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Abstract

Humanoid robots are promising to acquire various skills by imitating human
behaviors. However, existing algorithms are only capable of tracking smooth,
low-speed human motions, even with delicate reward and curriculum design. This
paper presents a physics-based humanoid control framework, aiming to master
highly-dynamic human behaviors such as Kungfu and dancing through multi-
steps motion processing and adaptive motion tracking. For motion processing,
we design a pipeline to extract, filter out, correct, and retarget motions, while
ensuring compliance with physical constraints to the maximum extent. For motion
imitation, we formulate a bi-level optimization problem to dynamically adjust
the tracking accuracy tolerance based on the current tracking error, creating an
adaptive curriculum mechanism. We further construct an asymmetric actor-critic
framework for policy training. In experiments, we train whole-body control policies
to imitate a set of highly-dynamic motions. Our method achieves significantly
lower tracking errors than existing approaches and is successfully deployed on the
Unitree G1 robot, demonstrating stable and expressive behaviors. The project page
ishttps://kungfu-bot.github.io.

1 Introduction

Humanoid robots, with their human-like morphology, have the potential to mimic various human
behaviors in performing different tasks [1]. The ongoing advancement of motion capture (Mo-
Cap) systems and motion generation methods has led to the creation of extensive motion datasets
[2, 3], which encompass a multitude of human activities annotated with textual descriptions [4].
Consequently, it becomes promising for humanoid robots to learn whole-body control to imitate
human behaviors. However, controlling high-dimensional robot actions to achieve ideal human-like
performance presents a substantial challenge. One major difficulty arises from the fact that motion
sequences captured from humans may not comply with the physical constraints of humanoid robots,
including joint limits, dynamics, and kinematics [} [6]. Hence, directly training policies through
Reinforcement Learning (RL) to maximize rewards (e.g., the negative tracking error) often fails to
yield desirable policies, as it may not exist within the solution space.

Recently, several RL-based whole-body control frameworks have been proposed to track motions
[Z, 18], which often take a reference kinematic motion as input and output the control actions for
a humanoid robot to imitate it. To address physical feasibility issues, H20 and OmniH20O [9} [10]
remove the infeasible motions using a trained privileged imitation policy, producing a clean motion
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dataset. ExBody [7]] constructs a feasible motion dataset by filtering via language labels, such as
‘wave’ and ‘walk’. Exbody?2 [3] trains an initial policy on all motions and uses the tracking error
to measure the difficulty of each motion. However, it would be costly to train the initial policy and
find an optimal dataset. There is also a lack of suitable tolerance mechanisms for difficult-to-track
motions in the training process. As a result, previous methods are only capable of tracking low-speed
and smooth motions. Recently, ASAP [6] introduces a multi-stage mechanism and learned a residual
policy to compensate for the sim-to-real gap, reducing the difficulties in tracking agile motions.
Unlike ASAP, we focus on improving motion feasibility and agility entirely in simulation.

In this paper, we propose Physics-Based Humanoid motion Control (PBHC), which utilizes a
two-stage framework to tackle the challenges associated with agile and highly-dynamic motions.
(1) In the motion processing stage, we first extract motions from videos and establish physics-based
metrics to filter out human motions by estimating physical quantities within the human model, thereby
eliminating motions beyond the physical limits. Then, we compute contact masks of motions followed
by motion correction, and finally retarget processed motions to the robot using differential inverse
kinematics. (ii) In the motion imitation stage, we propose an adaptive motion tracking mechanism
that adjusts the tracking reward via a tracking factor. Perfectly tracking hard motions is impractical
due to imperfect reference motions and the need of smooth control, so we adapt the tracking factor to
different motions based on the tracking error. We then formulate a Bi-Level Optimization (BLO) [[11]]
to derive the optimal factor and design an adaptive update rule that estimates the tracking error online
to dynamically refine the factor during training.

Building on the two-stage framework, we design an asymmetric actor-critic architecture for policy
optimization. The critic adopts a reward vectorization technique and leverages privileged information
to improve value estimation, while the actor relies solely on local observations. In experiments, PBHC
enables whole-body control policies to track highly-dynamic motions with lower tracking errors than
existing methods. We further demonstrate successful real-world deployment on the Unitree G1 robot,
achieving stable and expressive behaviors, including complex motions like Kungfu and dancing.

2 Preliminaries

Problem Formulation. We adopt the Unitree G1 robot [12] in our work, which has 23 degrees
of freedom (DoFs) to control, excluding the 3 DoFs in each wrist of the hand. We formulate
the motion imitation problem as a goal-conditional RL problem with Markov Decision Process
M = (S, A8 7,7, P), where S and S*! are the state spaces of the humanoid robot and refer-
ence motion, respectively, A is the robot’s action space, r is a mixed reward function consisting
motion-tracking and regularization rewards, and P is the transition function depending on the robot
morphology and physical constraints. At each time step ¢, the policy 7 observes the proprioceptive

state s7"°F of the robot and generates action a;, with the aim of obtaining the next-state s;1 that fol-
lows the corresponding reference state sgﬁfl in the reference trajectory [si¢f, ..., 8% |]. The action

a; € R?3 is the target joint position for a PD controller to compute the motor torques. We adopt an
off-the-shelf RL algorithm, PPO [13]], for policy optimization with an actor-critic architecture.

Reference Motion Processing. For human motion processing, the Skinned Multi-Person Linear
(SMPL) model [14]] offers a general representation of human motions, using three key parameters:
B € R0 for body shapes, 8 € R?**3 for joint rotations in axis-angle representation, and 1 € R> for
global translation. These parameters can be mapped to a 3D mesh consisting of 6,890 vertices via
a differentiable skinning function M (-), which formally expressed as V = M (3, 0, 1)) € R6890x3,
We employ a human motion recovery model to estimate SMPL parameters (3, 8, ¢) from videos,
followed by additional motion processing. The resulting SMPL-format motions are then retargeted to
G1 through an Inverse Kinematics (IK) method, yielding the reference motions for tracking purposes.

3 Methods

An overview of PBHC is illustrated in Fig. [I] First, raw human videos are processed by a Human
Motion Recovery (HMR) model to produce SMPL-format motion sequences. These sequences are
filtered via physics-based metrics and corrected using contact masks. The refined motions are then
retargeted to the G1 robot. Finally, each resulting trajectory serves as reference motion for training
a separate RL policy, which is then deployed on the real G1 robot. In the following, we detail the
motion processing pipeline (§3.1)), adaptive motion tracking module (§3.2) and RL framework (§3.3).
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Figure 1: An overview of PBHC that includes three core components: (a) motion extraction from
videos and multi-steps motion processing, (b) adaptive motion tracking based on the optimal tracking
factor, (c) the RL training framework and sim-to-real deployment.

3.1 Motion Processing Pipeline

We propose a motion processing pipeline to extract motion from videos for humanoid motion tracking,
comprising four steps: (i) SMPL-format motion estimation from monocular videos, (ii) physics-based
motion filtering, (iii) contact-aware motion correction, and (iv) motion retargeting. This pipeline
ensures that physically plausible motions can be transferred from videos to humanoid robots.

Motion Estimation from Videos. We employ GVHMR [15] to estimate SMPL-format motions
from monocular videos. GVHMR introduces a gravity-view coordinate system that naturally aligns
motions with gravity, eliminating body tilt issues caused by reconstruction solely relying on the
camera coordinate system. Furthermore, it mitigates foot sliding artifacts by predicting foot stationary
probabilities, thereby enhancing motion quality.

Physics-based Motion Filtering. Due to reconstruction inaccuracies and out-of-distribution issues
in HMR models, motions extracted from videos may violate physical and biomechanical constraints.
Thus, we try to filter out these motions via physics-based principles. Previous work [16]] suggests that
proximity between the center of mass (CoM) and center of pressure (CoP) indicates greater stability,
and proposes a method to estimate CoM and CoP coordinates from SMPL data. Building on this, we
calculate the projected distance of CoM and CoP on the ground for each frame and apply a threshold
to assess stability. Specifically, let py°™ = (pf'sM, pfoM) and pFor = (pfs”, pr’o") denote the
projected coordinates of CoM and CoP on the ground at frame ¢ respectively, and Ad; represents the
distance between these projections. We define the stability criterion of a frame as

Ady = ||pF°M — PP |2 < €stabs (1

where €1, represents the stability threshold. Then, given an N-frame motion sequence, let B =
[to,t1, - .., tx] be the increasingly sorted list of frame indices that satisfy Eq. (1)), where ¢, € [1, N].
The motion sequence is considered stable if it satisfies two conditions: (i) Boundary-frame stability:
1 € Band N € B. (ii) Maximum instability gap: the maximum length of consecutive unstable frames
must be less than threshold ey, i.e., maxy tx4+1 — tx < ex. Based on this criterion, motions that are
clearly unable to maintain dynamic stability can be excluded from the original dataset.

Motion Correction based on Contact Mask. To better capture foot-ground contact in motion data,
we estimate contact masks by analyzing ankle displacement across consecutive frames, based on the
zero-velocity assumption [17,[18]. Let p}22kle € R? denote the position of the left ankle joint at time

t, and ¢ € {0, 1} the corresponding contact mask. The contact mask is estimated as

e = I[P — o3 < evel] - Lpr2™° < encignel, )



where €ye1 and €p,eignt are empirically chosen thresholds. Similarly for the right foot.

To address minor floating artifacts not eliminated by threshold-based filtering, we apply a correction
step based on the estimated contact mask. Specifically, if either foot is in contact at frame ¢, a vertical
offset is applied to the global translation. Let 1); denotes the global translation of the pose at time ¢,
then the corrected vertical position is:

fﬁ;r =t — Ahy, 3)

where Ah; = minyey, py , is the lowest z-coordinate among the SMPL mesh vertices V; at frame .
While the correction alleviates floating artifacts, it may cause frame-to-frame jitter. We address this
by applying Exponential Moving Average (EMA) to smooth the motion.

Motion Retargeting. We adopt an inverse kinematics (IK)-based method [19] to retarget processed
SMPL-format motions to the G1 robot. This approach formulates a differentiable optimization
problem that ensures end-effector trajectory alignment while respecting joint limits.

To enhance motion diversity, we incorporate additional data from open-source datasets, AMASS [4]]
and LAFAN [20]. These motions are partially processed through our pipeline, including contact mask
estimation, motion correction, and retargeting.

3.2 Adaptive Motion Tracking
3.2.1 Exponential Form Tracking Reward

The reward function in PBHC, detailed in Appendix comprises two components: task-specific
rewards, which enforce accurate tracking of reference motions, and regularization rewards, which
promote overall stability and smoothness.

The task-specific rewards include terms for aligning joint states, rigid body state, and foot contact
mask. These rewards, except the foot contact tracking term, follow the exponential form as:

r(z) = exp(—z/0), ©)

where x represents the tracking error, typically measured as the mean squared error (MSE) of
quantities such as joint angles, while o controls the tolerance of the error, referred to as the tracking
factor. This exponential form is preferred over the negative error form because it is bounded,
helps stabilize the training process, and provides a more intuitive approach for reward weighting.

Intuitively, when o is much larger than the typical & Effect of Tracking Factor o on Reward
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3.2.2  Optimal Tracking Factor Figure 2: Illustration of the effect of tracking

. . . ) factor o on the reward value.
To determine the choice of the optimal tracking

factor, we introduce a simplified model of motion tracking and formulate it as a bi-level optimization
problem. The intuition behind this formulation is that the tracking factor ¢ should be chosen to
minimize the accumulated tracking error of the converged policy over the reference trajectory.
In manual tuning scenarios, this is typically achieved through an iterative process where an engineer
selects a value for o, trains a policy, observes the results, and repeats the process until satisfactory
performance is attained.

Given a policy 7 , there is a sequence of expected tracking error x € Rf for N steps, where x;
represents the expected tracking error at the i-th step of the rollout episodes. Rather than optimizing
the policy directly, we treat the tracking error sequence x as decision variables. This allows us to
reformulate the optimization problem of motion tracking as:

max J"(x,0) + R(x), 5
ERY
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where the internal objective J'"(x, o) = Zfil exp(—x; /o) is the simplified accumulated reward
induced by the tracking reward in Eq. @), and we introduce R(x) to capture all additional effects
beyond J™, including environment dynamics and other policy objectives such as extra rewards.
The solution x* to Eq. (3 corresponds to the error sequence induced by the optimal policy 7*.

Subsequently, the optimization objective of ¢ is to maximize the obtained accumulated negative

tracking error J**(x*) = vazl —x7, the external objective, formalized as the following bi-level

()ptln’llzatl()n pI’()blem.
ICX . * s.t . e 71 ] R

This simplified modeling provides an intuitive connection to the RL training process.
* The lower-level optimization represents the standard RL procedure, where a policy is trained
to maximize tracking reward and other reward terms, given a specific o.

 The upper-level optimization, outside the RL loop, selects o to minimize the total tracking
error of the final converged policy. This outer optimization is not reward maximization but a
performance-driven objective based on absolute external metrics.

Under additional technical assumptions, we can solve Eq. (6] and derive that the optimal tracking
factor is the average of the optimal tracking error, as detailed in Appendix [A]

o= (Zil x:‘)/N ™

3.2.3 Adaptive Mechanism
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While Eq. provides a theoretical guidance for determining the tracking factor, the coupling
between ¢* and x* creates a circular dependency that prevents direct computation. Additionally, due
to the varying quality and complexity of reference motion data, selecting a single, fixed value for
the tracking factor that works for all motion scenarios is impractical. To resolve this, we design an
adaptive mechanism that dynamically adjusts o during training through a feedback loop between
error estimation and tracking factor adaptation.

In this mechanism, we maintain an Exponential Moving Average (EMA) & of the instantaneous
tracking error over environment steps. This EMA serves as an online estimate of the expected tracking
error under the current policy, and during training this value should approach the average optimal

tracking error (va 1T ) /N under the current factor 0. At each step, PBHC updates o to the

current value of Z, creating a feedback loop where reductions in tracking error lead to tightening of o.
This closed-loop process drives further policy refinement, and as the tracking error decreases, the
system converges to an optimal value of o that asymptotically solves Eq. (9), as illustrated in Fig. [3]

To ensure stability during training, we constrain ¢ to be non-increasing and initialize it with a
relatively large value, o'™*. The update rule is given by Eq. (§). As shown in Fig. E], this adaptive
mechanism allows the policy to progressively improve its tracking precision during training.

o + min(o, 2). 3

5



3.3 RL Training Framework

Asymmetric Actor-Critic. Following previous works [0, 21]], the time phase variable ¢, € [0, 1]
is introduced to represent the current progress of the reference motion linearly, where ¢; = 0

denotes the start of a motion and ¢; = 1 denotes the end. The observation of the actor s3¢t°r

includes the robot’s proprioception sf*°F and the time phase variable ¢;. The proprioception s} P =

[qt_4;t,cjt_4;t,w{°_‘§f:t,gfi‘2t, a;_s5.1—1] includes 5-step history of joint position g; € R?, joint
velocity ¢; € R?3, root angular velocity wi®* € IR?, root projected gravity g7"*' € R and last-step
action a;_; € R?3. The critic receives an augmented observation s¢*i, including s}"°", time phase,

reference motion positions, root linear velocity, and a set of randomized physical parameters.

Reward Vectorization. To facilitate the learning of value function with multiple rewards, we
vectorize rewards and value functions as: © = [rq,...,r,] and V'(s) = [Vi(s),..., V,(s)] following
Xie et al. [22]]. Rather than aggregating all rewards into a single scalar, each reward component
r; is assigned to a value function V;(s) that independently estimates returns, implemented by a
critic network with multiple output heads. All value functions are aggregated to compute the action
advantage. This design enables precise value estimation and promotes stable policy optimization.

Reference State Initialization. We use Reference State Initialization (RSI) [21]], which initializes the
robot’s state from reference motion states at randomly sampled time phases. This facilitates parallel
learning of different motion phases, significantly improving training efficiency.

Sim-to-Real Transfer. To bridge the sim-to-real gap, we adopt domain randomization by varying
the physical parameters of the simulated environment and humanoids. The trained policies are
validated through sim-to-sim testing before being directly deployed to real robots, achieving zero-shot
sim-to-real transfer without any fine-tuning. Details are in Appendix [C.3]

4 Related Works

Humanoid Motion Imitation. Robot motion imitation aims to learn lifelike and natural behaviors
from human motions [21} 23]]. Although there exist several motion datasets that contain diverse mo-
tions (24, [25) 4], humanoid robots cannot directly learn the diverse behaviors due to the significantly
different physical structures between humans and humanoid robots [6} 26]. Meanwhile, most datasets
lack physical information, such as foot contact annotations that would be important for robot policy
learning [27, 28]]. As a result, we adopt physics-based motion processing for motion filtering and
contact annotation. After obtaining the reference motion, the humanoid robot learns a whole-body
control policy to interact with the simulator [29,|30]], with the aim of obtaining a state trajectory close
to the reference [31}132]. However, learning such a policy is quite challenging, as the robot requires
precise control of high-dimensional DoFs to achieve stable and realistic movement [7, |8]. Recent
advances adopt physics-based motion filtering and RL to learn whole-body control policies [5. [10],
and perform real-world adaptation via sim-to-real transfer [33]]. However, because of the lack of
tolerance mechanisms for hard motions, these methods are only capable of tracking relatively simple
motions. Other works also combine teleoperation [34 [35] and independent control of upper and
lower bodies [36]], while they may sacrifice the expressiveness of motions. In contrast, we propose an
adaptive mechanism to dynamically adapt the tracking rewards for agile motions.

Humanoid Whole-Body Control. Traditional methods for humanoid robots usually learn indepen-
dent control policies for locomotion and manipulation. For the lower-body, RL-based controller have
been widely adopted to learn locomotion policies for complex tasks such as complex-terrain walking
[37,138]], gait control [39]], standing up [40l 41], jumping [42], and even parkour [43|44]. However,
each locomotion task requires delicate reward designs, and human-like behaviors are difficult to obtain
[45]146]. In contrast, we adopt human motion as references, which is straightforward for robots to
obtain human-like behaviors. For the upper-body, various methods propose different architectures to
learn manipulation tasks, such as diffusion policy [47,48]], visual-language-action model [49, 50} 511,
dual-system architecture [52} 53], and world models [54,55]. However, these methods may overlook
the coordination of the two limbs. Recently, several whole-body control methods have been proposed,
with the aim of enhancing the robustness of entire systems in locomotion [22} 39} 34]] or performing
loco-manipulation tasks [56]. Differently, the upper and lower bodies of our method have the same
objective to track the reference motion, while the lower body still requires maintaining stability and
preventing falling in motion imitation. Other methods collect whole-body control datasets to learn a
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Figure 5: Example motions in our constructed dataset. Darker opacity indicates later timestamps.

humanoid foundation model [56] [57], while requiring a large number of trajectories. In contrast, we
only require a small number of reference motions to learn diverse behaviors.

S Experiments

In this section, we present experiments to evaluate the effectiveness of PBHC. Our experiments aim
to answer the following key research questions:

* Q1. Can our physics-based motion filtering effectively filter out untrackable motions?

* Q2. Does PBHC achieve superior tracking performance compared to prior methods in simulation?

Q3. Does the adaptive motion tracking mechanism improve tracking precision?

* Q4. How well does PBHC perform in real-world deployment?

5.1 Experiment Setup

100%
Evaluation Method. We assess the policy’s tracking per-
formance using a highly-dynamic motion dataset constructed
through our proposed motion processing pipeline, detailed in
Appendix [B] Examples are shown in Fig.[5] We categorize
motions into three difficulty levels: easy, medium, and hard,
based on their agility requirements. For each setting, policies
are trained in IsaacGym with three random seeds and are
evaluated over 1,000 rollout episodes.

Episode Length Ratio (%)

Metrics. The tracking performance of polices is quantified
through the following metrics: Global Mean Per Body Position

Error (Eg-mpbpe, mm), root-relative Mean Per Body Position Er- 0
. .. _ A ted ti
101 (Epbpe, mm), Mean Per Joint Position Error (Eppjpe, 1072 Rejected motion.

rad), Mean Per Joint Velocity Error (Eppjve, 1073 rad/frame),

Mean Per Body Velocity Error (Eppbve, mm/frame), and Mean  Figure 6: The distribution of ELR
Per Body Acceleration Error (Empbae, mm/frame?). The defini- of accepted and rejected motions.
tion of metrics is given in Appendix [D.2]

5.2 Motion Filtering

To address Q1, we apply our physics-based motion filtering method (see §3.1)) to 10 motion sequences.
Among them, 4 sequences are rejected based on the filtering criteria, while the remaining 6 are
accepted. To evaluate the effectiveness of the filtering, we train a separate policy for each motion and
compute the Episode Length Ratio (ELR), defined as the ratio of average episode length to reference
motion length.

As shown in Fig. [6] accepted motions consistently achieve high ELRs, demonstrating motions that
satisfy the physics-based metric can lead to better performance in motion tracking. In contrast,
rejected motions achieve a maximum ELR of only 54%, suggesting frequent violations of termination
conditions. These results demonstrate that our filtering method effectively excludes inherently
untrackable motions, thereby improving efficiency by focusing on viable candidates.



Table 1: Main results comparing different methods across difficulty levels. PBHC consistently
outperforms deployable baselines and approaches oracle-level performance. Results are reported as
mean =+ one standard deviation. Bold indicates methods within one standard deviation of the best
result, excluding Oracle baselines. Asterisks (*) denote significant improvements (p < 0.05) of our
method over baselines per two-sided permutation tests.

Method Eg—mpbpc J/ Empbpc \L Empjpc \L Empbvc \L Empbac \L Empjvc \L
Easy
OmniH20 233.5414013" 103.67+1012"  1805.1041233" 8.5410125" 8.4610081" 2247042043
EXBOdy2 588.22i1]_43* 332.50i3_5g4* 4014.4012]_50* 14~29i0.172* 9.80i0_]57* 206.01 i1.346*

JOws 53251760 280646137 725.6241620  4dliozy  465i0140  8L28gen
MaskedMimic (Oracle) 41 ~79il.715 21 .86i2_()30 739.96i]g_94* 5~20i0.245 7~40i0.333* 132.01 +8.941 ¥
Ours (Oracle) 45.0216.760 22,951 152 710.30-16.66 4.6311.580 4.89+0.960 734414
Medium
OmniH20 433-64i16.22* 151442:{:7_340* 2333-90i49.50* 10.85i0_300 10.54;{;0_152 204.36i4_473
EXBOdy2 6]9‘84i25_16* 261.01 i]_592;F 3738A70i26_90* 14‘48i0_160* 11 ~25i0.173 204-33i2.172*
Ours 126.48127_0] 48.87:&7‘550 1043.30;&104,4 6.6210,412 7.1910‘254 105.3015_941

" MaskedMimic (Oracle) — 150.924 1334 61.6944601°  9342541550"  8.1641074" 100140885  176.8440614"
Ours (Oracle) 66.85150.20 29.56114.53 753.69-£1002 5.34 10425 6.58.10.201 82.73.13.108
Hard
OmniH20 446.17 L1284 1478814142 19395040390 149840643  14.4010550 190.1348211
EXBOdy2 689.68i1 1.80 246.40i|.252* 4037A40i15_70* 19A90i0v2]0 16~72i0.160 254~76i3,409*
Ours 290.36:&139_1 124.61:&53,54 1326.601373‘9 11.9312((,22 12.3612_401 135.05;&1()_43

" MaskedMimic (Oracle) 477415700 272541615 829.0211541° 83310104 106040420 146901133
Ours (Oracle) 79-25169.4 34-74122.6 734.90:&]55'9 7.04:&1_420 843411_]40 93.791]7_3()

5.3 Main Result

To address Q2, we compare PBHC with three baseline methods: OmniH20 [10], Exbody?2 [5]], and
MaskedMimic [23]]. All baselines employ the exponential form of the reward function for tracking
reference motion, as described in §3.2.1] Implementation details are provided in Appendix [D.3]

As shown in Table[I] PBHC consistently outperforms the baselines OmniH20 and ExBody?2 across all
evaluation metrics. These improvements can be attributed to our adaptive motion tracking mechanism,
which automatically adjusts tracking factors based on motion characteristics, whereas the fixed,
empirically tuned parameters in the baselines fail to generalize across diverse motions. While
MaskedMimic performs well on certain metrics, it is primarily designed for character animation and
is not deployable for robot control, as it does not account for constraints such as partial observability
and action smoothness. To enable a fair comparison, we also train an oracle version of PBHC that
similarly overlooks such constraints, in the same manner as MaskedMimic.

5.4 Impact of Adaptive Motion Tracking Mechanism

To investigate Q3, we conduct an ablation study evaluating our adaptive motion tracking mecha-
nism (§3.2)) against four baseline configurations with fixed tracking factor set: Coarse, Medium,
UpperBound, LowerBound. The tracking factors in Coarse, Medium, UpperBound, and LowerBound
are roughly progressively smaller, with LowerBound approximately corresponding to the smallest
tracking factor derived from the adaptive mechanism after training convergence, while UpperBound
approximately corresponds to the largest. The specific configuration of baselines and the converged
tracking factors of the adaptive mechanism are given in Appendix [D.4]

As shown in Fig.[7] the performance of the fixed tracking factor configurations (Coarse, Medium,
LowerBound and UpperBound) varies between different motion types. Specifically, while Lower-
Bound and UpperBound achieve strong performance on certain motions, they perform suboptimally
on others, indicating that no single fixed setting consistently yields optimal tracking results on all
motions. In contrast, our adaptive motion tracking mechanism consistently achieves near-optimal
performance across all motion types, demonstrating its effectiveness in dynamically adjusting the
tracking factor to suit varying motion characteristics.
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Figure 7: Ablation study comparing the adaptive motion tracking mechanism with fixed tracking
factor variants. The adaptive mechanism consistently achieves near-optimal performance across all
motions, whereas fixed variants exhibit varying performance depending on motions.

Figure 8: Our robot masters highly-dynamic skills in the real world. Time flows left to right.

5.5 Real-World Deployment

To investigate Q4, we deploy the policies in real robot. As shown in Fig.[8] [[2]and the supporting
videos, our robot in real world demonstrates outstanding dynamic capabilities through a diverse
repertoire of advanced skills: (1) sophisticated martial arts techniques including powerful boxing
combinations (jabs, hooks, and horse-stance punches) and high-degree kicking maneuvers (front
kicks, jump kicks, side kicks, back kicks, and spinning roundhouse kicks); (2) acrobatic movements
such as full 360-degree spins; (3) flexible motions including deep squats and stretches; (4) artistic per-
formances ranging from dynamic dance routines to graceful Tai Chi sequences. This comprehensive
skill set highlights our system’s remarkable versatility, dynamic control, and real-world applicability
across both athletic and artistic domains.

To quantitatively assess our policy’s tracking performance, we conduct 10 trials of the Tai Chi
motion and compute evaluation metrics based on the onboard sensor readings, as shown in Table[2]
Notably, the metrics obtained in the real world are closely aligned with those from the sim-to-sim
platform MuJoCo, demonstrating that our policy can robustly transfer from simulation to real-world
deployment while maintaining high-performance control.



Table 2: Comparison of tracking performance of Tai Chi between real-world and simulation. The
robot root is fixed to the origin since it’s inaccessible in real-world.

Platform Empbpe \L Empjpe ir Empbve i/ Empbae \L Empjve \L

MuJoCo 33. 1812_720 1061~24i83.27 2.9610_342 2~90i0.498 67-71i6.747
Real 36.64:‘:2.592 1130.05:|:9.473 301:&0.126 3-12:t0.056 65.68i1_972

5.6 Learning Curves

To additionally illustrate the training process and verify its stability, we present in Fig. Q] the learning
curves for three representative motions—Jabs Punch, Tai Chi, and Roundhouse Kick—showing both
the mean episode length and mean reward. These curves provide an intuitive view of how the policy
improves over time, and it can be observed that training gradually stabilizes and converges after

approximately 20k steps, demonstrating the reliability and efficiency of our approach in learning
complex motion behaviors.

500 25
—— Jabs punch Jabs punch
Tai Chi Tai Chi
400 . 20 :
Roundhouse kick Roundhouse kick
E | el ity
on 2
2300 <15 } ,z'/r.b
P :
L
3 Vi A A s NN LA H
2200 P’\ //Vb Rt
o
53]
B,
100{ ..V 5
v
0 0
0 10 20 30 40 50 0 10 20 30 40 50
Training Steps (k) Training Steps (k)

Figure 9: Mean episode length and mean reward across three motions. Both curves indicate that
training gradually stabilizes after 20k steps.

6 Conclusion & Limitations

This paper introduces PBHC, a novel RL framework for humanoid whole-body motion control that
achieves outstanding highly-dynamic behaviors and superior tracking accuracy through physics-based
motion processing and adaptive motion tracking. The experiments show the motion filtering metric
can efficiently filter out trajectories that are difficult to track, and the adaptive motion tracking method
consistently outperforms baseline methods on tracking error. The real-world deployments demonstrate
robust behaviors for athletic and artistic domains. These contributions push the boundaries of
humanoid motion control, paving the way for more agile and stable real-world applications.

However, our method still has limitations. (i) It lacks environment awareness, such as terrain
perception and obstacle avoidance, which restricts deployment in unstructured real-world settings. (ii)
Each policy is trained to imitate a single motion, which may not be efficient for applications requiring
diverse motion repertoires. We leave research on how to maintain high dynamic performance while
enabling broader skill generalization for the future.
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of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read the NeurIPS Code of Ethics, and make sure that our research conducted in the
paper conform with the NeurIPS Code of Ethics in every respect.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts
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Answer: [Yes]
Justification: We discuss the societal impacts in[Append
Guidelines:
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Safeguards
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scraped datasets)?

Answer: [NA]
Justification: No such risks.
Guidelines:

¢ The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
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Answer: [NA]
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* The answer NA means that the paper does not release new assets.
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used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: NA
Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?
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Justification: NA
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* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.
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* For initial submissions, do not include any information that would break anonymity (if applica-
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A Derivation of Optimal Tracking Sigma

We recall the bi-level optimization problem in (6], as

gré%)i J(x™) (9a)
st. x" € arg max J"(x,0) + R(x) (9b)
mGR

Assuming R(x) takes a linear form R(x) = Ax + b, J°, and J™ are twice continuously differentiable and
the lower-level problem Eq. (Ob) has a unique solution * (o). Then we take an implicit gradient approach to
solve it. The gradient of J** w.r.t. o is:

dJ™  dx*(0) "o e, s
=g Va7 (@ (0). (10)

To obtain %
o

, since &* (o) is a lower-level solution, it satisfies:

Vo (J™ (2" (0),0) + R(z)) = 0. (11)

Take the first-order derivative of Eq. (TT) w.r.t. o, then we have:

d in * in diE ( ) 2 in __
do (VE(J (:17 (0)7 O) + R(w)) va a:J + do vw,a:J - Oa (12)
* T
W) V2@ (0),0) VI (@ (0),0) (13)
Substituting Eq. (T3) into Eq. (I0), we have
dJj™ o 2 in * 2 in * —1 ex *
o = —VozJ (X7 (0),0)Ve zJ (2" (0),0) Vo J™(x"(0)), (14)
where
I (@ Z i, (152)
T (x,0) Zexp —z; /o). (15b)
Compute first- and second-order gradients in Eq. (I4) as
in 1
Vol (2,0) = exp(~a/0)(~~), (160
Vo ™ (x) = (16b)
Voud " (2,0) = (—z/o), (16¢)
Vawd " (x,0) = dlag(exp( z/a))/o”, (16d)

where ® means element-wise multiplication. Substituting (T6) into (T4) and let the gradient equals to zero

ex
d(‘ila = 0, then we have

N *
o= M (17)

B Dataset Description

Our dataset integrates motions from: (i) video-based sources, from which motion data is extracted through our
proposed multi-steps motion processing pipeline. The hyperparameters of the pipeline are listed in Table 3} (ii)
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open-source datasets: selected motions from AMASS and LAFAN. The dataset comprises 13 distinct motions,
which are categorized into three difficulty levels—easy, medium, and hard. To ensure smooth transitions, we
linearly interpolate at the beginning and end of each sequence to move from a default pose to the reference
motion and back. The details are given in TableEl

Table 3: Hyperparameters of multi-steps motion processing.

Hyperparameter ~ Value

€stab 0.1
EN 100
€vel 0.002
€height 0.2

Table 4: The details of the highly-dynamic motion dataset.

Motion name Motion frames Source
Easy

Jabs punch 285 video
Hooks punch 175 video
Horse-stance pose 210 LAFAN
Horse-stance punch 200 video
Medium

Stretch leg 320 video
Tai Chi 500 video
Jump kick 145 video
Charleston dance 610 LAFAN
Bruce Lee’s pose 330 AMASS
Hard

Roundhouse kick 158 AMASS
360-degree spin 180 video
Front kick 155 video
Side kick 179 AMASS

C Algorithm Design

C.1 Observation Space Design

+ Actor observation space: The actor’s observation s7°*°" includes 5-step history of the robot’s
proprioceptive state s3"°P and the time-phase variable ¢;.

« Critic observation space: The critic’s observation s§*' additionally includes the base linear velocity,

the body position of the reference motion, the difference between the current and reference body
positions, and a set of domain-randomized physical parameters. The details are given in Table 5]

Table 5: Actor and critic observation state space.

State term Actor Dim  Critic Dim
Joint position 23 x5 23 x5
Joint velocity 23 x5 23 x5
Root angular velocity 3 x5 3 x5
Root projected gravity 3 x5 3 x5
Reference motion phase 1 x5 1x5
Actions 23 x5 23 x5
Root linear velocity - 3 x5
Reference body position - 81
Body position difference - 81
Randomized base CoM offset* - 3
Randomized link mass* - 22
Randomized stiffness* - 23
Randomized damping* - 23
Randomized friction coefficient* - 1
Randomized control delay* - 1
Total dim 380 630
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*Several randomized physical parameters used in domain randomization are part of the critic observation to
improve value estimation robustness. The detailed settings of domain randomization are given in Appendix@

C.2 Reward Design

All reward functions are detailed in Table@ Our reward design consists of two main parts: task rewards and
regularization rewards. Specifically, we impose penalties when joint position exceeds the soft limits, which are
symmetrically scaled from the hard limits by a fixed ratio (o = 0.95):

m = (qmin + qmax)/27

d= gmax — Qmin,

Gsoft-min = 1M — 05-d- (oA

Qsoft-max = MM + 05-d- «,

(18a)
(18b)
(18¢)
(18d)

where q is the joint position. The same procedure is applied to compute the soft limits for joint velocity g and

torque 7.

Table 6: Reward terms and weights.

Term Expression Weight
Task
Joint position exp(—|lgs — G¢l12/Tipos) 1.0
Joint velocity exp(—||qt — E]t”g/ajvel) 1.0
Body position exp(—|lpt — ﬁt||§/apos) 1.0
Body rotation exp(—||6: © 6; 13/0vot) 0.5
Body velocity exp(—|lve — Bt]13/0vel) 0.5
Body angular velocity exp(—|lwe — ¢ ||§/aang) 0.5
Body position VR 3 points exp(—||py* — BY*|13/opos_vr) 1.6
Body position feet exp (fllpieet - i){e‘* ||%/‘7posjeet) L0
Max Joint position exp (— [lat — Gt oo / Omax_jpos) 1.0
Contact Mask 1—let — étll1/2 0.5
Regularization

Joint position limits I(q ¢ [@soft-min,> Gsoft-max]) -10.0
Joint velocity limits (g ¢ [dsoft-mins Gsoft-max)) -5.0
Joint torque limits I(T ¢ [Tsoft-min> Tsoft-max)) -5.0
Slippage l[oset |13 - T[l| Fieet]l2 > 1] -1.0
Feet contact forces min(|| Ffeet — 400||§, 0) -0.01
Feet air time[30] I[Thir > 0.3] -1.0
Stumble I[|| Ffeet|| > 5. Ffeet] -2.0
Torque 113 -le-6
Action rate lat —ar—1 H% -0.02
Collision Leonision -30
Termination Itermination -200

C.3 Domain Randomization

To improve the transferability of our trained polices to real-world settings, we incorporate domain randomization
during training to support robust sim-to-sim and sim-to-real transfer. The specific settings are given in Table[7]

C.4 PPO Hyperparameter

The detailed PPO hyperparameters are shown in Table[8]
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Table 7: Domain randomization settings.

Term Value
Dynamics Randomization

Friction U(0.2, 1.2)

PD gain U(0.9, 1.1)

Link mass(kg) U(0.9, 1.1)x default

Ankle inertia(kg-m?) U(0.9, 1.1) x default

Base CoM offset(m) U(—0.05, 0.05)

ERFI[58](N-m/kg) 0.05x% torque limit

Control delay(ms) U(0, 40)

External Perturbation

[5, 10]
0.1

Random push interval(s)
Random push velocity(m/s)

C.5 Curriculum Learning

To imitate high-dynamic motions, we introduce two curriculum mechanisms: a termination curriculum that
gradually reduces tracking error tolerance, and a penalty curriculum that progressively increases the weight of

Table 8: Hyperparameters related to PPO.

Hyperparameter Value
Optimizer Adam
Batch size 4096
Mini Batches 4
Learning epoches 5
Entropy coefficient 0.01
Value loss coefficient 1.0

Clip param 0.2

Max grad norm 1.0

Init noise std 0.8
Learning rate le-3
Desired KL 0.01
GAE decay factor(\) 0.95
GAE discount factor(vy) 0.99
Actor MLP size [512, 256, 128]
Critic MLP size [768, 512, 128]
MLP Activation ELU

regularization terms, promoting more stable and physically plausible behaviors.

e Termination Curriculum: The episode is terminated early when the humanoid’s motion deviates
from the reference beyond a termination threshold 6. During training, this threshold is gradually
decreased to increase the difficulty:

0 <+ Chp (9 . (1 — 6), emin, emax) 5 (19)

where the initial threshold § = 1.5, with bounds Omin = 0.3, fmax = 2.0, and decay rate § =
2.5 x 107°.

* Penalty Curriculum: To facilitate learning in the early training stages while gradually enforcing
stronger regularization, we introduce a scaling factor « that increases progressively to modulate the
influence of the penalty term:

o — Cllp (a . (1 + 5)7 Qlmin, amax) ; fpcnalty —a- Tpenalty » (20)

where the initial penalty scale « = 0.1, with bounds amin = 0.0, atmax = 1.0, and growth rate
§=1.0x10""

C.6 PD Controller Parameter

The gains of the PD controller are listed in Table[J] To improve the numerical stability and fidelity of the
simulator in training, we manually set the inertia of the ankle links to a fixed value of 5 x 1073,

Table 9: PD controller gains.

Joint name Stiffness (kp) Damping (kg)
Left/right shoulder pitch/roll/yaw 100 2.0
Left/right shoulder yaw 50 2.0
Left/right elbow 50 2.0
Waist pitch/roll/yaw 400 5.0
Left/right hip pitch/roll/yaw 100 2.0
Left/right knee 150 4.0
Left/right ankle pitch/roll 40 2.0

24



D Experimental Details

D.1 Experiment Setup

* Compute platform: Each experiment is conducted on a machine with a 24-core Intel i7-13700 CPU
running at 5.2GHz, 32 GB of RAM, and a single NVIDIA GeForce RTX 4090 GPU, with Ubuntu
20.04. Each of our models is trained for 27 hours.

* Real robot setup: We deploy our policies on a Unitree G1 robot. The system consists of an onboard
motion control board and an external PC, connected via Ethernet. The control board collects sensor
data and transmits it to the PC using the DDS protocol. The PC maintains observation history, performs
policy inference, and sends target joint angles back to the control board, which then issues motor
commands.

D.2 Evaluation Metrics

* Global Mean Per Body Position Error (Eg.impbpe, mm): The average position error of body parts in
global coordinates.

ref

Egmpbpe = E H Pt — Pt

2} . Q1)

* Root-Relative Mean Per Body Position Error (Ep,pbpe, mm): The average position error of body parts
relative to the root position.

Ewpbpe =E [H(pt - proot,t) - (p;ef - piif}t,t) ’2] . (22)

* Mean Per Joint Position Error (Empjpe, 1073 rad): The average angular error of joint rotations.

ref

Erpjpe = E H gt — q;

2] : 23)

* Mean Per Joint Velocity Error (Epjve, 10~ rad/frame): The average error of joint angular velocities.

Empjve =E [HAQt - Aqief

] 24)
2
where Aq: = q: — qt—1-

* Mean Per Body Velocity Error (Empbve, mm/frame): The average error of body part linear velocities.

Empbve =E [HAPt - Apff

] , 25)
2
where Ap: = pr — pr—1.

* Mean Per Body Acceleration Error (Ep,pbae, mm/frame?): The average error of body part accelerations.

Empbae =E |:HA2pt - AQpief

: (26)
)
where Ath = Ap; — Api_1.

D.3 Baseline Implementations

To ensure fair comparison, all baseline methods are trained separately for each motion. We consider the following
baselines:

* OmniH20: OmniH20 adopts a teacher-student training paradigm. We moderately increase the
tracking reward weights to better match the G1 robot. In our setup, the teacher and student policies are
trained for 20 and 10 hours, respectively.

* Exbody2: ExBody?2 utilizes a decoupled keypoint-velocity tracking mechanism. The teacher and
student policies are trained for 20 and 10 hours, respectively.

* MaskedMimic: MaskedMimic comprises three sequential training phases and we utilize only the
first phase, as the remaining stages are not pertinent to our tasks. The method focuses on reproducing
reference motions by directly optimizing pose-level accuracy, without explicit regularization of
physical plausibility. Each policy is trained for 18 hours.
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D.4 Tracking Factor Configurations

We define five sets of tracking factors: Coarse, Medium, UpperBound, LowerBound, and the initial values of
Ours, as shown in Table We also provide the converged tracking factors of our adaptive mechanism in

Table[TTl

Table 10: Tracking factors in different configurations.

Factor term Ours(Init) Coarse ~ Medium  Upperbound  Lowerbound
Joint position 0.3 0.3 0.1 0.08 0.02
Joint velocity 30.0 30.0 10.0 5.0 2.5
Body position 0.015 0.015 0.005 0.002 0.0003
Body rotation 0.1 0.1 0.03 0.4 0.02
Body velocity 1.0 1.0 0.3 0.12 0.03
Body angular velocity 15.0 15.0 5.0 3.0 1.5
Body position VRpoints 0.015 0.015 0.005 0.003 0.0003
Body position feet 0.01 0.01 0.003 0.003 0.0002
Max joint position 1.0 1.0 0.3 0.5 0.25

Table 11: Converged tracking factors of our adaptive mechanism across different motions in the

ablation study of Section

Factor term

Jabs punch

Charleston dance

Bruce Lee’s pose

Roundhouse kick

Joint position
Joint velocity
Body position
Body rotation
Body velocity

Body angular velocity
Body position VRpoints

Body position feet
Max joint position

0.0310 % 0.0002
2.8505 £ 0.0419
0.0007 £ 0.0000
0.0998 =+ 0.0000
0.0554 £ 0.0006
1.8063 £ 0.0076
0.0008 + 0.0000
0.0006 =+ 0.0000
0.3963 % 0.0003

0.0360 + 0.0016
5.5965 + 0.1797
0.0023 £ 0.0001
0.0544 £+ 0.0016
0.0941 £+ 0.0013
2.8267 £ 0.0841
0.0031 =+ 0.0002
0.0031 £ 0.0001
0.4339 £ 0.0124

0.0268 + 0.0009
3.6053 £ 0.0323
0.0025 4= 0.0000
0.0046 £ 0.0001
0.0768 £ 0.0001
2.1706 £ 0.0050
0.0024 =+ 0.0000
0.0028 + 0.0000
0.3299 + 0.0064

0.0261 =+ 0.0005
4.3859 + 0.0537
0.0010 £ 0.0000
0.0829 £+ 0.0176
0.0929 £ 0.0008
3.0238 £ 0.0303
0.0015 =+ 0.0000
0.0011 =+ 0.0000
0.3352 £ 0.0010

E Additional Experimental Results

E.1 Analysis of Contact Mask Estimation and Motion Correction Method

100 4

80

60

Accuracy (%)

40 4

204

T
Height

T
Velocity

T
Ours

Figure 10: Accuracy of contact mask estimation across different methods.

Fig.[I0]illustrates the accuracy of the proposed contact mask estimation method, evaluated on a manually labeled
motion dataset with 10 samples. The proposed approach demonstrates an impressive accuracy of 91.4%.

Fig. [IT]presents a visual comparison of the efficacy of the proposed motion correction technique in mitigating
floating artifacts. Prior to motion correction, the overall height of the SMPL model is noticeably elevated relative
to the ground level. In contrast, after applying the correction, the model’s motion aligns more accurately with

the ground plane, effectively reducing the observed floating artifacts.
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Figure 11: Visualization of motion correction effectiveness in mitigating floating artifacts.

E.2 Ablation Study of Adaptive Motion Tracking Mechanism

Table@presents the ablation study results evaluating the impact of different tracking factors on four motion
tasks: Jabs Punch, Charleston Dance, Roundhouse Kick, and Bruce Lee’s Pose.

Table 12: Ablation results of adaptive motion tracking mechanism in Section [5.4]

Method Eg-mpbpe \L Empbpe ~L Empjpe \L Empbve \L Empbae ~L Empjve ~L
Jabs punch

Ours 44.38 17,118 28.0013 533 7833611173 55210156 6.2310063 88.01.15 465
Coarse 63.9516.680 36.76 12743 921.5041670  6.1640011 64610042 91.4610.465
Medium 51.07 12635 309315 635 790.54 1280  5.68+0.040  6.3110057 90.191 821

Upperbound 457411700 287211702 793.521gs85 54310066 6.29100ss  88.6810727
Lowerbound 48.6610‘488 28.97i()‘4g7 781.73i 16.72 5.61 +0.079 6.31 +0.026 88.443E 1.397

Charleston dance

Ours 94.81 +14.18 43.09i5_74g 886.91i74_76 6.83i0_345 7.26i0_034 162.70i7_133
Coarse 119.24 14 501 558041324  1288.0243807  7.54101s0 72810021  178.6113304
Medium 83.63.13.150 41024 743 933.3313823 68910185 72210011 164.9214350

Upperbound 86.90 18 651 419215630 9176411485 70210103 72240041 167.6411 089
Lowerbound 358.82i1035 145-42i 1.109 1 199-21i 12.78 8.99;&)‘050 8.48i0A033 167.25i()‘7g3

Roundhouse kick

Ours 52°53i2. 106 28.39i 1.400 708.55i 16.04 6.85i0, 196 7'13i0AO46 106-22i0.7 15
Coarse 76~81i2,863 38.98i2'230 1008.32i29'74 7~49i0,234 7-57i0.044 108.40i0_010
Medium 63.1215178 337410336 8068446623 70310125 73210046 1047711319

Upperbound 54.9547.164 313140344 7663211292 69310013 71940012 105.644 91
Lowerbound 70.1 012,674 36-29i1A475 715.0113401 7.08i0‘102 7-3210,067 102~50:t44650

Bruce Lee’s pose

Ours 196.22 417,03 69.124739 972.04 14927  7.57+40214  8.5440.108 94.3643.750
Coarse 239.06i5]_74 80.78i15_31 1678.34i394_3 8.42i0_525 8.93i0_422 112~30i10.87
Medium 470.24 12495 2069241161 44908011051 95840085  9-6110.080 99.65 12 441

Upperbound 250.64:‘:173.6 93-70:|:654O9 1358~02:tS61,6 8.31:‘:2'160 8.94:‘:1'384 106.30:‘:23'06
Lowerbound 158.12:&2'934 60.54i 1.554 955.10i37ﬂ4 7.05:‘:0'040 7.94:‘:0‘051 81.60i 1.277

E.3 Ablation Study of Contact Mask

To evaluate the effectiveness of the contact mask, we additionally conducted an ablation study on three represen-
tative motions characterized by distinct foot contact patterns: Charleston Dance, Jump Kick, and Roundhouse
Kick. We additionally introduce the mean foot contact mask error as a metric:

Econtact—mask =E I:Hct - ét”l] . (27)

The results, shown in Table [T3] demonstrate that our method significantly reduces foot contact errors
Econtact-mask compared to the baseline without the contact mask. In addition, it also leads to noticeable
improvements in other tracking metrics, validating the effectiveness of the proposed contact-aware design.

E.4 Additional Real-World Results
Fig. [[2] presents additional results of deploying our policy in the real world, covering more highly-dynamic

motions. These results further validate the effectiveness of our method in tracking high-dynamic motions,
enabling the humanoid to learn more expressive skills.
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Table 13: Ablation results of contact mask.

Method Econtact-mask ~L Empbpe Jr Empjpe ~l/ Empbve \l/ Empbae \L
Charleston dance

Ours 217.82 L47.97 43.0945748 886.91+74.76 6.83 10346 7.2610.034
Ours w/o contact mask 633.91i49_74 76.13:‘:5301 980.40i2220 7-72:I:1A439 7.64i0_594
Jump kick

Ours 294~22i6.037 42~58:t84126 840~33i97.76 9.48i0'717 10~21i10.21
Ours w/o contact mask 386.7516.036 170.28 19729 1259.21 14239 16.92_ 10012 16.57 15310
Roundhouse kick

Ours 243.1611.778 28.3941.400 708.55 1 16.04 6.8510.196 7.3310.046
Ours w/o contact mask 250.1016.123 36.7612.743 921.521 1670 6.1610012 6.4610.042

Figure 12: Our robot masters more dynamic skills in the real world. Time flows left to right.

F Broader Impact

Our work advances humanoid robotics by enabling the imitation of complex, highly-dynamic human motions
such as martial arts and dancing. This has broad potential in fields like physical assistance, rehabilitation,
education, and entertainment, where expressive and agile robot behavior can support training, therapy, and
interactive experiences. However, such capabilities also raise important ethical and societal concerns. High-
agility robots interacting closely with humans introduce safety risks, and their potential to replace skilled
human roles in performance, instruction, or service contexts may lead to labor displacement. Moreover, the
misuse of advanced motion imitation—for example, in surveillance or military applications—poses security
concerns. These risks call for clear regulation, strong safety mechanisms, and human oversight. Additionally, the
environmental cost of training models and operating physical robots highlights the need for energy-efficient and
sustainable development. We believe this work should be viewed as a step toward responsible, human-aligned
robotics, and we encourage continued dialogue on its societal impact.
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