ,
number of instances per scene distribution ρn, and instance

material distribution ρM to a uniform distribution ρ̃C , ρ̃n,
and ρ̃M . In order to measure the contribution of a data
sample XUT ,j , the Jason-Shennon divergence is computed
between the set of labeled samples plus the considered sample
{XLT , XUT ,j} and the uniform distributions ρ̃C , ρ̃n, and ρ̃M .
It is computed for all three metadata attributes and we obtain
the metadata diversity score (MDDS) as:

MDDS =
1

3
(JSD (ρC(XLT +XUT ,j), ρ̃C)+ (8)

JSD (ρn(XLT +XUT ,j), ρ̃n)+ (9)

JSD (ρM (XLT +XUT ,j), ρ̃M )) . (10)

In our active learning framework, MDDS is applied to
all samples in XUT , and the resulting scores are ranked in
ascending order to obtain a metadata diversity ranking νζ .

D. Hybrid Query Strategy

To take advantage of both diversity-based and uncertainty-
based query strategies, we integrate the proposed multi-view
uncertainty (cf. Sec. III-B) and metadata diversity scoring
metrics (cf. Sec. III-C) into a hybrid query strategy entitled
MetaMVUC. Based on the previously discussed metrics
MVVH, MVIC, MVCC, and MDDS, we obtain individual sam-
ple rankings νΩ, νΦ, νΨ, and νζ for each metric, respectively.
In order to achieve an aggregated ranking across all samples,
we employ the Borda rule method, a well-established positional
voting rule, where each metric MVVH, MVIC, MVCC, and
MDDS acts as voter v ∈ V = {Ω,Φ,Ψ,ζ}. Following [4], the
rank of the j-th sample, XUT ,j , is denoted as rk (XUT ,j , νv)
under the voter v. For example, rk (XUT ,j∗ , νΩ) = 1 expresses
that the sample j∗ is the highest-ranked sample in νΩ according
to the MVVH metric. The Borda rule assigns each sample
in XUT a score based on its aggregated ranking. Specifically,
the Borda score for each sample XUT ,j ∈ XUT is calcu-
lated as the λv weighted inverse of its voter-specific rank
|XUT | − rk (XUT ,j, νv), and summed over all voters v ∈ V:

Borda (XUT ,j) =
∑
v∈V

λv · (|XUT | − rk (XUT ,j, νv)) , (11)

with the weights chosen as: λΦ=2 and λΩ=λΨ= λζ=1.
This scoring system is designed to identify samples that

achieve broad consensus across all metrics, aiming to form
informative and well-distributed query sets. Given our per-round
query budget bn = B/N , we select the top-b highest-ranked
samples based on their Borda scores and submit them for
annotation. Once annotated, these samples are added to the
training dataset {(XLT , YLT )} and used for iterative model
adaptation to the real-world target domain T (cf. Fig. 1).

IV. EXPERIMENTS

In our experiments, we assess the efficiency of our proposed
hybrid active query strategy, MetaMVUC, within a real-world
scenario of robotic vacuum grasping in cluttered environments.
The central research question we address is as follows: How
does MetaMVUC compare to a baseline random sampling



(a) (b)

Fig. 3: (a) Real-world robot cell used for evaluating our
proposed active learning framework and query strategy,
MetaMVUC. It is equipped with a Zivid Two RGB-D camera
and a Festo vacuum gripper system featuring a 20 mm suction
cup. (b) Overview of two objects sets used for evaluation: seen
objects and unseen objects

approach (RAND) and the widely-applied active learning
method, coreset [32] (CORE), in terms of enhancing occlusion-
aware object detection and grasp performance across active
learning rounds Rn and number of annotated samples |XLT |?

A. Experimental Setup

Dataset and Real-World Setup: We perform experiments on
the real-world split of MetaGraspNetv2 dataset [16] (MGNv2-
Real) and physical grasp experiments in our real-world robot
cell (cf. Fig. 3). In addition to its comprehensive coverage
and focus on task-specific challenges for bin picking, the
MetaGraspNetV2 dataset also offers practical advantages. Since
the dataset was collected using a setup identical to that
employed in our active learning experiments, we can replicate
the data acquisition settings. This allows us to mimic a realistic
pool-based active learning environment in the real world,
without the need for extensive labelling, as the data comes
already pre-annotated.

Experimental Design For our real-world experiments, we
select 33 objects from the MGNv2 dataset, referred to as seen
objects, and introduce 23 novel objects, referred to as the
unseen objects (cf. Fig. 3b). We filter the MGNv2 dataset for
scenes containing only objects from the seen object set. The
remaining 233 scenes are each annotated for an additional
second viewpoint and then divided into two sets: 70% form
the pool set (MGNv2-Pool), and the remaining 30% form the
test set (MGNv2-Test). This experimental design allows us to
evaluate our methods in a traditional pool-based active learning
setting (MGNv2-Test + seen objects), while also introducing
a more challenging generalizability task. Specifically, this

task involves grasping novel (unseen) objects that are not
included in the pool set MGNv2-Pool. Although this task is less
discussed in the active learning literature, it has great practical
relevance. It effectively represents real-world conditions where
data distributions can shift and robots have to deal with novel
objects.

Training Details: As starting point, we use network weights
for f sc and fobj pre-trained on the synthetic dataset MGNv2-
Sim [16]. In our active learning experiments, we use Adam
and SGD optimizer for training fobj and f sc, respectively,
with learning rates set to 0.001 and 1e − 5. A batch size
of 4 is chosen and the per-round query budget is set to
bn = 4, chosen intentionally small to reflect the high cost
of annotating cluttered scenes in the real-world. Each queried
scene is annotated for both viewpoints, resulting in a total of
8 annotated samples per query round. We run our experiments
for N = 10 query rounds Rn, n= 1 . . . N , and perform 20
training epochs per round Rn (full iteration through queried
training set). To mitigate stochastic effects, each experiment is
repeated 5 times using alternating random seeds. The results
reported are the mean averages of these trials, unless specified
otherwise.

Metrics: For evaluating occlusion-aware object detection,
two metrics are employed: the Average Precision for objects in
the unoccluded class (APunoccl.), calculated at IoU thresholds
ranging from 0.5 to 0.95 in increments of 0.05, and the mean
Average Precision (mAP) across all three occlusion classes. In
our real-world grasp experiments, the performance is measured
using the following metrics: the number of successful grasps
over the total number of grasps attempts Rgrasp (successful
grasp rate) and the number of successfully cleared objects over
the total number of objects Robj (autonomously cleared object
rate).

B. Results on MGNv2-Test

Using MGNv2-Pool as the pool set to query from, we
evaluate the performance of MetaMVUC on the MGNv2-
Test dataset for occlusion-aware object detection. Results are
reported for APunoccl. (cf. Fig. 4a) and mAP (cf. Fig. 4b)
for different sizes of queried sets |XLT | and learning rounds
Rn. As illustrated in Fig. 4, the results show that MetaMVUC
outperforms a state-of-the-art active learning method CORE,
and a random sampling baseline RAND in terms of APunoccl.

and mAP, especially in early active learning rounds and
smaller query set sizes (cf. Fig. 4a Rn, n ≤ 4 and cf. Fig. 4b
Rn, n ≤ 7). This demonstrates that MetaMVUC is able to adapt
fast and sample-efficient to target data domain distributions,
given a small annotation budget. As the learning progresses,
MetaMVUC and CORE show competitive performance. In
general, our experiments show that the performance difference,
especially in terms of APunoccl., between active sampling
methods (CORE and MetaMVUC) and random sampling
RAND decreases as the number of annotated samples increases.
For comparison, we also include the FULL scenario, in which
the learner was given full access to the entire annotated pool
set, serving as the upper baseline. As expected, the use of
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Fig. 4: Results for occlusion-aware object detection.

the entire annotated pool set for learning results in superior
performance. However, it is noteworthy that in early rounds,
MetaMVUC achieves respectable results compared to FULL,
despite using only a fraction of the training data FULL was
trained on (cf. Fig. 4).

C. Results in Real-World Cell

In our real-world robot experiments, we investigate the
grasping performance of a robot trained using our proposed
active learning method, MetaMVUC. Specifically, we aim to
determine how MetaMVUC influences sample efficiency and
grasp performance in terms of successful grasp rate Rgrasp

and autonomously cleared object rate Robj. To address this,
we evaluate different model checkpoints for fOD and fSC
from active learning rounds R2, R5, and R10, each queried by
MetaMVUC, by conducting real-world grasping experiments in
our robotic cell (cf. Fig. 3a). For comparative analysis, we also
perform experiments without MetaMVUC (R0), representing a
zero-shot sim-to-real baseline. Our grasping pipeline is similar
to the proposed SSMP algorithm in [16], which ranks grasp

proposals from fSC based on object detections from fOD

together with their occlusion predictions. However, in contrast
to the method proposed in [16], our approach for grasping
captures a new image after each grasp attempt.

We perform experiments on two object sets (cf. Fig. 3b):
seen objects, also part of the pool set, and unseen objects, not
part of the pool set and therefore novel at test time. At the
beginning of each run, the grasp scene consists of 10 objects,
arranged in high clutter (cf. Fig. 3a). The robot is tasked to
empty the whole scene. A grasp is considered successful if
the object has been picked up and transferred to another bin.
After two failed grasp attempts per object and run, the object
is removed manually by a human supervisor. After each active
learning round Rn, n = 0, 2, 5, 10, the robot attempts to grasp
a total of 100 objects, distributed across 10 runs (5 runs of
seen objects and 5 runs of unseen objects). Reported numbers
in Table I and Fig. 5 are averaged across all runs.

The results in Table I show, that even in early rounds of active
learning, remarkable real-world performance can be achieved
by MetaMVUC in terms of successful grasp rate Rgrasp and
autonomously cleared object rate Robj. After 5 learning rounds
R5, which is equivalent to 40 annotated images out of a pool set
size of 324, a grasping robot trained with MetaMVUC achieves
more than 90% successful grasp rate Rgrasp and autonomously
cleared object rate Robj for both seen and unseen objects.
Furthermore, a direct comparison between zero-shot sim-to-
real and early rounds of active learning with MetaMVUC (cf.
Fig. 5 and Table I for R2) shows a strong performance boost in
terms of Rgrasp and Robj of at least 20% and 8%, respectively,
even with only 16 out 324 annotated samples for R2.

For seen objects (cf. Fig. 5a and cf. Table I), grasping
performance increases as the size of the training dataset
increases. This is an expected result, given that the test objects
considered in this experiment are part of the training dataset.
Remarkable, after 10 runs of active learning, our grasping robot
(light blue line for MetaMVUC (R10)) achieves performance
that matches the ideal (cf. Fig. 5a). For unseen objects, we
can observe that performance is best after 5 learning rounds
and then drops slightly again (cf. Fig. 5b and cf. Table I). A
possible explanation could be that the model tends to overfit to
the training data distribution as the number of training epochs
increases. This represents a general problem of static, pool-
based active learning approaches, as the data pool from which
queries are made remains static by definition.

Nevertheless, even for the challenging task of unseen data
at test time, based on our experimental results, it can be
summarized that our established active learning framework
built upon our proposed query stratey, MetaMVUC, is an
effective and robust approach for active domain adaptation of
grasping robots, even when the annotation budget is small.

V. CONCLUSION

In this paper, an active learning framework for robot learning
has been designed, enabling sample-efficient training of real-
world grasping robots. The proposed framework uses synthetic
data as an initial starting point and then employs a novel,
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Fig. 5: Results are presented from physical robot grasping
experiments in highly cluttered environments. The average
number of autonomously picked items, for both seen objects
in Fig. 5a and unseen objects in Fig. 5b, is plotted against the
total number of grasp attempts. The dashed line represents the
ideal scenario where all items are picked on the first attempt.
Top left means better performance, characterized by a high
number of autonomously picked objects in combination with a
low number of grasp attempts. The standard deviation, scaled
by a factor of 0.5, is shown in the shaded areas.

hybrid query strategy, MetaMVUC, to identify the most relevant
samples to learn from. Our proposed method, MetaMVUC,
uses multi-view uncertainty and metadata diversity scoring in
order to find the samples that are both highly informative for
the learner and at the same well representative of the overall
data distribution. Experiments on the MGNv2 dataset and in
our real-world robot cell have demonstrated its effectiveness
and robustness. Our method significantly reduces the number
of annotated samples required, effectively generalizes to unseen
objects, and increases both the successful grasp rate and the

TABLE I: Real-world vacuum grasp performance Rgrasp and
Robj with standard deviation in parentheses across active
learning rounds R for seen and unseen objects in clutter.

Method Rounds R Rgrasp (%) Robj (%)

Seen Objects Unseen Objects Seen Objects Unseen Objects

Zero-Shot S2Ra 0 67.6 (8.9) 46.2 (8.7) 86.0 (8.0) 66.0 (10.2)

MetaMVUC (ours)
2 87.3 (7.3) 80.2 (10.7) 94.0 (4.9) 92.0 (4.0)
5 92.7 (8.9) 90.2 (12.6) 96.0 (4.9) 96.0 (4.9)
10 100.0 (0.0) 81.7 (12.2) 100.0 (0.0) 92.0 (7.5)

a S2R: Sim-To-Real

autonomously cleared object rate, achieving improvements of at
least 20% and 8%, respectively, over the zero-shot sim-to-real
baseline. Moreover, real-world grasp experiments demonstrate
that with just 16 annotated data samples selected out of 324
pool set samples, our system achieves successful grasp rates of
over 87% for seen objects and 80% for novel objects. When the
annotation budget is increased to 40 samples, the robot grasps
successfully more than 90% of the time for both seen and novel
objects. Given the high costs associated with data collection
and annotation, sample-efficient robot learning systems are of
great importance. Our proposed learning framework and query
strategy, MetaMVUC, can contribute to the development of
low-cost and rapidly deployable robots for real-world grasping.
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Leal-Taixé, and Jose M. Alvarez. Not all labels are
equal: Rationalizing the labeling costs for training object
detection. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 14472–14481,
2022. doi: 10.1109/CVPR52688.2022.01409. URL https:
//ieeexplore.ieee.org/abstract/document/9878602.

[11] Jianxiang Feng, Jongseok Lee, Maximilian Durner, and
Rudolph Triebel. Bayesian active learning for sim-
to-real robotic perception. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 10820–10827, 2022. doi: 10.1109/IROS47612.
2022.9982175. URL https://ieeexplore.ieee.org/abstract/
document/9982175.

[12] Yidan Feng, Biqi Yang, Xianzhi Li, Chi-Wing Fu, Rui
Cao, Kai Chen, Qi Dou, Mingqiang Wei, Yun-Hui Liu,
and Pheng-Ann Heng. Towards robust part-aware instance
segmentation for industrial bin picking. In International
Conference on Robotics and Automation (ICRA), pages
405–411, 2022. doi: 10.1109/ICRA46639.2022.9811728.
URL https://ieeexplore.ieee.org/document/9811728.

[13] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep
bayesian active learning with image data. In Interna-
tional Conference on Machine Learning (ICML), page
1183–1192, 2017. URL https://proceedings.mlr.press/v70/
gal17a/gal17a.pdf.

[14] Mingfei Gao, Zizhao Zhang, Guo Yu, Sercan Ö. Arık,
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