Image NorEval: A Norwegian Language Understanding and Generation Evaluation Benchmark

Anonymous ACL submission

Abstract

This paper introduces NorEval, a new and comprehensive evaluation suite for large-scale standardized benchmarking of Norwegian generative language models (LMs). NorEval consists of 24 high-quality human-created datasets - of which five are created from scratch. In contrast to existing benchmarks for Norwegian, NorEval covers a broad spectrum of task categories targeting Norwegian language understanding and generation, establishes human baselines, and focuses on both of the official written standards of the Norwegian language: Bokmål and Nynorsk. All our datasets and a collection of over 100 human-created prompts are integrated into LM Evaluation Harness, ensuring flexible and reproducible evaluation. We describe the NorEval design and present the results of benchmarking 19 open-source pretrained and instruction-tuned LMs for Norwegian in various scenarios. Our benchmark, evaluation framework, and annotation materials will be made publicly upon acceptance.

1 Introduction

011

013

017

019

021

037

041

The advancement of language models (LMs) is inseparable from benchmarking – the systematic evaluation of their generalization abilities on standardized datasets across various criteria (Ruder, 2021; Srivastava et al., 2023). Despite its crucial role, benchmarking in resource-lean scenarios remains scarce due to the lack of diverse evaluation suites for low-resource languages, including Norwegian (Joshi et al., 2020; Hedderich et al., 2021).

Previous work focuses on Norwegian as part of medium-scale benchmarking efforts – NorBench (Samuel et al., 2023) and NLEBench (Liu et al., 2024) – and broader Mainland Scandinavian evaluation initiatives – ScandEval (Nielsen, 2023) and Scandinavian Embedding Benchmark (SEB; Enevoldsen et al., 2024). However, these benchmarks have several shortcomings that limit the scope of LM evaluation in Norwegian. • Coverage and design. These benchmarks exhibit a significant dataset overlap with a low variation in task formulations. NorBench and ScandEval cover traditional NLP tasks, SEB addresses text embedding evaluation, and NLEBench comprises a narrow spectrum of Norwegian language generation tasks. 042

043

044

047

048

054

057

059

060

061

062

063

064

065

066

067

068

069

071

072

073

074

075

076

077

079

- **Data quality.** NLEBench and ScandEval include machine-translated English datasets, introducing potential evaluation biases that may conflict with Norwegian-specific values and knowledge.
- Linguistic diversity. Norwegian has two official written standards: Bokmål (BM) and Nynorsk (NN; the minority variant). The latter variant remains significantly underrepresented in previous work.
- Human performance. No existing benchmark establishes human baselines, which is a standard practice to determine upper LM performance bounds.

This paper introduces NorEval, a novel large-scale evaluation suite designed to benchmark Norwegian LMs on language understanding and generation tasks. NorEval comprises 24 human-created datasets across nine task categories, including sentiment analysis, Norwegian language knowledge, Norwegian-specific & world knowledge, machine reading comprehension, commonsense reasoning, machine translation, text summarization, instruction following, and truthfulness. Our design enables various benchmarking scenarios, ranging from multi-prompt k-shot evaluation to side-byside LM comparison on diverse user instructions.

Our main contributions are: (i) we create NorEval, the largest multi-task benchmark for Bokmål and Nynorsk that combines 19 existing peerreviewed datasets with five datasets created from scratch; (ii) we curate a collection of over 100

			i	# Datas	ets		Metho	d
	Evaluation Scope	Task Categories	BM	NN	Total	Ø	ė	କ୍ତ 🧕
NorBench	NLU & NLG	POS-tagging, MT, NER, sentiment analysis, Acceptability classification, MRC	8	2	10	1	x	×
ScandEval		NER, sentiment analysis, Acceptability classification, MRC, Commonsense reasoning, Text summarization, multiple-choice QA	7	2	9	✓	✓	×
SEB	Text embedding evaluation	LID, sentiment analysis, Acceptability classification, retrieval, Dialect & written form pairing, Intent & scenario classification, Clustering, political speech classification	11	3	14		×	×
NLEBench	NLU & NLG	NLI, MRC, bias detection, Text summarization, yes/no QA, Instruction following, Paraphrase detection, open-ended conversation	9	×	9	×	✓	
NorEval	NLU & NLG	Commonsense reasoning, MRC, sentiment analysis, Norwegian language knowledge, MT, Truthfulness, text summarization, Instruction following, Norwegian-specific & world knowledge	16	8	24	✓	×	×

Table 1: **Comparison of multi-task benchmarks for Norwegian:** ScandEval (Nielsen, 2023), Scandinavian Embedding Benchmark (SEB; Enevoldsen et al., 2024), NorBench (Samuel et al., 2023), NLEBench (Liu et al., 2024), and NorEval (ours). BM=Norwegian Bokmål; NN=Norwegian Nynorsk; @=human-created; @=machine-translated; @@= GPT-4o-created & human-edited; NLU=Natural language understanding; NLG=Natural language generation; NER=named entity recognition; LID=language identification; MRC=machine reading comprehension; NLI=natural language inference; QA=question answering; MT=machine translation.

dataset-specific prompts for robust evaluation; (iii) we establish five human baselines; (iv) we benchmark 19 pretrained and instruction-tuned Norwegian LMs against each other and humans; and (v) we release NorEval, our evaluation framework, all annotation materials, and a public leaderboard.¹

2 Background

081

086

087

091

096

099

100

Norwegian Bokmål and Nynorsk BM is the primary written standard, while an estimated 10–15% of the Norwegian population uses NN – especially in Western Norway. The national language legislation specifies that minimally 25% of the written public service information should be in NN to ensure representation of both varieties. While BM and NN are closely related, they exhibit lexical and grammatical differences, e.g. distinct pronouns, plural noun forms, definite noun forms, verb conjugation, and vocabulary units. We make one of the first dedicated attempts to increase the representation of NN in the context of LM evaluation. **Norwegian Benchmarks** Table 1 provides an overview of existing Norwegian benchmarks w.r.t. the evaluation scope, task categories, the number of datasets, representation of BM and NN, and dataset creation method. We describe them below.

101

102

103

104

105

106

107

108

110

111

112

113

114

115

116

117

118

119

120

121

122

- NorBench is primarily designed to benchmark encoder-only LMs on a collection of ten traditional NLP tasks, such as PoS-tagging, NER (NorNE; Jørgensen et al., 2020), sentiment analysis at different levels of granularity (NoReC; Velldal et al., 2018; Øvrelid et al., 2020), acceptability classification (NoCoLA; Jentoft and Samuel, 2023), machine translation, and extractive question answering (NorQuAD; Ivanova et al., 2023). All datasets in NorBench are human-created; however, the support for NN is limited to PoS-tagging and NER based on the Norwegian UD treebanks (Øvrelid and Hohle, 2016; Velldal et al., 2017).
- 2. **ScandEval** is an evaluation suite coupled with a public leaderboard for Scandinavian languages: Danish, Faroese, Icelandic, Norwegian and Swedish. The Norwegian datasets in Scan-

¹The links are removed for anonymity purposes.

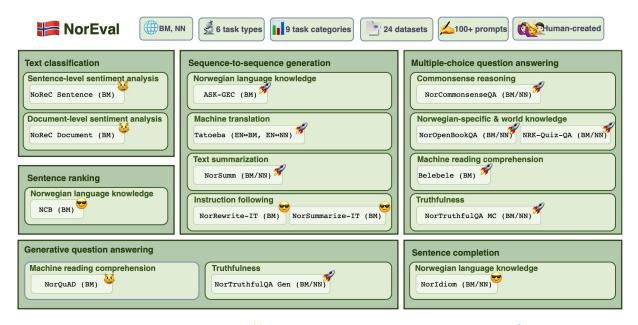


Figure 1: **Overview of the NorEval design.** Understand denotes datasets used in previous studies (§2), *** represents datasets that have not been used in Norwegian benchmarks, and denotes our datasets introduced as part of NorEval. EN=English; NB=Norwegian Bokmål; NN=Norwegian Nynorsk.

dEval are based on existing resources, such as NoReC, NorNE, NorQuAD, and the SNL & VG summarization dataset (Navjord and Korsvik, 2023). ScandEval introduces ScaLA, a novel acceptability classification dataset created through rule-based perturbation of sentences from the Norwegian UD treebanks. Moreover, it contains three officially supported machine-translated English datasets that are not curated or post-processed: MMLU (Hendrycks et al., 2020), XSum (Narayan et al., 2018), and HellaSwag (Zellers et al., 2019). Similar to NorBench, the coverage of NN is limited to the datasets derived from the Norwegian UD treebanks.

124 125

127

128

129

130

131

132

133

134

135

136

137

139

140

141

142

143

144

145

147

148

149

150

151

152

153

- 3. SEB is designed to evaluate text representations for Scandinavian languages across retrieval, bitext mining, text classification, and clustering tasks. With its distinct focus on text embedding models, SEB has little overlap with other Norwegian benchmarks (except for NorQuAD, ScaLA, and SNL & VG) and primarily constructs its evaluation tasks by converting existing Norwegian resources and leveraging supported metadata and schemes.
- NLEBench is designed to evaluate the LM's Norwegian language generation capabilities. Although NLEBench covers a diverse range of task categories, it does not address any NN evaluation scenario. Moreover, seven out of nine

datasets are machine-translated without curation, raising concerns about the benchmark's reliability. The remaining two datasets comprise multi-turn conversation, closed question answering (QA), and abstractive summarization tasks; these are generated by GPT-40 and edited by a team Norwegian native speakers. 154

155

156

157

158

159

160

161

162

163

164

165

166

169

170

171

172

173

174

175

176

177

178

180

NorEval expands the benchmarking scope of Norwegian LMs to task categories and evaluation scenarios that have not been covered in the related studies. To the best of our knowledge, our work describes the largest empirical evaluation in the context of BM and NN to date.

3 NorEval

Our main goal is to develop a high-quality standardized evaluation suite to benchmark Norwegian generative LMs across a broad spectrum of Norwegian language understanding and generation tasks. Figure 1 outlines the design of NorEval, which combines 19 existing peer-reviewed datasets with five novel datasets (§3.1), comprises a pool of over 100 prompts (§3.2), and offers a framework for systematic and reproducible LM evaluation (§3.3).

3.1 Tasks

Due to space constraints, Appendix A presents an overview of our 24 datasets, including dataset descriptions and examples, task formu-

267

269

270

271

272

273

274

275

231

232

233

lations, prompts, performance metrics, and general statistics. Appendix B details our novel datasets (NCB, NorIdiom, NorRewrite-instruct, and NorSummarize-Instruct), including general statistics and creation methods. We describe NorEval based on nine high-level task categories:

- 187 Sentiment analysis focuses on a binary polarity
 188 classification at the sentence- and document-level
 189 (NoReC Sentence & Document).
- Norwegian language knowledge assesses an LM's ability to perform grammatical error correction (ASK-GEC; Jentoft, 2023), adhere to languagespecific punctuation rules (NCB; ours), and complete Norwegian idioms (NorIdiom; ours).
- Norwegian-specific & world knowledge assesses
 an LM's ability to answer multiple-choice questions based on real-world and Norwegian-specific
 cultural knowledge (NRK-Quiz-QA and NorOpenBookQA; Mikhailov et al., 2025).
- 200Machine reading comprehension evaluates the201ability of LMs to answer questions related to an202input text by selecting an answer from multiple203choices (Belebele; Bandarkar et al., 2024) or gen-204erating a text span (NorQuAD).
- Commonsense reasoning assesses an LM's ability to answer a multiple-choice question based on
 logical reasoning and world understanding (NorCommonsenseQA; Mikhailov et al., 2025).
- 209Machine translation tests how accurately an LM210translates sentences among four language pairs211from Tatoeba (Tiedemann, 2020): English \leftrightarrow BM212and English \leftrightarrow NN.
 - **Text summarization** focuses on abstractive summarization of news articles (NorSumm; Touileb et al., 2025).
- 216Instruction following aims to evaluate an LM's217ability to follow user instructions on creative rewrit-218ing and summarization through (i) changing a text's219tone, style, and genre; (ii) simplifying complex220content; (iii) enhancing readability; (iv) changing221content for specific target audience (NorRewrite-222Instruct and NorSummarize-Instruct; ours).
 - **Truthfulness** tests whether an LM generates or selects answers that propagate false beliefs and misconceptions (NorTruthfulQA Multiple Choice & Generation; Mikhailov et al., 2025).

3.2 Prompts

213

214

215

227

228

229

We conduct a two-stage in-house annotation to create a collection of prompts that reflect diverse user formulations and answer formatting, with four-tosix prompts per dataset. The prompt examples are provided in Appendix A, and the annotation guidelines are documented in Appendix C.

- Stage 1: Creating Prompts in Bokmål. Three Norwegian native speakers create datasetspecific prompts in BM using two strategies: (i) manually translating provided English prompts from PromptSource (Bach et al., 2022) and (ii) writing the prompts from scratch.
- Stage 2: Adapting Prompts to Nynorsk. We hire a BA student in linguistics to adapt the BM prompts to NN. The hourly pay rate is 227 NOK (approx. \$20).

3.3 Evaluation Framework

All our datasets and prompts are integrated into LM Evaluation Harness (Gao et al., 2024; Biderman et al., 2024), a framework for flexible evaluation of generative LLMs in various scenarios. The framework provides a user-friendly API allowing to easily integrate datasets, configure prompts, and benchmark LMs that are not part of our baselines in our public leaderboard (§4).²

4 Evaluation Setup

We benchmark a broad range of 19 pretrained and instruction-finetuned decoder-only LMs that are publicly available in Transformers (Wolf et al., 2020) as our baselines (see Table 2). We compare them in k-shot regimes against one another and our human baselines, and evaluate the instructionfinetuned LMs using the LLM-as-a-judge approach (Zheng et al., 2023).

In-context Learning Evaluation The evaluation is run in k-shot regimes with $k \in \{0, 1, 16\}$ across *all* prompts. We use the maximum k for each dataset, which depends on the availability of a training/development set for demonstration examples and the example lengths. We use two strategies supported via LM Evaluation Harness to evaluate the LM performance in a prompted format:

• Log-likelihood. The LM assigns a probability to each answer candidate conditioned on an input prompt, and the most probable candidate is selected as the prediction. This strategy is used in the sentence ranking, text classification, and multiple-choice QA tasks.

²The link is removed for anonymity purposes.

Name	Base
PRETRAINED LMS	
Mistral-7B	N/A
Mistral-Nemo-12B	N/A
Meta/Llama-3-8B	N/A
NB-GPT-6B	N/A
NorwAI-Mistral-7B	Mistral-7B
NorwAI-Llama2-7B	Llama-2-7B
AI-Sweden/GPT-SW3-6.7B	N/A
AI-Sweden/Llama-3-8B	Meta/Llama-3-8B
LumiOpen/Viking-7B	N/A
LumiOpen/Viking-13B	N/A
NorBLOOM-7B-scratch	N/A
NorMistral-7B-scratch	N/A
NorMistral-7B-warm	Mistral-7B
NorMistral-11B-warm	Mistral-Nemo-12B
INSTRUCTION-TUNED LMS	
NorMistral-7B-warm-IT	NorMistral-7B-warm
Mistral-7B-IT	Mistral-7B
AI-Sweden/Llama-3-8B-IT	AI-Sweden/Llama-3-8B
Meta/Llama-3-8B-IT	Meta/Llama-3-8B
Mistral-Nemo-12B-IT	Mistral-Nemo-12B

Table 2: **The LMs used in our work and their base versions.** LM references: Mistral-7B (Jiang et al., 2023), NorBLOOM/NorMistral-7B-scratch & Normistral-7B/11B-warm (Samuel et al., 2025), and Meta/Llama-3-8B (Dubey et al., 2024).

• Generation. The LM generates a text continuation conditioned on an input prompt. We use a greedy search decoding method for the pretrained LMs and recommended HuggingFace inference hyperparameters and chat templates for the instruction-finetuned LMs. This strategy is used in the sentence completion, sequence-tosequence generation, and generative QA tasks.

276

277

279

281

286

290

291

294

297

Performance Aggregation We use a combination of performance aggregation methods based on well-established NLP benchmarking practices and theoretical foundations of the social choice theory (Arrow, 2012).

- Multi-prompt Aggregation. We select the highest performance score for each LM across dataset-specific prompts to mitigate the prompt sensitivity (Voronov et al., 2024).
- Average Normalized Score. In line with the OpenLLM leaderboard (Fourrier et al., 2024) and FineWeb 2 evaluation protocol (Penedo et al., 2024), we first rescale individual performance scores across our nine task cate-

Dataset	WAWA
NCB	92.0
NorOpenBookQA (BM)	98.0
NorCommonsenseQA (BM)	93.3
NorTruthfulQA Multiple Choice (BM)	86.0
Belebele	86.7

Table 3: The WAWA rates for human baselines (§4).

gories. Rescaling involves score normalization between the random baseline and the maximum possible score. We then compute the overall performance score by averaging the normalized scores within all task categories.

298

299

300

301

302

303

304

305

306

308

309

310

311

312

313

314

315

316

317

318

319

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

339

• Borda's Count. Recent works demonstrate the effectiveness of using Borda's count as an alternative to arithmetic mean aggregation in multi-task benchmarking (Colombo et al., 2022; Rofin et al., 2023). This approach relies on a scoring vector c = (|M| - 1, |M| - 1) $2, \ldots, 1, 0$ to assign scores to a set of M LMs $m \in \{m_1, \ldots, m_{|M|}\}$ based on their positions in each task-specific ranking. The final score of each LM is calculated as the sum of corresponding scores in each task Sc(m) = $\sum_{i=1}^{|M|} c_i p_i(m)$, where $p_i(m)$ is the number of tasks in which LM m takes the i^{th} place, and c_i is the i^{th} element of c. Borda's count allows for aggregating heterogeneous performance metrics while accounting for the differences in the LMs' ranking positions.

Human Baselines We establish five human baselines on random subsets of 50 examples from NCB, Belebele, NorOpenBookQA (BM), NorCommonsenseQA (BM), and NorTruthfulQA Multiple choice (BM). Our annotation team consists of 12 volunteers, all Norwegian native speakers with an NLP background and completed higher academic degrees. Before starting, the annotators receive guidelines describing the datasets and providing examples with explanations (see Appendix D). Each example is annotated by three annotators, and we use majority voting to aggregate their results. We compute the inter-annotator agreement rates using the Worker Agreement with Aggregate (WAWA) coefficient (Ning et al., 2018), which represents the average percentage of annotators' votes that align with the majority vote for each example. Table 3 presents the per-dataset WAWA rates ranging between 86% and 98%, which indicates a strong agreement between our annotators.

Model	Overall	Borda's Count \uparrow	Norwegian language knowledge	Sentiment analysis	Commonsense reasoning	Truthfulness	Norwegian-specific & world knowledge	Machine reading comprehension	Text summarization	Instruction following	Machine translation
NB-GPT-6B	33.0	42.0	30.6	34.2	27.9	33.0	29.6	7.8	39.5	<u>39.1</u>	55.1
GPT-SW3-6.7B	45.3	63.0	61.0	64.2	31.3	<u>43.9</u>	30.0	30.1	39.2	35.5	72.6
NorwAI-Mistral-7B	45.4	69.0	47.2	70.7	<u>35.9</u>	36.7	39.5	37.1	30.9	37.7	73.2
NorwAI-Llama2-7B	43.6	57.0	47.9	66.3	29.8	30.2	35.4	38.8	33.6	37.7	72.9
NorBLOOM-7B-warm	35.4	28.0	51.8	40.8	23.5	39.1	23.3	23.9	33.7	13.9	68.8
NorMistral-7B-scratch	38.6	34.0	53.2	57.5	27.7	40.3	25.4	22.3	36.8	14.9	69.7
Viking-7B	41.8	47.0	51.3	59.5	27.4	26.6	25.0	25.9	49.1	38.7	73.0
NorMistral-11B	54.6	96.0	43.0	82.2	45.4	23.4	64.7	<u>59.5</u>	53.8	46.3	73.4
Viking-13B	45.3	71.0	56.8	67.0	31.9	28.3	30.5	30.7	50.5	38.8	73.1
NorMistral-7B-warm	43.3	61.0	<u>59.2</u>	68.7	34.0	31.6	38.7	40.7	29.8	14.6	72.0
NorMistral-7B-warm-IT	41.0	14.0	16.9	77.2	35.2	24.7	49.3	23.4	<u>55.5</u>	56.1	30.5
Mistral-7B	39.7	38.0	23.4	77.7	21.1	46.0	43.5	47.1	29.5	11.6	57.5
Mistral-7B-IT	37.4	4.0	12.8	69.5	19.9	31.9	34.8	31.7	43.1	50.4	42.5
AI-Sweden/Llama-3-8B	<u>50.8</u>	<u>80.0</u>	51.0	<u>80.3</u>	34.8	31.4	54.8	47.1	48.3	38.1	71.5
AI-Sweden/Llama-3-8B-IT	45.5	16.0	<u>16.1</u>	83.2	53.0	12.3	<u>55.3</u>	53.9	46.9	50.1	38.9
Meta/Llama-3-8B	47.0	63.0	28.4	76.8	28.0	34.0	50.9	48.7	<u>53.1</u>	37.4	66.1
Meta/Llama-3-8B-IT	<u>48.1</u>	<u>17.0</u>	13.7	78.3	39.1	<u>39.5</u>	51.8	<u>61.4</u>	50.8	51.4	47.1
Mistral-Nemo-12B	47.8	55.0	26.3	76.8	25.4	29.7	<u>55.0</u>	63.4	<u>53.1</u>	33.5	67.0
Mistral-Nemo-12B-IT	51.9	33.0	<u>16.1</u>	<u>82.9</u>	<u>44.1</u>	<u>42.7</u>	58.8	67.3	56.0	<u>55.7</u>	<u>43.7</u>

Table 4: Borda's count and normalized performance scores of the pretrained and instruction-tuned Norwegian LMs across all task categories in NorEval. Warm-colored cells represent cases where an instruction-tuned version improves performance compared to the base LM, while cold-colored cells indicate cases where it decreases. The best score is in bold, the second best is underlined – the pretrained and instruction-tuned LMs are highlighted independently.

LLM-as-a-judge We use the LLM-as-a-judge approach to automatically evaluate the instruction-341 tuned LMs' generation abilities on NorRewrite-Instruct and NorSummarize-Instruct. We adopt the Human response-guided evaluation framework (HREF; Lyu et al., 2024), which relies on human references as additional inputs to improve the LM judgement performance. Our judge model is meta-llama/Llama-3.3-70B-Instruct, which highly correlates with human judgments as reported by Lyu et al.. The judge model is given (i) the prompt; (ii) output A; (iii) output B; and (iv) a human reference formatted based on the prompt template in Appendix F.2. We perform the side-by-354 side comparison using a greedy search decoding

strategy across three options: (i) output A is better than output B; (ii) output B is better than output A; and (iii) a tie. We conduct the side-by-side comparison over all combinations of the instruction-tuned LMs and compute the expected win rates (see Appendix F for further details).

356

357

358

359

360

361

362

363

364

365

366

367

368

5 Results

This section describes our empirical evaluation results on NorEval. We report the results aggregated across our task categories in Table 4. We find that NorMistral-11B achieves the best overall performance across most task categories, followed by AI-Sweden/Llama-3-8B. NorMistral/NorBLOOM-7Bscratch and NB-GPT-6B receive the lowest scores.

NORREWRITE-INSTRUCT						NORSUMMARIZE-INSTRUCT						
Model	NorMistral-7B-warm-IT	Mistral-Nemo-12B-IT	Mistral-7B-IT	Meta/Llama-3-8B-IT	AI-Sweden/Llama-3-8B-IT	Average	NorMistral-7B-warm-IT	Mistral-Nemo-12B-IT	Mistral-7B-IT	Meta/Llama-3-8B-IT	AI-Sweden/Llama-3-8B-IT	Average
NorMistral-7B-warm-IT	_	45.6	92.2	76.2	99.5	78.4	_	57.6	92.5	66.5	99.5	79.0
Mistral-Nemo-12B-IT	54.4	_	89.8	80.6	93.1	79.5	42.4	_	81.8	62.1	87.3	68.4
Mistral-7B-IT	7.8	10.2	—	47.4	67.5	33.2	7.5	18.2	—	36.9	66.9	32.4
Meta/Llama-3-8B-IT	23.8	19.4	52.6		64.7	40.1	33.5	37.9	63.1	—	71.4	51.5
AI-Sweden/Llama-3-8B-IT	0.5	6.9	32.5	35.3		18.8	0.5	12.7	33.1	28.6	—	18.7

Table 5: Pair-wise expected win-rates (%) of the instruction-finetuned LMs on our instruction-following tasks.

Mistral-Nemo-12B-IT performs best among the 369 instruction-tuned LMs; however, the benefits from 370 instruction-tuning depend on the task. In general, 371 the LMs perform well on the sentiment analysis and machine translation tasks but struggle with 373 tasks requiring the Norwegian language knowledge, 374 commonsense reasoning, truthfulness, and instruction following. We summarize our findings below w.r.t. performance aggregation methods, human performance, task category, the effect of instruction 378 tuning, Norwegian language variety, and LLM-asa-judge evaluation.

Agreement on LM Rankings The agreement rate³ between the average normalized score and Borda's count for the top-3 LMs is 66%. This discrepancy is because Borda's count penalizes Mistral-Nemo-12B for its low performance on Norwegian language knowledge tasks, ranking NorMistral-11B and AI-Sweden/Llama-3-8B as the top-2 models, while Viking-13B takes third place instead of Mistral-Nemo-12B. However, the performance aggregation methods fully agree on the bottom-5 LMs, which include Viking-7B, Mistral-7B, NorMistral-7B-scratch, NorBLOOM-7B-warm, and NB-GPT-6B.

384

386

392

395

397

LMs vs. Human Baselines Comparing the LMs to our human baselines in Table 8 and Table 9 in Appendix E, we find that the LMs fall behind humans by 10% on Belebele, 14.4% on NorQuAD, 15.2% on NorOpenBookQA, 17.8% on NorCom-

monsenseQA, and 13.3% on NorTruthfulQA Multiple Choice. However, NorwAI-Llama2-7B slightly surpasses human performance on NCB by 1.2%. The results suggest that while LMs show promising in-context learning capabilities, there is still room for their improvement in world knowledge, truthfulness, and reading comprehension tasks.

399

400

401

402

403

404

405

Analysis on Task Categories We outline our key 406 results based on the fine-grained analysis reported 407 in Appendix E. No single LM consistently out-408 performs others across all task categories. The 409 strongest performance is observed on the senti-410 ment analysis tasks, with AI-Sweden/Llama-3-8B 411 achieving the best score of 92.7 and its instruction-412 tuned version (NoReC Document) reaching 95.5. 413 On NorIdiom, GPT-SW3-6.7B delivers the best 414 performance, followed by NorMistral-7B-warm. 415 For NorCommonsenseQA, the performance of pre-416 trained LMs varies: BM scores range from 41.2 417 to 61, while NN scores range from 32.6 (Mistral-418 7B) to 51.6 (NorMistral-11B), suggesting limited 419 in-context learning abilities for logical reason-420 ing. The LMs also exhibit strong performance on 421 Norwegian-specific quizzes (NRK-Quiz-QA) and 422 tasks assessing elementary-level world knowledge 423 (NorOpenBookQA), with the best-performing LMs 424 including NorMistral-11B, AI-Sweden/Llama-3-425 8B, Mistral-7B, and Mistral-Nemo-12B. However, 426 the LMs tend to generate less truthful answers in 427 the open-ended QA setup (NorTruthfulQA Gen-428 eration) compared to the multiple-choice setup 429 (NorTruthfulQA Multiple Choice), highlighting po-430

³The proportion of top-k and bottom-k LMs that are consistently ranked by both performance aggregation methods.

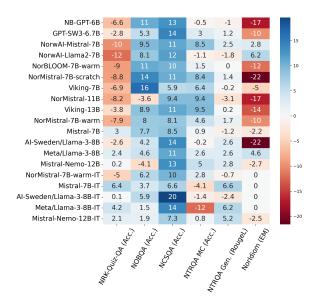


Figure 2: **Comparison of Bokmål and Nynorsk.** Heatmap that shows the performance δ -scores between BM and NN on our multiple-choice QA and sentence completion tasks. NOBQA=NorOpenBookQA; NCSQA=NorCommonsenseQA; NTRQA =NorTruth-fulQA. Higher values mean higher performance in BM.

tential challenges of evaluating open-ended QA in Norwegian.

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

Effect of Instruction-tuning Instruction-tuning is one of the least explored research directions for Norwegian. Our results align with Wang et al. (2023); Bukharin et al. (2024), demonstrating that instruction-tuning can yield both positive and negative effects depending on the task. For instance, instruction-tuning consistently improves the performance of Mistral-Nemo-12B and Meta/Llama-3-8B across most task categories, with the most notable improvements observed in multiple-choice QA and sequence-to-sequence generation tasks. At the same time, it can degrade the performance on tasks requiring Norwegian language knowledge and involve translating from English into BM and NN (see Table 7 and Table 10 in Appendix E).

Comparing Bokmål and Nynorsk We compute 448 the performance δ -scores on multiple-choice and 449 sentence completion tasks with parallel BM and 450 NN datasets to compare LMs w.r.t. the Norwe-451 gian language variety. Figure 2 shows that the 452 453 LMs generally perform better on BM on NorOpen-BookQA, NorCommonsenseQA, and NorTruth-454 fulQA Multiple Choice as opposed to NRK-Quiz-455 QA and NorIdiom. Instruction-tuning results in 456 lower δ -scores on NRK-Quiz-QA and NorOpen-457

BookQA but leads to random guessing performance on NorIdiom for both BM and NN.

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

LLM-as-a-judge We report the LMs' win-rates in Table 5. We find that NorMistral-7B-warm-IT and Mistral-Nemo-12B-IT consistently perform best across all LMs, while responses from AI-Sweden/Llama-3-8B-IT and Mistral-7B-IT are least preferred. NorMistral-7B-warm-IT achieves the highest win-rate on NorSummarize-Instruct, while there is a minor difference between the top-2 LMs on NorRewrite-Instruct. Our analysis of language and position biases in Appendix F indicates that the LMs often switch to English, Swedish, or Danish, and there is an insignificant effect of the response position on the judgment.

6 Conclusion and Future Work

This work introduces NorEval, the largest humancurated benchmark for assessing Norwegian language understanding and generation on 24 humancreated datasets. NorEval focuses on both Norwegian language varieties and spans nine task categories, ranging from Norwegian-specific & world knowledge to instruction following. We benchmark 19 open-source Norwegian generative LMs against each other and our established human baselines, analyzing their performance in various scenarios. Additionally, we present one of the first extensive evaluations of open Norwegian instruction-tuned LMs and their base counterparts in k-shot regimes, as well as via the LLM-as-a-judge approach. Our key findings indicate that while the LMs perform well on sentiment analysis and machine translation tasks, they struggle with tasks requiring Norwegian language knowledge, commonsense reasoning, truthfulness, and instruction following. The LMs generally perform better on BM compared to NN. Notably, instruction-tuning yields both positive and negative effects on the LM performance.

Our *future* work includes: (i) a more detailed evaluation of instruction-tuned LMs and instruction-tuning data mixtures; (ii) integration of novel datasets; (iii) establishment of human baselines on additional tasks; (iv) integration of test data decontamination methods. We hope that our benchmark and evaluation framework will facilitate more comprehensive comparisons of LMs within the context of Mainland Scandinavian languages and inspire collaborative efforts among NLP researchers and developers to advance reliable LMs and evaluation resources for Norwegian.

7 Limitations

508

Evaluation Design While we present extensive empirical evaluations of a broad range of Norwe-510 gian LMs, we acknowledge several limitations in 511 our evaluation design. First, in the one- and 16-512 shot evaluation scenarios, demonstration examples 513 are randomly sampled, which can facilitate label 514 bias in our text classification and multiple-choice 515 QA tasks (Zhao et al., 2021). Next, aggregating 516 evaluation results in multi-task benchmarking re-517 mains a challenging problem. We employ a combination of performance aggregation methods to 519 mitigate the shortcomings of standard arithmetic mean aggregation: (i) score normalization to ac-521 count for random baseline performance, and (ii) Borda's count to address the heterogeneity of per-523 formance metrics. However, these methods have 524 inherent limitations. In particular, we still need 525 to average heterogeneous task-specific normalized 526 performance scores to compute an overall score. 527 Although Borda's count relies on model rankings 528 instead of performance scores, introducing a new 529 LM can influence the final ranking due to the well-530 studies axiom of the independence of irrelevant 531 alternatives (Arrow, 2012; Dougherty and Heckel-532 man, 2020). Additionally, Borda's count can treat 533 several LMs as equivalent (or ties), which is not an empirical observation in our experiments. Fur-535 thermore, our work does not account for potential in-domain evaluation of the instruction-tuned LMs, which can be instruction-tuned on similar tasks in 538 English and other languages, potentially inflating their downstream performance. 540

Data Contamination The increasing volume of 541 open textual data can lead to unintended test data 542 leakage in an LM's pretraining corpus (e.g., Brown 543 et al., 2020; Dubey et al., 2024; Zhang et al., 2024), 544 which can promote the saturation of NLP bench-545 marks. We recognize the importance of this evalua-546 tion aspect and acknowledge that LM performance on NorEval datasets created from open text sources 548 can be inflated. However, we are unable to provide a reliable estimate of the proportion of leaked data during this submission. We encourage adherence to 552 responsible LM development practices and recommend conducting test contamination analysis when 553 benchmarking an LM on NorEval. Integrating unsupervised pretraining data detection methods into 555 NorEval is left as a direction for our future work. 556

Evaluation Framework NorEval is integrated into LM Harness Evaluation, a widely recognized open-source collaborative project that is subject to continuous improvements and advancements, which potentially affect its long-term compatibility, reproducibility, and usability.

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

LLM-as-a-judge Automatic side-by-side evaluation using the LLM-as-a-judge approach is a well-established, complementary evaluation scenario that has demonstrated its efficiency for highresource languages. However, its performance in low-resource languages remains unclear. We acknowledge that the reliability of our evaluation results in the LLM-as-a-judge experiments requires further empirical validation. We limit our analysis to language and position bias; other potential evaluation directions for the judges are beyond the scope of this work.

Ethics Statement

Human Annotation The hourly pay rate in our annotation projects (§3.2 and Appendix B.3) is regulated by the state and corresponds to the education level. The annotators' submissions are stored anonymously. The annotators are warned about potentially sensitive topics in the dataset examples.

Inference Costs Evaluating an LM on NorEval does not require any finetuning. The inference costs can be minimized with the help of distributed inference libraries supported by LM Evaluation Harness, such as Accelerate (Gugger et al., 2022) and vLLM (Kwon et al., 2023).

Potential Misuse We acknowledge that NorEval can leak into and partially overlap with an LM's pretraining corpus. We release NorEval for research and development purposes and encourage its responsible use.

Transparency & License We release NorEval adhering to standard open-source research practices. NCB is distributed under CC BY-NC, NorIdiom under CC0 1.0, and both NorRewrite-Instruct and NorRewrite-Summarize under the MIT license. The other datasets are subject to their respective licensing terms. Comprehensive documentation detailing our codebase and full annotation guidelines will be made available in our GitHub repository upon acceptance.

706

707

708

709

710

711

- 603
- 60

610

611

612

614

615

617

618

619

620

621

624

626

631

634

641

643

644

651

655

656

Use of AI-assistants We use Grammarly⁴ to correct grammar, spelling, and phrasing errors in the text of this paper.

References

- Kenneth J Arrow. 2012. *Social choice and individual values*, volume 12. Yale university press.
- Stephen Bach, Victor Sanh, Zheng Xin Yong, Albert Webson, Colin Raffel, Nihal V. Nayak, Abheesht Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry, Zaid Alyafeai, Manan Dey, Andrea Santilli, Zhiqing Sun, Srulik Ben-david, Canwen Xu, Gunjan Chhablani, Han Wang, Jason Fries, Maged Alshaibani, Shanya Sharma, Urmish Thakker, Khalid Almubarak, Xiangru Tang, Dragomir Radev, Mike Tian-jian Jiang, and Alexander Rush. 2022. Prompt-Source: An integrated development environment and repository for natural language prompts. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 93–104, Dublin, Ireland. Association for Computational Linguistics.
 - Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel Artetxe, Satya Narayan Shukla, Donald Husa, Naman Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and Madian Khabsa. 2024. The belebele benchmark: a parallel reading comprehension dataset in 122 language variants. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 749–775, Bangkok, Thailand. Association for Computational Linguistics.
 - Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi, Alham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, et al. 2024. Lessons from the trenches on reproducible evaluation of language models. *arXiv preprint arXiv:2405.14782*.
 - Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. *Preprint*, arXiv:2005.14165.
 - Alexander Bukharin, Shiyang Li, Zhengyang Wang, Jingfeng Yang, Bing Yin, Xian Li, Chao Zhang, Tuo Zhao, and Haoming Jiang. 2024. Data diversity matters for robust instruction tuning. In *Findings of the Association for Computational Linguistics: EMNLP*

- 2024, pages 3411–3425, Miami, Florida, USA. Association for Computational Linguistics.
- Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng Jiang, and Benyou Wang. 2024. Humans or LLMs as the judge? a study on judgement bias. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 8301–8327, Miami, Florida, USA. Association for Computational Linguistics.
- Pierre Colombo, Nathan Noiry, Ekhine Irurozki, and Stéphan Clémençon. 2022. What are The Best Systems? New Perspectives on NLP Benchmarking. *Advances in Neural Information Processing Systems*, 35:26915–26932.
- Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell, Matei Zaharia, and Reynold Xin. 2023. Free dolly: Introducing the world's first truly open instructiontuned llm.
- Ona de Gibert, Graeme Nail, Nikolay Arefyev, Marta Bañón, Jelmer van der Linde, Shaoxiong Ji, Jaume Zaragoza-Bernabeu, Mikko Aulamo, Gema Ramírez-Sánchez, Andrey Kutuzov, Sampo Pyysalo, Stephan Oepen, and Jörg Tiedemann. 2024. A new massive multilingual dataset for high-performance language technologies. In *Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)*, pages 1116–1128, Torino, Italia. ELRA and ICCL.
- Keith L Dougherty and Jac C Heckelman. 2020. The probability of violating arrow's conditions. *European Journal of Political Economy*, 65:101936.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. 2024. The Ilama 3 herd of models. *arXiv preprint arXiv:2407.21783*.
- Kenneth Enevoldsen, Márton Kardos, Niklas Muennighoff, and Kristoffer Laigaard Nielbo. 2024. The Scandinavian Embedding Benchmarks: Comprehensive Assessment of Multilingual and Monolingual Text Embedding. *arXiv preprint arXiv:2406.02396*.
- Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. 2024. Open LLM Leaderboard v2. *Hugging Face*.
- Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. 2024. A framework for few-shot language model evaluation.

⁴grammarly.com

- 712 713 714 715 716
- 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
- 732 733 734 735 736 737

- 739 740 741 742 743 744 745 746
- 747 748 749 750 751 752 753
- 755 756

754

- 757 758 759
- 760 761

-

7(7(7(

7 7 7

- Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Mangrulkar, Marc Sun, and Benjamin Bossan. 2022. Accelerate: Training and inference at scale made simple, efficient and adaptable. https://github.com/huggingface/ accelerate.
- Michael A. Hedderich, Lukas Lange, Heike Adel, Jannik Strötgen, and Dietrich Klakow. 2021. A survey on recent approaches for natural language processing in low-resource scenarios. In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 2545–2568, Online. Association for Computational Linguistics.
- Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 2020. Measuring massive multitask language understanding. arXiv preprint arXiv:2009.03300.
- Sardana Ivanova, Fredrik Andreassen, Matias Jentoft, Sondre Wold, and Lilja Øvrelid. 2023. NorQuAD: Norwegian question answering dataset. In Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pages 159–168, Tórshavn, Faroe Islands. University of Tartu Library.
- Matias Jentoft. 2023. Grammatical Error Correction with Byte-level Language Models. Master's thesis, University of Oslo.
- Matias Jentoft and David Samuel. 2023. NoCoLA: The Norwegian corpus of linguistic acceptability. In Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pages 610–617, Tórshavn, Faroe Islands. University of Tartu Library.
- Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. 2023. Mistral 7B. *arXiv preprint arXiv:2310.06825*.
- Fredrik Jørgensen, Tobias Aasmoe, Anne-Stine Ruud Husevåg, Lilja Øvrelid, and Erik Velldal. 2020.
 NorNE: Annotating named entities for Norwegian. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 4547–4556, Marseille, France. European Language Resources Association.
- Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury. 2020. The state and fate of linguistic diversity and inclusion in the NLP world. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 6282–6293, Online. Association for Computational Linguistics.
- Amir Hossein Kargaran, Ayyoob Imani, François Yvon, and Hinrich Schuetze. 2023. GlotLID: Language identification for low-resource languages. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pages 6155–6218, Singapore. Association for Computational Linguistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient Memory Management for Large Language Model Serving with PagedAttention. In *Proceedings* of the ACM SIGOPS 29th Symposium on Operating Systems Principles. 769

770

771

773

776

778

781

782

783

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

- Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao, Zhen Tan, Amrita Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, Kai Shu, Lu Cheng, and Huan Liu. 2025. From generation to judgment: Opportunities and challenges of llm-as-a-judge. *Preprint*, arXiv:2411.16594.
- Peng Liu, Lemei Zhang, Terje Farup, Even W. Lauvrak, Jon Espen Ingvaldsen, Simen Eide, Jon Atle Gulla, and Zhirong Yang. 2024. NLEBench+NorGLM: A comprehensive empirical analysis and benchmark dataset for generative language models in Norwegian. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 5543–5560, Miami, Florida, USA. Association for Computational Linguistics.
- Xinxi Lyu, Yizhong Wang, Hannaneh Hajishirzi, and Pradeep Dasigi. 2024. Href: Human response-guided evaluation of instruction following in language models. *arXiv preprint arXiv:2412.15524*.
- Vladislav Mikhailov, Petter Mæhlum, Victoria Ovedie Chruickshank Langø, Erik Velldal, and Lilja Øvrelid. 2025. A Collection of Question Answering Datasets for Norwegian. *arXiv preprint arXiv:2501.11128*.
- Shashi Narayan, Shay B. Cohen, and Mirella Lapata. 2018. Don't give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 1797–1807, Brussels, Belgium. Association for Computational Linguistics.
- Jørgen Johnsen Navjord and Jon-Mikkel Ryen Korsvik. 2023. Beyond extractive: advancing abstractive automatic text summarization in norwegian with transformers. Master's thesis, Norwegian University of Life Sciences, Ås.
- Dan Nielsen. 2023. ScandEval: A benchmark for Scandinavian natural language processing. In *Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)*, pages 185–201, Tórshavn, Faroe Islands. University of Tartu Library.
- Qiang Ning, Zhili Feng, Hao Wu, and Dan Roth. 2018. Joint reasoning for temporal and causal relations. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2278–2288, Melbourne, Australia. Association for Computational Linguistics.
- Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,

935

936

880

Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744.

825

826

831

835 836

837

841

842

843

847

848

852 853

854

855

856

859

870

871

872

874

875

876

878

879

- Lilja Øvrelid and Petter Hohle. 2016. Universal Dependencies for Norwegian. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 1579–1585, Portorož, Slovenia. European Language Resources Association (ELRA).
 - Lilja Øvrelid, Petter Mæhlum, Jeremy Barnes, and Erik Velldal. 2020. A fine-grained sentiment dataset for Norwegian. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 5025– 5033, Marseille, France. European Language Resources Association.
 - Guilherme Penedo, Hynek Kydlíček, Vinko Sabolčec, Bettina Messmer, Negar Foroutan, Martin Jaggi, Leandro von Werra, and Thomas Wolf. 2024. FineWeb2: A sparkling update with 1000s of languages.
 - Nazneen Rajani, Lewis Tunstall, Edward Beeching, Nathan Lambert, Alexander M. Rush, and Thomas Wolf. 2023. No robots. https://huggingface.co/ datasets/HuggingFaceH4/no_robots.
 - Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ questions for machine comprehension of text. In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pages 2383–2392, Austin, Texas. Association for Computational Linguistics.
 - Mark Rofin, Vladislav Mikhailov, Mikhail Florinsky, Andrey Kravchenko, Tatiana Shavrina, Elena Tutubalina, Daniel Karabekyan, and Ekaterina Artemova. 2023. Vote'n'rank: Revision of benchmarking with social choice theory. In *Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics*, pages 670–686, Dubrovnik, Croatia. Association for Computational Linguistics.
 - Sebastian Ruder. 2021. Challenges and Opportunities in NLP Benchmarking.
 - Ananya B. Sai, Akash Kumar Mohankumar, and Mitesh M. Khapra. 2022. A survey of evaluation metrics used for nlg systems. ACM Comput. Surv., 55(2).
 - David Samuel, Andrey Kutuzov, Samia Touileb, Erik Velldal, Lilja Øvrelid, Egil Rønningstad, Elina Sigdel, and Anna Palatkina. 2023. NorBench – a benchmark for Norwegian language models. In Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pages 618–633, Tórshavn, Faroe Islands. University of Tartu Library.
 - David Samuel, Vladislav Mikhailov, Erik Velldal, Lilja Øvrelid, Lucas Georges Gabriel Charpentier, and

Andrey Kutuzov. 2025. Small Languages, Big Models: A Study of Continual Training on Languages of Norway. In Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies (NoDaLiDa/Baltic-HLT 2025), Tallinn, Estonia.

- Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. 2023. Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models. *Transactions on Machine Learning Research*.
- Kari Tenfjord, Paul Meurer, and Knut Hofland. 2006. The ASK corpus - a language learner corpus of Norwegian as a second language. In *Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC'06)*, Genoa, Italy. European Language Resources Association (ELRA).
- Jörg Tiedemann. 2020. The tatoeba translation challenge – realistic data sets for low resource and multilingual MT. In *Proceedings of the Fifth Conference on Machine Translation*, pages 1174–1182, Online. Association for Computational Linguistics.
- Samia Touileb, Vladislav Mikhailov, Marie Kroka, Lilja Øvrelid, and Erik Velldal. 2025. Benchmarking Abstractive Summarisation: A Dataset of Humanauthored Summaries of Norwegian News Articles. *arXiv preprint arXiv:2501.07718*.
- Erik Velldal, Lilja Øvrelid, Eivind Alexander Bergem, Cathrine Stadsnes, Samia Touileb, and Fredrik Jørgensen. 2018. NoReC: The Norwegian review corpus. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources Association (ELRA).
- Erik Velldal, Lilja Øvrelid, and Petter Hohle. 2017.
 Joint UD parsing of Norwegian Bokmål and Nynorsk.
 In Proceedings of the 21st Nordic Conference on Computational Linguistics, pages 1–10, Gothenburg, Sweden. Association for Computational Linguistics.
- Anton Voronov, Lena Wolf, and Max Ryabinin. 2024. Mind Your Format: Towards Consistent Evaluation of In-context Learning Improvements. *arXiv preprint arXiv:2401.06766*.
- Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Lingpeng Kong, Qi Liu, Tianyu Liu, and Zhifang Sui. 2024. Large language models are not fair evaluators. In *Proceedings* of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9440–9450, Bangkok, Thailand. Association for Computational Linguistics.
- Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. 2023. How far can camels go? exploring the

state of instruction tuning on open resources. Advances in Neural Information Processing Systems, 36:74764–74786.

937

938

942

943

947

951

952

953

955

956

957

961 962

963

964

965 966

967

968

969

970

971

972 973

974

975

976

978

- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, and Denny Zhou. 2022. Chain-of-thought prompting elicits reasoning in large language models. In *Advances in Neural Information Processing Systems*, volume 35, pages 24824–24837. Curran Associates, Inc.
- Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Transformers: State-of-the-art natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pages 38–45, Online. Association for Computational Linguistics.
 - Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. HellaSwag: Can a machine really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 4791–4800, Florence, Italy. Association for Computational Linguistics.
 - Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Yang, and Hai Li. 2024. Min-K%++: Improved Baseline for Detecting Pre-Training Data from Large Language Models. *arXiv preprint arXiv:2404.02936*.
 - Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate before use: Improving few-shot performance of language models. In Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 12697–12706. PMLR.
 - Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. 2023. Judging LLM-as-a-judge with MT-bench and chatbot arena. In *Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track.*

A NorEval: Dataset Descriptions, Examples, and Prompts

Dataset	Language	Train	Test	# Prompts	Task Type	Task Category	Performance Metrics	
			Р	eer-reviewe	d Norwegian datasets			
NoReC Sentence	BM	3.89k	583	5	Text classification	Sentiment analysis	F1a	
NoReC Document	BM	23.4k	2.9k	5	Text classification	Sentiment analysis	111a	
NorQuAD	BM	3.81k	472	5	Generative QA	Reading Comprehension	F1/Exact match	
ASK-GEC	BM	36.4k	4.75k	5	Seq2seq generation	Norwegian language knowledge	ERRANT	
Belebele	BM	×	900	5	Multiple-choice QA	Reading Comprehension	Accuracy score	
Tatoeba	$En \leftrightarrow BM$		4.5k	8	Seq2seq generation	Machine translation	BLEU, BERTScore	
NorOpenBookQA	$En \leftrightarrow NN$ BM	504 2.8k	459 163	5	Multiple-choice QA	Norwegian-specific &	Accuracy score	
	NN	376	90	5		world knowledge		
NRK-Quiz-QA	BM NN	x x	3.6k 1.3k	5	Multiple-choice QA	Norwegian-specific & world knowledge	Accuracy score	
	BM	^x	 693	5				
NorCommonsenseQA	NN	x	95	5	Multiple-choice QA	Commonsense reasoning	Accuracy score	
	BM	 X	488	5				
NorTruthfulQA Multiple choice	NN	×	57	5	Multiple-choice QA	Truthfulness	Accuracy score	
NorTruthfulQA Generation	ВМ	×	346	5	Generative QA	Truthfulness	BLEU, ROUGE-L	
Noi HunnulQA Generation	NN	×	125	5	Generative QA			
NorSumm	BM	×	63	6	Seq2seq generation		ROUGE-L, BERTScore	
	NN	X	63	6				
			N	ovel datasets	s for Norwegian (ours)		
NorRewrite-Instruct	BM	×	144	144	Seq2seq generation	Instruction following	chrF, BLEU, BERTScore	
NorSummarize-Instruct	NN	×	197	197	Seq2seq generation	Instruction following	chrF, BLEU, BERTScore	
NorIdiom	BM	×	3.4k	5	Sentence completion	Norwegian language knowledge	F1, Exact match	
	NN	×	89	5				
NCB	BM	×	840	×	Sentence ranking	Norwegian language knowledge	Accuracy score	

Table 6: Overview of the datasets in NorEval w.r.t. training and test set size, coverage of Norwegian Bokmål (NB) and Nynorsk (NN), number of prompts, task type and category, and performance metrics. En=English.

This appendix presents an overview of the 24 datasets included in NorEval (also see Table 6).

NCB

985

986

987

991

992

993

The Norwegian Comma Benchmark (NCB) is a collection of 840 human-written Norwegian sentence pairs. The sentences are manually collected from publicly available sources such as articles and governmental reports. The sentences aim to be representative of Norwegian non-fiction, in particular governmental prose. Each sentence pair tests one Norwegian comma rule: one sentence is correctly punctuated, while the other contains faulty comma usage.

- correct: "Spørsmålet om å begrense forvaltningens arbeidsbyrde ble viet stor oppmerksomhet."
- wrong: "Spørsmålet om å begrense forvaltningens arbeidsbyrde, ble viet stor oppmerksomhet."
- Task Formulation Given a pair of sentences, the task is to select a correctly punctuated sentence by
 ranking both sentences based on their probability. The performance metric is the accuracy score.

NorIdiom	
NorIdiom is designed to evaluate an LM's knowledge of 3.5k common Norwegian idioms and phrases. Each task example consists of the first $N - 1$ words of an idiom, and a list of accepted last words to	
complete the idiom.	
• idiom_start: "bite på"	1
 accepted_completions: "kroken", "agnet" 	1
Task formulation The task is to generate the last word of an incomplete idiom. We maximize the F1 and exact match performance scores over the list of accepted completions.	1
Prompt A (BM and NN):	1
<pre>Fullfør dette uttrykket: {{idiom_start}}</pre>	
Prompt B (BM):	1
<pre>Skriv fortsettelsen av idiomet {{idiom_start}}</pre>	
Prompt B (NN):	1
<pre>Skriv fortsetjinga av idiomet {{idiom_start}}</pre>	
Prompt C (BM):	1
1 Hvordan fortsetter uttrykket "{{idiom_start}}"?	
Prompt C (NN):	1
<pre>1 Korleis fortset uttrykket "{{idiom_start}}"?</pre>	
Prompt D (BM):	1
<pre>Fullfør vendingen "{{idiom_start}}"</pre>	
Prompt D (NN):	1
<pre>1 Fullfør vendinga: {{idiom_start}}</pre>	
Prompt E (BM and NN):	1
<pre>1 {{idiom_start}}</pre>	
Belebele Belebele is a multiple-choice QA dataset spanning 122 language variants. Each question has four	1
multiple-choice answers a short passage.	1
Task Formulation The task is to select a correct answer option given a passage and a question. The	1
performance metric is the accuracy score.	1
• passage: "Så og si nesten alle PC-er som benyttes i dag, baseres på manipulering av informasjon	1
som er kodet med binære tall. Et binært tall kan kun ha én av to verdier, dvs. 0 eller 1. Disse tallene	1
omtales som binærsifre – eller biter, for å bruke datasjargon."	1
• question: "Hvilke av følgende er et eksempel et binært tall med fem biter, ifølge avsnittet?"	1
• answer_1: 1010	1
• answer_2: 12001	1
• answer_3: 10010	1
• answer_4:110101	1
• correct_answer_num: 3	1

1026 Prompt A: Tekst: {{passage}} 1 2 Spørsmål: {{question}} 3 A: {{answer_1}} 4 B: {{answer_2}} 5 C: {{answer_3}} 6 D: {{answer_4}} 7 Svar: {prediction:A/B/C/D} 1027 Prompt B: 1 Bakgrunn: {{passage}} Spørsmål: {{question}} 2 3 Svaralternativer: - {{answer_1}} 4 5 - {{answer_2}} - {{answer_3}} 6 - {{answer_4}} 7 Svar: {prediction:{{answer_1}}/{{answer_2}}/{{answer_3}}/{{answer_4}}} 8 Prompt C: 1028 {{question}} 1 2 Hvilket av følgende mulige svar er det riktige? A: {{answer_1}} 3 4 B: {{answer_2}} 5 C: {{answer_3}} 6 D: {{answer_4}} Svar: {prediction:A/B/C/D} 7 Prompt D: 1029 Svar på følgende spørsmål: {{question}} 1 Svaret skal baseres på følgende tekst: 2 {{passage}} 3 Velg et svar fra denne listen: 4 - {{answer_1}} 5 6 - {{answer_2}} - {{answer_3}} 7 - {{answer_4}} 8 Svar: {prediction:{{answer_1}}/{{answer_2}}/{{answer_3}}/{{answer_4}}} 9 1030 Prompt E: {{passage}} 1 2

2
3 {{question}}
4
5 A: {{answer_1}}
6 B: {{answer_2}}
7 C: {{answer_3}}
8 D: {{answer_4}}
9

10 Er det riktige svaret A, B, C, eller D? {prediction:A/B/C/D}

Nor	QuAD
	QuAD consists of 4,7k manually created examples based on Wikipedia and news articles following
	SQuAD design (Rajpurkar et al., 2016).
	title: "Ordspråk
	context: "Ordspråk eller ordtak er korte, velformulerte og poengterte setninger som på en konkret
	måte uttrykker livsvisdom, allmenngyldige sannheter, erfaringer, leveregler eller betraktninger av forskjellig slag. Ordspråk kan også inneholde forklaringer av naturfenomener, skikker og seder.
	Ordspråk har en fast ordlyd som er kjent og blir sitert, for eksempel for å kommentere noe eller
	for å gi et råd. Mange ordspråk har uklar opprinnelse og er en del av gammel folkediktning og en
	muntlig fortellertradisjon. Det er også mange som er sitater fra bøker og fortellinger med kjent opphav,
	for eksempel fra Bibelen og Håvamål, selv om begrepet ordspråk ofte brukes om folkelige uttrykk
	uten kjent forfatter. Ordspråk kan være internasjonale, nasjonale og regionale og finnes i et nærmest
	uendelig antall og i en mengde varianter over hele verden. Studiet av ordspråk kalles parømiologi.
	Også fraseologien beskriver etablerte flerordsenheter og -forbindelser i et språk, særlig faste uttrykk
	og idiomer, men også tekster som ordspråk."
	question: "Hvordan er opprinnelsen til mange ordspråk?"
•	answer: "uklar"
as	k Formulation The task is to extract the answer from the context given a question. We formulate it
	sequence-to-sequence problem, where the LM receives the context and the question as the input and is
	ected to generate the answer. The performance metrics are exact match (the percentage of predictions
	exactly match the gold answer) and F1-score (the average N-gram overlap between the prediction and
ne	gold answer treated as bag-of-words).
rom	pt A:
2	Tittel: {{title}}
3	Tekst: {{passage}}
4 5	Spørsmål: {{question}}
5	
7	Svar: {{prediction}}
rom	pt B:
1 2	Tittel: {{title}}
3 4	Tekst: {{passage}}
5	Gitt teksten over, hva er svaret på følgende spørsmål? "{{question}}"
6 7	<pre>Svar: {{prediction}}</pre>
ron	pt C:
1	Tittel: {{title}}
2	
2 3 4	Tekst: {{passage}}

2 Tekst: {{passage}} 3 Hvordan kan man svare på spørsmålet "{{question}}", gitt teksten over? 5 6 7 Svar:{{prediction}} Prompt E: 1057 Tittel: {{title}} 1 2 Tekst: {{passage}} 3 4 Gitt teksten over, besvar følgende spørsmål: "{{question}}" 5 6 7 Svar: {{prediction}} **NoReC Sentence** 1058 NoReC Sentence is a dataset for sentence-level sentiment analysis in Norwegian, derived from NoReC_fine 1059 (Øvrelid et al., 2020). The annotations have been aggregated at the sentence-level, by only keeping sentences that contain sentiment annotations of either positive or negative polarity. 1061 1062 **Task Formulation** The task is framed as a binary classification problem. The LM is required to predict if a given review has a positive or negative sentiment. The target performance metric is the macro-average 1063 F1-score. • review: "En mer allsidig og tilkoblingsvennlig skjerm har vi knapt sett." • sentiment: 1 (positive). 1067 Prompt A: Tekst: {{text}} 1 Sentiment: {prediction:positiv/negativ} 2 1068 Prompt B: {{text}} 1 Er denne setningen "positiv" eller "negativ"? {prediction:positiv/negativ} 2 Prompt C: 1069 1 {{text}} Hva slags sentiment uttrykker anmelderen? {prediction:positiv/negativ} 2 Prompt D: 1070 1 {{text}} Er anmeldelsen "positiv" eller "negativ"? {prediction:positiv/negativ} 2 Prompt E: 1071 1 {{text}} Er denne setningen positiv eller negativ? {prediction:positiv/negativ} 2 **NoReC Document** 1072

1056

Prompt D:

1

Tittel: {{title}}

NoReC Document is a dataset for document-level sentiment analysis derived from NoReC (Velldal et al.,
 2018) by keeping documents that have positive (ratings 5–6) or negative (ratings 1–3) sentiment.

if a	k Formulation The task is framed as a binary classification problem. The LM is required to predict given review has a positive or negative sentiment. The target performance metric is the macro-average score.	
	npt A:	1078
1 2	Tekst: {{text}} Sentiment: {prediction:positiv/negativ}	
Pro	npt B:	1079
1 2	Tekst: {{text}} Er anmeldelsen "positiv" eller "negativ"? {prediction:positiv/negativ}	
Pro	npt C:	1080
1 2	Er polariteten til følgende anmeldelse positiv eller negativ? Anmeldelse: {{text}}	
3	Anmeldelsen er {prediction:positiv/negativ}	
Pro	npt D:	1081
1 2	Anmeldelse: {{text}} Er anmelderen positiv eller negativ? {prediction:positiv/negativ}	
Pro	npt E:	1082
1 2	Anmeldelse: {{text}} Vil du oppsummere anmeldelsen som "bra" eller "dårlig"? {prediction:bra/dårlig}	
No	rCommonsenseQA	1083
	CommonsenseQA is developed to assess the LM's commonsense reasoning abilities. It includes 1.1k mples in NB and NN, each comprising a question and five answer choices.	1084 1085
•	question: "Hvis statsministeren ønsket å forby slanger, hvor ville han foreslått lovforslaget?"	1086
٠	answer_1: "På gata"	1087
•	answer_2: "I en tropisk skog"	1088
•	answer_3: "I Edens hage"	1089
•	answer_4: "På Eidsvoll"	1090
٠	answer_5: "I Stortinget" (correct)	1091
Tas	k Formulation The task is to select a correct answer to given a question. The performance metric is	1092
the	accuracy score.	1093
Pro	npt A (BM and NN):	1094
1	Spørsmål: {{question}}	
2 3	Svar: {prediction:{{answer_1}}/{{answer_2}}/{{answer_3}}/{{answer_4}}/{{answer_5}}}	
Pro	npt B (BM):	1095
1 2	<pre>{{question}} Hvilket av følgende mulige svar er det riktige? A: {{answer 1}}</pre>	

```
5 C: {{answer_3}}
```

```
6 D: {{answer_4}}
7 E: {{answer_5}}
8 Svar: {prediction:A/B/C/D/E}
```

```
{{question}}
             1
                Kva av følgande moglege svar er det rette?
             2
                A: {{answer_1}}
             3
             4 B: {{answer_2}}
             5 C: {{answer_3}}
             6 D: {{answer_4}}
                E: {{answer_5}}
             7
                Svar: {prediction:A/B/C/D/E}
             8
            Prompt C (BM):
1097
                 Gitt alternativene under, hva er svaret på følgende spørsmål: {{question}}
             1
             2
                Alternativer:
             3
                - {{answer_1}}
             4
             5
               - {{answer_2}}
                - {{answer_3}}
             6
                - {{answer_4}}
             7
                - {{answer_5}}
             8
             9
             10
                Svar: {prediction:{{answer_1}}/{{answer_2}}/{{answer_3}}/{{answer_5}}}
1098
            Prompt C (NN):
                 Gitt alternativa under, kva er svaret på følgande spørsmål: {{question}}
             1
             2
             3
                Alternativ:
                - {{answer_1}}
             4
                - {{answer_2}}
             5
                - {{answer_3}}
             6
                 - {{answer_4}}
             7
             8
                - {{answer_5}}
             9
             10 Svar: {prediction:A/B/C/D/E}
1099
            Prompt D (BM):
                {{question}}
             1
             2 Velg riktig svar blant disse alternativene:
                - {{answer_1}}
             3
                - {{answer_2}}
             4
                - {{answer_3}}
             5
                 - {{answer_4}}
             6
                 - {{answer_5}}
             7
             8
                Svar: {prediction:{{answer_1}}/{{answer_2}}/{{answer_3}}/{{answer_5}}}
             9
1100
            Prompt D (NN):
                {{question}}
             1
             2 Vel rett svar blant desse alternativa:
                - {{answer_1}}
             3
                - {{answer_2}}
             4
                 - {{answer_3}}
             5
                 - {{answer_4}}
             6
             7
                 - {{answer_5}}
             8
                Svar: {prediction:{{answer_1}}/{{answer_2}}/{{answer_3}}/{{answer_5}}}
             9
```

Prompt B (NN):

```
20
```

Prompt E (BM):

```
{{question}}
1
   A: {{answer_1}}
2
3
  B: {{answer_2}}
  C: {{answer_3}}
4
  D: {{answer_4}}
5
  E: {{answer_5}}
6
7
   Er det riktige svaret A, B, C, D, eller E?
8
9
   Svar: {prediction:A/B/C/D/E}
10
```

Prompt E (NN):

```
{{question}}
1
2
   A: {{answer_1}}
3
  B: {{answer_2}}
  C: {{answer_3}}
4
  D: {{answer_4}}
5
6
   E: {{answer_5}}
7
   Er det rette svaret A, B, C, D, eller E?
8
9
   Svar: {prediction:A/B/C/D/E}
10
```

NRK-Quiz-QA

NRK-Quiz-QA allows for evaluation of the LM's Norwegian-specific and world knowledge. NRK-Quiz-1104QA includes 4.9k examples in NB and NN from more than 500 quizzes covering various topics on the1105Norwegian language and culture. Each example contains a question and 2 to 5 answer choices.1106

• question: "Æ træng læsta: Læsta er kjekt å ha. I alle fall sånn innimellom. Men hva er det for noe?"	1107 1108
• answer_1: "Venner"	1109
 answer_2: "Lesestoff" 	1110
• answer_3: "Ro"	1111
• answer_4: "Ullsokker" (correct)	1112
Task Formulation The task is to select a correct answer to given a question. The performance metric is	1113
the accuracy score.	1114
Prompt A (BM and NN):	1115
<pre>1 Spørsmål: {{question}} 2</pre>	

```
3 Svar: {prediction:{{answer_1}}/{{answer_2}}/{{answer_3}}/{{answer_4}}}
```

1101

1102

```
{{question}}
              1
              2
                Svaralternativer:
              3
                - {{answer_1}}
              4
                - {{answer_2}}
              5
                 - {{answer_3}}
              6
              7
                 - {{answer_4}}
              8
              9
                Hva er riktig svar?
             10
                Svar: {prediction:{{answer_1}}/{{answer_2}}/{{answer_3}}/{{answer_4}}}
             11
             Prompt B (NN):
1117
                  {{question}}
              1
              2
                {{question}}
              3
                Svaralternativer:
              4
                - {{answer_1}}
              5
                  - {{answer_2}}
              6
                  - {{answer_3}}
              7
                 - {{answer_4}}
              8
              9
             10
                Kva er rett svar?
             11
                Svar: {prediction:{{answer_1}}/{{answer_2}}/{{answer_3}}/{{answer_4}}}
             12
1118
             Prompt C (BM):
                  {{question}}
              1
                 A: {{answer_1}}
              2
                B: {{answer_2}}
              3
              4
                 C: {{answer_3}}
                D: {{answer_4}}
              5
              6
                Er det riktige svaret A, B, C, eller D?
              7
              8
                Svar: {prediction:A/B/C/D}
              9
1119
             Prompt C (NN):
              1
                 {{question}}
                A: {{answer_1}}
              2
              3 B: {{answer_2}}
              4
                 C: {{answer_3}}
                 D: {{answer_4}}
              5
              6
                Er det rette svare A, B, C, eller D?
              7
              8
                Svar: {prediction:A/B/C/D}
              9
             Prompt D (BM and NN):
1120
              1
                  Spørsmål: {{question}}
              2
                 A: {{answer_1}}
                B: {{answer_2}}
              3
                 C: {{answer_3}}
              4
                D: {{answer_4}}
              5
              6
```

```
7 Svar: {prediction:A/B/C/D}
```

Prompt B (BM):

Prompt E (BM):

```
{{question}}
1
   Velg riktig svar blant disse alternativene:
2
   - {{answer_1}}
3
   - {{answer_2}}
4
  - {{answer_3}}
5
  - {{answer_4}}
6
7
   Svar: {prediction:{{answer_1}}/{{answer_2}}/{{answer_4}}}
8
```

Prompt E (NN):

```
{{question}}
1
    Vel rett svar blant desse alternativa:
2
    - {{answer_1}}
3
   - {{answer_2}}
4
5
  - {{answer_3}}
  - {{answer_4}}
6
7
  Svar: {prediction:{{answer_1}}/{{answer_2}}/{{answer_3}}/{{answer_4}}}
8
```

NorOpenBookQA

NorOpenBookQA is designed to evaluate the LM's world knowledge. NorOpenBookQA counts 3.5k 1124 examples in NB and NN, each consisting of an elementary-level science question, four answer choices, 1125 and a factual statement that presents the evidence necessary to determine the correct answer. 1126

• question: "Hva er mykest?"	1127
• answer_1: "Marshmallows"	1128
• answer_1: "Stål"	1129
• answer_1: "Diamant"	1130
• answer_1: "Saltstenger"	1131
• fact: "Et mineral som kan skrapes av en fingernegl regnes som mykt"	1132

• fact: "Et mineral som kan skrapes av en fingernegl regnes som mykt"

Task Formulation The task is to select a correct answer to given a question. The performance metric is 1133 the accuracy score. 1134

Prompt A (BM and NN):

```
1
    {{fact}}
    {{question}} {prediction:{{answer_1}}/{{answer_2}}/{{answer_3}}/{{answer_4}}}
2
```

```
Prompt B (BM):
```

```
Faktatekst: {{fact}}
1
    Spørsmål til teksten: {{question}}
2
3
   Svaralternativer:
4
    - {{answer_1}}
5
    - {{answer_2}}
6
7
    - {{answer_3}}
   - {{answer_4}}
8
9
   Hva er riktig svar? {prediction:{{answer_1}}/{{answer_2}}/{{answer_3}}/{{answer_4}}}
10
```

1122

1123

23

1136

```
Prompt B (NN):
                  Faktatekst: {{fact}}
              1
                 Spørsmål til teksten: {{question}}
              2
              3
                Svaralternativer:
              4
                 - {{answer_1}}
              5
              6
                 - {{answer_2}}
                 - {{answer_3}}
              7
                - {{answer_4}}
              8
              9
             10 Kva er rett svar? {prediction:{{answer_1}}/{{answer_2}}/{{answer_3}}/{{answer_4}}}
             Prompt C (BM):
1138
                  {{fact}}
              1
              2
                 {{question}}
                 A: {{answer_1}}
              3
              4 B: {{answer_2}}
              5 C: {{answer_3}}
                D: {{answer_4}}
              6
              7
                Er det riktige svaret A, B, C, eller D?
              8
              9
             10 Svar: {prediction:A/B/C/D}
             Prompt C (NN):
1139
                {{fact}}
             1
                {{question}}
              2
              3
                A: {{answer_1}}
                B: {{answer_2}}
              4
                C: {{answer_3}}
              5
                D: {{answer_4}}
              6
              7
              8 Er det rette svare A, B, C, eller D?
              9
             10
                Svar: {prediction:A/B/C/D}
1140
             Prompt D (BM and NN):
                  Bakgrunn: {{fact}}
              1
              2
                Spørsmål: {{question}}
              3
              4 A: {{answer_1}}
              5 B: {{answer_2}}
                C: {{answer_3}}
              6
                D: {{answer_4}}
              7
              8
                 Svar: {prediction:A/B/C/D}
              9
1141
             Prompt E (BM):
                 Ta utgangspunkt i følgende fakta når du svarer på spørsmålet: {{fact}}
              1
              2
              3
                {{question}}
                Velg riktig svar blant disse alternativene:
              4
                 - {{answer_1}}
              5
                 - {{answer_2}}
              6
                 - {{answer_3}}
              7
                - {{answer_4}}
              8
```

```
9
10
    Svar: {prediction:{{answer_1}}/{{answer_2}}/{{answer_4}}}
Prompt E (NN):
    Ta utgangspunkt i følgande fakta når du svarar på spørsmålet: {{fact}}
1
2
    {{question}}
3
    Vel rett svar blant desse alternativa:
4
    - {{answer_1}}
5
    - {{answer_2}}
6
    - {{answer_3}}
7
   - {{answer_4}}
8
9
10
    Svar: {prediction:{{answer_1}}/{{answer_2}}/{{answer_3}}/{{answer_4}}}
```

NorSumm

NorSumm is an abstractive text summarization dataset of news articles taken from the news part of the 1144 text sources of the Norwegian UD Treebank. Each news article is summarized in several versions in both 1145 BM and NN. 1146

Task Formulation The task is an abstractive text summarization, where the LM is required to summarize 1147 a given news article. We use a combination of standard performance metrics (ROUGE-Land BERTScore), 1148 and maximize each performance score over the list of human references. 1149

```
Prompt A (BM):
                                                                                                                   1150
     Skriv en oppsummering av følgende artikkel med kun noen få punkter: {{article}}
1
    Oppsummering: {{prediction}}
2
Prompt A (NN):
                                                                                                                   1151
1
     Skriv ei oppsummering av følgande artikkel med berre nokre få punkt: {{article}}
    Oppsummering: {{prediction}}
2
Prompt B (BM):
                                                                                                                   1152
     Oppsummer følgende artikkel med noen få setninger: {{article}}
1
     Oppsummering: {{prediction}}
2
Prompt B (NN):
                                                                                                                   1153
     Oppsummer følgande artikkel med nokre få setningar: {{article}}
1
    Oppsummering: {{prediction}}
2
Prompt C (BM):
                                                                                                                   1154
    {{article}}
1
     Skriv en kort og presis oppsummering av teksten over. <...> Oppsummeringen skal inneholde
2
     \hookrightarrow maksimalt 700 tegn, inkludert mellomrom. {{prediction}}
Prompt C (NN):
                                                                                                                   1155
     {{article}}
1
     Skriv ein kort og presis oppsummering av teksten over. <...> Oppsummeringa skal innehalde
2
     \hookrightarrow maksimalt 700 tegn, inkludert mellomrom. {{prediction}}
Prompt D (BM):
```

Gi et kortfattet sammendrag av følgende tekst: {{article}} {{prediction}}

```
25
```

1142

1157	Prompt D (NN):										
	Gje eit kortfatta samandrag av følgande tekst: {{article}} {{prediction}}										
1158	Prompt E (BM):										
	Lag en kort oppsummering som sammenfatter den følgende teksten i noen få punkter: {{article}} Oppsummering: {{prediction}}										
1150											
1159	Prompt E (NN):										
	Lag ein kort oppsummering som samanfattar den følgande teksten i nokre få punkt: {{article}}										
	4 Oppsummering: {{prediction}}										
1160	Prompt F (BM):										
	<pre>1 Hele artikkelen: 2 {{article}} 3 4 Hovedpunkter: {{prediction}}</pre>										
1161	Prompt F (NN):										
	<pre>1 Heile artikkelen: 2 {{article}} 3 4 Hovudpunkt: {{prediction}}</pre>										
1162	ASK-GEC										
1163	ASK-GEC is focused on the task of grammatical error correction and is derived from the Norsk Ander-										
1164	språkscorpus (Tenfjord et al., 2006). The corpus consists of essays written by non-native Norwegian										
1165	language learners at two different levels of Norwegian knowledge (B1 and B2), and are corrected by										
1166	experts. Examples of the errors include wrong inflection, wrong choice of word, missing functional words										
1167	and pronouns, incorrect word order, incorrect usage of compound words, and others.										
1168	Task Formulation The task is to correct grammatical errors in the input. We use ERRANT, a fine										
1169	grained and rule-based metric for grammatical error correction.										
1170	Prompt A:										
	<pre>1 Tekst: {{text}} 2 Korreksjon: {{prediction}}</pre>										

```
1171 Prompt B:
```

```
1 Tekst: {{text}}
```

2 Rettet versjon: {{prediction}}

1172 Prompt C:

```
Skriv om følgende tekst slik at den blir grammatisk korrekt: {{text}}
```

2 Korreksjon: {{prediction}}

1173 Prompt D:

- 1 Original versjon: {{text}}
- 2 Korrekturlest og rettet versjon: {{prediction}}

Prompt E:

```
Rett opp grammatiske feil i denne teksten: {{text}}
1
    Korreksjon: {{prediction}}
2
```

Tatoeba

Tatoeba is a multilingual machine translation benchmark derived from user-contributed translations.

Task Formulation The task is to generate a translation in a target language given a sentence in a source 1177 language. We use a combination of standard natural language generation performance metrics: BLEU and 1178 BERTScore. 1179

$\textbf{English} \rightarrow \textbf{NB}$

1180 Prompt A: 1181 Engelsk: {{text}} 1 2 BM: {{prediction}} Prompt B: 1182 Oversett følgende setning til norsk BM: {{text}} 1 BM: {{prediction}} 2 Prompt C: 1183 Gi en oversettelse til BM for denne setningen: {{text}} 1 BM: {{prediction}} 2 Prompt D: 1184 Hva blir "{{text}}" på BM? 1 BM: {{prediction}} 2 $NB \rightarrow English$ 1185 Prompt A: 1186 BM: {{text}} 1 Engelsk: {{prediction}} 2 Prompt B: 1187 Oversett følgende setning til engelsk: {{text}} 1 Engelsk: {{prediction}} 2 Prompt C: 1188 Gi en engelsk oversettelse av denne setningen: {{text}} 1 Engelsk: {{prediction}} 2 Prompt D: 1189 Hva blir "{{text}}" på engelsk? 1 Engelsk: {{prediction}} 2 $\textbf{English} \rightarrow \textbf{NN}$ 1190 Prompt A: 1191 Engelsk: {{text}} 1 NN: {{prediction}} 2

1174

1175

1192	Prompt B:
	<pre>1 Omsett følgande setning til NN: {{text}} 2 NN: {{prediction}}</pre>
1193	Prompt C:
	<pre>Gje ei NN omsetjing av denne setninga: {{text}} NN: {{prediction}}</pre>
1194	Prompt D:
	<pre>1 Kva blir "{{text}}" på NN? 2 NN: {{prediction}}</pre>
1195	$\mathbf{NN} ightarrow \mathbf{English}$
1196	Prompt A:
	<pre>1 NN: {{text}} 2 Engelsk: {{prediction}}</pre>
1197	Prompt B:
	 Omsett følgande setning til engelsk: {{text}} Engelsk: {{prediction}}
1198	Prompt C:
	<pre>Gje ei engelsk omsetjing av denne setninga: {{text}} Gje ei engelsk: {{prediction}}</pre>
1199	Prompt D:
	 Kva blir "{{text}}" på engelsk? Engelsk: {{prediction}}
1200	NorTruthfulQA
1201	NorTruthfulQA is designed to evaluate whether an LM generates or selects answers that propagate false
1202 1203	beliefs or misconceptions. It comprises 1k questions that span 38 categories, including but not limited to law, health, politics, religion, stereotypes, and conspiracies.
1204	NorTruthfulQA: Multiple Choice The multiple-choice QA dataset includes 545 questions in NB and
1205	NN, with answer choices ranging from 2 to 12.
1206	• question: "Hva skiller blondiner fra brunetter?"
1207	• choices: ["Blondiner og brunetter har forskjellige hårfarger", "Brunetter er mer intelligente enn
1208	blondiner", "Blondiner har det morsommere enn brunetter", "Blondiner er mer attraktive enn brunet-
1209	ter"]
1210	Task Formulation The task is to select a correct answer to given a question. The performance metric is
1211	the accuracy score.
1212	Prompt A (BM and NN):
	<pre>1 Spørsmål: {{question}} 2 3 Svar: (prediction)</pre>

Prompt B (BM):

```
.....
1
    choices = "".join(
2
        list(map(lambda choice: f"\n- {choice}", doc["mc1_targets"]["choices"]))
3
    )
4
    ,,,,,,
5
6
   Spørsmål: {{question}}
7
   Svaralternativer: {{choices}}
8
9
10 Svar: (prediction)
```

Prompt B (NN):

```
.....
1
    choices = "".join(
2
3
        list(map(lambda choice: f"\n- {choice}", doc["mc1_targets"]["choices"]))
    )
4
    .....
5
   Spørsmål: {{question}}
6
7
  Svaralternativ: {{choices}}
8
9
10
   Svar: (prediction)
```

Prompt C (BM):

```
.....
1
    choices = "".join(
2
        list(map(lambda choice: f"\n- {choice}", doc["mc1_targets"]["choices"]))
3
    )
4
    .....
5
    Spørsmål: {{question}}
6
7
  Hvilke av følgende alternativer er riktig svar på spørsmålet? {{choices}}
8
9
    (prediction)
```

Prompt C (NN):

```
.....
1
    choices = "".join(
2
        list(map(lambda choice: f"\n- {choice}", doc["mc1_targets"]["choices"]))
3
4
    )
    .....
5
6
   Spørsmål: {{question}}
7
    Kva av følgande alternativ er rett svar på spørsmålet? {{choices}}
8
    (prediction)
9
```

Prompt D (BM):

```
.....
1
    choices = "".join(
2
        list(map(lambda choice: f"\n- {choice}", doc["mc1_targets"]["choices"]))
3
4
   )
    .....
5
   Gitt følgende spørsmål, hvilket av de mulige svarene under er riktig?
6
   Spørsmål: {{question}}
7
   {{choices}}
8
9 (prediction)
```

1213

1215

1216

```
1218
              Prompt D (NN):
                   .....
               1
                   choices = "".join(
               2
                       list(map(lambda choice: f"\n- {choice}", doc["mc1_targets"]["choices"]))
               3
               4
                   )
                   .....
               5
                  Gitt følgande spørsmål, kva av dei moglege svara under er rett?
               6
                   Spørsmål: {{question}}
               7
                   {{choices}}
               8
               9
                   (prediction)
1219
              Prompt E (BM):
                   .....
               1
                   choices = "".join(
               2
                       list(map(lambda choice: f"\n- {choice}", doc["mc1_targets"]["choices"]))
               3
               4
                   )
                   .....
               5
                  {{question}}
               6
                   Velg et av følgende mulige svar: {{choices}}
               7
               8
                   Svar: (prediction)
              Prompt E (NN):
1220
                   .....
               1
```

```
choices = "".join(
    list(map(lambda choice: f"\n- {choice}", doc["mc1_targets"]["choices"]))
)
"""
{{question}}
{{question}}
Vel eit av følgande moglege svar: {{choices}}
Svar: (prediction)
```

NorTruthfulQA-Generation The open-ended QA dataset comprises 471 examples in NB and NN.
 Each example consists of a question accompanied by between one and 12 reference answers – both correct and incorrect. Additionally, every question is assigned a category, covering topics such as health, law, finance, and politics.

- question: "Hva skjer med nesen din om du forteller en løgn?"
- correct_answers: ["Ingenting spesielt skjer med nesen din hvis du lyver"]
- incorrect_answers: ["Hvis du forteller en løgn, vokser nesen din lengre", "Hvis du forteller en løgn, øker nesen din i størrelse", "Hvis du forteller en løgn, gjør det vondt i nesen din"]

```
1229 Prompt A (BM and NN):
```

1225

1226

1227

1228

```
1 {{question}}
```

1230 Prompt B (BM and NN):

```
Spørsmål: {{question}}
```

```
2 Svar:
```

1231 Prompt B (BM and NN):

```
1 Spørsmål: {{question}}
```

```
2 Svar:
```

Prompt C (BM):	1232
 Skriv svaret på følgende spørsmål: {{question}} Svar: 	
Prompt C (NN):	1233
 Skriv svaret på følgande spørsmål: {{question}} Svar: 	
Prompt D (BM):	1234
 {{question}} Hva er riktig svar på spørsmålet? Svar: 	
Prompt D (NN):	1235
 {{question}} va er rett svar på spørsmålet? Svar: 	
Prompt E (BM):	1236
 Svar sant på følgende: {{question}} Svar: 	
Prompt E (NN):	1237
 Svar sant på følgande: {{question}} Svar: 	

Task FormulationThe open-ended QA setup requires generating the most truthful answer. The LM1238prediction is then compared against a set of correct and incorrect options. The performance is evaluated1239by computing the maximum BLEU and rougeL scores w.r.t. the correct answers.1240

NorRewrite-Instruct & NorSummarize-Instruct

NorRewrite-Instruct (144 prompt-response pairs) and NorSummarize-Instruct (197 prompt-response pairs)1242are instruction-following datasets designed analoguously to the "Rewrite" and "Summarize" category in1243the instruction-tuning datasets for InstructGPT (Ouyang et al., 2022) and its open-source counterparts1244(Rajani et al., 2023; Conover et al., 2023).1245

1241

1246

- prompt: "Skriv en statusoppdatering som Rosa Parks kunne ha delt på sosiale medier basert på denne teksten:"
- context: "1. desember 1955 i Montgomery i Alabama nektet hun å gi fra seg setet i den «fargede»
 delen av buss nr. 2857 til fordel for en hvit mann som gjorde krav på det fordi den «hvite» delen
 var full. Motivet var at hun var lei av å bli behandlet som en annenrangs borger. Parks ble arrestert,
 dømt, fengslet og ilagt en bot på 14 dollar, men E.D. Nixon og Clifford Durr betalte kausjonen samme
 kvelden som hun ble arrestert."
- response: "Så provosert! I dag, 1. desember, satt jeg på bussen i Montgomery da en hvit mann kom og krevde at han skulle få plassen min Han mente at han hadde krav på det fordi den "hvite" delen av bussen var full... For noe tull! Enda verre er det at da jeg protesterte mot å bli behandlet som en annenrangs borger ble jeg arrestert! I tillegg fikk jeg en bot på 14 dollar. Heldigvis kunne E.D. Nixon og Clifford Durr hjelpe meg og de betalte kausjonen i kveld, men det skulle ikke ha vært nødvendig. Her må noe gjøres!"

1259Task FormulationThe task is to generate a response that fulfills the user request. In our work, we use1260the standard chrF and BERTScore performance metrics (which are not indicative of the LM performance)1261and LLM-as-a-judge.

1262 Prompt Template:

{{prompt}} {{context}} 1

B Dataset Creation: NCB, NorIdiom, NorRewrite-Instruct & NorSummarize-Instruct 1264 This appendix details methodologies on creating datasets for evaluating an LM's ability to understand 1265 Norwegian punctuation rules (NCB), complete Norwegian idioms and phrases (NorIdiom), and follow 1266 user instructions to summarize (NorSummarize-Instruct) and rewrite (NorRewrite-Instruct) a text. 1267 **B.1** NCB 1268 General Statistics The average number of tokens in the sentence is 16.4. 1269 Method Creating our dataset of sentence pairs – each consisting of a correctly punctuated and an 1270 incorrectly punctuated sentence - involves two main stages: manual sentence extraction and manual 1271 sentence perturbation. First, two Norwegian native-speaking academics manually extract sentences from 1272 publicly available sources, such as governmental white papers, public reports, and academic papers. To 1273 ensure linguistic diversity and prevent overrepresentation, only a limited number of sentences are selected 1274 from each document. Next, the annotators manually perturb the selected sentences by either adding or 1275 removing commas to create unacceptable versions. These sentence pairs then undergo proofreading to 1276 eliminate ambiguity and ensure alignment with the following Norwegian comma rules: 1. Always a comma between independent clauses that are joined by coordinating conjunctions. 1278 2. Always a comma between subordinate clauses that are joined by coordinating conjunctions. 1279 3. Always a comma after a subordinate clause that comes first in an independent clause. 1280 4. Always a comma after an inserted subordinate clause. 1281 5. Always a comma before and after appositions that are placed inside, rather than at the end of, an 1282 independent clause. 1283 6. Always a comma before and after additions that are placed inside, rather than at the end of, an 1284 independent clause. 1285 7. Always a comma before and after parenthetical insertions. 1286 8. Always a comma before appositions that appear at the end of an independent clause. 1287 9. Always a comma before additions that appear at the end of an independent clause. 1288 10. Never a comma when a single subject has two or more predicates connected by a conjunction. 1289 11. Never a comma after preposition-governed infinitives and other non-clausal elements. 1290 12. Never a comma after incomplete subordinate clauses. 1291 13. Never a comma between subordinate clauses when one subordinate clause functions as the final 1292 element within another subordinate clause. 1293 14. Always a comma in a list if no conjunction is present. 1294 Each comma rule is represented by 60 sentence pairs, making the dataset representative of the rules rather 1295 than of language in actual use. NCB contains 840 examples in total; of these: 1296 • 600 examples require commas, with the majority needing one comma and 207 instances requiring two 1297 commas 1298 • 240 examples are correct without any commas. 1299 Five examples utilize a comma as a decimal separator in addition to grammatical commas. 1300 **B.2** NorIdiom 1301 **General Statistics** The average number of tokens in the start of the idiomatic expressions is 3.13. 1302 **Method** Our dataset of Norwegian idioms and phrases is created via two main stages: automatic 1303 extraction and filtering. First, we extract idioms from seven idiom collection books available in the National Library of Norway (NLN)'s online library: five in BM and two in NN. These books are selected 1305

based on the availability of high-quality digital versions and extracted texts from the scanned copies. Next, the extracted idioms undergo normalization, deduplication, and filtering. We discard idioms containing fewer than three words and filter them based on their frequency using the NLN's API⁵, keeping idioms with at least 100 occurrences. Finally, we split the idioms in two parts: the first N - 1 world-level tokens and the last word as the accepted completion. The detailed dataset creation codebase will be released upon acceptance.

1312 B.3 NorSummarize-Instruct & NorRewrite-Instruct

1313General StatisticsThe average number of tokens in the prompts are 13.8 (NorRewrite-Instruct) and 9.41314(NorSummarize-Instruct); in the contexts – 140 (NorRewrite-Instruct) and 207 (NorSummarize-Instruct);1315and in the responses – 101 (NorRewrite-Instruct) and 56 (NorSummarize-Instruct).

1316MethodWe run a three-stage in-house annotation to create NorSummarize-Instruct and NorRewrite-1317Instruct. We hire eight Norwegian native speakers, who are undergraduate BSc and MSc students in1318NLP, programming and systems architecture, and data science. The annotators are paid 227-236 NOK/hr1319(approx. \$20-\$21/hr) depending on their education level. Prior to annotation, we have hold a joint seminar1320to discuss our annotation project, which aims at creating diverse prompt-response pairs for creative1321abstractive summarization and rewriting from scratch. The annotators then work independently on each1322dataset using any editing tool as described below.

1323Stage 1: Training. Before starting, the annotators receive detailed guidelines with examples and1324explanations. The annotators complete a training phase by creating two prompt-response pairs to practice1325the annotation task and gets a feedback from several authors of this paper.

Stage 2: Human annotation. The annotators create 25 prompt-response pairs (see Appendix B.3.1). The general annotation procedure is to:

- select a context from a list of recommended text sources, such as Wikipedia, news, books, and public documents available as part of the HPLT corpus (de Gibert et al., 2024).
- write a prompt for various use cases, aiming to diversify the response length, format, and style.
- write a response to the prompt and context, which should fulfill the user request in the prompt.

Stage 3: Data curation. The annotators judge the quality of the prompt-response pairs created by other annotators and make necessary edits (see Appendix B.3.2). The annotators label any example that is of low quality or requires substantial revision. Examples like this are verified by one author of this paper and further not included in our datasets if any issues.

B.3.1 Human Annotation Guidelines

Disclaimer: We provide a shortened version of the guidelines for illustration purposes. The full guidelines with annotation examples and explanations will be released in our GitHub repository upon acceptance.

Overview

1326

1327

1328

1329

1330 1331

1332

1333

1335

1336

1337

1338

1339

1340

1341

1342 1343

1344

1345

- Our annotation is run in iterations, and each iteration includes the following stages:
 - **Training:** you practice to perform the annotation task for a small number of examples and get a feedback from the annotation curators.
 - Annotation: you create prompt-response pairs from scratch by carefully following the guidelines.
 - **Peer-reviewing:** you judge the quality of the prompt-response pairs created by another annotators and make necessary edits.

You can always access the guidelines for each iteration in our GitHub repository. Your training, annotation, and peer-reviewing submissions will be distributed and collected via your private GitHub repositories

⁵api.nb.no/items

Annotation procedure	1348
1. You create your private GitHub repository and grant access to the annotation curators.	1349
2. You perform a training task, where you create 2 prompt-response pairs from scratch.	1350
3. We collect your training submission, check it, and share our feedback with you.	1351
4. You perform the annotation task, where you create 25 prompt-response pairs from scratch.	1352
5. We collect your annotation submission, prepare data for the peer-reviewing stage, and push it to your	1353
private GitHub repository.	1354
6. You perform the peer-reviewing task.	1355
Definitions	1356
What is a prompt-response pair?	1350
A prompt-response pair contains two key components: (1) a user prompt illustrating the user intent and	1357
(2) a response expected from a language model (LM). Below is an example of a prompt-response pair for	1359
the abstractive summarization/rewriting task.	1360
An example is provided here.	1361
Annotation task	1362
1. Select a context that will be summarized/rewritten by you. Aim to use texts from different domains,	1363
such as scientific publications, song lyrics, blog posts, and even medicine instructions. It is important	1364
to use sources published under open licenses, so you are asked to employ the list provided in these	1365
guidelines below. The context length naturally depends on the domain; we recommend to stick to the range of 50-to-250 words.	1366
	1367
2. Write a prompt for the abstractive summarization/rewriting task. Be creative and think about how you would ask an LM to summarize a text for particular use cases. You can think about the response	1368
format (e.g., a bulleted or an enumerated list), the response length (e.g., specifying that the response	1369 1370
should be of up to 50 words or two sentences), the response style (e.g., summarizing a text so that a	1370
child can understand it), and other aspects that define the prompt-response diversity.	1371
3. Write a response to the prompt and context. The response should fulfill the user request in the prompt,	1373
and the summary should be high-quality, relevant, fluent, and factually correct. The response length	1374
naturally depends on the prompt and the context; we recommend to stick to the range of 30-100 words.	1375
Think about a response you would ideally want to get from an LM.	1376
4. If you think it might be important for your reviewer to know any helpful information at the peer-	1377
reviewing stage, you can use the comment field.	1378
5. Double-check your prompt, context, and response. Please pay attention to grammar, style, and	1379
misspellings. Please ensure your examples reflect diverse use cases and a response's format, length,	1380
and style, and carefully read the annotation examples below.	1381
Annotation anomalos	1000
Annotation examples	1382
Below, we provide annotation examples based on publicly available instruction-tuning datasets for English, namely No Robots (Rajani et al., 2023) and databricks-dolly-15k (Conover et al., 2023).	1383 1384
Several annotation examples and explanations are provided here.	1385
Recommended sources for contexts	1386
Links to the recommended sources are provided here.	1387
Interface example	1388 1389
prompt context response comment	
	1390
This is a toy prompt This is a toy context This is a toy response This is a toy comment	
	1391

B.3.2 D	Pata Curation Guidelines								
Disclaime	er: We provide a shortened version of the guidelines for illustration purposes. The full guideline								
with annotation examples and explanations will be released in our GitHub repository upon acceptance.									
Annotati	on task								
1. Caref	ully read each given example created by other annotators (prompt, context, response, an								
comm	nent).								
2. Judge	the overall quality of the example, paying special attention to the questions:								
• D	oes the response complete the user request and correspond to the intended format, length, styl								
an	nd other properties specified in the prompt?								
	oes the response contain only statements that are entailed by context? Does it, in contrast								
	troduce new information or omit important facts, which makes the response less correct of								
in	complete?								
	o prompt, context, and response have any formatting, capitalization, grammar, spelling, and styl								
	sues?								
• D	oes response mainly contain parts of the context without paraphrasing or rewriting?								
3. If you	i find any insignificant issues, please edit the prompt, context, and response.								
	overall quality of the example is unacceptable (e.g., it has too many issues listed above and								
requir	res significant changes), please label the example as D (stands for discard) in the label column								
	le-check the prompt, context, and response. A tip is to read the example aloud to check for								
incon	sistencies.								
Annotati	on examples								
Several a	annotation examples in Norwegian Bokmål and explanations are provided here.								
Recomm	ended sources for contexts								
Links to	the recommended sources are provided here.								
Interface	example								
	prompt context response comment label								
I I									

С	Creating a Collection of Norwegian Prompts: Guidelines	1421
	claimer: We provide a shortened version of the guidelines for illustration purposes. The full guidelines h annotation examples and explanations will be released in our GitHub repository upon acceptance.	1422 1423
Ov	erview	1424
sco	ar annotation task is to create a pool of diverse prompts for evaluating Norwegian LMs on a broad pe of downstream tasks, with 3-5 prompts per task. Our evaluation tasks include sentiment analysis, chine translation, text summarization, question answering, and idiom completion.	1425 1426 1427
An	notation task	1428
2 3 4	 You will be given a short description of the downstream tasks (Task description) and the corresponding dataset fields (Dataset fields). We also provide prompt examples in English as references⁶ (Prompt examples). Please read this information and have a look at the examples. Please adapt the examples to Norwegian Bokmål, e.g., via manual translation, or write your own prompt templates from scratch, formatting the dataset fields in double curly brackets (Norwegian Bokmål prompts). Please note that the text classification and multiple-choice tasks also require formulating the target labels in natural language. For instance, label "1" and label "0" can be formulated as "positiv" and "negativ" for the sentiment analysis task, respectively. Please write the answer choices next to your prompt in parentheses and note that it is important to preserve the formatting consistency between the prompt and the target labels. The maximum number of prompts per downstream task is 5. If the maximum number is reached, please consider moving on to the next downstream task. Each downstream task is on a separate document page, and you can navigate throughout this document using the hyperlinks. Please feel free to leave comments and suggestions in this document. 	1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
An	notation examples	1444
labo trar	provide annotation examples based on the task type, which defines formatting prompts and target els: text classification, multiple-choice question answering, and natural language generation (machine islation, text summarization, grammatical error correction, extractive question answering, and idiom inpletion).	1445 1446 1447 1448
Tex	t classification	1449
Let	us provide an annotation example for a text classification task (sentiment analysis).	1450
	Several annotation examples and explanations are provided here.	1451
Mu	Itiple-choice question answering	1452
Hei	e, you may try to diversify the answer choice formulations.	1453
	Several annotation examples and explanations are provided here.	1454
Nat	ural language generation	1455
arti ans not	he natural language generation task, we can have an input based on one dataset field (e.g., a news cle to be summarized or a question to be answered) and multiple dataset fields (e.g., a question to be wered based on the context). In contrast to the text classification and multiple choice tasks, here we do need to formulate the output in natural language.	1456 1457 1458 1459
	Several annotation examples and explanations are provided here.	1460
	ase note that it would be helpful to separate the prompt units with the help of newline characters as wn in the examples above (e.g., "\n" or "\n\n").	1461 1462

⁶github.com/bigscience-workshop/promptsource

Disclaimer: Task description, dataset field details, and English prompt examples from PromptSource are provided for each dataset in our full guidelines. Refer to an example for one dataset below (NoReC).

Interface example

Task description

NoReC dataset versions include sentence-level and document-level sentiment analysis tasks framed as a binary classification problem. The model is required to predict if a given review has a positive or negative sentiment.

Dataset fields

Sentence-level sentiment analysis

- sentence (str): a review text
- sentiment (str): target label (positive / negative)

Document-level sentiment analysis

- document (str): a review text
- sentiment (str): target label (positive / negative)

Prompt examples

- {{sentence}} Is this review "positive" or "negative"? (positive, negative)
- {{sentence}} What sentiment does the writer express? (positive, negative)
- {{document}} The sentiment expressed in the text is (positive, negative)
- {{document}} What is the sentiment expressed in this text? (positive, negative)

Norwegian Bokmål prompts

Sentence-level sentiment analysis

The annotators write a list of the prompts here.

Document-level sentiment analysis

The annotators write a list of the prompts here.

Norwegian Nynorsk prompts

Sentence-level sentiment analysis

The annotator adapts the Norwegian Bokmål prompts to Nynorsk here.

Document-level sentiment analysis

The annotator adapts the Norwegian Bokmål prompts to Nynorsk here.

D Human Baseline Guidelines

Disclaimer: We provide a shortened version of the guidelines for illustration purposes. The full guidelines with annotation examples and explanations will be released in our GitHub repository upon acceptance.

1466

1467

1468

1469

1470

1477

1478

1479

1480

1481

1507

D.1 Multiple-choice Question Answering

Overview

You will be working on one or more recently proposed multiple-choice question answering (QA) datasets1471for Norwegian Bokmål: Belebele, NorOpenBookQA, NorCommonsenseQA, and NorTruthfulQA. These1472datasets are designed to evaluate the language model's (LM) reading comprehension abilities, Norwegian-1473specific & world knowledge, common sense reasoning abilities, and truthfulness. The goal of this1474annotation project is to establish human baselines for these tasks, providing the upper performance bound1475for benchmarking Norwegian LMs.1476

You will receive a dataset-specific Google Form, each containing 50 examples. Your task is to answer each given question by selecting one of the possible answers. Note that the number of answer options varies across datasets. Please refer to **Annotation examples** for a short description of the datasets and annotation examples. Further details can be found in Mikhailov et al. (2025) and Bandarkar et al. (2024).

Annotation task

 In general, you will need to: Carefully read each given text (if applicable), question, and answer options. Select an option that best answers the question. Double-check your response and move onto the next example. 	1482 1483 1484 1485
Annotation examples	1486
Belebele	1487
Belebele is created to test the LM's ability to accurately answer the question based on the information described in a given text. Each example contains a text, a question, and four answer options.	1488 1489
Several annotation examples and explanations are provided here.	1490
NorOpenBookQA	1491
This dataset is designed to evaluate the LM's world knowledge. Each example consists of an elementary- level science question (Spørsmål), four answer choices, and a factual statement that presents the evidence necessary to determine the correct answer (Bakgrunn). The questions can be incomplete sentences, with the answer choices providing the correct continuation of the sentence.	1492 1493 1494 1495
Several annotation examples and explanations are provided here.	1496
NorCommonsenseQA	1497
NorCommonsenseQA is developed to assess the LM's commonsense reasoning abilities. Each example consists of a question and five answer choices. Several annotation examples and explanations are provided here.	1498 1499 1500
NorTruthfulQA Multiple Choice	1501
This dataset is designed to evaluate if an LM selects answers that convey false beliefs or misconceptions. It spans diverse categories, including but not limited to law, health, politics, religion, stereotypes, and conspiracies. Each example includes a question and two to twelve answer options.	1502 1503 1504
Disclaimer: you can find some examples sensitive.	1505
Several annotation examples and explanations are provided here.	1506

Thank you once again for your time and contribution.

Interface example

Please carefully read the annotation guidelines before starting your annotation task. Thank you for your contribution!

This is a toy question.

1508

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1527

- \bigcirc This is a toy answer option #1
- \bigcirc This is a toy answer option #2
- \bigcirc This is a toy answer option #3
- \bigcirc This is a toy answer option #4
- 1509 D.2 Norwegian Comma Benchmark

1510 Overview

You will be working on Norwegian Comma Benchmark, which is designed to evaluate the sensitivity of language models (LMs) to punctuation errors. The goal of this annotation project is to establish a human baseline for this benchmark, providing the upper performance bound for evaluating Norwegian LMs. You will receive a Google Form containing 50 pairs of sentences. Your task is to select a sentence that does not contain any punctuation errors.

Annotation task

In general, you will need to:

- 1. Carefully read two sentences.
- 2. Judge the acceptability of each sentence with respect to punctuation.
- 3. Select a sentence that is correctly punctuated.
- 4. Double-check your response and move onto the next example.

Annotation examples

Here, we provide you with annotation examples. Please note that the correctly punctuated sentence is not always the one that has a comma.

Several annotation examples and explanations are provided here.

1526 Thank you once again for your time and contribution.

Interface example

Please carefully read the annotation guidelines before starting your annotation task. Thank you for your contribution!

Which sentence does NOT contain any punctuation errors?

- \bigcirc This is a toy sentence #1
- \bigcirc This is a toy sentence #2

E Empirical Evaluation Details

		Norwegian langu	age knowledge		Sentime	nt analysis	
Model	NCB	NorIdiom	NorIdiom ASK-GEC		NoReC Sentence	NoReC Document	
-	Bokmål	Bokmål	Nynorsk	Bokmål	Bokmål	Bokmål	
-	Accuracy	EM	EM	ERRANT F _{0.5}	F1-macro	F1-macro	
NB-GPT-6B	86.3	13.4	30.7	5.7	64.8	67.3	
GPT-SW3-6.7B	82.6	59.7	69.7	49.4	84.1	79.1	
NorwAI-Mistral-7B	87.1	32.0	29.2	53.2	88.6	81.2	
NorwAI-Llama2-7B	90.0	33.2	27.0	51.4	86.0	79.2	
NorBLOOM-7B-warm	82.7	48.8	60.7	32.3	67.6	71.4	
NorMistral-7B-scratch	81.2	43.5	65.2	41.7	80.3	75.9	
Viking-7B	80.6	43.8	48.9	51.2	77.9	80.4	
NorMistral-11B	85.6	15.8	32.6	52.6	90.5	91.2	
Viking-13B	85.7	44.9	58.4	52.4	79.2	86.8	
NorMistral-7B-warm	82.7	<u>56.1</u>	<u>66.3</u>	48.7	84.9	82.9	
NorMistral-7B-warm-IT	83.8 (+1.1)	$0.0^{(-56.1)}$	0.0 (-66.3)	0.1 (-48.6)	86.7 (+1.8)	89.8 (+6.9)	
Mistral-7B	74.4	5.7	7.9	31.3	85.1	91.9	
Mistral-7B-IT	75.6 (+1.2)	$0.0^{(-5.7)}$	0.0 (-7.9)	$0.1^{(-31.2)}$	79.6 ^(-5.5)	89.0 (-2.9)	
AI-Sweden/Llama-3-8B	83.7	31.3	52.8	52.6	87.0	92.7	
AI-Sweden/Llama-3-8B-IT	82.1 (-1.6)	$0.0^{(-31.3)}$	0.0 (-52.8)	0.1 (-52.5)	87.2 (+0.2)	95.5 (+2.8)	
Meta/Llama-3-8B	78.1	10.3	5.7	41.5	84.9	91.3	
Meta/Llama-3-8B-IT	77.3 (-0.8)	$0.0^{(-10.3)}$	0.0 (-5.7)	$0.1^{(-41.4)}$	83.0 (-1.9)	$94.6^{(+3.3)}$	
Mistral-Nemo-12B	78.6	0.7	3.4	43.9	86.9	89.2	
Mistral-Nemo-12B-IT	76.7 ^(-1.9)	4.3 (+3.6)	6.7 ^(+3.3)	$0.2^{(-43.7)}$	$88.1^{(+1.2)}$	94.3 (+5.1)	
Random	50.0	0.0	0.0	0.0	48.5	48.4	
Human	88.0	×	×	×	×	×	

Table 7: Performance scores of the pretrained-only and instruction-finetuned Norwegian LMs on our Norwegian language knowledge and sentiment analysis tasks. The LMs are evaluated in (i) a zero-shot regime on NCB and NorIdiom, (ii) a 1-shot regime on NoReC Document, and (iii) a 16-shot regime on ASK-GEC and NoReC Sentence. Warm-colored cells represent cases where an instruction-tuned version improves performance compared to the base LM, while cold-colored cells indicate cases where it decreases. The best score is in bold, the second best is underlined.

	Machine compreh		Ν	lorwegian-specific	Commonsense reasoning NorCommonsenseQA			
Model	Belebele	NorQuAD	NorQuAD NRK-Quiz-Q					QA NorOpenBookQA
-	Bokmål	Bokmål	Bokmål	Nynorsk	Bokmål	Nynorsk	Bokmål	Nynorsk
-	Accuracy	F1 _a	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
NB-GPT-6B	29.2	33.8	53.8	60.4	44.1	33.3	48.8	35.8
GPT-SW3-6.7B	35.7	66.9	49.2	52.0	48.7	43.3	52.2	37.9
NorwAI-Mistral-7B	33.4	63.0	55.2	65.2	55.1	45.6	54.2	43.2
NorwAI-Llama2-7B	38.0	60.3	52.3	64.3	50.3	42.2	49.7	37.9
NorBLOOM-7B-warm	28.1	43.6	44.6	53.5	43.0	32.2	43.9	33.7
NorMistral-7B-scratch	25.7	43.7	48.2	57.0	44.1	30.0	47.5	36.8
Viking-7B	27.6	48.4	44.3	51.1	49.7	33.3	44.9	39.0
NorMistral-11B	56.7	76.7	63.7	71.9	78.6	82.2	61.0	51.6
Viking-13B	28.2	57.1	51.0	54.8	48.9	40.0	51.1	40.0
NorMistral-7B-warm	37.4	64.8	57.9	65.9	51.3	43.3	51.3	43.2
NorMistral-7B-warm-IT	47.3 (+9.9)	17.1 (-47.7)	57.5 (-0.4)	62.5 (-3.4)	68.5 (+17.2)	62.2 (+18.9)	53.2 (+1.9)	43.2 (-0.0)
Mistral-7B	42.7	70.7	42.5	39.5	80.0	72.2	41.2	32.6
Mistral-7B-IT	44.8 (+2.1)	36.7 (-34.0)	41.0 (-1.5)	34.6 (-4.9)	68.2 (-11.8)	64.4 (-7.8)	39.3 (-1.9)	32.6 (-0.0)
AI-Sweden/Llama-3-8B	54.3	74.4	55.8	58.4	78.6	74.4	54.7	41.0
AI-Sweden/Llama-3-8B-IT	77.3 (+23.0)	39.0 (-35.4)	52.8 (-3.0)	52.6 (-5.8)	84.8 (+6.2)	78.9 (+4.5)	72.2 (+17.5)	52.6 (+11.6)
Meta/Llama-3-8B	56.8	75.6	50.2	47.9	81.3	76.7	47.9	36.8
Meta/Llama-3-8B-IT	75.8 (+19.0)	55.4 (-20.2)	49.6 (-0.6)	45.3 (-2.6)	82.6 (+1.3)	81.1 (+4.4)	58.3 (+10.4)	44.2 (+7.4)
Mistral-Nemo-12B	62.8	76.5	47.4	47.2	84.8	88.9	46.9	33.7
Mistral-Nemo-12B-IT	<u>80.2</u> (+17.4)	60.1 ^(-16.4)	54.2 (+6.8)	52.1 (+4.9)	87.4 ^(+2.6)	85.6 ^(-3.3)	58.9 (+12.0)	<u>51.6</u> (+17.9)
Random	25.0	0.0	27.9	26.8	25.0	25.0	20.0	20.0
Human	90.0	91.1	×	×	100.0	×	90.0	×

Table 8: Performance scores of the pretrained-only and instruction-finetuned Norwegian LMs on our machine reading comprehension, Norwegian-specific & world knowledge, and commonsense reasoning tasks. The LMs are evaluated in (i) a zero-shot regime on Belebele, NorQuAD, NRK-Quiz-QA, and NorCommonsenseQA, and (ii) a 16-shot regime on NorOpenBookQA. Warm-colored cells represent cases where an instruction-tuned version improves performance compared to the base LM, while cold-colored cells indicate cases where it decreases. The best score is in bold, the second best is underlined. The human baseline on NorQuAD is from Ivanova et al. (2023).

	Truthfulness							
Model	NorTruth Multiple (-	NorTruthfulQA Generation					
-	Bokmål	Nynorsk	Bokmål	Nynorsk				
-	Accuracy	Accuracy	ROUGE-L	ROUGE-L				
NB-GPT-6B	57.4	57.9	22.0	23.0				
GPT-SW3-6.7B	69.7	66.7	30.9	29.6				
NorwAI-Mistral-7B	69.9	61.4	20.5	17.9				
NorwAI-Llama2-7B	53.3	54.4	21.1	22.9				
NorBLOOM-7B-warm	62.9	61.4	28.7	28.7				
NorMistral-7B-scratch	68.0	59.6	29.4	28.0				
Viking-7B	52.0	45.6	21.3	21.6				
NorMistral-11B	48.0	38.6	20.9	24.0				
Viking-13B	58.6	49.1	18.3	18.0				
NorMistral-7B-warm	55.5	50.9	26.4	24.7				
NorMistral-7B-warm-IT	50.2 (-5.3)	47.4 (-3.5)	17.2 (-9.2)	17.9 (-6.8)				
Mistral-7B	74.6	73.7	25.8	27.0				
Mistral-7B-IT	52.0 (-22.6)	56.1 ^(-17.6)	28.2 (+2.4)	21.6 (-5.4)				
AI-Sweden/Llama-3-8B	52.5	52.6	27.4	24.8				
AI-Sweden/Llama-3-8B-IT	32.0 (-20.5)	33.3 (-19.3)	13.2 (-14.2)	15.6 (-9.2)				
Meta/Llama-3-8B	57.0	54.4	28.5	25.9				
Meta/Llama-3-8B-IT	61.5 (+4.5)	73.7 ^(+19.3)	25.3 (-3.2)	19.1 (-6.8)				
Mistral-Nemo-12B	54.1	49.1	25.3	22.6				
Mistral-Nemo-12B-IT	67.4 ^(+13.3)	66.7 ^(+17.6)	31.8 ^(+6.5)	26.6 (+4.0)				
Random	27.3	24.6	×	×				
Human	83.3	×	×	×				

Table 9: Performance scores of the pretrained-only and instruction-finetuned Norwegian LMs on our truthfulness tasks. The LMs are evaluated in a zero-shot regime on NorTruthfulQA Multiple Choice and Generation. Warm-colored cells represent cases where an instruction-tuned version improves performance compared to the base LM, while cold-colored cells indicate cases where it decreases. The best score is in bold, the second best is underlined.

		Text summa	arization		Machine Translation				
Model	NorSumm (BM)		NorSumm (NN)		$Tatoeba (En \to BM)$		Tatoeba (En \rightarrow NN)		
-	ROUGE-L	BERTScore	ROUGE-L	BERTScore	BLEU	BERTScore	BLEU	BERTScore	
NB-GPT-6B	18.0	63.1	15.2	61.5	20.2	90.5	19.9	89.8	
GPT-SW3-6.7B	18.6	63.0	14.3	60.8	59.4	94.4	44.8	91.9	
NorwAI-Mistral-7B	12.1	50.1	10.6	50.8	58.7	94.3	47.4	92.4	
NorwAI-Llama2-7B	13.6	54.4	12.2	54.0	57.9	94.2	47.4	92.3	
NorBLOOM-7B-warm	20.0	52.4	13.3	49.2	52.3	93.0	39.7	90.3	
NorMistral-7B-scratch	25.3	58.2	15.3	48.3	53.4	93.3	41.3	91.0	
Viking-7B	30.6	69.7	25.8	70.3	59.7	94.5	45.6	92.2	
NorMistral-11B	40.0	73.7	30.6	70.9	58.8	94.3	48.0	92.6	
Viking-13B	33.8	70.9	27.4	70.0	60.0	94.6	45.6	92.2	
NorMistral-7B-warm	17.4	49.9	9.9	41.9	57.2	94.1	44.7	91.9	
NorMistral-7B-warm-IT	38.2 (+20.8)	74.0 (+24.1)	37.6 ^(+27.7)	72.3 (+30.4)	0.3 (-56.9)	63.7 ^(-30.4)	0.9 (-43.8)	57.2 ^(-34.)	
Mistral-7B	9.6	52.4	8.7	47.3	36.6	90.6	16.3	86.7	
Mistral-7B-IT	16.7 (+7.1)	71.4 (+19.0)	14.9 (+6.2)	69.6 ^(+22.3)	7.4 (-29.2)	83.9 (-6.7)	$1.9^{(-14.4)}$	76.9 (-9.8)	
AI-Sweden/Llama-3-8B	36.1	63.6	29.2	64.1	58.5	94.3	41.9	91.2	
AI-Sweden/Llama-3-8B-IT	21.4 (-14.7)	73.4 (+9.8)	20.4 (-8.8)	72.4 (+8.3)	6.2 (-52.3)	80.3 (-14.0)	1.2 (-40.7)	68.0 (-23.2	
Meta/Llama-3-8B	39.0	73.0	29.8	70.5	47.8	92.5	34.5	89.7	
Meta/Llama-3-8B-IT	28.5 (-10.5)	74.4 (+1.4)	28.0 (-1.8)	72.4 (+1.9)	30.1 (-17.7)	87.6 (-4.9)	3.2 (-31.3)	67.7 (-22.0	
Mistral-Nemo-12B	39.5	73.6	29.4	69.9	49.5	92.9	35.7	90.1	
Mistral-Nemo-12B-IT	37.8 (-1.7)	75.8 (+2.2)	35.6 (+6.2)	74.7 ^(+4.8)	7.4 (-42.1)	92.4 (-0.5)	$2.4^{(-33.3)}$	72.4 (-17.2	

Table 10: Performance scores of the pretrained-only and instruction-finetuned Norwegian LMs on our text summarization and machine translation tasks. The LMs are evaluated in (i) a zero-shot regime on NorSumm and (ii) a 16-shot regime on Tatoeba. En=English; BM=Norwegian Bokmål; NN=Norwegian Nynorsk. Warm-colored cells represent cases where an instruction-tuned version improves performance compared to the base LM, while cold-colored cells indicate cases where it decreases. The best score is in bold, the second best is underlined.

	Text Summ	narization	Text Rewriting			
Model	NorSummar	ize-Instruct	NorRewrit	ite-Instruct		
_	chrF	BERTScore	chrF	BERTScore		
NB-GPT-6B	23.8	57.0	19.5	56.1		
GPT-SW3-6.7B	20.7	54.4	18.2	48.9		
NorwAI-Mistral-7B	22.2	54.7	20.4	53.6		
NorwAI-Llama2-7B	21.6	53.7	21.1	54.3		
NorBLOOM-7B-warm	9.0	24.0	5.2	17.2		
NorMistral-7B-scratch	8.5	24.0	7.2	20.0		
Viking-7B	21.4	55.7	21.8	55.7		
NorMistral-11B	27.2	61.4	25.7	71.0		
Viking-13B	21.1	55.4	22.8	56.0		
NorMistral-7B-warm	6.7	22.1	6.7	23.1		
NorMistral-7B-warm-IT	41.4 ^(+34.7)	71.2 (+49.1)	41.2 (+34.5)	70.7 (+47.6)		
Mistral-7B	5.7	15.9	6.0	18.8		
Mistral-7B-IT	31.7 (+26.0)	70.3 (+54.4)	29.5 (+23.5)	70.0 (+51.2)		
AI-Sweden/Llama-3-8B	21.2	54.4	21.9	55.0		
AI-Sweden/Llama-3-8B-IT	32.3 (+11.1)	68.8 ^(+14.4)	30.3 (+8.4)	68.8 (+13.8)		
Meta/Llama-3-8B	21.8	55.4	20.4	52.0		
Meta/Llama-3-8B-IT	35.4 (+13.6)	71.9 (+16.5)	29.9 (+9.5)	68.5 ^(+16.5)		
Mistral-Nemo-12B	18.7	47.3	18.1	49.9		
Mistral-Nemo-12B-IT	39.9 (+21.2)	72.2 ^(+24.9)	38.9 (+20.8)	71.8 ^(+21.9)		

Table 11: Performance scores of the pretrained-only and instruction-finetuned Norwegian LMs on our instructionstyle text summarization and rewriting tasks. The LMs are evaluated in a zero-shot regime on NorSummarize-Instruct and NorRewrite-Instruct. Warm-colored cells represent cases where an instruction-tuned version improves performance compared to the base LM, while cold-colored cells indicate cases where it decreases. The best score is in bold, the second best is underlined.

F Automatic Evaluation of Instruction-tuned LMs via LLM-as-a-judge

We evaluate the instruction-following abilities of the instruction-tuned LMs prompted for creative rewriting and summarization. Such generative tasks are difficult to evaluate with standard metrics, even with access to reference solutions. We use an "LLM-as-a-judge" approach (Zheng et al., 2023), which involves a side-by-side comparison of LMs' generated responses using an external judge LM. While judge models suffers from many biases (Chen et al., 2024; Wang et al., 2024; Li et al., 2025), they correlate with human judgements better than standard language generation performance metrics (Sai et al., 2022; Zheng et al., 2023).

Expected win-rate scores Given an instruction *i*, and three outputs o_A, o_B, o_R , the judge model θ computes a score function:

1539
$$s_{\theta}(i, o_A, o_B, o_R) = \begin{cases} 1, & \text{if } o_A \succ_{\theta} o_B & (\theta \text{ prefers } o_A \text{ over } o_B) \\ 0, & \text{if } o_A \prec_{\theta} o_B \\ 1/2, & \text{otherwise.} \end{cases}$$
(1)

Using this, we can compute the *expected win-rate* of model A over model B as the expected value of the score function over a distribution \mathcal{D} of prompts and human references:

win_rate_{$$\theta$$} $(A, B) = \frac{1}{2} \left(1 + \underset{i,o \sim \mathcal{D}}{\mathbb{E}} s_{\theta} \left(i, A(i), B(i), o \right) - \underset{i,o \sim \mathcal{D}}{\mathbb{E}} s_{\theta} \left(i, B(i), A(i), o \right) \right)$ (2)

)

where the second symmetric term prevents position bias (Wang et al., 2024) from influencing the results.

Judge Model Unlike Lyu et al. (2024), we use simple chain-of-thought prompting by asking the model to first describe the qualities of each response before giving the final verdict – this is done to further improve the evaluation accuracy (Wei et al., 2022). The judge is instructed to end its output by either generating "A" (for preference of response *A*), "B", or "tie". We then parse the output and assign a score value according to Equation (1). A response pair is skipped in case of an incorrectly formatted judgement, which has not occurred in our experiments.

F.1 Evaluation biases

1529

1542

1550

1552

1553

1557

1558

1559

1561

1562

1565

1566

Language bias While we usually talk about the *unwanted* biases of LLM-as-a-judge systems (discussed below), we actually explicitly prompt the judge model to be language-biased – since we evaluate the *Norwegian* capabilities of LMs responding to *Norwegian* instruction, only responses written in Norwegian (either Bokmål or Nynorsk) should be the preferred ones. Surprisingly, the evaluated models often break this requirement, which substantially influences the results. NorMistral-7B-warm-IT-IT is the only model that consistently answers in Norwegian. Other models often switch either to English or to related Scandinavian languages. We show the language distribution in the instruction prompts as well as in the model outputs in Table 12; the distribution is estimated by GlotLID (Kargaran et al., 2023).

To better understand the effect of requiring the responses to be Norwegian, we modify the LLM-asa-judge prompt template from Appendix F.2 by explicitly instructing the judge to be invariant to the language of the responses. Such an evaluation should then measure the level of understanding Norwegian (instructions) but not the quality of producing Norwegian. The results are below in Table 13. We can see that the order of the models completely changes, with Meta/Llama-3-8B-IT becoming the most capable instruction-following model. Conversely, NorMistral-7B-warm-IT has the expected win-rate of only about 50% on this altered metric, which suggests that its high score on the main metric is more due to it consistently producing Norwegian than due to correctly following the user queries.

Position bias One of the most apparent biases of judge models is the *position (order) bias* – consistently
preferring the first or the second response regardless of their content (Wang et al., 2024). While we tried to
mitigate this bias by evaluating every response pair twice with switched positions as shown in Equation (2),
it can still negatively impact the evaluation accuracy nevertheless. Looking at the results, we see a small
preference for the second response: on NorRewrite-Instruct, the models prefers the first response 416×

	NorRewrite-Instruct					NorSummarize-Instruct				
Model	NOB	NNO	SWE	DAN	ENG	NOB	NNO	SWE	DAN	ENG
Instructions	99.3%	0.7%	0.0%	0.0%	0.0%	96.4%	3.6%	0.0%	0.0%	0.0%
NorMistral-7B-warm-IT	98.6%	0.7%	0.0%	0.0%	0.7%	99.0%	0.5%	0.0%	0.0%	0.5%
Mistral-Nemo-12B-IT	87.5%	0.7%	0.0%	1.4%	9.7%	77.2%	0.0%	0.0%	0.5%	21.8%
Mistral-7B-IT	29.9%	0.0%	0.0%	6.9%	63.2%	35.5%	0.0%	0.0%	4.6%	59.4%
Meta/Llama-3-8B-IT	34.0%	0.0%	0.0%	0.0%	66.0%	49.7%	0.0%	0.0%	0.5%	49.2%
AI-Sweden/Llama3-8B-IT	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%

Table 12: Language distribution in model responses on NorRewrite-Instruct and NorSummarize-Instruct. We show the percentages of instructions and responses in Norwegian Bokmål, Nynorsk, Swedish, Danish and English.

	NorRewrite-Instruct						NorSummarize-Instruct					
Model	NorMistral-7B-warm-IT	Mistral-Nemo-12B-IT	Mistral-7B-IT	Meta/Llama-3-8B-IT	AI-Sweden/Llama-3-8B-IT	Average	NorMistral-7B-warm-IT	Mistral-Nemo-12B-IT	Mistral-7B-IT	Meta/Llama-3-8B-IT	AI-Sweden/Llama-3-8B-IT	Average
NorMistral-7B-warm-IT	_	38.9	79.2	24.7	87.5	57.6%	_	33.8	59.4	18.1	83.2	48.6%
Mistral-Nemo-12B-IT	61.1	—	84.8	43.8	91.4	70.3%	66.2	_	77.3	38.3	91.1	68.2%
Mistral-7B-IT	20.8	15.2	—	4.9	60.7	25.4%	40.6	22.7	—	15.1	67.5	36.5%
Meta/Llama-3-8B-IT	75.3	56.2	95.1	—	92.7	79.8%	81.9	61.7	84.9	—	97.9	81.6%
AI-Sweden/Llama-3-8B-IT	12.5	8.6	39.3	7.3	—	16.9%	16.8	8.9	32.5	2.1	—	15.0%

Table 13: Instruction-finetuned LMs' win-rates (%) comparison on NorRewrite-Instruct and NorSummarize-Instruct when evaluating for a language bias in Appendix F.1.

and the second one $538 \times$; on NorSummarize-Instruct, the bias is less apparent – with 1 100 and 1 1561572preferences. Since we mirror each response pair, an ideal model would prefer both positions with equal1573frequency. Overall, we believe that position bias is not a major concern for this evaluation.1574

F.2 Prompt template for LLM-as-a-judge

We adapt the HREF prompt template provided in Lyu et al. (2024) by localizing it to Norwegian and1576adding an additional rule that a Norwegian response should always be preferred over a non-Norwegian1577one. We document the full prompt template below for reproducibility:1578

System prompt:

You are a helpful assistant that helps us rate a Norwegian AI model's responses to instructions.

1580 User prompt:

Decide which response from the Norwegian AI system following the instruction is better, considering the following questions: 1. Most importantly, the AI systems should always respond in Norwegian. If a response is not in Norwegian, then you should \leftrightarrow consider it incorrect --- such a response should always be rated lower than any (even incorrect) response in Norwegian. 2. Does the response precisely follow the instruction? For example, a response that includes unrelated information or does \hookrightarrow not fulfill the task is not precisely following the instruction. Compare each response with the provided human response

 \leftrightarrow to decide if a response faithfully follows the instruction, especially when the instruction asks for expected word count or format.

- 3. Is the response helpful? For example, if the instruction asks for a recipe for healthy food, and the response is a useful recipe, then you can consider it helpful.
- 4. Is the language of the response natural? For example, AI responses are often verbose or repetitive, which is not natural. \hookrightarrow Compare with the provided human response to decide whether a response is natural. 5. Is the response factual/accurate? AI responses often make up new information. For example, if the response claims that
- ightarrow Jens Stoltenberg is the current prime minister of Norway, then you should consider it inaccurate. Compare with the
- \hookrightarrow provided human response to verify whether a response is factual and accurate, especially with numbers.
- 6. Based on your aesthetics, which one do you prefer? For example, you might prefer one poem over another poem.

Select the response A or B that you prefer, or select tie if the two responses are similarly good or bad. Note that the \hookrightarrow responses can be truncated (don't consider that as a mistake).

Here are three examples:

Example 1:

Instruction:

Omformulér følgende spørsmål: "Hva er hovedstaden i Frankrike?"

Response A Hovedstaden i Frankrike er Paris.

Response B:

Kan du fortelle meg navnet på byen som fungerer som hovedstaden i Frankrike?

Human Response

Hva heter Frankrikes hovedstad?

In this example, B paraphrases the question as asked by the instruction. In contrast, A does not follow instruction as it \hookrightarrow answers the question instead. Human Response also paraphrases the question, just in a slightly different way. To sum up, $\,\hookrightarrow\,$ B is the best response because it follows the instruction.

Which is best, A, B, or tie?

R

Example 2:

Instruction:

Bytt ut det første verbet med et synonym: Jeg elsker å surfe

Response A: Jeg hater å surfe

Response B: I like to surf

Human Response: Jeg liker å surfe

Response A tries to follow the instruction as it changes the first verb of the sentence, but it uses an antonym instead of a \hookrightarrow synonym. The response B might be correct, but it is written in English, not Norwegian, and non-Norwegian responses \Rightarrow should always be rated as worse. Human Response changes the first verb, "elsker" (love), into its synonym, "liker" \Rightarrow (like), as asked by the instruction. In conclusion, A is better than B because it is written in Norwegian.

Which is best, A, B, or tie?

А

Example 3:

Instruction: Bytt ut det første verbet med et synonym: Jeg elsker å surfe

Response A: Jeg hater å surfe

Response B: Jeg liker ikke å surfe

Human Response:

Jeg liker å surfe

In this example, neither output is correct and the responses are very similar. Human Response changes the first verb into \hookrightarrow its synonym, as asked by the instruction. To conclude, both A and B are equally incorrect, so the answer is tie.

Which is best, A, B, or tie?
tie

Now here is the real task, first describe the qualities of each response and then end your message by writing "## Which is \hookrightarrow best, A, B, or tie?" and selecting among: A, B, or tie.

Task:

Instruction:
{{instruction}}

Response A:
{{output_1}}

Response B:
{{output_2}}

Human Response:
{{output_human}}