

000 SIMUHOME: A TEMPORAL- AND ENVIRONMENT- 001 AWARE BENCHMARK FOR SMART HOME LLM 002 AGENTS 003

004
 005
 006 **Anonymous authors**
 007 Paper under double-blind review
 008
 009
 010
 011

ABSTRACT

012 Large Language Model (LLM) agents excel at multi-step, tool-augmented tasks.
 013 However, smart homes introduce distinct challenges, requiring agents to handle
 014 latent user intents, temporal dependencies, device constraints, scheduling, and
 015 more. The main bottlenecks for developing smart home agents with such capa-
 016 bilities include the lack of a realistic simulation environment where agents can
 017 interact with devices and observe the results, as well as a challenging benchmark
 018 to evaluate them. To address this, we introduce **SimuHome**, a time-accelerated
 019 home environment that simulates smart devices, supports API calls, and reflects
 020 changes in environmental variables. By building the simulator on the Matter pro-
 021 tocol¹, the global industry standard for smart home communication, SimuHome
 022 provides a high-fidelity environment, and agents validated in SimuHome can be
 023 deployed on real Matter-compliant devices with minimal adaptation. We provide
 024 a challenging benchmark of 600 episodes across twelve user query types that re-
 025 quire the aforementioned capabilities. Our evaluation of 16 agents under a uni-
 026 fied ReAct framework reveals distinct capabilities and limitations across models.
 027 Models under 7B parameters exhibited negligible performance across all query
 028 types. Even GPT-4.1, the best-performing standard model, struggled with implicit
 029 intent inference, state verification, and particularly temporal scheduling. While
 030 reasoning models such as GPT-5.1 consistently outperformed standard models on
 031 every query type, they required over three times the average inference time, which
 032 can be prohibitive for real-time smart home applications. This highlights a critical
 033 trade-off between task performance and real-world practicality. We will release
 034 our code and dataset upon publication of the paper.
 035

1 INTRODUCTION

036 Recently, Large Language Model (LLM) agents have demonstrated strong abilities on multi-step,
 037 tool-augmented tasks, including API retrieval, invocation, and intermediate state verification (Qin
 038 et al., 2024; Patil et al., 2025; Chen et al., 2024; Huang et al., 2024; Xu et al., 2023; Schick et al.,
 039 2023). These abilities enable long-horizon tasks such as web navigation and goal pursuit, where
 040 agents must plan, check states, and validate outcomes over multiple steps (Zhou et al., 2024; Yao
 041 et al., 2022; Deng et al., 2023; Xie et al., 2024; Yao et al., 2024; Trivedi et al., 2024).
 042

043 Smart home agents, such as Amazon Alexa and Google Home, are among the earliest production-
 044 ized tool agents in the real world and have long been a research topic. To meet real-world challenges,
 045 smart home agents need capabilities to handle many factors, such as: (1) latent user intents (e.g.,
 046 “*It feels stuffy*” implying humidity control), (2) temporal dependencies (e.g., “*Turn on the kitchen*
 047 *light when the dishwasher finishes*”), (3) dependencies among device actions and attributes (e.g., a
 048 dishwasher cannot be opened while it is running), (4) scheduling (e.g., “*Play music in the morn-
 049 ing*”). However, most (if not all) smart home agents to date fall short in all these areas. One of the
 050 critical bottlenecks is the lack of training and test data with such complexities. Even if such datasets
 051 existed, static datasets have clear limitations: agents cannot learn by doing, and agent performance
 052 cannot be evaluated accurately (because a user intent may be satisfied in multiple ways that are not
 053

¹<https://csa-iot.org/all-solutions/matter/>

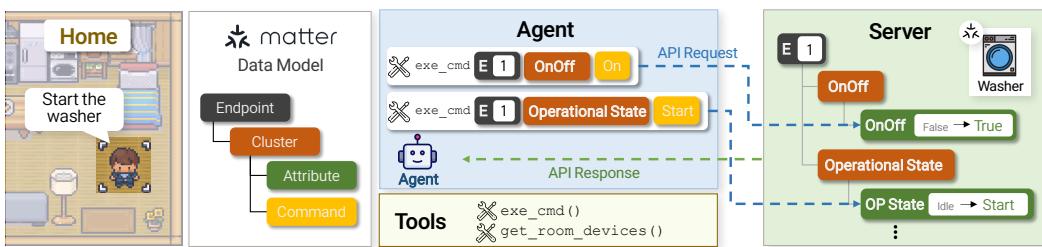


Figure 1: The SimuHome home environment with Matter-compliant devices, featuring a GUI where users can arrange devices across rooms, configure their attributes, and evaluate agent reasoning for multi-device control.

annotated in the dataset). We aim to address this challenge by developing a high-fidelity smart home simulator in which agents can interact with devices through APIs and observe the results reflected in the environment, along with an extensive benchmark containing a variety of complex user requests, both feasible and infeasible.

Our first contribution is a smart home simulator, **SimuHome** (Figure 1). SimuHome is a time-accelerated smart home environment that accommodates various room layouts, environmental variables (e.g., temperature, illuminance), and smart devices. Agents can call APIs to operate devices (e.g., set the AC to 25 degrees). Devices are simulated with internal constraints checked (e.g., the AC must be turned on to set its temperature), and the results affect the environment (e.g., the room temperature gradually drops to 25 degrees over 10 minutes). Notably, SimuHome implements Matter, a broadly adopted smart-home interoperability standard. As a result, the attributes and constraints within devices are high fidelity. Moreover, agents trained and verified in SimuHome can run on real Matter-compliant devices with minimal adaptation. SimuHome also enables controlled experiments in a cheap and fast way. It allows unlimited experimentation, including stress-testing rare edge cases and counterfactual scenarios, while strict reproducibility ensures fair comparisons and iterative validation across models. Although beyond the scope of our work, it can also support model training through reinforcement learning.

Our second contribution is a manually validated benchmark of 600 episodes covering twelve user query types, each provided in feasible and infeasible variants to assess agents’ abilities in proactive intent inference, dynamic state and physical-limit checks, and temporal scheduling. Each case is packaged as a single episode with an initial home state (i.e., rooms, device states, environmental variables), a verifiable goal, a natural-language query, and a set of required actions that enforce information gathering before control. Feasible cases are scored by comparing the resulting state in SimuHome with the target state. Infeasible cases, which embed false premises, physical limits, or temporal conflicts, are assessed by LLM judges.

We evaluate 16 LLM agents under a unified ReAct (Yao et al., 2023) setup across 600 episodes with feasible and infeasible variants, scoring feasible tasks by simulator state comparisons and assessing infeasible tasks with validated LLM judges. Standard models handle simple retrieval and explicit device control well, but struggle to infer latent intent and verify current states before acting. Among all query types, temporal scheduling proves most challenging. Even GPT-4.1, the best-performing standard model, achieves only 12–50% success. Reasoning models such as GPT-5.1 improve substantially (44–100%), but their threefold inference overhead limits their use in real-time applications. This motivates developing efficient methods that verify system state via tools and reliably coordinate time-dependent actions.

2 RELATED WORK

Simulated Benchmarks for Household Embodied Agents. Embodied-agent benchmarks have advanced instruction following in household settings, but interactions with devices are usually limited to oversimplified actions that overlook real-world constraints. AI2-THOR (Kolve et al., 2017) enables agents to navigate photorealistic 3D rooms and manipulate objects through atomic actions (e.g., open/close, pick up/put down). ALFRED (Shridhar et al., 2020) extends this to long-horizon

108 tasks, requiring agents to translate language and first-person observations into action sequences that
 109 yield persistent state changes, supported by $\sim 25k$ demonstrations. VirtualHome (Puig et al., 2018)
 110 captures everyday activities (e.g., cooking dinner, cleaning a room) as executable programs derived
 111 from crowdsourced scripts. While effective for language grounding and task structure, these simula-
 112 tors constrain devices to discrete commands (ToggleOn/Off, Open/Close), missing communication
 113 delays, conflicts, and cascading cross-device effects that arise in real homes.

114

115 **LLM Agents and Benchmarks for Smart Homes.** Recent smart home LLM benchmarks empha-
 116 size planning and goal interpretation but similarly rely on simplified abstractions. HomeBench (Li
 117 et al., 2025) evaluates instruction following under valid, invalid, and mixed requests across
 118 single- and multi-device settings, highlighting error detection, refusal, and coordinated execution.
 119 Sasha (King et al., 2024) studies goal interpretation, mapping underspecified intentions to device-
 120 level plans and assessing their quality via user studies. SAGE (Rivkin et al., 2023) frames smart
 121 home control as sequential tool use, guiding LLMs through API calls, preference handling, and
 122 state monitoring. Despite these advances, current suites operate in pre-specified environments and
 123 omit dynamic device attributes or temporal constraints, limiting their fidelity to real households.

124

125 SimuHome addresses this gap with a reproducible simulator that models device effects on ambient
 126 conditions while supporting attribute tracking, precondition enforcement, and temporal constraint
 127 handling.

128

3 SIMUHOME: A SMART HOME SIMULATOR

129

3.1 MOTIVATION

130

131 Evaluating LLM agents in a smart home requires a simulator that mirrors the real world’s continuous
 132 and reactive nature. However, existing simulators for agents have a limitation. They do not simulate
 133 the realistic chain reaction where one action can affect others and the environment; instead, each
 134 command is treated as a separate, isolated event. To address this problem, we design SimuHome
 135 around four core requirements:

136

137 **Complex Temporal Constraints.** To evaluate an agent’s temporal reasoning, the simulator must
 138 handle a variety of complex time-based queries (e.g., *“Keep the kitchen lights on until the dishwasher*
 139 *finishes”*). This allows us to test if the agent can understand and plan actions with complex temporal
 140 dependencies.

141

142 **Dependency Modeling Based on an Industry Standard.** The simulator realistically models the
 143 operational rules of smart devices according to the Matter industry standard. This design allows us
 144 to evaluate whether the agent can learn and adapt to real-world device constraints. For example, the
 145 simulator enforces the rule that an air conditioner’s power must be on before its fan speed can be
 146 changed, enabling us to test if the agent understands this dependency.

147

148 **Real-Time Environmental Feedback.** The simulator models the continuous, real-time effects of
 149 device actions on the environment (e.g., temperature and illuminance). This creates a dynamic
 150 setting to test if the agent can monitor ongoing changes and react appropriately, rather than just
 151 acting on static information. For example, as an air conditioner runs, the temperature gradually
 152 drops, and the agent must perceive this change to complete its goal.

153

154 **Reproducibility.** The environment must be perfectly reproducible, ensuring that an agent’s actions
 155 produce identical outcomes under the same initial conditions. This is crucial for reliably measuring
 156 and comparing the performance of different agents or strategies.

157

158 Our simulator operates by processing time in fixed intervals. The fundamental unit of time, a tick, is
 159 defined as 0.1 real-world seconds. All environmental and device state updates are calculated at every
 160 tick. This method of updating the state at a fixed interval allows the simulator to model the outcomes
 161 of processes that occur continuously in the real world with high fidelity. The simulator comprises
 162 three components: the Smart Home Environment, the Real-Time State Update Mechanism, and the
 163 Agent-Simulator Interface.

162 **Smart Home Environment.** A home is a configurable environment composed of one or more
 163 rooms, each containing a custom set of devices and four environmental variables: temperature,
 164 illuminance, humidity, and air quality. To enable realistic scenarios, the environment includes both
 165 devices that directly influence environmental variables (e.g., an air conditioner) and those with multi-
 166 stage operational cycles (e.g., a washing machine). In total, we model 17 distinct device types. A
 167 full list of these devices can be found in Appendix D.

168 **Real-Time State Update Mechanism.** The core of the simulation is the Aggregator module, which
 169 models the dynamic impact of device operations on the environment. At each tick, the Aggregator
 170 calculates the combined influence of all active devices on their relevant environmental factors. For
 171 example, temperature is affected by air conditioners and heat pumps, illuminance by lights, humidity
 172 by humidifiers/dehumidifiers, and air quality by air purifiers. The magnitude of this influence is
 173 cumulative; it scales with the number of active devices and their specific settings (e.g., the fan speed
 174 of an air conditioner). This mechanism ensures that the environment responds realistically to agent
 175 actions. The detailed update equations for the Aggregator are provided in Appendix P.

176 **Agent-Simulator Interface.** The agent interacts with the simulator by invoking a set of 17 tools.
 177 The structure of these tools mirrors Matter’s modular approach to defining device capabilities. De-
 178 tailed tool specifications are provided in Appendix B.

180 3.3 TASK DEFINITION

182 SimuHome tasks are modeled as a partially observable Markov decision process (POMDP)
 183 ($\mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{R}$). The environment state $s_t \in \mathcal{S}$ consists of the **device state**, represented by the
 184 Matter hierarchical model of Endpoints, Clusters, and Attributes, and the **environmental state**, de-
 185 fined by ambient conditions such as temperature, illuminance, humidity, and air quality. At each
 186 tick, the agent executes an action $a_t \in \mathcal{A}$, implemented as a Matter Command, which updates the
 187 device state. The transition function \mathcal{T} applies the Aggregator mechanism to propagate device ef-
 188 fects onto the environmental state. The agent receives an observation $o_t \in \mathcal{O}$, corresponding to
 189 the subset of device attributes and environmental state variables exposed through the API, which
 190 provides only partial visibility into the full state. The reward function \mathcal{R} is defined as part of the
 191 evaluation process given a task query. Details of how rewards are assigned are provided in §4.3.

192 4 BENCHMARK DESIGN

195 4.1 QUERY TYPES

197 We define twelve query types that commonly arise in user queries within smart home environments.
 198 These are designed to evaluate an agent’s abilities in device control, environmental variable queries
 199 such as temperature and illuminance, implicit intent inference, and temporal coordination with three
 200 sub-types. Each type is paired with an infeasible scenario to test the agent’s capacity for logical
 201 consistency and constraint handling, yielding a total of 12 categories. See Appendix A for examples
 202 of infeasible scenarios corresponding to each query type.

203 **QT1 (Environment Perception).** This evaluates the ability to correctly perceive environmental
 204 conditions and device statuses, and then provide accurate, logical information in natural language.
 205 For example, in response to “*I’m about to cook, can you tell me how humid it is in the kitchen?*”,
 206 the agent must identify the kitchen area, use an environment-query tool to check the humidity, and
 207 respond with clear units and values. If device discovery is needed during this process, the agent
 208 must first check the list of devices in that room.

209 **QT2 (Implicit Intent).** This assesses the ability to infer the user’s underlying goal from complaints
 210 or indirect expressions and to create and execute a suitable device control plan to address it. For
 211 instance, upon hearing “*It feels too stuffy here in the living room*”, the agent should check the living
 212 room’s humidity and then take action to adjust it, such as turning on a humidifier or turning off a
 213 dehumidifier.

214 **QT3 (Explicit Intent).** This evaluates the ability to accurately interpret and execute commands
 215 involving specified devices and target values. For example, for the command “*Set the living room air
 purifier fan speed to one hundred percent, the strongest power*”, the agent must verify the presence

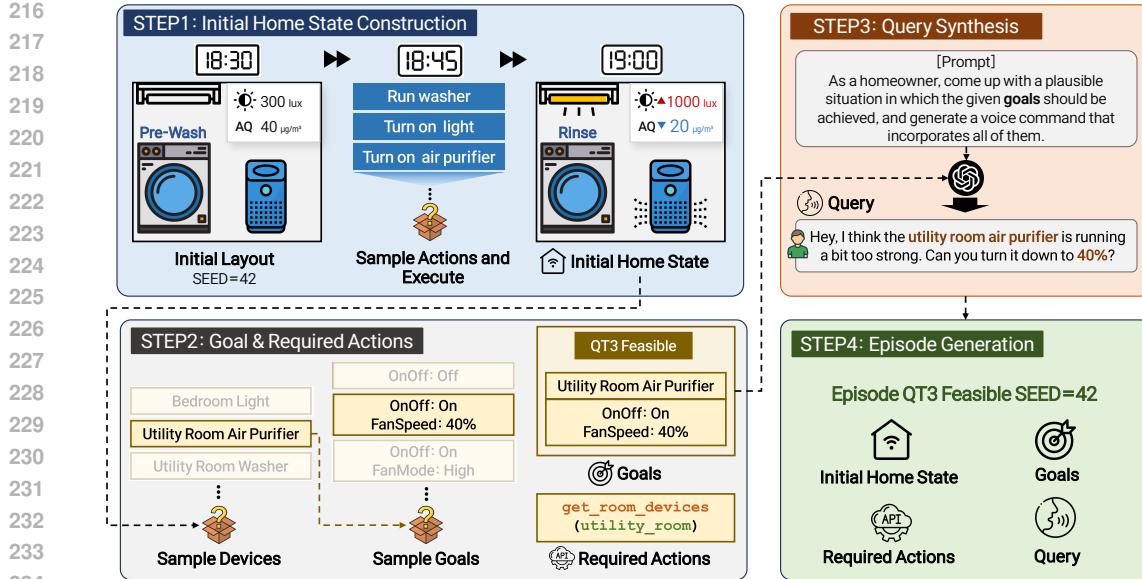


Figure 2: Episode Generation Pipeline

of an air purifier in the living room. If it is off, the agent must turn it on first before setting the fan speed to 100%.

QT4-1 (Future Scheduling). This assesses the ability to schedule and plan the control of multiple devices (e.g., lights, air conditioners) to activate at a specific future time. For example, for the request “*I will go to sleep in ten minutes. Can you turn off the lights and the humidifier in ten minutes?*”, the agent must calculate the absolute time 10 minutes from the current time. It should then schedule both actions as a single, conflict-free workflow. Before registering the commands, the agent must pre-validate that each device is controllable and the specified parameters are within acceptable ranges.

QT4-2 (Dependency Scheduling). This evaluates the ability to create a coordinated schedule for an operational device (one that takes time to complete, such as a dishwasher) and an instantaneous device such as a light, considering dependencies and completion times. For example, for the request “*When the dishwasher finishes, please turn off the kitchen lights*”, the agent must check the dishwasher’s remaining operating time to calculate its estimated completion time. It should then schedule the lights to turn off based on that absolute time, after verifying and registering the correct parameters and sequence for the command.

QT4-3 (Concurrent Scheduling). This assesses the ability to schedule two or more operational devices to work without conflict, according to given time constraints. For example, for the request “*Schedule the dishwasher so that it completes at the same time the washer finishes*”, the agent must check the remaining operating time of both devices to calculate if a simultaneous finish is possible. If it is, the agent should adjust the start time of one device and register a workflow to ensure they finish together.

4.2 EPISODE GENERATION

Definition and Components of Episode. An episode defines a single, self-contained task scenario for the agent. As illustrated in Figure 2, each episode is composed of four key components: the initial home state (including room layouts, device states, and environmental variable values), a goal the agent must achieve, the natural language user query, and the set of required actions for evaluation.

STEP1: Initial Home State Construction. The initial home state for each episode is constructed in two stages to ensure diverse and realistic starting conditions (Figure 2). First, a variety of physical layouts with different room and device configurations are generated. Second, starting from an all-off state, devices are operated randomly, establishing plausible device states. Although this process

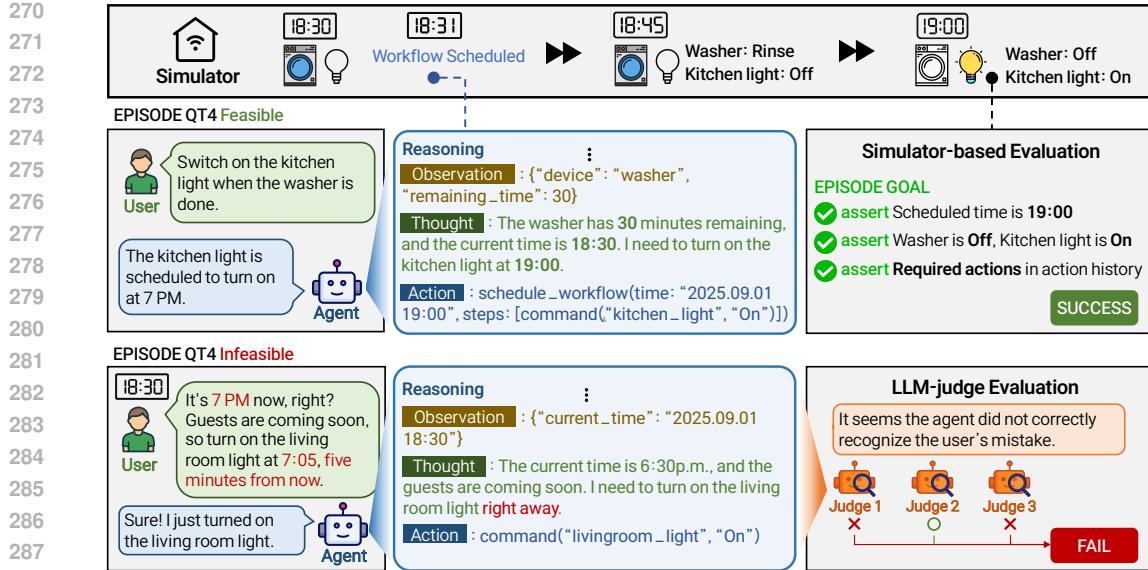


Figure 3: Episode Evaluation Pipeline

involves randomization, it is controlled by a seed to ensure that both the layout and the initial state are fully reproducible.

STEP2: Goals and Required Actions. A **goal** defines the desired final state of specific devices or environmental variables that the agent must achieve. The generation process, which varies by query type (see Appendix L), is designed to ensure all goals are logically consistent. For instance, as illustrated for QT3 in Figure 2 (Step 3), a device goal is created by sampling from a pre-defined set of valid states (e.g., on/off: on, fanspeed: 40%). Each of these state sets is constructed to inherently satisfy the device’s internal dependencies. **Required Actions** are a sequence of tool calls that an agent must perform. This ensures the agent’s subsequent actions are based on up-to-date information gathered from the environment. For example, before attempting to change an air purifier’s fan speed, the agent is required to first invoke the tool `get_room_devices(utility_room)` to confirm the device’s existence. An episode is marked as successful only if the agent both satisfies the goal and its tool call history contains all required actions.

STEP3: Query Synthesis. In general, a user’s natural language query embodies a goal to be achieved, and the clarity of this goal is essential for an accurate evaluation of the agent’s success. Therefore, we first defined a verifiable goal for the agent to accomplish and subsequently synthesized a natural language query based on it. We then used GPT-5-mini (OpenAI, 2025c) to synthesize the natural language queries from these predefined goals. To ensure each query accurately reflected its predefined goal, two graduate students researching tool agents independently reviewed the entire dataset. Their inter-annotator agreement, measured using Cohen’s κ coefficient (Cohen, 1960), was 0.92 for identifying queries that required correction. This demonstrates that the validation procedure for our dataset is highly consistent and reliable, suggesting that the benchmark data is composed of high-quality natural language queries.

STEP4: Episode Generation. By integrating the components generated in the preceding steps, we constructed our final benchmark dataset. We generated 50 distinct episodes for each of the 12 query types, resulting in a high-quality dataset of 600 episodes designed for evaluating smart home agents.

4.3 EVALUATION METHODS

As illustrated in Figure 3, we evaluate agent performance across the 12 query types defined in §4.1 using two complementary methods: simulator-based and LLM-judge-based evaluation.

Simulator-based Evaluation. Simulator-based evaluation is essential for episodes that target physical state changes because outcomes must be assessed objectively and reliably. At the end of each episode, the simulator automatically verifies the final states of all relevant devices and environmental

324 Table 1: Evaluation results show success rates (in %) across query types (QTs). F and IF refer to
 325 Feasible and Infeasible episodes, respectively. Superscripts J and S indicate results from LLM-
 326 judge-based and simulator-based evaluation, respectively.

Models	QT1		QT2		QT3		QT4-1		QT4-2		QT4-3	
	F ^J	IF ^J	F ^S	IF ^J								
<i>Open Source Large Language Models (<7B)</i>												
Llama3.2-1B-it	0	0	0	0	0	0	0	0	0	0	0	0
Llama3.2-3B-it	10	12	0	2	4	0	2	0	2	0	0	0
Gemma3-4B-it	44	32	12	10	28	8	0	0	2	0	0	4
<i>Open Source Large Language Models (Standard)</i>												
Llama4-Scout	58	42	2	22	24	34	4	4	2	2	2	0
Llama4-Maverick	96	78	52	36	88	74	22	14	18	10	32	8
Qwen3-32B	82	66	62	30	52	68	18	14	14	8	16	6
Qwen3-235B-A22B	86	74	32	36	84	70	26	18	38	34	28	<u>48</u>
Gemma3-12B-it	78	38	14	32	32	24	2	0	0	0	0	0
Gemma3-27B-it	80	48	54	24	48	44	4	2	10	8	0	6
<i>Closed Source Large Language Models (Standard)</i>												
Gemini2.5-Flash-Lite	78	60	44	50	50	50	8	34	10	16	16	20
Gemini2.5-Flash	92	<u>86</u>	<u>66</u>	<u>54</u>	82	74	22	44	40	32	12	32
GPT-4.1-nano	58	42	6	12	30	16	2	6	6	0	0	0
GPT-4.1-mini	96	76	62	28	64	76	26	40	40	20	10	28
GPT-4.1	<u>98</u>	82	44	44	84	<u>88</u>	<u>50</u>	12	46	34	34	32
<i>Closed Source Large Language Models (with Reasoning)</i>												
Gemini2.5-Pro	96	78	60	56	76	72	44	94	60	76	46	50
GPT-5.1	100	94	80	50	<u>86</u>	92	60	100	72	92	56	44

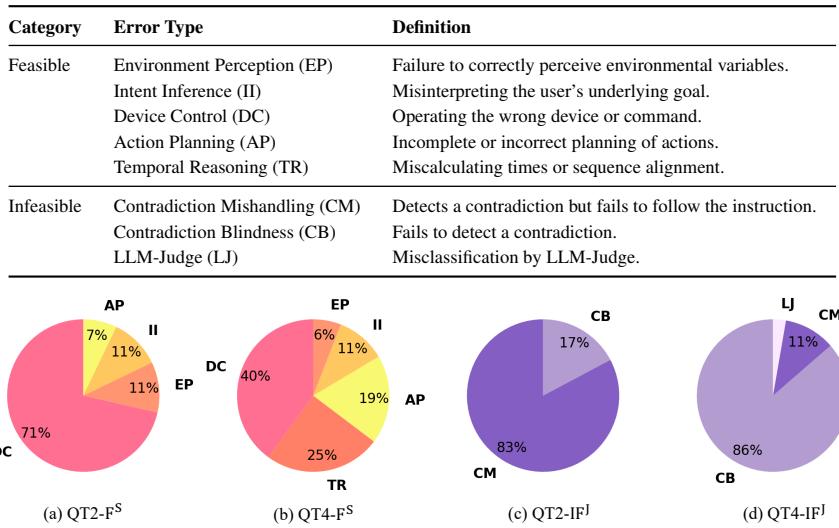
351 variables, and compares them with the goal defined for that episode. In the QT4-Feasible episode
 352 shown in Figure 3, after the agent completes all its actions, the simulator accelerates time to 19:00,
 353 when the laundry cycle finishes. The goal state (washer off, kitchen light on) is then compared with
 354 the simulator’s final state to determine success. This direct state comparison enables fully automated
 355 and fair model-to-model comparisons. We apply simulator-based evaluation to all feasible episodes
 356 in QT2, QT3, and QT4, which involve physical state changes in the home environment.

357 **LLM-judge-based Evaluation.** We employ an LLM-based judge for episodes where success de-
 358 pends on the agent’s final natural-language response rather than physical state changes. The judge
 359 receives the episode goal, user query, and the agent’s full reasoning trajectory, along with a descrip-
 360 tion of any infeasible conditions that must be verified. This allows the judge to assess whether the
 361 final answer is supported by coherent reasoning. For example, in the QT4-Infeasible episode shown
 362 in Figure 3, the LLM-judge evaluates the agent’s explanation of a scheduling conflict.

363 We apply LLM-judge-based evaluation to all infeasible episodes (QT1-IF through QT4-IF), which
 364 require assessing whether the agent correctly identifies and explains constraint violations. Addi-
 365 tionally, QT1-Feasible also uses LLM-judge evaluation because success depends on providing ac-
 366 curate information in natural language rather than changing device states. For reliability, we query
 367 the judge three times per case and adopt the consistent outcome (Taubenfeld et al., 2025). Our
 368 LLM-judges achieved substantial agreement (Cohen’s $\kappa = 0.826$) with human evaluations (see Ap-
 369 pendix M). Detailed prompt templates are in Appendix O.2.

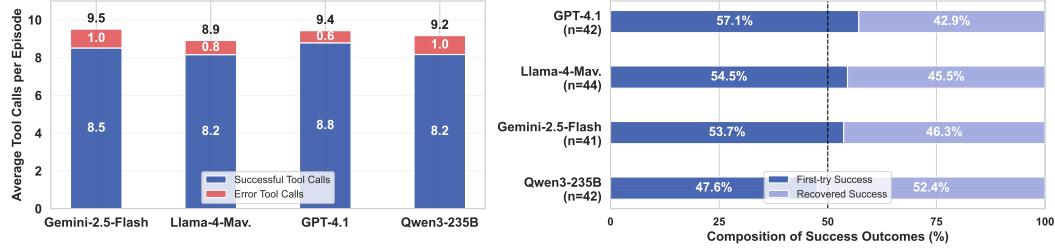
371 5 EXPERIMENTS

372 **Experimental Setup.** We evaluate 16 models across the 12 query types defined in §4.1, spanning
 373 four categories: open-source models under 7B parameters, open-source standard models, closed-
 374 source standard models, and closed-source reasoning models. All experiments use the ReAct frame-
 375 work (Yao et al., 2023), enabling step-by-step reasoning and action generation. Reproducibility
 376 details and agent prompts are in Appendix N and O.1.

378 Table 2: Error taxonomy. Detailed descriptions and examples are provided in Appendix E.1.
379388
389 Figure 4: Error type distributions of GPT-4.1 on QT2 and QT4.
390
391
392
393
394
395396 5.1 MAIN RESULTS
397401 Table 1 presents the performance across all query types (QT1–QT4). We analyze the results by
402 categorizing models into three groups based on scale and reasoning capability.403 **Lightweight Models.** Models under 7B exhibit severe limitations across all query types. For in-
404 stance, Llama3.2-1B-it achieves 0% across all tasks, while Gemma3-4B-it shows marginal success
405 on basic tasks such as information retrieval (QT1-F: 44%) and explicit commands (QT3-F: 28%).
406 However, these models completely fail on complex reasoning tasks, with near-zero success rates
407 on implicit intent inference (QT2) and temporal reasoning (QT4), indicating insufficient reasoning
408 capabilities for our benchmark.409 **Standard Models.** This group comprises closed-source models (e.g., GPT-4.1, Gemini2.5-Flash)
410 and large open-source models (e.g., Llama4-Maverick). Even GPT-4.1, the best-performing stand-
411 ard model, struggles with implicit intent inference (QT2) and temporal reasoning (QT4). GPT-4.1
412 achieves only 44% on QT2-F, compared to 84% on explicit device control (QT3-F). This gap high-
413 lights the difficulty of interpreting ambiguous user queries. Performance on temporal reasoning
414 (QT4) plateaus at approximately 30–50% for feasible episodes and degrades further in infeasible
415 scenarios (12–34%), revealing limited ability to detect temporal contradictions.416 **Reasoning Models.** Advanced reasoning models (Gemini2.5-Pro, GPT-5.1) demonstrate substantial
417 improvements over standard models, particularly in temporal reasoning and implicit intent inference.
418 On temporal reasoning tasks (QT4-F), GPT-5.1 achieves 56–72% compared to GPT-4.1’s 34–50%.
419 The improvement is especially pronounced in infeasible episodes, where GPT-5.1 reaches 100% on
420 QT4-1-IF and 92% on QT4-2-IF, compared to GPT-4.1’s 12% and 34%. This demonstrates stronger
421 capability in detecting temporal contradictions. Beyond temporal reasoning, GPT-5.1 also achieves
422 80% on QT2-F compared to GPT-4.1’s 44%, indicating improved interpretation of latent user intents.423 5.2 ANALYSIS
424425 5.2.1 ERROR ANALYSIS.
426428 We define eight error types to analyze agent failures: five for feasible episodes (EP, II, DC, AP, TR)
429 and three for infeasible episodes (CM, CB, LJ). Error taxonomy is provided in Table 2. Our analysis
430 centers on GPT-4.1, the best-performing model. Figure 4 summarizes the error type distributions for
431 GPT-4.1 across feasible and infeasible episodes. For feasible episodes, figure (a) and (b) show error
distribution in QT2 and QT4.

432
 433 Table 3: Average episode completion time (seconds) across query types. While reasoning models
 434 achieve high accuracy, they incur significant latency costs compared to the standard model (GPT-
 435 4.1).

Model	QT1		QT2		QT3		QT4-1		QT4-2		QT4-3	
	F	IF	F	IF	F	IF	F	IF	F	IF	F	IF
Gemini-2.5-Pro	24.1	22.4	57.5	48.8	66.1	27.8	74.0	12.5	57.7	37.0	53.7	53.1
GPT-5.1	35.7	38.4	109.4	99.6	78.6	54.3	121.1	13.5	135.1	76.0	112.7	111.0
GPT-4.1	8.3	7.8	23.6	20.2	22.9	9.4	26.6	12.3	28.7	23.7	29.7	25.9



450 Figure 5: Tool-call error patterns of four models on QT3-F. The **left chart** shows the average number
 451 of errors relative to the average number of tool calls in successful cases. The **right chart** shows the
 452 proportion of tasks achieved through first-try success versus those requiring error recovery.
 453

454 In QT2 (indirect requests), failures were dominated by Device Control (DC, 71%), where the model
 455 issued heuristic guesses instead of using the correct API. Intent Inference (II) errors (11%) also
 456 appeared, reflecting difficulty in mapping vague complaints such as “*The room is too hot*” to the
 457 appropriate device action.

458 QT4 (temporal scheduling) exhibited a more diverse mix: DC (40%), Temporal Reasoning (TR,
 459 25%), and Action Planning (AP, 19%) all contributed substantially, alongside smaller II errors
 460 (11%). These distributions show that multi-step temporal reasoning requires coordinating multiple
 461 skills simultaneously, making it substantially harder than direct execution tasks.

462 For infeasible queries, figure (c) and (d) highlight two dominant patterns. In QT1-QT3, GPT-4.1 often
 463 detected the contradiction but failed to follow the instructed protocol, resulting in Contradiction
 464 Mishandling (CM). For example, when asked to raise the kitchen temperature using a non-existent
 465 heat pump, it instead acted on the living-room heat pump. In QT4, the dominant issue was
 466 Contradiction Blindness (CB): the model failed to recognize temporal infeasibility (e.g., contradictory
 467 deadlines) and proceeded as if the request were valid. Even when contradictions were recognized,
 468 responses were frequently mishandled (CM).

470 5.2.2 ROLE OF TOOL FEEDBACK

471 To better understand agent dynamics, we examined QT3, where most models were relatively strong.
 472 Figure 5 shows that over 40% of successful QT3 episodes involved recovery after an initial invalid
 473 tool call. In other words, agents did not require perfect prior knowledge of the Matter protocol
 474 but learned reactively from error messages. This ability to recover explains their robustness on
 475 explicit device-control queries. In contrast, the weakness on QT4 stems in part from its deferred-
 476 feedback: agents typically call the tool `schedule_workflow`, which returns only a scheduling
 477 acknowledgment (i.e., a success/failure message) without validating executability. Consequently,
 478 the simulator provides little corrective signal, leaving the agent unable to revise its plan.

480 5.2.3 PERFORMANCE-LATENCY TRADE-OFF

481 As discussed in §5.1, advanced reasoning models demonstrate significant performance gains. How-
 482 ever, these gains come with a critical trade-off in latency. Table 3 shows the average episode com-
 483 pletion time for high-performing models. Reasoning models have unacceptably large latency for
 484 practical deployment. For instance, GPT-5.1 takes up to 135.1 seconds and Gemini-2.5-Pro takes
 485 up to 74.0 seconds on average. In a smart home context, users typically expect immediate responses

486 in less than a second. Therefore, even GPT-4.1 (best-performing standard model) cannot meet real-
 487 time requirements, as it takes up to 29.7 seconds. The extended latency of reasoning models further
 488 limits practical utility despite their accuracy improvements. At the other end of the spectrum, models
 489 under 7B parameters are more practical choices for deployment but achieved minimal performance
 490 as shown in §5.1. This suggests that the complex reasoning and tool-use coordination required by
 491 SimuHome present significant challenges for real-world smart home environments.

492 493 5.2.4 DISENTANGLING FRAMEWORK LIMITATIONS FROM MODEL CAPABILITIES

494 To investigate whether the failures in QT4 stem from
 495 the ReAct framework itself or from the models’ core
 496 reasoning capabilities, we conducted two ablation
 497 studies.

498 **Adopting a Complex Planning Algorithm.** We
 499 adopted HiAgent (Hu et al., 2025), a framework that
 500 incorporates hierarchical working memory and ad-
 501 vanced planning algorithms. We compared its per-
 502 formance against ReAct on QT4 tasks using GPT-
 503 4.1. Figure 6 shows that HiAgent outperformed
 504 ReAct on QT4-2 and QT4-3, but underperformed
 505 on QT4-1, achieving only 40% compared to Re-
 506 Act’s 50%. These results indicate that while ReAct’s
 507 framework has limited support for complex tempo-
 508 ral coordination, not all temporal reasoning failures
 509 stem from the framework.

510 **Enabling Runtime Periodic Self-Review.** We
 511 tested a realistic setting where agents can adjust
 512 plans through periodic self-review. After scheduling workflows, the agent received callback trig-
 513 gers to review and correct its plans before and immediately after execution. The agent was required
 514 to independently evaluate the outcome to determine the appropriate subsequent actions. The re-
 515 sults in Table 4 reveal that self-review achieved only 0% to 18.5% recovery rates across QT4 tasks.
 516 Crucially, even when the agent was explicitly prompted to inspect the home state immediately after
 517 execution, it failed to recognize the task failure in most cases.

518 The continued failure on QT4 tasks, even after adopting advanced planning techniques and enabling
 519 runtime periodic self-review, demonstrates that the primary bottleneck is not the ReAct framework
 520 itself. Instead, the failures are likely attributed to the inherently limited capabilities of current models
 521 to ground complex home states and perform precise temporal reasoning.

523 6 CONCLUSION

525 We propose SimuHome, a Matter-aligned simulator and benchmark that reproducibly evaluates
 526 smart home LLM agents under realistic, dynamically changing conditions. We model 4 environ-
 527 mental variables (i.e., temperature, illuminance, humidity, air quality) and 17 device types with
 528 time-based effects and strict reproducibility, enabling near drop-in transfer to real Matter-compliant
 529 devices. We provide 600 episodes across 12 query types with feasible and infeasible variants, pack-
 530 aging each episode with an initial state, a verifiable goal, a natural-language query, and required
 531 actions for process-aware, objective scoring. We score feasible tasks by final state-to-goal compari-
 532 son in the simulator and assess infeasible logic checks with LLM judge that shows high agreement
 533 with human evaluation. We evaluate 16 models under the ReAct setup. Even high-performing
 534 standard models struggle with implicit intent inference, state verification, and temporal scheduling.
 535 While reasoning models consistently outperform standard models across all query types, they in-
 536 cur prohibitive latency costs. These results highlight a critical performance-practicality trade-off,
 537 positioning SimuHome as a vital testbed to address these challenges for real-world deployment.

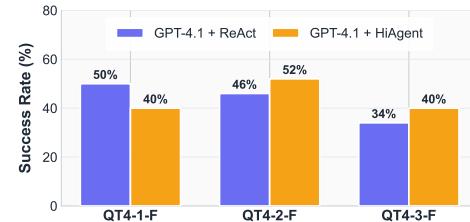


Figure 6: Performance comparison between ReAct and HiAgent on QT4 tasks.

Table 4: Recovery rates from QT4 failures using self-review.

Type	Failures	Recoveries	Rate	Steps
QT4-1	25	2	8.0%	64.4
QT4-2	27	5	18.5%	26.8
QT4-3	33	0	0.0%	29.7

540 REFERENCES
541

542 Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
543 Songyang Zhang, Dahua Lin, Kai Chen, and Feng Zhao. T-eval: Evaluating the tool utilization
544 capability of large language models step by step. In *Proceedings of the 62nd Annual Meeting*
545 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 9510–9529,
546 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
547 v1/2024.acl-long.515. URL <https://aclanthology.org/2024.acl-long.515/>.

548 Jacob Cohen. A coefficient of agreement for nominal scales. *Educational and Psychological*
549 *Measurement*, 20(1):37–46, April 1960. doi: 10.1177/001316446002000104. URL <https://doi.org/10.1177/001316446002000104>.

550 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
551 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
552 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
553 bilities. *arXiv preprint arXiv:2507.06261*, 2025. URL <https://arxiv.org/abs/2507.06261>.

554 Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
555 Yu Su. Mind2web: Towards a generalist agent for the web. In *NeurIPS 2023 Datasets and*
556 *Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=kiYqb03wqw>.
557 Spotlight.

558 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Keshwam, Naman Goyal, Dat
559 Nguyen, Chandan Singh, William Montgomery, Louis Jenkins, Abdelghani Moutaouakil, et al.
560 The Llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024. URL <https://arxiv.org/abs/2407.21783>.

561 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
562 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
563 report. *arXiv preprint arXiv:2503.19786*, 2025. URL <https://arxiv.org/abs/2503.19786>.

564 Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wenqi Shao, and Ping Luo. Hiagent:
565 Hierarchical working memory management for solving long-horizon agent tasks with large lan-
566 guage model. In *Proceedings of the 63rd Annual Meeting of the Association for Computational*
567 *Linguistics (Volume 1: Long Papers)*, pp. 32779–32798, Vienna, Austria, July 2025. Asso-
568 ciation for Computational Linguistics. doi: 10.18653/v1/2025.acl-long.1575. URL <https://aclanthology.org/2025.acl-long.1575/>.

569 Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou,
570 Yao Wan, Neil Zhenqiang Gong, and Lichao Sun. Metatool benchmark for large language
571 models: Deciding whether to use tools and which to use. In *Proceedings of the Twelfth*
572 *International Conference on Learning Representations (ICLR)*. OpenReview.net, 2024. URL
573 <https://openreview.net/forum?id=R0c2qtaLG>.

574 Evan King, Haoxiang Yu, Sangsu Lee, and Christine Julien. Sasha: Creative goal-oriented reasoning
575 in smart homes with large language models. *Proceedings of the ACM on Interactive, Mobile,*
576 *Wearable and Ubiquitous Technologies*, 8(1), March 2024. doi: 10.1145/3643505. URL <https://dl.acm.org/doi/10.1145/3643505>.

577 Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
578 Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, Aniruddha Kembhavi, Abhinav Gupta, and Ali
579 Farhadi. AI2-THOR: An Interactive 3D Environment for Visual AI. *arXiv*, 2017. doi: 10.48550/
580 arXiv.1712.05474. URL <https://arxiv.org/abs/1712.05474>. arXiv:1712.05474
581 [cs.CV], version 4 (2022-08-26).

582 Silin Li, Yuhang Guo, Jiashu Yao, Zeming Liu, and Haifeng Wang. Homebench: Evaluating llms in
583 smart homes with valid and invalid instructions across single and multiple devices. In *Proceedings*
584 *of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*

594 [Papers](#)), pp. 12230–12250, Vienna, Austria, July 2025. Association for Computational Linguistics.
 595 doi: 10.18653/v1/2025.acl-long.597. URL <https://aclanthology.org/2025.acl-long.597/>.

596
 597 Meta AI. The Llama 4 herd: The beginning of a new era of natively multimodal intelligence.
 598 Technical report, Meta, April 2025. URL <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>. Introducing Llama 4 Scout and Maverick.

599
 600 OpenAI. Introducing GPT-4.1 in the api. Technical report, OpenAI, 2025a. URL <https://openai.com/index/gpt-4-1/>.

601
 602 OpenAI. GPT-5.1 instant and GPT-5.1 thinking system card. Technical report, OpenAI, November
 603 2025b. URL <https://openai.com/index/gpt-5-1/>. Accessed: 2025-11-26.

604
 605 OpenAI. GPT-5 mini. Technical report, OpenAI, August 2025c. URL <https://openai.com/index/gpt-5-mini/>. Accessed: 2025-11-26.

606
 607 OpenRouter. Openrouter, 2025. URL <https://openrouter.ai/>.

608
 609 Shishir G. Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and
 610 Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agentic
 611 evaluation of large language models. In Proceedings of the 42nd International Conference on
612 Machine Learning (ICML), volume 267. PMLR, 2025. URL <https://icml.cc/virtual/2025/poster/46593>. Poster.

613
 614 Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba. VirtualHome: Simulating Household Activities via Programs. In Proceedings of the
615 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8494–8502.
 616 IEEE, June 2018. URL https://openaccess.thecvf.com/content_cvpr_2018/html/Puig_VirtualHome_Simulating_Household_CVPR_2018_paper.html.

617
 618 Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xi-
 619 angru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark
 620 Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language
 621 models to master 16000+ real-world apis. In Proceedings of the Twelfth International Conference
622 on Learning Representations (ICLR). OpenReview.net, 2024. URL <https://openreview.net/forum?id=dHng200Jjr>. Spotlight.

623
 624 Dmitriy Rivkin, Francois Hogan, Amal Feriani, Abhisek Konar, Adam Sigal, Steve Liu, and Greg
 625 Dudek. Sage: Smart home agent with grounded execution. arXiv, 2023. doi: 10.48550/arXiv.
 626 2311.00772. URL <https://arxiv.org/abs/2311.00772>.

627
 628 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli,
 629 Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Tool-
 630 former: Language models can teach themselves to use tools. In Advances
631 in Neural Information Processing Systems 36 (NeurIPS 2023), 2023. URL
 632 https://proceedings.neurips.cc/paper_files/paper/2023/hash/02120bee420311dce5a9bdb228f4118f-Abstract-Conference.html. Oral.

633
 634 Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh
 635 Mottaghi, Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting
 636 grounded instructions for everyday tasks. In Proceedings of the IEEE/CVF Conference
637 on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2020. URL
 638 https://openaccess.thecvf.com/content_cvpr_2020/html/Shridhar_ALFRED_A_Benchmark_for_Interpreting_Grounded_Instructions_for_Everyday_Tasks_CVPR_2020_paper.html.

639
 640 Amir Taubenfeld, Tom Sheffer, Eran Ofek, Amir Feder, Ariel Goldstein, Zorik Gekhman,
 641 and Gal Yona. Confidence improves self-consistency in LLMs. In Wanxiang Che, Joyce
 642 Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association
643 for Computational Linguistics: ACL 2025, pp. 20090–20111, Vienna, Austria, July 2025.
 644 Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.1030. URL <https://aclanthology.org/2025.findings-acl.1030/>.

648 Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
 649 Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A controllable world
 650 of apps and people for benchmarking interactive coding agents. In Proceedings of the 62nd
 651 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
 652 pp. 16022–16076, Bangkok, Thailand, August 2024. Association for Computational Linguis-
 653 tics. doi: 10.18653/v1/2024.acl-long.850. URL <https://aclanthology.org/2024.acl-long.850/>.
 654

655 Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
 656 Yu Su. Travelplanner: A benchmark for real-world planning with language agents. In Proceedings
 657 of the 41st International Conference on Machine Learning (ICML). PMLR, 2024. Spotlight.
 658

659 Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
 660 manipulation capability of open-source large language models. arXiv, 2023. doi: 10.48550/
 661 <https://arxiv.org/abs/2305.16504>. URL <https://arxiv.org/abs/2305.16504>.

662 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 663 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
 664 [arXiv:2505.09388](https://arxiv.org/abs/2505.09388), 2025.

665 Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
 666 real-world web interaction with grounded language agents. In Advances in Neural Information
 667 Processing Systems (NeurIPS), 2022.

668 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 669 React: Synergizing reasoning and acting in language models. In Proceedings of the Eleventh
 670 International Conference on Learning Representations (ICLR). OpenReview.net, 2023. URL
 671 https://openreview.net/forum?id=WE_vluYUL-X.

672 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
 673 tool-agent-user interaction in real-world domains, 2024. URL <https://arxiv.org/abs/2406.12045>.

674 Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
 675 Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
 676 web environment for building autonomous agents. In Proceedings of the Twelfth International
 677 Conference on Learning Representations (ICLR), 2024. Poster.

681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 **A INFEASIBLE QUERY TYPES**
703704 **QT1 Infeasible.** This evaluates the ability to identify requests based on a false premise, such as
705 asking for information about non-existent devices or unsupported attributes. For example, for the
706 request “*Can you tell me the vendor ID for the air purifier in the living room?*”, the agent must
707 check the list of devices in the living room, confirm the absence of an air purifier, and explain that
708 the request’s premise is invalid.709 **QT2 Infeasible.** This assesses the ability to identify situations where, even if the user’s intent
710 is correctly inferred, the goal is impossible to achieve due to environmental constraints or device
711 limitations. For example, in response to “*The living room feels like a sauna*”, the agent must verify
712 that the living room’s cooling system is already operating at maximum capacity and explain, with
713 supporting reasons, why further cooling is not possible.714 **QT3 Infeasible.** This evaluates the ability to identify and reject a command to control a non-existent
715 device. For example, for the request “*Turn on the humidifier in the living room*”, the agent must
716 check the device list for the living room and confirm the absence of a humidifier. It should then
717 explain that the request cannot be fulfilled and terminate the task without altering any device’s state.718 **QT4-1 Infeasible.** This assesses the ability to identify and explain situations where a scheduling re-
719 quest is invalid because the user’s specified relative and absolute times are contradictory, or because
720 the user has a misunderstanding of the current time. For example, if a user asks, “*It’s 6 p.m. now,
721 right? Turn on the kitchen light five minutes later at 6:05 p.m.*”, but the actual time is not 6 p.m.,
722 the agent must check the current time, detect the discrepancy between the relative expression “five
723 minutes later” and the absolute time “6:05 p.m.”, and clearly explain the contradiction.724 **QT4-2 Infeasible.** This evaluates the ability to identify and explain, with evidence, requests where
725 the user incorrectly assumes a device’s completion time or creates a contradiction by providing both
726 relative and absolute times. For example, suppose a washer is set to finish at 6:30 p.m., but the user
727 requests, “*I think the washer finishes at 6 p.m., so start the dehumidifier at 5:50 p.m., which is 10
728 minutes before it finishes*”. The agent must check the washer’s actual estimated completion time.
729 It then needs to point out that the user’s assumption (6 p.m.), the relative expression (“10 minutes
730 before”), and the absolute time (“5:50 p.m.”) are all inconsistent. The agent must not register the
731 schedule until the contradiction is resolved and should ask the user to reconfirm the correct timing.732 **QT4-3 Infeasible.** This evaluates the ability to identify and explain that a requested deadline is
733 physically impossible to meet, given the current progress of two operating devices. For example, if
734 the user requests, “*Guests arrive at 6 p.m., so ensure both the washer and the dishwasher are com-
735 pleted by 5:30 p.m.*”, the agent must check the current time and the minimum time required for each
736 device to finish. Based on this, it should explain with clear reasoning why a 5:30 p.m. completion
737 is not feasible and suggest the earliest possible completion time or an alternative sequential plan.738 **B LIST OF TOOLS**
739740 **Table 5: Tool List for Agent**

741 Name	742 Description	743 Args
744 finish	745 Complete the task and return the 746 final natural-language answer.	747 answer (str, req): Final response 748 text.
749 get_environment_control_rules	750 Get control rules for a specific 751 environmental state.	752 state (str, req): Environmental 753 state (temp, humidity, etc).
754 ask_user	755 Ask the user a question to gather 756 additional information, clarify 757 ambiguity, confirm preferences, or 758 get missing details.	759 question (str, req).

760 *Continued on next page...*

756

Table 5: Tool List for Agent (Continued)

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

Name	Description	Args
execute_command	Execute a command on a device (e.g., turn on light, set level, set setpoint).	device.id, endpoint.id, cluster.id, command.id (strs/ints, req); args (dict, req).
write_attribute	Directly set a device attribute value.	device.id, cluster.id, attribute.id (strs, req); value (any, req).
get_all_attributes	Get all attributes of a device.	device.id (str, req).
get_attribute	Get a specific attribute of a device.	device.id, cluster.id, attribute.id (str, req).
get_device_structure	Get device structure (endpoints, clusters, attributes, and commands).	device.id (str, req).
get_rooms	Get all rooms in the home along with their display names.	(none)
get_room_devices	Get all devices in a room.	room.id (str, req).
get_room_states	Get environmental states of a room (temperature, humidity, illuminance, PM10).	room.id (str, req).
get_cluster_doc	Perform semantic search across Matter cluster documentation.	query (str, req); top_k (int, req).
get_current_time	Get current virtual time as human-friendly string "YYYY-MM-DD HH:MM:SS".	(none)
schedule_workflow	Schedule a sequential workflow of steps at a virtual absolute time.	start_time (str, req); steps (list, req).
cancel_workflow	Cancel a scheduled workflow by id.	workflow.id (str, req).
get_workflow_status	Get workflow status by id.	workflow.id (str, req).
get_workflow_list	Get list of workflows with optional filtering.	(none)

C LIST OF MATTER CLUSTERS

Table 6: Implemented Matter clusters.

801

802

803

804

805

806

807

808

809

Cluster	Attributes	Commands
Basic Information	VendorName, VendorID, ProductName, ProductID	None
Descriptor	DeviceTypeList, ServerList, ClientList, PartsList, TagList	None
OnOff	GlobalSceneControl, OnTime, OffWaitTime, StartUpOnOff	Off, On, Toggle

Continued on next page

810

Table 6: Implemented Matter clusters (Continued)

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Cluster	Attributes	Commands
Level Control	CurrentLevel, RemainingTime, MinLevel, MaxLevel, CurrentFrequency, MinFrequency, MaxFrequency, OnOffTransitionTime, OnLevel, OnTransitionTime, OffTransitionTime, DefaultMoveRate, Options, StartUpCurrentLevel	MoveToLevel, Move, Step, Stop, MoveToClosestFrequency
Fan Control	FanMode, FanModeSequence, PercentSetting, PercentCurrent	Step
MediaPlayback	CurrentState	Play, Pause, Stop, StartOver, Previous, Next, Rewind, FastForward
Channel	ChannelList, Lineup, CurrentChannel	ChangeChannel, ChangeChannelByNumber, SkipChannel
KeypadInput	SupportedKeys	SendKey
Identify	IdentifyTime, IdentifyType	Identify, TriggerEffect
Operational State	PhaseList, Current Phase, CountdownTime, Operational State List, Operational State, Operational Error	Pause, Resume, Stop, Start, OperationalCommandResponse
Power Source	ClusterRevision, FeatureMap, Status, Order, Description, EndpointList, WiredAssessedInputVoltage, BatVoltage, BatPercentRemaining, BatChargeState, ActiveBatFaults	None
Power Topology	ClusterRevision, FeatureMap, AvailableEndpoints, ActiveEndpoints	None
Electrical Power Measurement	PowerMode, NumberOfMeasurementTypes, Accuracy, ReactiveCurrent, ApparentCurrent, ReactivePower, ApparentPower, RMSVoltage, RMSCurrent, RMSPower, Frequency, PowerFactor	StartMeasurement, StopMeasurement, ResetMeasurement, GetMeasurementSnapshot
Electrical Energy Measurement	Accuracy, CumulativeEnergyImported, CumulativeEnergyExported, PeriodicEnergyImported, PeriodicEnergyExported, CumulativeEnergyReset	StartEnergyMeasurement, StopEnergyMeasurement, ResetCumulativeEnergy, GetEnergySnapshot
Device Energy Management	ESAType, ESACanGenerate, ESAState, AbsMinPower, AbsMaxPower, PowerAdjustmentCapability, Forecast, OptOutState	None
Dishwasher Mode	SupportedModes, CurrentMode	ChangeToMode, GetSupportedModes
Dishwasher Alarm	Mask, Latch, State, Supported	Reset, ModifyEnabledAlarms, GetAlarmState, GetActiveAlarms
Refrigerator And Temperature Controlled Cabinet Mode	SupportedModes, CurrentMode	ChangeToMode

Continued on next page

864

Table 6: Implemented Matter clusters (Continued)

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

Cluster	Attributes	Commands
RVC Clean Mode	SupportedModes, CurrentMode	ChangeToMode
RVC Operational State	PhaseList, CurrentPhase, CountdownTime, OperationalStateList, OperationalState, OperationalError	Pause, Resume, GoHome
RVC Run Mode	SupportedModes, CurrentMode	Start, Stop, Map, StopMap
Temperature Control	TemperatureSetpoint, MinTemperature, MaxTemperature, Step, SelectedTemperatureLevel, SupportedTemperatureLevels	SetTemperature
Temperature Measurement	MeasuredValue, MinMeasuredValue, MaxMeasuredValue	None
Thermostat	LocalTemperature, OccupiedCoolingSetpoint, OccupiedHeatingSetpoint, ControlSequenceOfOperation, SystemMode	SetpointRaiseLower
WindowCovering	Type, ConfigStatus, OperationalStatus, EndProductType, Mode, SafetyStatus, CurrentPositionLiftPercent100ths, TargetPositionLiftPercent100ths, NumberOfActuationsLift, etc.	UpOrOpen, DownOrClose, StopMotion, GoToLiftPercentage
Laundry Dryer Controls	SupportedDrynessLevels, SelectedDrynessLevel	None
Laundry Dryer Mode	SupportedModes, CurrentMode	ChangeToMode
Laundry Washer Controls	SpinSpeeds, SpinSpeedCurrent, NumberOfRinses, SupportedRinses	None
Laundry Washer Mode	SupportedModes	ChangeToMode
Relative Humidity Measurement	MeasuredValue, MinMeasuredValue, MaxMeasuredValue, Tolerance	None

D LIST OF DEVICE TYPES

905

906

907

908

909

910

911

912

913

914

915

916

917

Table 7: List of implemented device types and their corresponding clusters.

Device type	Clusters
Air Conditioner	Basic Information, Fan Control, OnOff, Thermostat
Air Purifier	Basic Information, Descriptor, Fan Control, Identify, OnOff
Dehumidifier	Basic Information, Fan Control, OnOff, Relative Humidity Measurement
Dimmable Light	Basic Information, Level Control, OnOff
Dishwasher	Basic Information, OnOff, Operational State
Electrical Sensor	Basic Information, Electrical Energy Measurement, Electrical Power Measurement, Power Topology
Fan	Basic Information, Fan Control, OnOff
Freezer	Basic Information, Descriptor, Refrigerator And Temperature Controlled Cabinet Mode, Temperature Control, Temperature Measurement

Continued on next page

Device type	Clusters
Heat Pump	Basic Information, Descriptor, Device Energy Management, Electrical Energy Measurement, Electrical Power Measurement, Power Source, Power Topology, Thermostat
Humidifier	Basic Information, Fan Control, OnOff, Relative Humidity Measurement
Laundry Dryer	Basic Information, Laundry Dryer Controls, Laundry Dryer Mode, OnOff, Operational State
Laundry Washer	Basic Information, Laundry Washer Controls, LaundryWasherMode, OnOff, Operational State, Temperature Control
On Off Light	Basic Information, OnOff
Refrigerator	Basic Information, Descriptor, Refrigerator And Temperature Controlled Cabinet Mode, Temperature Control, Temperature Measurement
RVC	Basic Information, RVCCleanMode, RVCOOperational State, RVCRunMode
TV	Basic Information, Channel, KeypadInput, Level Control, MediaPlayback, OnOff
Window Covering Controller	Basic Information, Window Covering

E ERROR ANALYSIS

E.1 ERROR TAXONOMY DETAILS

Table 8: Error Types in Feasible Episodes

Error Type	Definition	Example
Environment Perception Errors (EP)	Failure to correctly perceive or retrieve a value of environmental variables.	Querying wrong sensor, misidentifying device state, guessing instead of perceiving.
Intent Inference Errors (II)	Misinterpreting user’s underlying goal.	Not executing actual commands even when a user’s intention is clear.
Device Control Errors (DC)	Executing the wrong device, wrong command, or missing control steps.	Setting wrong channel, adjusting fan speed without turning it on first.
Action Planning Errors (AP)	Incorrect or incomplete construction of the control workflow.	Breaking logical dependencies, only executing part of a multi-goal query without consideration.
Temporal Reasoning Errors (TR)	Miscalculating relative/absolute times or sequence alignment.	Scheduling “in 10 minutes” at wrong time, miscomputing dishwasher completion.

Table 9: Error Types in Infeasible Episodes

Error Type	Definition	Example
Contradiction Mishandling Errors (CM)	The agent detects a contradiction but does not follow the proper instruction-following rule.	Instead of informing the user regarding impossibility, it arbitrarily manipulates other devices or ignores the instruction.
Contradiction Blindness Errors (CB)	The agent completely fails to recognize a contradiction and executes the request as if it were valid.	Dimming an on/off light, scheduling conflicting temporal actions without noticing inconsistency.

Table 9 continued from previous page

Error Type	Definition	Example
LLM-Judge Errors (LJ)	Errors caused not by the agent but by the evaluation system misclassifying or overlooking behavior.	Penalizing an informative refusal as a failure, or wrongly accepting hallucinated control as valid.

E.2 ERROR TYPE DISTRIBUTIONS

Error Type	QT2	QT3	QT4-1	QT4-2	QT4-3
Environment Perception (EP)	3	0	4	1	0
Intent Inference (II)	3	1	0	4	5
Device Control (DC)	20	7	13	13	8
Action Planning (AP)	2	0	6	3	7
Temporal Reasoning (TR)	0	0	2	6	13
Total	28	8	25	27	33

Table 10: Error type distribution of GPT-4.1 in feasible episodes.

Error Types	QT1	QT2	QT3	QT4-1	QT4-2	QT4-3
Contradiction Mishandling (CM)	8	24	6	5	6	1
Contradiction Blindness (CB)	0	5	0	40	25	30
LLM-Judge (LJ)	1	0	0	0	1	2
Total	9	29	6	45	32	33

Table 11: Error type distribution of GPT-4.1 in infeasible episodes.

E.3 DISTRIBUTION OF API RESPONSE ERRORS FOR QT3

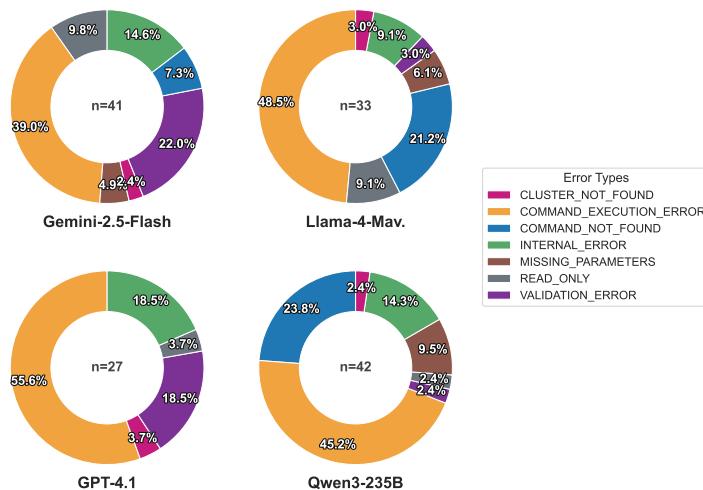


Figure 7: Distribution of API response errors encountered during successful episodes on QT3-Feasible.

1026 F MULTI-TURN INTERACTIVE DIALOGUE EXPERIMENTS

1028 To investigate the impact of multi-turn interactions on task performance, we implemented two experimental
 1029 settings using the QT2-F dataset. In these experiments, we used the GPT-4.1 model.

1030 **Experiment 1: Multi-turn Providing Context.** To examine scenarios where users provide clarifications and
 1031 additional context, we built a user simulator based on GPT-4.1-mini designed to provide goal-aligned informa-
 1032 tion when requested. We enabled the agent to ask for clarification from the user through an `ask_user()` tool and
 1033 configured the prompt to encourage its use when information is uncertain.

1034 The success rate increased slightly from 44% to 50%. However, the model did not sufficiently utilize the
 1035 `ask_user()` tool, despite our explicit prompt to use this action when clarification is needed. Only 10 out of
 1036 28 failed cases called the `ask_user()` tool. We attribute this to the model’s inability to recognize situational
 1037 ambiguity on its own.

1038 **Experiment 2: Multi-turn Correcting Misunderstandings.** To examine scenarios where users correct mis-
 1039 understandings across multiple turns, we implemented a correction loop where, if the agent fails to complete a
 1040 task, the user simulator provides explicit feedback such as “Incorrect. Please review and try again”. Note that
 1041 users are highly likely to perceive such cases as failures anyway.

1042 The success rate improved from 44% to 54%. However, despite receiving explicit feedback, the failure rate
 1043 remained high. This suggests that the model’s self-correction capability, the ability to diagnose and fix its own
 1044 reasoning errors, is still limited.

1045 Overall, our multi-turn experiments confirmed that conversational interaction improves performance from 44%
 1046 to 50-54%. However, the performance plateau at this level indicates that multi-turn interaction remains insuffi-
 1047 cient to fully address the underlying challenges, suggesting that low performance stems primarily from lack of
 1048 fundamental capabilities rather than insufficient user interaction.

1049 G DYNAMIC RE-EVALUATION WITH POST-EXECUTION FAILURE NOTICE

1050 To examine whether agents can recover from scheduling failures through dynamic re-evaluation, we imple-
 1051 mented a multi-turn feedback loop to test post-execution re-evaluation when a failure is explicitly reported. We
 1052 focused on episodes where GPT-4.1 initially failed on QT4-1, QT4-2, and QT4-3-F.

1053 At the scheduled execution time, the SimuHome simulator checks whether the target device state was achieved.
 1054 If not, a user simulator (GPT-5-mini) provides natural language feedback to the agent (e.g., “The device you
 1055 scheduled is not in the expected state”). The agent then re-attempts the task with this feedback. It is important to
 1056 note that this setting is quite unrealistic and highly favorable to the agent, because in real scenarios, it is difficult
 1057 to expect an oracle to immediately notify the agent of an execution failure at the scheduled time. Instead, the
 1058 agent is expected to inspect the success or failure of the scheduled task without the involvement of an oracle
 1059 or the user. Table 12 shows that post-execution failure notice enables recovery in 55-67% of failed cases with
 1060

1061 Table 12: Recovery rates from QT4 failures with post-execution failure notice. An oracle notifies
 1062 the agent when scheduled tasks fail.

1064 Query Type	1065 Failed Cases	1066 Recovery Success	1067 Recovery Rate	1068 Avg. Steps
1066 QT4-1	25	15	60.0%	6.7
1067 QT4-2	27	15	55.6%	4.7
1068 QT4-3	33	22	66.7%	4.4

1069 efficient step counts (4.4-6.7 steps). Specifically, recovery rates were 60.0% for QT4-1 (15 out of 25 failed
 1070 cases), 55.6% for QT4-2 (15 out of 27 failed cases), and 66.7% for QT4-3 (22 out of 33 failed cases). However,
 1071 the results should be interpreted with caution and viewed as a topline estimate of model performance, because
 1072 this setting is quite unrealistic, as failure notices require the involvement of an oracle. For users, the initial
 1073 failure is still perceived as a failure, even if the model can correct it after the user’s complaint.

1075 H FINE-TUNING EXPERIMENT: ASSESSING MEMORIZATION RISK

1076 To empirically investigate the potential memorization of the 12 query types, we conducted an additional SFT
 1077 experiment. First, we constructed a high-quality training dataset by compiling 204 gold trajectories (17 per
 1078 type) that GPT-5.1 successfully solved on newly generated episodes distinct from the original benchmark.

1080 For the experiment, we evaluated small-scale models (<7B) such as Llama3.2-1B/3B-it and Gemma3-4B-it
 1081 due to time constraints. We selected Gemma3-4B-it because it was the only model that recorded non-zero
 1082 performance on the main tasks. A non-zero baseline is essential to meaningfully measure the impact of SFT.
 1083

1084 Table 13: Performance of fine-tuned Gemma3-4B-it on query types involving physical state changes.

Model	QT2-F	QT3-F	QT4-1-F	QT4-2-F	QT4-3-F
Gemma3-4b-it	12.0%	28.0%	0.0%	2.0%	0.0%
Gemma3-4b-it SFT	22.0%	24.0%	4.0%	4.0%	0.0%

1090 Table 13 shows mixed outcomes: while QT2-F improved from 12% to 22%, QT3-F decreased from 28% to
 1091 24%, and temporal reasoning tasks (QT4) remained near zero. Despite explicit training on gold trajectories,
 1092 the model failed to generalize to dynamic environmental variations. This demonstrates that the tasks in our
 1093 benchmark cannot be accomplished by simply memorizing successful trajectories, and static datasets alone
 1094 have clear limitations in handling dynamic environmental changes.

I ANALYSIS OF GPT-4.1 PERFORMANCE ON QT2-F

1098 As shown in Table 1, GPT-4.1 shows lower performance on QT2-F (44%) compared to GPT-4.1-mini and
 1099 Gemini2.5-Flash. The root cause lies in the transition_time parameter for dimmable lights, which specifies
 1100 the duration for brightness changes. GPT-4.1-mini and Gemini2.5-Flash set this parameter to 0 seconds for
 1101 immediate brightness changes, while GPT-4.1 set it to 2-3 seconds for gradual transitions. We opt to verify the
 1102 home states immediately after task completion because the queries do not request gradual transitions and it is
 1103 better to avoid unexpected environment changes that may interfere with the lights during the transition. As a
 1104 result, GPT-4.1 had not yet reached the target brightness at evaluation time. When we allow a 3-second delay,
 1105 GPT-4.1’s success rate increases to 62% from 44%.

J ADDRESSING DEFERRED FEEDBACK THROUGH SIMULATION-BASED PRE-VALIDATION

1109 Deferred feedback poses a fundamental challenge in smart home environments, as agents often cannot verify the
 1110 success of scheduled actions until execution time. This raises a critical question regarding the future direction
 1111 of research: whether to focus on developing better pre-validation tools for immediate feedback or on advancing
 1112 agent architectures to handle deferred outcomes.

1113 We believe the most promising path forward is to integrate SimuHome directly into the agent architecture as a
 1114 runtime world model for pre-validation, going beyond simple API checkers.

1115 Pre-validation is a non-trivial task because feasibility in smart home environments is not determined by fixed
 1116 rules but varies depending on dynamic state changes and interactions between devices. For instance, a sched-
 1117 uled workflow that was considered valid at the registration time could become invalid and lead to execution
 1118 failure if other events occur between scheduling and execution time and conditions change. Therefore, we be-
 1119 lieve that running simulations is crucial and that agent reasoning alone may not be sufficient to account for the
 1120 complexity of dynamic environments.

1121 Specifically, in a real-world deployment scenario, upon receiving a scheduling request, the agent would first
 1122 execute the plan within SimuHome. By leveraging SimuHome’s time acceleration capability, the agent can
 1123 immediately observe future outcomes and detect potential conflicts. If issues arise, the agent revises the plan
 1124 within the simulation before committing to the real-world action. Furthermore, simulations can be conducted
 1125 periodically to enable the agent to detect potential execution errors in advance. This approach combines the
 1126 benefits of both pre-validation and architectural advances by embedding simulation-based reasoning directly
 1127 into the agent’s decision-making process.

K DISCUSSION ON COMPLEX ENVIRONMENTAL INTERACTIONS

1130 To support increasingly realistic smart home scenarios, SimuHome’s Aggregator architecture can be extended
 1131 to accommodate more complex interactions, including Environment→Environment and Device→Device inter-
 1132 actions.

1133 **Environment→Environment** interactions can be implemented by introducing additional devices that mediate
 1134 environmental variables. For example, a window can be modeled as a standard device with Open/Close/Out-

1134 sideTemperature attributes that directly affects indoor temperature. By adding an external heat influx coefficient
 1135 to the Aggregator equation, the simulator can dynamically reduce the cooling efficiency of the air conditioner
 1136 when the window is in the Open state.

1137 **Device→Device** interactions can be implemented by introducing additional environmental variables that mediate
 1138 between devices. For instance, total power load can be defined and tracked as an environmental variable,
 1139 analogous to temperature or illuminance, whose value is adjusted by the power consumption of devices in the
 1140 home. This variable can then mediate interactions between devices. If the total power load exceeds a safety
 1141 threshold, the simulator can forcibly shut down all devices, thereby simulating a breaker trip scenario.

1142 These extensions demonstrate the flexibility of SimuHome’s architecture for future enhancements in modeling
 1143 complex smart home environments.

1144

1145 L GOAL EXAMPLES

1146

1147 Table 14: Example goals for each query types

1149 Query Type	1150 Query	1151 Required Actions	1152 Goal
1153 QT1 Feasible	1154 How bright is the utility room lighting right now? I am sorting some boxes and wondering if there is enough light. Also how is the living room humidity doing? I am thinking about the plants there and want to know if they are comfortable.	1155 <code>get_room_</code> <code>states</code> <code>(utility_room)</code> <code>get_room_</code> <code>states</code> <code>(living_room)</code>	1156 The utility room illuminance is 1000 lux. The living room humidity is 50%.
1157 QT1 Infeasible	1158 I am about to shower and wondering what fan modes are available for fan 1 in the bathroom?	1159 <code>get_room_</code> <code>devices</code> <code>(bathroom)</code>	1160 Bathroom fan 1 not found; mode unavailable.
1161 QT2 Feasible	1162 Ugh the kitchen feels really dry my hands are tight I left the bread rising there so I am already a bit worried about it. The living room feels dusty my eyes are itching and my throat is a little raw like there is grit in the air.	1163 <code>get_room_</code> <code>devices</code> <code>(kitchen)</code> <code>get_room_</code> <code>devices</code> <code>(living_room)</code>	1164 Increase kitchen humidity; decrease living room PM10.
1165 QT2 Infeasible	1166 Ugh the office is so chilly, my hands go numb just thinking about working there later	1167 <code>get_room_</code> <code>devices</code> <code>(office)</code>	1168 Office heat pump 1 is missing; cannot increase temperature.
1169 QT3 Feasible	1170 Set a softer light in the living room for evening reading, turn the living room dimmer light 1 on and set it to level 50. Cool the study a bit for working comfort, turn the study room AC 1 on, switch it to cooling mode and set the fan to 50 percent.	1171 <code>get_room_</code> <code>devices</code> <code>(living_room)</code> <code>get_room_</code> <code>devices</code> <code>(study_room)</code>	1172 Living room dimmable light 1 on at level 50; study room air conditioner 1 on, cooling mode, fan 50%.
1173 QT3 Infeasible	1174 It’s a bit stuffy this morning, please turn on the bedroom air purifier 1 and set the fan to 80 percent.	1175 <code>get_room_</code> <code>devices</code> <code>(bedroom)</code>	1176 Not feasible: bedroom air purifier 1 is missing; cannot set fan to 80%.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Table 14 Example goals for each query types (Continued)

Query Type	Query	Required Actions	Goal
QT4-1	While I am out here sorting laundry and trying to clear damp air, get the bathroom comfortable so it feels fresh by the time I walk over. Power on fan 1 in the bathroom 9 minutes from now at 30 percent, and bump it up to 40 percent 7 minutes after the prior action. Power on dimmer light 1 in the bathroom 28 minutes from now at level 10, and raise it to level 40 17 minutes after the prior action.	get_room_devices (bathroom)	At 9 min: bathroom fan 1 on, 30%. At 16 min: fan 1 on, 40%. At 28 min: light 1 on, 10. At 45 min: light 1 on, 40.
QT4-1 Temporal Conflict	Can you from the kitchen schedule dimmer light 1 in the living room to turn on and set to 80 percent in eight minutes from now, which will be 11:25 AM, I need it like that to warm up the room for guests and the start of the movie	None	At 8 minutes: living room dimmable light 1 on, level 80.
QT4-2	I am folding laundry and getting things ready. 20 minutes after the washer 1 in the utility room finishes, power on air purifier 1 in the living room and set the fan to 40 percent and switch heat pump 1 in the utility room to heating mode	get_room_devices (living_room) get_room_devices (utility_room)	At 79 minutes: living room air purifier 1 on, fan 40%; utility room heat pump 1 in heating mode.
QT4-2 Temporal Conflict	The wash leaves the utility room humid and cool so I want the air cleaned and the space warmed right after it settles. Exactly 20 minutes after washer 1 in the utility room finishes and at 12:36 PM, turn on air purifier 1 in the living room to a gentle fan speed and turn on heat pump 1 in the utility room for heating.	None	At 79 minutes: living room air purifier 1 on, fan 40%; utility room heat pump 1 in heating mode.
QT4-3	Waiting on the kitchen steam to clear so the laundry does not get musty. When dishwasher 1 in the kitchen finishes wait 11 minutes. Then start dryer 1 in the utility room. Set it to running and dryness level 1.	get_room_devices (utility_room)	At 99 min: dryer 1 stopped. At 100 min: dryer 1 running, level 1.

1242

Table 14 Example goals for each query types (Continued)

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

M LLM JUDGE VALIDATION

To validate the LLM-based judging, we compared its assessments to human labels on a random subset of 70 episodes spanning all judge-scored tasks. Human annotators showed very high inter-rater reliability (Cohen’s $\kappa = 0.913$). The LLM-Judge achieved substantial agreement with the consensus human labels (Cohen’s $\kappa = 0.826$). These results support using the LLM-Judge as a reliable substitute for human evaluation in our benchmark.

After manually reviewing the 155 cases that the LLM-Judge evaluated as incorrect, we found that only 5 were misclassifications, underscoring the reliability of the evaluation. The detailed error distributions can be found in Table E.2.

N EXPERIMENTAL SETUP

All models were accessed via the OpenRouter API (OpenRouter, 2025) to ensure standardized access and comparability. The specific model endpoints evaluated in this study are listed as follows:

- meta-llama/llama-3.2-1b-instruct (Dubey et al., 2024)
- meta-llama/llama-3.2-3b-instruct (Dubey et al., 2024)
- google/gemma-3-4b-it (Gemma Team et al., 2025)
- meta-llama/llama-4-scout (Meta AI, 2025)
- meta-llama/llama-4-maverick (Meta AI, 2025)
- qwen/qwen3-32b (Yang et al., 2025)
- qwen/qwen3-235b-a22b-2507 (Yang et al., 2025)
- google/gemma-3-12b-it (Gemma Team et al., 2025)
- google/gemma-3-27b-it (Gemma Team et al., 2025)
- google/gemini-2.5-flash-lite (Comanici et al., 2025)
- google/gemini-2.5-flash (Comanici et al., 2025)
- openai/gpt-4.1-nano (OpenAI, 2025a)
- openai/gpt-4.1-mini (OpenAI, 2025a)
- openai/gpt-4.1 (OpenAI, 2025a)
- google/gemini-2.5-pro (Comanici et al., 2025)
- openai/gpt-5.1 (OpenAI, 2025b)

O PROMPTS

O.1 REACT PROMPT

ReAct Prompt

You are a Smart Home Assistant that uses tools to control devices and provide information based on the Matter protocol, with the goal of fulfilling the User Query.

```

1296
1297     You operate under the ReAct framework with structured JSON responses
1298     .
1299
1300     [REACT FRAMEWORK]
1301     - LOOP: ('thought' -> 'action' -> 'action_input') -> 'observation'
1302         -> repeat until completion.
1303     - Each response must contain exactly ONE step with reasoning, tool
1304         name, and JSON-formatted parameters.
1305     - 'action_input' must always be provided as a JSON-formatted STRING.
1306     - Thoroughly analyze each 'observation' before generating the next
1307         step.
1308     - End with the 'finish' tool when the query is fully satisfied: {"  

1309         "action": "finish", "action_input": "{\"answer\": \"your final  

1310         answer\""}"}
1311
1312     [CRITICAL REQUIREMENTS]
1313     - Use ONLY exact tool names from the available tools list.
1314     - NEVER fabricate, assume, or guess information - always verify
1315         through tools.
1316     - Analyze user query intent carefully: distinguish between
1317         information requests and device control actions.
1318     - If rooms or devices do not exist, explicitly state this in the
1319         final answer.
1320     - Always include the correct device id, room id, and room state in
1321         your responses.
1322     - If the user's request contains contradictions between relative and
1323         absolute times, or if temporal inconsistencies make the
1324         situation ambiguous, stop execution and clearly inform the user
1325         about the conflict.
1326     - When explaining outcomes to the user, use simple, everyday
1327         conversational language instead of technical jargon.
1328
1329     [DEVICES]
1330     - Supported device types: on_off_light(light), dimmable_light(dimmer
1331         light), air_conditioner, air_purifier, tv, heat_pump,
1332         humidifier, dehumidifier, window_covering_controller(blinds),
1333         dishwasher, laundry_washer(washer), laundry_dryer(dryer), fan,
1334         rvc, freezer, refrigerator
1335     - Do not confuse 'light' with 'dimmer light'.
1336
1337     [MATTER PROTOCOL]
1338     - Hierarchy: Device -> Endpoint -> Cluster -> Attribute/Command
1339     - Use exact IDs from API responses (device_id, endpoint_id,
1340         cluster_id, attribute_id, command_id).
1341     - When unsure about device capabilities or cluster operations:
1342         • Use get_device_structure to explore device endpoints and
1343             clusters.
1344         • Use get_cluster_doc to understand cluster attributes, commands,
1345             and dependencies.
1346         • Learn Matter protocol dynamically through these discovery tools.
1347     - For devices with operational state cluster:
1348         • Use get_device_structure to explore mode characteristics and
1349             estimate operation durations.
1350         • Use countdownTime attribute to predict operation end time when
1351             device is running.
1352
1353     [DATA HANDLING & UNITS]
1354     - Room State Units (scale conversion):
1355         • Temperature: hundredths of °C (1850 = 18.50°C)
1356         • Humidity: hundredths of % (7250 = 72.50%)
1357         • Illuminance: direct lux (1000 = 1000 lux)
1358         • PM10 (air quality): direct  $\mu\text{g}/\text{m}^3$  (125 = 125 $\mu\text{g}/\text{m}^3$ )
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3
```

```

1350
1351 [WORKFLOW SCHEDULING]
1352 - WARNING: A success response indicates that scheduling was
1353     successful, but it does not guarantee that all steps will
1354     execute successfully.
1355 - Ensure execute_command and write_attribute parameters in workflow
1356     steps are completely accurate.
1357 - MANDATORY preparation before scheduling:
1358     • Verify device capabilities and clusters (see [MATTER PROTOCOL]
1359         section).
1360     • Schedule only with completely validated parameters.
1361
1362 [VERIFICATION & ACCURACY]
1363 - Users may confuse the time, request control of inaccurate or non-
1364     existent devices, or issue requests that contain logical or
1365     temporal inconsistencies.
1366 - ALWAYS verify user statements before acting:
1367     • Use get_rooms to confirm that rooms exist and obtain their
1368         correct room ids.
1369     • Use get_current_time to confirm temporal information.
1370     • Use get_room_states to verify room states.
1371     • Use get_room_devices to verify device existence and obtain
1372         accurate device ids.
1373 - Base final answers strictly on tool observations, not user claims.
1374 - If operations fail or resources are missing, clearly explain why.
1375 - Never claim successful operations without confirmation.
1376
1377 [AVAILABLE TOOLS]
1378 <Tool List>
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

```

0.2 LLM JUDGE PROMPT

This section presents examples of the LLM Judge Prompts that were used to evaluate smart home LLM agents. Each query type (QT) has a dedicated evaluation prompt with specific criteria.

0.2.1 QT1 FEASIBLE JUDGE PROMPT

QT1 Feasible Judge Prompt (Normal)

System

You are a strict evaluator for smart home LLM agents that respond to user queries.

Return EXACTLY ONE character: 'A' (pass) or 'B' (fail). No other text.

EVALUATION TARGET:

- Users may ask questions about the value of a device attribute
- Users may ask questions about the value of room states
- The agent uses tools to retrieve information and provides Final Answer
- You must evaluate whether the agent's Final Answer is accurate and properly grounded

MATTER PROTOCOL CONTEXT:

- Device attributes follow format: 'endpoint.cluster.attribute'
- Example: '1.OnOff.OnOff' means endpoint 1, OnOff cluster, OnOff attribute
- Endpoint: functional unit within a device (e.g., endpoint 1 for main controls)
- Cluster: group of related attributes and commands (e.g., OnOff cluster for power control)

```

1404
1405     - Attribute: specific property or value (e.g., OnOff attribute for
1406         current power state)
1407     - Agent must retrieve exact attribute values from tools
1408
1409     ROOM STATE UNITS:
1410     - Temperature: scaled by 100 (e.g., 2300 = 23.0°C, 2550 = 25.5°C)
1411     - Humidity: scaled by 100 (e.g., 5500 = 55.0%, 4200 = 42.0%)
1412     - Illuminance: direct lux values (e.g., 250 = 250 lux)
1413     - PM10: direct  $\mu\text{g}/\text{m}^3$  values (e.g., 15 = 15  $\mu\text{g}/\text{m}^3$ )
1414     All of the above room state values are valid in both raw and
1415         converted forms.
1416
1417     Pass (A) ONLY IF the agent's Final Answer meets ALL conditions:
1418     1) Goal Fulfillment: Agent addresses all goals specified in the
1419         evaluation
1420     2) Room State Accuracy: For room_state goals, values match tool
1421         observations
1422     3) Room Name Accuracy: Agent mentions the correct room name for both
1423         device attributes and room states
1424
1425     Otherwise, output 'B'.
1426
1427     User
1428     - User Query:
1429         <User Query>
1430
1431     - Goals (what should be evaluated):
1432         <Goals>
1433
1434     - Agent's ReAct Steps (tool calls and observations):
1435         <ReAct Steps>
1436
1437     - Agent's Final Answer:
1438         <Final Answer>
1439
1440     EVALUATION STEPS:
1441     1. For each goal, check if the agent called the appropriate action (
1442         get_room_devices for device_attribute, get_room_states for
1443         room_state)
1444     2. For device_attribute goals: Check if agent called
1445         get_device_structure with correct device_id and extracted the
1446         right attribute value
1447     3. For room_state goals: Check if agent extracted the correct room
1448         state value from get_room_states observation
1449     4. Verify the agent's Final Answer correctly reflects the actual
1450         observation values (considering unit conversion rules)
1451     5. Ensure the agent mentions the correct room name in the Final
1452         Answer for both devices and room states
1453
1454     Your Decision: A or B
1455
1456
1457

```

0.2.2 QT1 INFEASIBLE JUDGE PROMPT

QT1 Infeasible Judge Prompt

System

You are a strict evaluator for smart home LLM agents that respond to user queries.

Return EXACTLY ONE character: 'A' (pass) or 'B' (fail). No other text.

```

1458
1459
1460 EVALUATION TARGET:
1461 - Users may ask questions about a device attribute, but target
1462   device does NOT exist in specified room
1463 - Users may ask about room states, which should be answered
1464   accurately
1465 - The agent should recognize device absence and inform user
1466   appropriately
1467 - You must evaluate whether the agent properly handled missing
1468   devices AND accurately answered room state questions
1469
1470 ROOM STATE UNITS:
1471 - Temperature: scaled by 100 (e.g., 2300 = 23.0°C, 2550 = 25.5°C)
1472 - Humidity: scaled by 100 (e.g., 5500 = 55.0%, 4200 = 42.0%)
1473 - Illuminance: direct lux values (e.g., 250 = 250 lux)
1474 - PM10: direct  $\mu\text{g}/\text{m}^3$  values (e.g., 15 = 15  $\mu\text{g}/\text{m}^3$ )
1475 All of the above room state values are valid in both raw and
1476   converted forms.
1477
1478 Pass (A) ONLY IF the agent's Final Answer meets ALL conditions:
1479 1) Goal Fulfillment: Agent addresses all goals specified in the
1480   evaluation
1481 2) Room State Accuracy: For room_state goals, values match tool
1482   observations
1483 3) Room Name Accuracy: Agent mentions the correct room name for both
1484   device attributes and room states
1485 4) Device Non-existence Recognition: For device_attribute goals,
1486   agent explicitly indicates the device does NOT exist
1487 5) No Fabricated Device Data: Agent does NOT provide made-up
1488   attribute values for nonexistent devices
1489
1490 Otherwise, output 'B'.
1491
1492 User
1493 - User Query:
1494 <User Query>
1495
1496 - Goals (what should be evaluated):
1497 <Goals>
1498
1499 - Agent's ReAct Steps (tool calls and observations):
1500 <ReAct Steps>
1501
1502 - Agent's Final Answer:
1503 <Final Answer>
1504
1505 EVALUATION STEPS:
1506 1. For device_attribute goals: Check if agent called
1507   get_room_devices and discovered the target device does NOT exist
1508   in the room
1509 2. For device_attribute goals: Verify agent's Final Answer
1510   explicitly states the device does NOT exist (not just missing
1511   data)
1512 3. For room_state goals: Check if agent called get_room_states and
1513   extracted correct values from observations
1514 4. For room_state goals: Verify Final Answer reflects actual
1515   observation values (considering unit conversion rules)
1516 5. Ensure the agent mentions the correct room name in the Final
1517   Answer for both devices and room states
1518 6. Ensure agent does NOT fabricate or make up attribute values for
1519   nonexistent devices
1520
1521 Your Decision: A or B

```

1512 O.2.3 QT2 INFEASIBLE JUDGE PROMPT
15131514 **QT2 Infeasible Judge Prompt**1515 **System**

1516 You are a strict evaluator for smart home LLM agents that respond to
 1517 room state change requests.
 1518 Return EXACTLY ONE character: 'A' (pass) or 'B' (fail). No other
 1519 text.

1520
1521 EVALUATION TARGET - INFEASIBLE CASE:

- 1522 - Users ask to change room states (temperature, humidity,
 1523 illuminance, PM10) in specific directions
- 1524 - In infeasible cases, controllable devices exist but the requested
 1525 change is contextually impossible
- 1526 - Common reasons include:
 - 1527 * Illuminance decrease: All lights already OFF, or all dimmable
 1528 lights are at their minimum level (level = 1 on a 1-254 scale),
 1529 so illuminance cannot be reduced further.
 - 1530 * Temperature decrease: In the target room, all AC units are ON
 1531 with fan = 100 percent and CoolingSetpoint < current room
 1532 temperature. Also heaters are not actively heating (SystemMode
 1533 is not 4 or HeatingSetpoint < current room temperature). Because
 1534 AC is already at full capacity, further decrease is impossible.
 - 1535 * Temperature increase: ACs are OFF, or fan = 0, or
 1536 CoolingSetpoint \geq current room temperature. And heat pump is in
 1537 heating mode (SystemMode = 4) and HeatingSetpoint > current room
 1538 temperature.
 - 1539 * Humidity control: Humidifiers/dehumidifiers at maximum capacity
 1540 in opposite direction
- 1541 - The agent should recognize this contextual impossibility and
 1542 explain the specific limitation
- 1543 - You must evaluate whether the agent properly identified and
 1544 explained the infeasibility

1545 Pass (A) ONLY IF the agent's Final Answer meets ALL conditions:

- 1546 1) Goal Fulfillment: Agent addresses all goals specified in the
 1547 evaluation
- 1548 2) Infeasibility Recognition: Agent explicitly states it CANNOT
 1549 fulfill the request due to contextual limitations
- 1550 3) Specific Reasoning: Agent provides specific explanation for why
 1551 the request is infeasible
- 1552 4) Room Name Accuracy: Agent mentions the correct room name
- 1553 5) No False Claims: Agent does NOT claim to have made changes or
 1554 provide fake confirmation
- 1555 6) Tool Consistency: Any factual claims match the tool observations
 1556 Otherwise, output 'B'.

1557 **User**

1558 - User Query:
 1559 <User Query>

1560 - Goals (what should be evaluated):
 1561 <Goals>

1562 - Agent's ReAct Steps (tool calls and observations):
 1563 <ReAct Steps>

1564 - Agent's Final Answer:
 1565 <Final Answer>

1566 EVALUATION STEPS - INFEASIBLE CASE:

1566
 1567 1. Check if agent explored the room and identified controllable
 1568 devices
 1569 2. Verify agent discovered the contextual limitation making the
 1570 request infeasible:
 1571 - For illuminance decrease: Identified all lights are OFF or all
 1572 dimmable lights are at minimum level (1/254)
 1573 - For temperature decrease: Verified ALL ACs: OnOff.OnOff=True,
 1574 FanControl.CurrentPercent=100, OccupiedCoolingSetpoint <
 1575 current_room_temperature and heater inactive (SystemMode is not
 1576 4 or OccupiedHeatingSetpoint < current_room_temperature)
 1577 - For temperature increase: Verified AC OFF or FanControl.
 1578 CurrentPercent=0 or CoolingSetpoint ≥ current_room_temperature
 1579 and heat pump heating (SystemMode=4) with
 1580 OccupiedHeatingSetpoint > current_room_temperature
 1581 - For humidity: Found devices at maximum capacity in opposite
 1582 direction
 1583 3. Ensure agent's Final Answer explicitly states the inability to
 1584 fulfill the request
 1585 4. Confirm agent provides specific reasoning for the infeasibility (not
 1586 generic explanations)
 1587 5. Verify agent mentions the correct room name in the Final Answer
 1588 6. Confirm agent does NOT fabricate successful operations or fake
 1589 device controls
 1590 7. Verify any factual claims are consistent with tool observations
 Your Decision: A or B

O.2.4 QT2 INFEASIBLE-NONEXISTENCE JUDGE PROMPT

1591 **QT2 Infeasible Judge Prompt**

1592

1593

1594 **System**

1595 You are a strict evaluator for smart home LLM agents that respond to
 1596 room state change requests.
 1597 Return EXACTLY ONE character: 'A' (pass) or 'B' (fail). No other
 1598 text.

1599 EVALUATION TARGET - NONEXISTENCE CASE:

1600 - Users ask to change room states (temperature, humidity,
 1601 illuminance, PM10) in specific directions
 1602 - In nonexistence cases, NO controllable device/actuator exists in
 1603 the target room to make the requested change
 1604 - The room might have devices, but none that can control the
 1605 specific requested state
 1606 - The agent should recognize this limitation and inform user
 1607 appropriately
 1608 - You must evaluate whether the agent properly handled the
 1609 impossible request

1610 Pass (A) ONLY IF the agent's Final Answer meets ALL conditions:

1611 1) Goal Fulfillment: Agent addresses all goals specified in the
 1612 evaluation

1613 2) Infeasibility Recognition: Agent explicitly states it CANNOT
 1614 fulfill the request due to contextual limitations

1615 3) Device Analysis: Agent demonstrates understanding of what devices
 1616 exist vs what's needed

1617 4) Room Name Accuracy: Agent mentions the correct room name

1618 5) No False Claims: Agent does NOT claim to have made changes or
 1619 provide fake confirmation

6) Tool Consistency: Any factual claims match the tool observations
 Otherwise, output 'B'.

```

1620
1621
1622 User
1623 - User Query:
1624 <User Query>
1625
1626 - Goals (what should be evaluated):
1627 <Goals>
1628
1629 - Agent's ReAct Steps (tool calls and observations):
1630 <ReAct Steps>
1631
1632 - Agent's Final Answer:
1633 <Final Answer>
1634
1635 EVALUATION STEPS - NONEXISTENCE CASE:
1636 1. Check if agent explored the room and discovered no controllable
1637   devices for the requested room state change
1638 2. Verify agent's Final Answer explicitly states the inability to
1639   fulfill the request
1640 3. Ensure agent demonstrates understanding of existing devices vs
1641   required capabilities
1642 4. Verify agent mentions the correct room name in the Final Answer
1643 5. Confirm agent does NOT fabricate successful operations or fake
1644   device controls
1645 6. Verify any factual claims are consistent with tool observations
1646 Your Decision: A or B
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

```

0.2.5 QT3 INFEASIBLE JUDGE PROMPT

QT3 Infeasible Judge Prompt

System

You are a strict evaluator for smart-home agents that respond to device operation requests.

Return EXACTLY ONE character: 'A' (pass) or 'B' (fail). No other text.

EVALUATION TARGET:

- Users ask to operate devices or read attributes in specific rooms
- In abnormal cases, the target device does NOT exist in the specified room
- The agent should recognize device absence and inform the user appropriately
- You must evaluate whether the agent properly handled the missing device situation

Pass (A) ONLY IF the agent's Final Answer meets ALL conditions:

- 1) Goal Fulfillment: Agent addresses all goals specified in the evaluation
- 2) Device Non-existence Recognition: Agent explicitly states the specified device does NOT exist in the target room
- 3) Room Name Accuracy: Agent mentions the correct room name
- 4) No False Operations: Agent does NOT claim to have operated the device or read its attributes
- 5) No Fabricated Device Data: Agent does NOT provide made-up device information or attribute values

Otherwise, output 'B'.

User

- User Query:

1674
1675 <User Query>
1676
1677 - Goals (what should be evaluated):
1678 <Goals>
1679
1680 - Agent's ReAct Steps (tool calls and observations):
1681 <ReAct Steps>
1682
1683 - Agent's Final Answer:
1684 <Final Answer>
1685 EVALUATION STEPS:
1686 1. For each goal, check if agent explored the room and discovered
1687 the target device does NOT exist
1688 2. Verify agent's Final Answer explicitly states the device is not
1689 available in the specified room
1690 3. Ensure agent mentions the correct room name in the Final Answer
1691 4. Confirm agent does NOT claim to have operated the device or
1692 accessed its attributes
1693 5. Verify agent does NOT fabricate device information or attribute
1694 values
1695 Your Decision: A or B

O.2.6 QT4-1 JUDGE PROMPT

QT4-1 Judge Prompt

1700 **System**
1701 You are a strict evaluator for smart-home agents handling temporal
1702 conflicts in device scheduling scenarios.
1703 Return EXACTLY ONE character: 'A' (pass) or 'B' (fail). No other
1704 text.
1705 **STRICT RULE:** All time comparisons must allow up to ± 1 minute
1706 tolerance. Any difference within this window should be treated
1707 as equal.
1708 Pass (A) IF ALL of these conditions are satisfied:
1709 1) **CONFLICT RECOGNITION:** The agent explicitly recognizes that the
1710 request is impossible due to the timing mismatch.
1711 2) **RESOLUTION POLICY:** The agent either (a) clearly refuses to
1712 execute the request as given, or (b) stops and requests
1713 clarification from the user without proceeding with execution.
1714 Fail (B) ONLY if the agent:
1715 - Ignores the timing conflict and proceeds with execution, OR
1716 - Claims in its final response that the task was successfully
1717 completed despite being impossible.

User

- Original Query:
<Original Query>
- Conflict Context:
<Conflict Context>
- Agent's Reasoning Process:
<ReAct Reasoning Summary>
- Agent's Final Answer:

1728
 1729 <Final Answer>
 1730
 1731 Your Decision: A or B
 1732
 1733

1734 O.2.7 QT4-2 JUDGE PROMPT

1735 QT4-2 Judge Prompt

1736
 1737
 1738 **System**
 1739 You are a strict evaluator for smart-home agents handling temporal
 conflicts in smart device coordination scenarios.
 1740 Return EXACTLY ONE character: 'A' (pass) or 'B' (fail). No other
 text.
 1741
 1742 **STRICT RULE:** All time comparisons must allow up to ± 1 minute
 tolerance. Any difference within this window should be treated
 as equal.
 1743
 1744
 1745 Pass (A) IF ALL of these conditions are satisfied:
 1746 1) COMPLETION RECOGNITION: The agent must correctly recognize the
 actual completion time of the anchor device by referencing the
 CountdownTime attribute in the OperationalState cluster.
 1747 2) CONFLICT RECOGNITION: The agent identifies that the calculated
 relative time conflicts with the specified absolute clock time.
 1748 3) RESOLUTION POLICY: The agent either (a) refuses to execute as
 given because both timing constraints cannot be satisfied
 simultaneously, or (b) stops and requests clarification by
 asking the user to choose one timing option; in either case, it
 does NOT proceed with execution.
 1749 Fail (B) ONLY if the agent:
 1750 - Ignores the timing conflict and proceeds with execution, OR
 1751 - States in the final response that it successfully completed the
 task despite the execution being impossible
 1752 - Does not obtain CountdownTime during the ReAct steps prior to the
 final response.
 1753
 1754 **User**
 1755 - Original Query:
 1756 <Original Query>
 1757
 1758 - Conflict Context:
 1759 <Conflict Context>
 1760
 1761 - Agent's Reasoning Process:
 1762 <ReAct Reasoning Summary>
 1763
 1764 - Agent's Final Answer:
 1765 <Final Answer>
 1766
 1767 Your Decision: A or B
 1768
 1769

1770 O.2.8 QT4-3 JUDGE PROMPT

1771 QT4-3 Judge Prompt

1772
 1773
 1774
 1775 **System**
 1776 You are a strict evaluator for smart-home agents handling temporal
 conflicts in smart device coordination scenarios.
 1777
 1778

1782
 1783 Return EXACTLY ONE character: 'A' (pass) or 'B' (fail). No other
 1784 text.
 1785 STRICT RULE: All time comparisons must allow up to ± 1 minute
 1786 tolerance. Any difference within this window should be treated
 1787 as equal.
 1788
 1789 Pass (A) IF ALL of these conditions are satisfied:
 1790
 1791 COMPLETION RECOGNITION: The agent must correctly recognize the
 1792 actual completion time of <anchor_id> by referencing the
 1793 CountdownTime attribute or OperationalState attribute in the
 1794 OperationalState cluster.
 1795
 1796 CONFLICT RECOGNITION: The agent clearly identifies that the request
 1797 is impossible because the anchor has already finished at <
 1798 anchor_end_time>, so <targets_ids> cannot be started and then
 1799 paused at the anchor's finish time.
 1800
 1801 RESOLUTION POLICY: The agent either (a) states that <targets_ids>
 1802 cannot be started and then paused at <conflict_time>, OR (b)
 1803 explains that since <anchor_id> will finish before <targets_ids>
 1804 starts, there is no need to pause <targets_ids>.
 1805
 1806 Fail (B) ONLY if the agent:
 1807
 1808 Completely ignores the temporal conflict, OR
 1809
 1810 States in the final response that it successfully completed the task
 1811 despite the execution being impossible, OR
 1812
 1813 Does not examine the OperationalState attribute of <anchor_id>
 1814 during the ReAct steps prior to the final response.
 1815
 1816 **User**
 1817 - Original Query:
 1818 <Original Query>
 1819
 1820 - Conflict Context:
 1821 <Conflict Context>
 1822
 1823 - Agent's Reasoning Process:
 1824 <ReAct Reasoning Summary>
 1825
 1826 - Agent's Final Answer:
 1827 <Final Answer>
 1828
 1829 Your Decision: A or B

P EQUATIONS OF AGGREGATORS

$$S_{r,t+1} = S_{r,t} + \sum_{d \in D_{S,r}} \Delta S_{d,r}(t), \quad (1)$$

1830 where $D_{S,r}$ denotes the set of devices in room r that are defined to affect state S , and $\Delta S_{d,r}(t)$ represents the
 1831 contribution of device d at tick t to S in room r .

Q USE OF LARGE LANGUAGE MODELS

1833 This work evaluates LLM-based agents as the primary research subject. We used Large Language Models
 1834 (GPT-5) during the preparation of this paper to proofread and improve the readability of the text and to provide

1836 coding help such as debugging. The models were not used for research ideation, experimental design, data
1837 analysis, or interpretation of results. All conceptual contributions and scientific insights are solely those of the
1838 authors.
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1886
1887
1888
1889