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Abstract

Drug-side effect prediction has become an essential area of research in the field of pharma-
cology. As the use of medications continues to rise, so does the importance of understanding
and mitigating the potential risks associated with them. At present, researchers have turned
to data-driven methods to predict drug-side effects. Drug-side effect prediction is a link pre-
diction problem, and the related data can be described from various perspectives. To process
these kinds of data, a multi-view method, called Multiple Kronecker RLS fusion-based link
propagation (MKronRLSF-LP), is proposed. MKronRLSF-LP extends the Kron-RLS by
finding the consensus partitions and multiple graph Laplacian constraints in the multi-view
setting. Both of these multi-view settings contribute to a higher quality result. Extensive
experiments have been conducted on drug-side effect datasets, and our empirical results
provide evidence that our approach is effective and robust.

1 Introduction

Pharmacovigilance is critical to drug safety and surveillance. The field of pharmacovigilance plays a crucial
role in public health by continuously monitoring and evaluating the safety profile of drugs. Pharmacovigilance
involves collecting and analyzing data from various sources, including health care professionals (Yang et al.,
2016), patients, regulatory authorities, and pharmaceutical companies. These data are then used to identify
possible side effects and assess their severity and frequency (Da Silva & Krishnamurthy, 2016; Galeano et al.,
2020). Traditionally, drug-side effects were primarily identified through spontaneous reporting systems,
where health care professionals and patients reported adverse events to regulatory authorities. However, this
approach has limitations, such as underreporting and delayed detection.

To overcome these limitations, researchers have turned to data-driven methods to find drug-side effects. With
the advent of electronic health records, large-scale databases containing valuable information on medication
usage and patient outcomes have become available. These databases have allowed researchers to analyze
vast amounts of data to identify patterns between drugs and side effects.
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One of the most commonly used approaches to drug-side effects prediction is model-based methods. Model-
based methods involve the use of advanced statistical and machine learning techniques to extract knowledge
from large datasets. By analyzing patterns in the data, researchers can identify potential drug-side effects
and their associated risk factors. In their work, (Pauwels et al., 2011) predicted the side effects of drugs
(Pau’s method) by applying K-nearest neighbor (KNN), support vector machine (SVM), ordinary canonical
correlation analysis (OCCA) and sparse canonical correlation analysis (SCCA) from drug chemical substruc-
tures; furthermore, their experiment outcome suggests that SCCA performs the best. Sayaka et al. (2012)
utilized SCCA to associate targeted proteins with side effects (Miz’s method). Liu et al. (2012) predicted
drug side effects (Liu’s method) using SVM and multivariate information, such as the phenotypic character-
istics, chemical structures, and biological properties of the drug. Cheng et al. (2013) proposed a phenotypic
network inference classifier to associate drugs with side effects (Cheng’s method). NDDSA models (Shabani-
Mashcool et al., 2020) the drug-side effects prediction problem using a bipartite graph and applies a resource
allocation method to find new links. MKL-LGC (Ding et al., 2018) integrates multiple kernels to describe
the diversified information of drugs and side-effects. These kernels are then combined using an optimized
linear weighting algorithm. The Local and Global Consistency algorithm (LGC) is used to estimate new
potential associations based on the integrated kernel information.

Deep learning techniques (Xu et al., 2022) have been increasingly used to predict drug side effects in recent
years. These methods leverage the power of neural networks to analyze complex relationships between drugs,
genes, and proteins. In SDPred (Zhao et al., 2022), chemical-chemical associations, chemical substructure,
drug target information, word representations of drug molecular substructures, semantic similarity of side
effects, and drug side effect associations are integrated. To learn drug-side effect pair representation vectors
from different interaction maps, SDPred uses the CNN module. Drug interaction profile similarity (DIPA)
provided the most contribution. GCRS (Xuan et al., 2022) builds a complex deep-learning structure to
fuse and learn the specific topologies, common topologies and pairwise attributes from multiple drug-side
effect heterogeneous graphs. Drug-side effect heterogeneous graphs are constructed using drug-side effect
associations, drug-disease associations and drug chemical substructures. Based on a graph attention network,
Zhao et al. (2021) developed a prediction model for drug-side effect frequencies that integrated information
on similarity, known drug-side effect frequencies, and word embeddings. The above deep learning-based
method is a kind of pairwise learning. To keep the sample balanced, this group selected the positive sample
from trusted databases and the negative sample by random sampling. Such a treatment results in a certain
loss of information and introduces noise to the label.

Drug-side effect prediction is a classic link prediction problem (Yuan et al., 2019). To solve this kind of
problem, many multi-view methods have been proposed in recent years (Ding et al., 2021; 2016; Cichonska
et al., 2018). Based on the information fusion at different stages of the training process, multi-view methods
can roughly be divided into three categories: early fusion, late fusion and fusion during the training phase.
Fig. 1 illustrates our taxonomy of multi-view learning method literature.

In early fusion techniques, the views are combined before training process is performed. Multiple kernel
learning (MKL) (Wang et al., 2023b; Cichonska et al., 2018; Nascimento et al., 2016) is a typical early fusion
technique. For each view, it computes one or more kernels, and then learns the optimal kernel from the
base kernels. For example, MKL-KroneckerRLS (Ding et al., 2019) combines diversified information using
Centered Kernel Alignment-based Multiple Kernel Learning (CKA-MKL). Based on the optimal kernel,
Kronecker regularized least squares (Kro-RLS) was used to classify drug-side effect pairs. It must be noted
that the performance of these methods relies heavily on the optimal view, which may be redundant or
miss some key information. In late fusion techniques, a different model for each view is separately trained
and later a weighted combination is taken as the final model. For instance, in Zhang et al. (2016), an
ensemble model was constructed by integrating multiple methods, each providing a unique view. The model
incorporates Liu et al. (2012), Cheng et al. (2013), a Integrated Neighbour-based Method (INBM), and a
Restricted Boltzmann Machine-based Method (RBMBM). Each model is trained independently, and the final
partition is the average weighted average of the base partitions. Late fusion allows for individual modeling of
inherently different views, providing flexibility and advantage when dealing with diverse data. However, its
drawback is the delayed coupling of information, limiting the extent to which each model can benefit from
the information provided by other views.
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Figure 1: Taxonomy of multi-view learning framework literature. Note: "Partition" commonly refers to the
learned result. This concept is more commonly found in classification and clustering tasks (Liu et al., 2023;
Bruno & Marchand-Maillet, 2009; Wang et al., 2019). (a) Early fusion: the views are combined before the
training process is performed; (b) Late fusion: a different model for each view is separately trained and then
a combination is taken as the final partition; (c) Fusion during the training phase: it has some degree of
freedom to model the views differently but to also ensure that information from other views is exploited
during the training phase.

A third category is fusion during the training phase, which combines the benefits of both fusion types. It
fuses multiple views at the partition level and enables the model to explore all views while being allowed to
model one view differently. This framework has been applied to classification models (Houthuys & Suykens,
2021; Houthuys et al., 2018; Qian et al., 2022b; Xie & Sun, 2020) and clustering models (Lv et al., 2021;
Houthuys et al., 2018; Wang et al., 2023a). By exploring consensus or complementarity information from
multiple views, multi-view method can achieve better performance than single view method. The consensus
principle pursues to achieve view-agreement among views. For instance, Wang et al. (2019) maximized
the alignment between the consensus partition (clustering matrix) and the weighted combination of base
partitions.

In this work, we apply this technique to the Kron-RLS algorithm. Due to its fast and scalable nature. The
proposed method is named Multiple Kronecker RLS fusion-based link propagation (MKronRLSF-LP). Our
work’s main contributions are listed as follows:

(1) We extend Kron-RLS to the multiple information fusion setting by finding the consensus partition
and multiple graph Laplacian constraint. Specifically, we generate multiple partitions by normal
Kron-RLS and adaptively learn a weight for each partition to control its contribution to the shared
partitions. This work was conducted with the aim of fusing partitions while still allowing for some
flexibility in modeling single information. Furthermore, multiple graph Laplacian regularization is
adopted to boost the performance of semi-supervised learning. Both settings co-evolve toward better
performance.

(2) To fuse the features of multiple information more reasonably, we design an iterative optimization
algorithm to effectively fuse multiple Kron-RLS submodels and obtain the final predictive model of
drug-side effects. In the whole optimization, we avoid explicit computation of any pairwise matrices,
which makes our method suitable for solving problems in large pairwise spaces.

(3) The proposed method can address the general link prediction problem; it is empirically tested on
four real drug-side effect datasets, which are more sparse. The results show that MKronRLSF-LP
can achieve excellent classification results and outperform other competitive methods.

The rest of this paper is organized as follows. Section 2 provides a description of the drug-side effect
prediction problem. Section 3 reviews related work about MKronRLSF-LP. Section 4 comprehensively
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presents the proposed MKronRLSF-LP. After reporting the experimental results in Section 5, we conclude
this paper and mention future work in Section 6.

2 Problem description

Identification of drug-side effects is an example of the link prediction problem, which has the aim of predicting
how likely it is that there is a link between two arbitrary nodes in a network. This problem can also be seen
as a recommendation system (Jiang et al., 2019; Fan et al., 2021) task.

Let the drug nodes and side effect nodes of a network be D = {d1, d2, . . . , dN } and S = {s1, s2, . . . , sM },
respectively. We denote the number of drug and side effect nodes by N and M , respectively.

We define an adjacency matrix F ∈ RN×M to represent the associations between drugs and side effects.
Each element of F is defined as Fi,j = 1 if the node pair (di, sj) is linked and Fi,j = 0 otherwise.

The link prediction has the aim of predicting whether a link exists for the unknown state node pair (di, sj) ∈
D × S. Thus, it is a classification problem. Most methods use regression algorithms to predict a score
(ranging from 0-1), which we call the link confidence. Then, a class of 0 or 1 is assigned to the predicted
score by the threshold. Higher link confidence indicates a greater probability of the link existing, while lower
values indicate the opposite. We define a new matrix F̂ , which is estimated by the prediction model. Each
of elements F̂i,j represents the predicted link confidence for the node pair (di, sj). Figure 5 summarizes the
link prediction problem discussed in this paper.

3 Related work

3.1 Regularized Least Squares

The objective function of Regularized Least Squares (RLS) regression is:

arg min
f

1
2 ∥F − f (K)∥2

F + λ

2 ∥f∥2
K , (1)

where λ is a regularization parameter, ∥f∥K denotes the RKHS norm (Kailath, 1971) of f (·). f (·) is the
prediction function and be defined as:

f (K) = Ka, (2)

where a is the solution of the model, F is a kernel matrix with elements

Ki,j = k (di, dj) (i, j = 1, . . . , N) , (3)

and k represents the kernel function.

By formulating the stationary points of Equation 1 and elimination the unknown parameters a, the following
solution is obtained

F̂ = K(K + λIN )−1
F . (4)

There is only one kind of feature space considered in this model. In the drug-side effect identification problem,
there are two feature spaces: the drug space and the side effect space.

3.2 Kronecker Regularized Least Squares

Combining the kernels of the two spaces into a single large kernel that directly relates drug-side effect pairs
would be a better option. Kronecker product kernel (Hue & Vert, 2010) is used for this. Given the drug
kernel KD and side effect kernel KS , then we have the kronecker product kernel

K = KS ⊗ KD, (5)
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where the ⊗ indicates the Kronecker product (Laub, 2004). By applying the Kronecker product kernel to
RLS, the objective function of Kronecker Regularized Least Squares (Kron-RLS) is botained:

arg min
f

1
2 ∥vec (F ) − f (K)∥2

F + λ

2 ∥f∥2
K , (6)

where vec (·) is the vectorization operating function. By setting the derivative of Equation 6 w.r.t a to zero,
we obtain:

a = (K + λINM )−1vec (F ) . (7)
Obviously, it needs calculating the inverse of (K + λINM ) with size of NM × NM , whose time complexity
is O

(
N3M3). Thus, a well-known theorem (Raymond & Kashima, 2010; Laub, 2004) is proposed to obtain

the approximate inverse.

It is well known that the kernel (Liu et al., 2023; Pekalska & Haasdonk, 2008) matrices are positive semi-
definite matrices, they can be eigen decomposed, KD = VDΛDV T

D and KS = VSΛSV T
S . According to the

theorem (Raymond & Kashima, 2010; Laub, 2004), the eigenvectors of the Kronecker product kernel K is
the V = VS ⊗ VD. Define the matrix Λ to be either Λi,j = [ΛS ]i,i × [ΛD]j,j . The eigenvalues of K is
diag (vec (Λ)). The matrix K + λINM has the same eigenvactors V , and eigenvalues diag (vec (Λ + λ1)).
Then, we can rewrite Equation 7 as:

K(K + λINM )−1vec (F ) = V diag(vec (Λ))V T V diag(vec (Λ + λ1))−1
V T vec (F ) . (8)

Since V T V = INM and diag(vec (Λ))diag(vec (Λ + λ1))−1 is also a diagonal matrix, we further simplify
Equation 8 and get

K(K + λINM )−1vec (F ) = V diag(vec (J))V T vec (F ) , (9)
where the matrix J to be either

Ji,j = Λi,j

Λi,j + λ
. (10)

Using the vec-tricks techniques ((A ⊗ B) vec (C) = vec
(
BCAT

)
), we further simplify Equation 8. Then,

we get
F̂ = VD

(
J ⊙

(
V T

D F VS

))T
V T

S , (11)
where ⊙ represents the Hadamard product. The computational time of this optimization method is
O
(
N3 + M3), which is much less than O

(
N3M3).

3.3 Kronecker Regularized Least Squares with Multiple Kernel Learning

Kron-RLS is a kind of kernel method. It can be difficult for nonexpert users to choose an appropriate kernel.
To address such limitations, Multiple Kernel Learning (MKL) (Gönen & Alpaydın, 2011) is proposed. Since
kernels in MKL can naturally correspond to different views, MKL has been applied with great success to
cope with the multi-view data (Wang et al., 2021; Xu et al., 2021; Guo et al., 2021; Qian et al., 2022a; Wang
et al., 2023b) by combining kernels appropriately.

Given predefined base kernels
{

Ki
D

}P

i=1 and
{

Kj
S

}Q

j=1
from drug feature space and side effect feature space,

respectively. These kernels can be built from different types or views. The optimal kernel can be combined
by a linear function corresponding to the base kernels:

Kopt
D =

P∑
i=1

wiKi
D. (12)

Usually, an additional constraint is imposed on the corresponding combination coefficient w to control its
structure:

P∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . , P. (13)
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Figure 2: Framework diagram of MKronRLSF-LP. MKronRLSF-LP allow the multiple partitions have a
degree of freedom to model the single information and introduce a multiple graph Laplacian regularization
into consensus partition.

The optimal side effect kernel Kopt
S is omitted.

Based on MKL method, Ding et al. (2019) and Nascimento et al. (2016) developed Kron-RLS based MKL
methods, called Kron-RLS with CKA-MKL and Kron-RLS with selfMKL, respectively. Kron-RLS with
CKA-MKL combines diversified information using Centered Kernel Alignment-based Multiple Kernel Learn-
ing (CKA-MKL). In Kron-RLS with selfMKL, the weights indicating the importance of individual kernels
are calculated automatically to select the more relevant kernels. The final decision function of both methods
is given by:

vec
(

F̂
)

=
(
Kopt

S ⊗ Kopt
D

) (
Kopt

S ⊗ Kopt
D + λINM

)−1vec (F ) . (14)

4 Proposed method

Existing multi view fusion methods based on Kron-RLS all follow MKL framework. These methods optimize
the optimal pairwise kernel as a linear combination of a set of base kernels. Prior to training, all views are
fused, and information is not shared during training phase. This is typical early fusion technology. Our
proposal addresses this limitation by fusing multi-view information in a consensus partition. Compared
with MKL framework, the advantage of the proposed method is that it allows sub partitions to have a
certain degree of freedom to model the single information. Further, multiple graph Laplacian regularization
is introduced into the consensus partition to boost performance. Fig. 2 illustrates the main procedure of
MKronRLSF-LP.

4.1 The construction of kernel matrix

Kron-RLS is a kind of kernel method. We construct drug kernels using five different kinds of functions.

Gaussian Interaction Profile (GIP):

[KGIP,D]i,j = exp
(

−γ∥di − dj∥2
)

, (15)

where γ is the gaussian kernel bandwidth and γ = 1.
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Cosine Similarity (COS):

[KCOS,D]i,j = dT
i dj

|di| |dj |
. (16)

Correlation coefficient (Corr):

[KCorr,D]i,j = Cov (di, dj)√
Var (di) Var (dj)

. (17)

Normalized Mutual Information (NMI):

[KNMI,D]i,j = Q (di, dj)√
H (di) H (dj)

, (18)

where Q (di, dj) is the mutual information of di and dj . H (di) and H (dj) are the entropies of di and dj ,
respectively.

Neural Tangent Kernel (NTK):

[KNT K,D]i,j = Eθ∼w [fNT K (θ, di) , fNT K (θ, dj)] , (19)

where fNT K is a fully connected neural network and θ is collection of parameters in this network.

Similarity, we construct the side effect kernels (KGIP,S , KCOS,S , KCorr,S , KNMI,S , KNT K,S) in side effect
space.

4.2 The MKronRLSF-LP model

Let us define two sets of base kernel sets separately:

KD =
{

K1
D, . . . , KP

D

}
, (20a)

KS =
{

K1
S , . . . , KQ

S

}
, (20b)

where P and Q represents the numbers of drug and side effect kernels, respectively. Based on the KD and
KS , we can get a set of pairwise kernels:

K =
{

K1 = K1
S ⊗ K1

D, . . . , KV = KP
S ⊗ KQ

D

}
, (21)

where V denotes the numbers of base pairwise kernels. Obviously, V is equal to P × Q.

By using multiple partitions, we can manipulate multiple views in a partition space, which enhances the
robustness of the model. The following ensemble KronRLS model is obtained

arg min
av

V∑
v=1

(
1
2 ∥vec (F ) − Kvav∥2

2 + λv

2 avT

Kvav

)
. (22)

In multi-view methods, the consensus principle establishes consistency between partitions from different
views. However, it’s essential to find that these partitions deliver varying degrees of importance to the
final prediction, unlike fusion without discrimination. To facilitate this, we introduce a consensus partition,
denoted by F̂ . It is a weighted linear combination of partitions F̂v from multiple distinct views. A variable
wv is introduced for view v which characterizes its importance, which is calculated based on the training
error. To prevent sparse situations, we employ ∥·∥2

2 to smooth the weights. Then, we have the following
optimization problem

arg min
F̂ ,av,w

1
2

∥∥∥∥∥vec
(

F̂
)

−
V∑

v=1
wvKvav

∥∥∥∥∥
2

2

+ µ

V∑
v=1

(
wv

2 ∥vec (F ) − Kvav∥2
F + λv

2 avT

Kvav

)
+ 1

2β ∥w∥2
2

s.t.

V∑
v=1

wv = 1, wv ≥ 0, v = 1, . . . , V.

(23)
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In Equation 23, we observe that the consensus partition F̂ fits to an adjacency matrix F by an indirect
path. As described in section 2, false zeros represent unobserved links in the network. Hence, we must
avoid overfitting the observed matrix F . Inspired by manifold scenarios, the Laplacian operator adeptly
mitigates overfitting and noise, preserving the original data structure and keeping nodes with common labels
closely associated. This approach is simple, and empirical evidence confirms its effective performance (Pang &
Cheung, 2017; Chao & Sun, 2019; Jiang et al., 2023). Here, we apply multiple graph Laplacian regularization
to Equation 23, which can effectively explore multiple different views and boost the performance of F̂ .
Specifically, the Kronecker product Laplacian matrix is calculated from the optimal drug and side effect
similarity matrix, which are weighted linear combinations of multiple related kernel matrices. The weight of
each kernel can be adaptively optimized during the training process and reduce the impact of noisy or less
relevant graphs. The optimization problems for MKronRLSF-LP can be formulated as:

arg min
F̂ ,av,w,θD,θS

1
2

∥∥∥∥∥vec
(
F̂
)

−
V∑

v=1

wvKvav

∥∥∥∥∥
2

2

+ µ

V∑
v=1

(
wv

2 ∥vec (F ) − Kvav∥2
2 + λv

2 avT

Kvav
)

+ 1
2β ∥w∥2

2

+ 1
2σvec

(
F̂
)T

Lvec
(
F̂
)

s.t.

V∑
v=1

wv = 1, wv ≥ 0, v = 1, . . . , V,

L = INM −
(
H−0.5

S K∗
SH−0.5

S

)
⊗
(
H−0.5

D K∗
DH−0.5

D

)
,

K∗
S =

Q∑
i=1

[θS ]εi Ki
S , K∗

D =
P∑

i=1

[θD]εi Ki
D,

Q∑
i=1

[θS ]i = 1, [θS ]i ≥ 0, i = 1, . . . , Q,

P∑
i=1

[θD]i = 1, [θD]i ≥ 0, i = 1, . . . , P.

(24)

where L is a normalized laplacian matrix, HS and HD are diagonal matrix with the jth diagonal elements as∑
k [K∗

S ]j,k and
∑

k [K∗
D]j,k, respectively. And, ε > 1, guaranteeing each graph has a particular contribution

to the Laplacian matrix.

Due to the lack of space, we present optimization algorithm of the Equation 24 in Appendix Section A.1.

5 Experiments

In this section, the performance of MKronRLSF-LP is shown, and we make comparisons with baseline
methods and other drug-side effect predictors.

5.1 Dataset

Table 1: Summary of the real drug-side effect datasets.
Name Drug Side effect Associations Sparsity Reference
Liu 832 1385 59205 94.86% (Cheng et al., 2013)
Pau 888 1385 61102 95.03% (Pauwels et al., 2011)
Miz 658 1339 49051 94.43% (Sayaka et al., 2012)
Luo 708 4192 80164 97.30% (Luo et al., 2017)

Four real drug-side effect datasets are used to assess the effectiveness of our proposed method. Pau dataset
is derived from the SIDER database (Kuhn et al., 2010) which contains information about drugs and their
recorded side effects. Miz dataset includes information about drug-protein interactions and drug-side effect
interactions, obtained from the DrugBank (Wishart et al., 2006) and SIDER database, respectively. There
were 658 drugs with both targeted protein and side effect information. Additionally, Liu et al. mapped
drugs in SIDER to DrugBank 3.0 (Knox et al., 2010), resulting in a final dataset of 832 drugs and 1385

8



Published in Transactions on Machine Learning Research (06/2024)

side effects. Luo dataset has a large number of side effects and was extracted from the SIDER 2.0. Table 1
summarizes information about the datasets. We can see that these four datasets are sparse. In other words,
there are fewer positive samples than negative samples. Thus, drug-side effect prediction can be viewed as
a classification problem with extremely imbalanced data.

5.2 Parament setting

In this paper, the objective function 24 contains the following regularization parameters: µ, β, σ, ε and
λv, v = 1, . . . , V . To find the right combinations of the regularization parameters of MKronRLSF-LP to give
the best performance, the grid search method is performed on the Pau dataset. The optimal parameters
with the best AUPR are selected.

We first select λv, v = 1, . . . , V by the relative pairwise kernel with a single view Kron-RLS model. For each
parameter λv, we select it in the range from 2−5 to 25 with step 21. The optimal parameters λv are shown
in Table 4. According to a previous study(Shi et al., 2019), the performance is not affected by parameter
ε, so it is set to 2. Then, we fix λv, v = 1, . . . , V at the best values and tune µ, β, σ from within the range
2−10 to 20 with step 21. The optimal regularization parameters are µ = 2−7, β = 20 and σ = 2−8.

5.3 Baseline methods

In this work, we compare MKronRLSF-LP with the following baseline methods: BSV,
Comm Kron-RLS(Perrone & Cooper, 1995), Kron-RLS+CKA-MKL(Ding et al., 2019), Kron-
RLS+pairwiseMKL(Cichonska et al., 2018), Kron-RLS+self-MKL(Nascimento et al., 2016), MvGRLP(Ding
et al., 2021) and MvGCN(Fu et al., 2022). Due to the lack of space, we present details of these baseline
methods in Appendix Section A.3. For a fair comparison, the same input as our method is fed into these
baseline methods. To achieve the best performance, we also adopt 5-fold CV on the Pau dataset to tune
the parameters.

5.4 Threshold finding

Because the MKronRLSF-LP and baseline methods only output the value of regression, we apply a threshold
finding operation. For a certain validation set in the five-fold cross-validation (5-fold CV) procedure, we
collect the labels and their corresponding predicted scores. Then, we obtain the optimal threshold by
maximizing the Fscore on the predicted scores and labels from this validation sets. A trend of Fscore, Recall
and Precision with different thresholds over four datasets is shown in Fig. 6. While the threshold of
prediction rises, the values of Recall is rising. Oppositely, Precision is falling. The Fscore is the harmonic
mean of the Recall and Precision. It thus symmetrically represents both Recall and Precision in one
metric. Here, we find the optimal threshold under maximizing the value of Fscore. Table 5 summarizes the
thresholds of different baseline methods on different datasets.

5.5 Comparison with baseline methods

We conduct the 5-fold CV to evaluate the performance of our method versus the baseline method. To
further provide a fair and comprehensive comparison, each algorithm is iterated 10 times with different cross
index, and then the mean values and standard deviations are reported in Table 3. The best single view is
KGIP,D ⊗ KNT K,S , which is selected by 5-fold CV on Pau dataset.

First, we observe that the proposed method has the best AUPR and Fscore on all datasets. Especially, the
proposed method has a higher AUPR and Fscore than BSV on datasets. This indicates the improvement in
using multiple views. The simple coupling frameworks BSV and Comm perform well on the Pau dataset.
However, BSV and Comm cannot perform as well on other datasets, which indicates that the simple fusion
schemes are sensitive to the dataset and not robust. Furthermore, Kron-RLS+pairwiseMKL achieves the
highest AUC of 95.01%, 95.02% and 94.70% on the Liu, Pau and Miz datasets, respectively. This shows slight
improvements of 0.23%, 0.21% and 0.23% over our method, respectively. As we discussed in Section 5.1,
drug-side effect prediction is an extremely imbalanced classification problem. The AUC can be considered
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as the probability that the classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative instance. Therefore, the AUC is not an important metric for predicting drug side effects.

Another interesting observation is that MKronRLSF-LP outperforms other MKL strategy methods in com-
parison. For example, it exceeds the best MKL method (CKA-MKL) by 2.1%, 2.32%, 1.43%, 2.51% in
terms of AUPR on Liu, Pau, Miz and Luo dataset, respectively. These results verify the effectiveness of the
consensus partition and multiple graph Laplacian constraint.

For a more thorough analysis and reliable conclusions, we use post-hoc test statistics to statistically assess
the different metrics shown in Table 3. Fig. 3 shows the results of these tests visualized as Critical Difference
diagrams. These results show that MKronRLSF-LP is significantly better ranked than all methods in terms
of AUPR, Recall and Fscore. In addition, MKronRLSF-LP is only inferior than Kron-RLS+pairwiseMKL
and Kron-RLS+CKA-MKL in terms of AUC and Precision, respectively. Besides, MvGCN is worse ranked
than our method. Another point worth mentioning is that there is no sufficient statistical evidence to
support that MvGCN performs better than model-based methods. MvGCN uses shallow GCN to avoid
over-smoothing. The shallow GCN (Miao et al., 2021) can only capture local neighbourhood information of
nodes, but the global features of the network have not been fully explored. A result of this is inaccurate
embedding vectors.

In summary, the above experimental results demonstrate the superior prediction performance of
MKronRLSF-LP to other baseline methods. We attribute the superiority of MKronRLSF-LP as three
aspects: (1) The consensus partition is derived through joint fusion of weighted multiple partitions; (2)
MKronRLSF-LP utilizes the multiple graph Laplacian regularization to constrain the consensus predicted
value F̂ , which makes the consensus partition is robust; (3) Unlike existing MKL methods, the proposed
MKronRLSF-LP fuses multiple pairwise kernels at the partition level. It is these three factors that contribute
to the improvement in prediction performance.

5.6 Ablation study

To validate the benefits of jointly applying the consensus partition and multiple graph Laplacian constraint,
we conduct an ablation study by excluding a particular component. First, we construct a Kron-RLS based
on each pairwise kernel separately. Each partition learns independently, so it can be regarded as an ensemble
Kron-RLS, and its objective function is Equation 22. The results should be consistent for each view, and
heterogeneous views have varying degrees of importance in the final prediction. Therefore, we set a consensus
partition F̂ , which is a weighted linear combination of base partitions (as shown in Equation 23). To further
improve the performance and robustness of the model, we apply multiple graph Laplacian constraints to the
consensus partition. Finally, the objective function 24 of MKronRLSF-LP is obtained. The results of the
ablation study are shown in Fig. 4. It can be observed that the consensus partition and the multiple graph
Laplacian constraint is helpful for MKronRLSF-LP to achieve the best results.

5.7 Comparisons of computational speed

In order to demonstrate the effectiveness of MKronRLSF-LP, we are now comparing it to different baseline
methods in terms of computational speed. Except MvGCN, other methods are performed on a PC equipped
with an Intel Core i7-13700 and 16GB RAM. Because MvGCN is a deep learning-based method, it is
performed on a workstation equipped with a NVIDIA GeForce RTX 3090 GPU. For all baseline methods,
we tested 10 times to report the mean running time. The results are shown in Table 2. The results do not
include the kernel calculation time.

As expected, learning from multiple views takes more time than learning from only one view (BSV).
Also, since MKronRLSF-LP fuses multiple views at the partition level, it requires more running time
than Kron-RLS+CKA-MKL and Kron-RLS+self-MKL. Another observation is that MKronRLSF-LP is
much faster than Kron-RLS+pairwiseMKL. This can be explained by looking at the time complexity of
MKronRLSF-LP and Kron-RLS+pairwiseMKL. The inverse of pairwise kernels dominates the time com-
plexity of both methods. In our optimization algorithm, we use eigendecomposition techniques to compute
the approximate inverse. The time complexity of our method is O((P + Iter)N3 + (Q + Iter)M3). Dif-
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Figure 3: Critical difference diagram of average score ranks. A crossbar is over each group of methods that
do not show a statistically significant difference among themselves.
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Figure 4: Ablation study of the consensus partition and multiple graph Laplacian constraint on four datasets.
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Table 2: Mean running time (in seconds) of baseline methods on four datasets.
Methods Pau Liu Miz Luo
BSV 0.79 0.83 0.68 5.84
Comm Kron-RLS 19.38 20.95 18.39 148.60
Kron-RLS+CKA-MKL 2.69 2.18 2.36 13.13
Kron-RLS+pairwiseMKL 1583.67 1483.26 1364.21 -
Kron-RLS+self-MKL 12.21 13.05 12.09 155.85
MvGRLP 8.94 8.37 7.23 58.53
MvGCN 305.44 329.43 343.50 -
MKronRLSF-LP 50.55 43.9 35.83 280

- represents that the method took more than 2 hours to run.

ferently, Kron-RLS+pairwiseMKL solves the system with the conjugate gradient approach that iteratively
improves the result by performing matrix-vector products. Hence, Kron-RLS+pairwiseMKL is carried out in
O(IterPQ(N2M + M2N)). When MvGCN deal with Luo dataset, its running time exceeds 2 hours. This is
because MvGCN utilizes a self-supervised learning strategy based on deep graph infomax (DGI) to initialize
node embeddings. Whenever there are many nodes in a bipartite network, DGI takes a very long time to
implement.

5.8 Comparison with other drug-side effect predictors

A comparison of the proposed drug-side effect prediction method with state-of-the-art methods is also pro-
vided. Tables 6,7, 8 and 9 present the results of 5-fold CV in terms of AUPR, AUC, Recall, Precision and
Fscore on the four datasets, respectively. We have highlighted the best results in bold and underlined the
second-best results.

Obviously, MKronRLSF-LP achieves the highest AUPR and Fscore on all datasets. In the problem of
drug-side effects prediction, AUPR and Fscore more desirable metrics (Ezzat et al., 2017; Li et al., 2021).
Therefore, we conclude that our method outperforms the other assessed methods. GCRS (Xuan et al., 2022)
and SDPred (Zhao et al., 2022) are deep learning-based methods. GCRS constructs multiple heterogeneous
graphs and multi-layer convolutional neural networks with attribute-level attention to predict drug-side effect
pair nodes. SDPred fuses multiple side information (including drug chemical structures, drug target, drug
word, side effect semantic similarity, side effect word) by feature concatenation and adopts CNN and MLP
for prediction tasks. However, on Luo dataset, GCRS and SDPred perform poorly; this is probably because
they are pairwise learning methods and randomly negative sampling to construct the training set. The
randomly negative sampling method cannot be guaranteed due to the reliability and quality of negative
sample pairs, which results in a certain loss of information(Zhang et al., 2015; Ali & Aittokallio, 2019). The
ensemble model (Zhang et al., 2016) combine Liu’s method (Liu et al., 2012), Cheng’s method (Cheng et al.,
2013), INBM and RBM by the average scoring rule. It is obvious that the results of the ensemble model are
significantly improved than the results of the sub-model on four datasets.

6 Conclusion

This paper presents MKronRLSF-LP for drug-side effect prediction. The MKronRLSF-LP method solves
the general problem of multi-view fusion-based link prediction by utilizing the consensus partition and
multiple graph Laplacian constraint. MKronRLSF-LP allows for some degree of freedom to model the views
differently and combination weights for each view to find the consensus partition. Each view’s weight is
dynamically learned and plays a crucial role in exploring consensus information. It is found that the use
of Laplacian regularization enhances semi-supervised learning performance, so a term of multiple graph
Laplacian regularization is added to the objective function. Finally, we present an efficient alternating
optimization algorithm. The results of our experiments indicate that our proposed methods are superior in
terms of their classification results to other baseline algorithms and current drug-side effect predictors.
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A Appendix

A.1 Optimization

It is difficult and time-consuming to solve the Equation 24 because it contains multiple variables and large
pairwise matrices. In this section, we divide the original problem into five subproblems and develop an
iterative algorithm to optimize them. And, we avoid explicit computation of any pairwise matrices in the
whole optimization, which makes our method suitable for solving problems in large pairwise spaces.

F̂ -subproblem: we fix av, w, θD and θS to optimize variants F̂ . Let A = H−0.5
S K∗

SH−0.5
S , B =

H−0.5
D K∗

DH−0.5
D and vec

(
F̂ v
)

= Kvav. Then, the optimization model of F̂ as follows:

arg min
F̂

1
2

∥∥∥∥∥vec
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s.t.L = INM − A ⊗ B.

(25)

Let the derivative of Equation 25 w.r.t F̂ to zero, the solution of F̂ can be obtained:

vec
(

F̂
)

= ((1 + σ) INM − σA ⊗ B)−1
(∑V

v=1
wvvec

(
F̂ v
))

. (26)
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Notice that the inverse matrix on the right-hand side of Equation 26 needs too much time and memory.
Therefore, we use eigen decomposed techniques to compute the approximate inverse. Let VAΛAV T

A and
VBΛBV T

B be the eigen decomposition of the matrices A and B, respectively. Define the matrix U to be
Ui,j = [ΛA]i,i × [ΛB ]j,j . By the theorem (Raymond & Kashima, 2010), the kronecker product matrix A⊗B

can be eigendecomposed as (VA ⊗ VB) diag (vec (U)) (VA ⊗ VB)T . Then substituting it in Equation 26, we
can write the inverse matrix in Equation 26 as

((1 + σ) INM − σA ⊗ B)−1 =
(

(1 + σ) INM − σ(VA ⊗ VB) diag (vec (U)) (VA ⊗ VB)T
)−1

. (27)

Since, it holds that (VA ⊗ VB) (VA ⊗ VB)T = INM . Equation 27 can be transformed into

((1 + σ) INM − σA ⊗ B)−1 = (VA ⊗ VB)((1 + σ) INM − σdiag (vec (U)))−1 (VA ⊗ VB)T
. (28)

Notice that the inverse matrix in Equation 28 is a diagonal matrix whose value can be calculated as the
matrix W

Wi,j = (1 + σ − σUi,j)−1 (29)

So, we can further rewrite the Equation 26 as

vec
(

F̂
)

= (VA ⊗ VB)diag (vec (W )) (VA ⊗ VB)T

(∑V

v=1
wvvec

(
F̂ v
))

(30)

Taking out the vec-tricks operation, we can obtain the solution

F̂ = VB

(
W ⊙

(
V T

B

(∑V

v=1
wvF̂ v

)
VA

))
V T

A (31)

w-subproblem: we fix all the variants except w. The formula is as follows:

arg min
w

1
2

∥∥∥∥∥F̂ −
V∑

v=1
wvF̂ v

∥∥∥∥∥
2

F

+ µ

V∑
v=1

(
wv

2

∥∥∥F − F̂ v
∥∥∥2

F

)
+ 1

2β ∥w∥2
2

s.t.

V∑
v=1

wv = 1, wv ≥ 0, v = 1, . . . , V.

(32)

Problem 32 can be simplified as a standard quadratic programming problem (Nocedal & Wright, 2006)

arg min
w

wT Gw − wT h

s.t.

V∑
v=1

wv = 1, wv ≥ 0, v = 1, . . . , V.
(33)

where G ∈ RV ×V with the element as

Gi,j =


1
2 trace

((
F̂ i
)T

F̂ j

)
, if i ̸= j,

1
2 trace

((
F̂ i
)T

F̂ j

)
+ 1

2 β, if i = j.
(34)

h is a vector with
hi = trace

(
F̂ T F̂ i

)
− µ

2

∥∥∥F − F̂ i
∥∥∥2

F
. (35)

The optimization method for Equation 33 is the interior-point optimization algorithm (Byrd et al., 1999).
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θD-subproblem: With the fixed all the variants except θD, the formula can be written as

arg min
θD

1
2σvec

(
F̂
)T

Lvec
(
F̂
)

s.t. L = INM −
(
H−0.5

S K∗
SH−0.5

S

)
⊗
(
H−0.5

D K∗
DH−0.5

D

)
,

K∗
D =

P∑
i=1

[θD]εi Ki
D,

P∑
i=1

[θD]i = 1, [θD]i ≥ 0, i = 1, . . . , P.

(36)

Let A = H−0.5
S K∗

SH−0.5
S and Bi = H−0.5

D Ki
DH−0.5

D . Then substituting L in Equation 36 with A and Bi,
the objective function 36 can be written as

arg min
θD

− 1
2σvec

(
F̂
)T

P∑
i=1

(
A ⊗ Bi

)
vec
(
F̂
)

s.t.

P∑
i=1

[θD]i = 1, [θD]i ≥ 0, i = 1, . . . , P.

(37)

Further, introduce the Lagrange multiplier ξ and the objective function 37 can be converted to a Lagrange
function:

Lag (θD, ξ) = −1
2σvec

(
F̂
)T P∑

i=1

(
A ⊗ Bi

)
vec
(

F̂
)

− ξ

(
P∑

i=1
[θD]i − 1

)
(38)

Based on setting the derivative of Equation 38 w.r.t θD and ξ to zero respectively, we have the following
solution

[θD]i =
(

vec
(

F̂
)T (

A ⊗ Bi
)

vec
(

F̂
)) 1

1−ε

/
P∑

j=1

(
vec
(

F̂
)T (

A ⊗ Bj
)

vec
(

F̂
)) 1

1−ε

. (39)

By using the vec-tricks operation, we can describe the solution as

[θD]i = trace
(

F̂ T BiF̂ AT
) 1

1−ε

/
P∑

j=1
trace

(
F̂ T BjF̂ AT

) 1
1−ε (40)

θS-subproblem:The solution of θS is similarity to θD. Here, the optimization process is omitted and we
directly give the solution

[θS ]i = trace
(

F̂ T BF̂ (Ai)T
) 1

1−ε

/
Q∑

j=1
trace

(
F̂ T BF̂ (Aj)T

) 1
1−ε (41)

where B = H−0.5
D K∗

DH−0.5
D and Ai = H−0.5

S Ki
SH−0.5

S .

av-subproblem: By dropping all other irrelevant terms with respect av, we have

arg min
av

1
2

∥∥∥∥∥vec
(

F̂
)

−
V∑

i=1
wiK

iai

∥∥∥∥∥
2

2

+ µ

(
wv

2 ∥vec (F ) − Kvav∥2
2 + λv

2 avT

Kvav

)
. (42)

It can be observed from the objective function 42 that when training the parameter av, other views Ki with
weight wi were taken into consideration. Therefore, each partition’s training is not completely separate, but
involves information sharing.

Based on setting the derivative of problem 42 w.r.t av to zero, we get(
Kv + λv

1 + µwv
INM

)
av = 1

1 + µwv

vec
(

F̂
)

−
V∑

i=1,i̸=v

wiK
iai + µwvvec (F )

 (43)
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Let W = F̂ −
V∑

i=1,i̸=v

wiF̂
i + µwvF , the Equation 43 can be written as

av = 1
1 + µwv

(
Kv + λv

1 + µwv
INM

)−1
vec (W ) . (44)

We can observe that the form of Equation 44 is similar to Equation 7. Therefore, we use eigen decomposed
techniques and the vec-trick operation to effectively compute av.

We summarize the complete optimization process for problem 24 in Algorithm 1.

Algorithm 1: Optimization for MKronRLSF-LP.
Input: The link matrix F ; The regulation parameters µ, β, σ, ε and λv, v = 1, . . . , V ;
Output: The predicted link matrix F̂ ;

1 Compute two sets of base kernel sets KD and KS by Equation 20a and 20b;
2 Initialize av, v = 1, . . . , V by single view Kron-RLS; wv = 1/V, v = 1, . . . , V ; θi

D = 1/P, i = 1, . . . , P ;
θi

S = 1/Q, i = 1, . . . , Q;
3 while Not convergence do
4 Update F̂ by solve the subproblem 25;
5 Update w by solve the subproblem 32;
6 Update θD by solve the subproblem 36;
7 Update θS by Equation 41;
8 for i = 1 to V do
9 Update ai by solve the subproblem 42;

10 end
11 end

A.2 Measurements

Considering that drug-side effect prediction is an extremely imbalanced classification problem and we do not
want incorrect predictions to be recommended by the prediction model, we utilize the following evaluation
parameters:

Recall = TP

TP + FN
, (45a)

Precision = TP

TP + FP
, (45b)

Fscore = 2 × Precision × Recall

Precision + Recall
, (45c)

where TP , FN , FP and TN are the number of true-positive samples, false-negative samples, false-positive
samples and true-negative samples, respectively. The area under the ROC curve (AUC) and area under
the precision recall curve (AUPR) is also used to measure predictive accuracy, because they are the most
commonly used evaluate metrics in the biomedical link prediction. The precision-recall curve shows the
tradeoff between precision and recall at different thresholds. Fscore is calculated from Precision and Recall.
The highest possible value of an Fscore is 1, indicating perfect precision and recall, and the lowest possible
value is 0, if either precision or recall are zero. AUC can be considered as the probability that the classifier
will rank a randomly chosen positive instance higher than a randomly chosen negative instance (Li et al.,
2021). Therefore, we consider AUPR and Fscore more desirable metrics (Ezzat et al., 2017; Li et al., 2021).

A.3 Baseline methods

• Best single view (BSV): Applying Kron-RLS to the best single view. The one with the maximum
AUPR is chosen here.
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• Committee Kron-RLS (Comm Kron-RLS)(Perrone & Cooper, 1995): Each view is trained by Kron-
RLS separately, and the final classifier is a weighted average.

• Kron-RLS with Centered Kernel Alignment-based Multiple Kernel Learning (Kron-RLS+CKA-
MKL)(Ding et al., 2019): Multiple kernels from the drug space and side effect space are linearly
weighted by the optimized CKA-MKL. Finally, Kron-RLS is employed on optimal kernels.

• Kron-RLS with pairwise Multiple Kernel Learning (Kron-RLS+pairwiseMKL)(Cichonska et al.,
2018): First, it constructs multiple pairwise kernels. Then, the mixture weights of the pairwise
kernels are determined by CKA-MKL. Finally, it learns the Kron-RLS function based on the opti-
mal pairwise kernel.

• Kron-RLS with self-weighted multiple kernel learning (Kron-RLS+self-MKL)(Nascimento et al.,
2016): The optimal drug and side effect kernels are linearly weighted based on the multiple base
kernel. The proper weights assignment to each kernel is performed automatically.

• Multi-view graph regularized link propagation model (MvGRLP)(Ding et al., 2021): This is an
extension of the graph model (Zha et al., 2009). To fuse multi view information, multi-view Laplacian
regularization is introduced to constrain the predicted values.

• Multi-view graph convolution network (MvGCN)(Fu et al., 2022): This extends the GCN (Zhang
et al., 2019) from a single view to multi-view by combining the embeddings of multiple neighborhood
information aggregation layers in each view.

A.4 Code and Data Available

The code and data are available at https://github.com/QYuQing/MKronRLSF-LP.

A.5 Figures

A.6 Tables
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Figure 5: Visualization of drug-side effect association problems.
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Table 3: Prediction performance comparison of baseline methods on four datasets.
Dataset Methods AUPR(%) AUC(%) Recall(%) Precision(%) Fscore(%)

Liu

BSV 60.12±1.12 93.22±1.63 58.77±0.33 59.09±0.49 58.52±0.23
Comm Kron-RLS 65.63±1.95 94.11±1.45 61.63±0.33 61.9±1.37 61.57±1.65
Kron-RLS
+CKA-MKL 65.92±0.43 92.51±0.08 62.11±0.43 63.09±0.56 62.59±0.41

Kron-RLS
+pairwiseMKL 62.03±0.44 95.01±0.06 65.39±0.24 54.46±0.30 59.43±0.21

Kron-RLS
+self-MKL 65.02±0.47 92.1±0.10 60.97±0.57 63.12±0.61 62.03±0.52

MvGRLP 66.32±0.45 94.29±0.08 63.56±0.46 60.87±0.62 62.18±0.39
MvGCN 62.69±1.81 94.01±0.87 60.81±0.37 60.33±1.31 60.48±1.15
MKronRLSF-LP 68.02±0.44 94.78±0.13 65.18±0.93 61.27±1.08 63.02±0.43

Pau

BSV 65.26±0.98 94.57±0.34 62.54±0.5 60.77±1.27 60.65±0.73
Comm Kron-RLS 65.63±0.36 94.78±0.13 64.01±0.38 60.05±0.49 61.01±0.27
Kron-RLS
+CKA-MKL 65.49±0.37 92.39±0.13 61.65±0.40 63.22±0.51 62.42±0.27

Kron-RLS
+pairwiseMKL 63.48±0.39 95.02±0.07 78.1±0.26 45.01±0.48 57.11±0.36

Kron-RLS
+self-MKL 64.11±1.75 91.94±0.25 62.37±0.29 60.97±1.57 61.65±0.79

MvGRLP 66.17±0.32 94.42±0.07 62.18±0.38 61.95±0.45 62.06±0.22
MvGCN 63.51±1.43 94.08±0.49 63.21±0.69 57.94±1.34 60.4±1.78
MKronRLSF-LP 67.81±0.37 94.81±0.18 65.72±3.58 60.65±3.75 62.87±0.48

Miz

BSV 56.58±2.33 90.71±2.06 62.76±0.69 53.94±2.31 55.39±2.33
Comm Kron-RLS 58.08±1.07 91.36±1.25 62.37±0.81 55.16±1.99 56.54±1.77
Kron-RLS
+CKA-MKL 66.92±0.44 92.58±0.14 62.62±0.52 64.3±0.46 61.45±0.44

Kron-RLS
+pairwiseMKL 62.13±0.29 94.70±0.11 63.78±0.47 56.26±0.42 59.79±0.30

Kron-RLS
+self-MKL 65.84±0.43 92.06±0.16 63.63±0.48 61.77±0.52 60.68±0.43

MvGRLP 66.68±0.35 94.10±0.12 63.46±0.43 61.82±0.30 62.63±0.29
MvGCN 62.17±1.90 93.35±1.73 59.54±0.43 60.74±1.78 59.76±1.95
MKronRLSF-LP 68.35±0.38 94.47±0.09 65.15±2.77 62.10±3.19 63.45±0.53

Luo

BSV 60.40±0.40 94.40±0.11 58.28±0.41 58.68±0.46 58.48±0.39
Comm Kron-RLS 54.19±1.36 91.92±4.01 57.64±2.46 53.16±1.97 52.99±1.54
Kron-RLS
+CKA-MKL 60.87±0.36 92.03±0.15 55.55±0.34 64.15±0.46 59.54±0.36

Kron-RLS
+pairwiseMKL 50.29±0.29 94.37±0.10 55.66±0.39 45.97±0.39 50.35±0.31

Kron-RLS
+self-MKL 22.29±1.57 79.74±1.62 56.62±1.47 20.91±1.64 28.23±1.15

MvGRLP 61.76±0.45 94.08±0.07 58.70±0.40 60.05±0.61 58.37±0.42
MvGCN 61.18±0.41 94.54±0.1 57.94±0.37 61.26±0.48 51.07±0.38
MKronRLSF-LP 63.32±0.58 94.07±0.14 59.43±0.95 61.58±1.22 60.47±0.39
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Table 4: The optimal parameters λv obtained with the single view Kron-RLS model (based on the relative
pairwise kernel).

⊗ KGIP,S KGIP,S KGIP,S KGIP,S KGIP,S

KGIP,D 20 22 22 21 21

KCOS,D 22 23 23 22 2−2

KCorr,D 23 23 24 22 24

KMI,D 20 21 21 20 2−1

KNT K,D 22 24 23 21 21

Table 5: Summary of the threshold of baseline methods on four datasets.
Methods Liu Pau Miz Luo
BSV 0.145 0.146 0.142 0.128
Comm Kron-RLS 0.205 0.204 0.192 0.183
Kron-RLS+CKA-MKL 0.100 0.106 0.099 0.102
Kron-RLS+pairwiseMKL 0.149 0.159 0.101 0.107
Kron-RLS+self-MKL 0.119 0.116 0.113 0.129
MvGRLP 0.090 0.091 0.094 0.085
MVGCN 0.225 0.237 0.208 0.197
MKronRLSF-LP 0.177 0.168 0.179 0.149

Table 6: Prediction performance comparison of other drug-side effect predictors on Liu datasets.
Methods AUPR(%) AUC(%) Recall(%) Precision(%) Fscore(%)
Liu’s method 28.0 90.7 67.5 34.0 45.2
Cheng’s method 59.2 92.2 59.0 55.7 56.9
RBMBM 61.6 94.1 61.5 57.4 59.4
INBM 64.1 93.4 60.7 60.4 60.6
Ensemble model 66.1 94.8 62.3 61.1 61.7
MKL-LGCa 67.0 95.1 - - -
NDDSA with sschemc 60.5 94.1 57.9 56.4 57.1
NDDSA without sschemc 60.4 94.0 57.4 56.8 57.1
MKronRLSF-LP 68.2 94.7 63.8 62.5 63.1

- represents not available; the bold and underlined values represent the best and second
performance measure in each column, respectively;
a and b represents the results are derived from (Ding et al., 2018) and (Shabani-Mashcool
et al., 2020), respectively.
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Table 7: Prediction performance comparison of other drug-side effect predictors on Pau datasets.
Methods AUPR(%) AUC(%) Recall(%) Precision(%) Fscore(%)
Pau’s methoda 38.9 89.7 51.7 36.1 42.5
Liu’s method 34.7 92.1 64.6 40.0 49.5
Cheng’s method 58.8 82.3 58.3 55.0 56.6
RBMBM 61.3 94.1 60.8 57.7 59.2
INBM 64.1 93.4 60.8 60.5 60.7
Ensembel model 66.0 94.9 62.4 61.2 61.6
MKL-LGCb 66.8 95.2 - - -
NDDSA with sschemc 60.3 94.2 59.3 54.9 57.0
NDDSA without sschemc 60.3 94.1 58.2 55.9 57.0
MKronRLSF-LP 67.9 94.7 63.4 62.9 63.2

- represents not available; the bold and underlined values represent the best and second
performance measure in each column, respectively;
a, b and c represents the results are derived from (Zhang et al., 2016), (Ding et al., 2018)
and (Shabani-Mashcool et al., 2020), respectively.

Table 8: Prediction performance comparison of other drug-side effect predictors on Miz datasets.
Methods AUPR(%) AUC(%) Recall(%) Precision(%) Fscore(%)
Miz’s methoda 41.2 89.0 52.7 38.7 44.6
Liu’ method 36.3 91.8 64.0 41.5 50.5
Cheng’s method 56.0 92.3 58.4 56.8 57.6
RBMBM 61.7 93.9 60.5 58.8 59.6
INBM 64.6 93.2 61.6 60.5 61.1
Ensemble model 66.6 94.6 62.4 61.9 62.2
MKL-LGCb 67.3 94.8 - - -
NDDSA with sschemc 60.6 93.9 58.8 56.3 57.5
NDDSA without sschemc 60.7 93.6 60.0 55.5 57.6
MKronRLSF-LP 68.5 94.5 63.0 64.2 63.6

- represents not available; the bold and underlined values represent the best and second
performance measure in each column, respectively;
a, b and c represents the results are derived from (Zhang et al., 2016), (Ding et al., 2018)
and (Shabani-Mashcool et al., 2020), respectively.

Table 9: Prediction performance comparison of other drug-side effect predictors on Luo datasets.
Methods AUPR(%) AUC(%) Recall(%) Precision(%) Fscore(%)
Liu’s method 39.4 93.5 59.6 48.3 53.3
Cheng’s method 53.2 90.9 53.1 52.3 52.7
RBMBM 55.1 93.5 56.1 54.3 55.1
INBM 57.3 91.7 55.8 56.7 56.2
Ensemble model 58.6 93.9 46.1 68.4 55.1
MKL-LGC 61.7 94.6 - - -
NDDSA with sschema 53.1 94.2 47.6 57.3 52.0
NDDSA without sschema 44.5 93.7 44.7 47.8 46.2
GCRSb 27.2 95.7 - - -
SDPred 22.6 94.6 - - -
MKronRLSF-LP 63.5 94.1 59.2 61.9 60.5

- represents not available; the bold and underlined values represent the best and second
performance measure in each column, respectively;
a,b represents the results are derived from (Shabani-Mashcool et al., 2020) and (Xuan et al.,
2022), respectively.

24


	Introduction
	Problem description
	Related work
	Regularized Least Squares
	Kronecker Regularized Least Squares
	Kronecker Regularized Least Squares with Multiple Kernel Learning

	Proposed method
	The construction of kernel matrix
	The MKronRLSF-LP model

	Experiments
	Dataset
	Parament setting
	Baseline methods
	Threshold finding
	Comparison with baseline methods
	Ablation study
	Comparisons of computational speed
	Comparison with other drug-side effect predictors

	Conclusion
	Appendix
	Optimization
	Measurements
	Baseline methods
	Code and Data Available
	Figures
	Tables


