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ABSTRACT

Large Language Model (LLM) agents excel at multi-step, tool-augmented tasks.
However, smart homes introduce distinct challenges, requiring agents to handle
latent user intents, temporal dependencies, device constraints, scheduling, and
more. The main bottlenecks for developing smart home agents with such capa-
bilities include the lack of a realistic simulation environment where agents can
interact with devices and observe the results, as well as a challenging benchmark
to evaluate them. To address this, we introduce SimuHome, a time-accelerated
home environment that simulates smart devices, supports API calls, and reflects
changes in environmental variables. By building the simulator on the Matter pro-
tocoﬁ the global industry standard for smart home communication, SimuHome
provides a high-fidelity environment, and agents validated in SimuHome can be
deployed on real Matter-compliant devices with minimal adaptation. We provide
a challenging benchmark of 600 episodes across twelve user query types that re-
quire the aforementioned capabilities. Our evaluation of 16 agents under a uni-
fied ReAct framework reveals distinct capabilities and limitations across models.
Models under 7B parameters exhibited negligible performance across all query
types. Even GPT-4.1, the best-performing standard model, struggled with implicit
intent inference, state verification, and particularly temporal scheduling. While
reasoning models such as GPT-5.1 consistently outperformed standard models on
every query type, they required over three times the average inference time, which
can be prohibitive for real-time smart home applications. This highlights a critical
trade-off between task performance and real-world practicality. We will release
our code and dataset upon publication of the paper.

1 INTRODUCTION

Recently, Large Language Model (LLM) agents have demonstrated strong abilities on multi-step,
tool-augmented tasks, including API retrieval, invocation, and intermediate state verification (Qin
et al., 2024 |Patil et al., 2025; |Chen et al.| 2024} |Huang et al., 2024} Xu et al., 2023} |Schick et al.,
2023)). These abilities enable long-horizon tasks such as web navigation and goal pursuit, where
agents must plan, check states, and validate outcomes over multiple steps (Zhou et al., 2024; |Yao
et al.,[2022; |Deng et al., 2023; Xie et al.| 2024; Yao et al., 2024; Trivedi et al., [2024)).

Smart home agents, such as Amazon Alexa and Google Home, are among the earliest production-
ized tool agents in the real world and have long been a research topic. To meet real-world challenges,
smart home agents need capabilities to handle many factors, such as: (1) latent user intents (e.g.,
“It feels stuffy” implying humidity control), (2) temporal dependencies (e.g., “Turn on the kitchen
light when the dishwasher finishes”), (3) dependencies among device actions and attributes (e.g., a
dishwasher cannot be opened while it is running), (4) scheduling (e.g., “Play music in the morn-
ing”). However, most (if not all) smart home agents to date fall short in all these areas. One of the
critical bottlenecks is the lack of training and test data with such complexities. Even if such datasets
existed, static datasets have clear limitations: agents cannot learn by doing, and agent performance
cannot be evaluated accurately (because a user intent may be satisfied in multiple ways that are not
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Figure 1: The SimuHome home environment with Matter-compliant devices, featuring a GUI where
users can arrange devices across rooms, configure their attributes, and evaluate agent reasoning for
multi-device control.

annotated in the dataset). We aim to address this challenge by developing a high-fidelity smart home
simulator in which agents can interact with devices through APIs and observe the results reflected in
the environment, along with an extensive benchmark containing a variety of complex user requests,
both feasible and infeasible.

Our first contribution is a smart home simulator, SimuHome (Figure |I|) SimuHome is a time-
accelerated smart home environment that accommodates various room layouts, environmental vari-
ables (e.g., temperature, illuminance), and smart devices. Agents can call APIs to operate devices
(e.g., set the AC to 25 degrees). Devices are simulated with internal constraints checked (e.g., the AC
must be turned on to set its temperature), and the results affect the environment (e.g., the room tem-
perature gradually drops to 25 degrees over 10 minutes). Notably, SimuHome implements Matter,
a broadly adopted smart-home interoperability standard. As a result, the attributes and constraints
within devices are high fidelity. Moreover, agents trained and verified in SimuHome can run on real
Matter-compliant devices with minimal adaptation. SimuHome also enables controlled experiments
in a cheap and fast way. It allows unlimited experimentation, including stress-testing rare edge cases
and counterfactual scenarios, while strict reproducibility ensures fair comparisons and iterative val-
idation across models. Although beyond the scope of our work, it can also support model training
through reinforcement learning.

Our second contribution is a manually validated benchmark of 600 episodes covering twelve user
query types, each provided in feasible and infeasible variants to assess agents’ abilities in proactive
intent inference, dynamic state and physical-limit checks, and temporal scheduling. Each case is
packaged as a single episode with an initial home state (i.e., rooms, device states, environmental
variables), a verifiable goal, a natural-language query, and a set of required actions that enforce
information gathering before control. Feasible cases are scored by comparing the resulting state in
SimuHome with the target state. Infeasible cases, which embed false premises, physical limits, or
temporal conflicts, are assessed by LLM judges.

We evaluate 16 LLM agents under a unified ReAct (Yao et al.,|2023)) setup across 600 episodes with
feasible and infeasible variants, scoring feasible tasks by simulator state comparisons and assessing
infeasible tasks with validated LLM judges. Standard models handle simple retrieval and explicit
device control well, but struggle to infer latent intent and verify current states before acting. Among
all query types, temporal scheduling proves most challenging. Even GPT-4.1, the best-performing
standard model, achieves only 12-50% success. Reasoning models such as GPT-5.1 improve sub-
stantially (44—100%), but their threefold inference overhead limits their use in real-time applications.
This motivates developing efficient methods that verify system state via tools and reliably coordinate
time-dependent actions.

2 RELATED WORK

Simulated Benchmarks for Household Embodied Agents. Embodied-agent benchmarks have
advanced instruction following in household settings, but interactions with devices are usually lim-
ited to oversimplified actions that overlook real-world constraints. AI2-THOR (Kolve et al., [2017)
enables agents to navigate photorealistic 3D rooms and manipulate objects through atomic actions
(e.g., open/close, pick up/put down). ALFRED (Shridhar et al., |2020) extends this to long-horizon



Under review as a conference paper at ICLR 2026

tasks, requiring agents to translate language and first-person observations into action sequences that
yield persistent state changes, supported by ~25k demonstrations. VirtualHome (Puig et al., [2018])
captures everyday activities (e.g., cooking dinner, cleaning a room) as executable programs derived
from crowdsourced scripts. While effective for language grounding and task structure, these simula-
tors constrain devices to discrete commands (ToggleOn/Off, Open/Close), missing communication
delays, conflicts, and cascading cross-device effects that arise in real homes.

LLM Agents and Benchmarks for Smart Homes. Recent smart home LLM benchmarks empha-
size planning and goal interpretation but similarly rely on simplified abstractions. HomeBench (L1
et al., [2025) evaluates instruction following under valid, invalid, and mixed requests across
single- and multi-device settings, highlighting error detection, refusal, and coordinated execution.
Sasha (King et al., 2024)) studies goal interpretation, mapping underspecified intentions to device-
level plans and assessing their quality via user studies. SAGE (Rivkin et al.| [2023)) frames smart
home control as sequential tool use, guiding LLMs through API calls, preference handling, and
state monitoring. Despite these advances, current suites operate in pre-scripted environments and
omit dynamic device attributes or temporal constraints, limiting their fidelity to real households.

SimuHome addresses this gap with a reproducible simulator that models device effects on ambient
conditions while supporting attribute tracking, precondition enforcement, and temporal constraint
handling.

3 SIMUHOME: A SMART HOME SIMULATOR

3.1 MOTIVATION

Evaluating LLM agents in a smart home requires a simulator that mirrors the real world’s continuous
and reactive nature. However, existing simulators for agents have a limitation. They do not simulate
the realistic chain reaction where one action can affect others and the environment; instead, each
command is treated as a separate, isolated event. To address this problem, we design SimuHome
around four core requirements:

Complex Temporal Constraints. To evaluate an agent’s temporal reasoning, the simulator must
handle a variety of complex time-based queries (e.g., “Keep the kitchen lights on until the dishwasher
finishes”). This allows us to test if the agent can understand and plan actions with complex temporal
dependencies.

Dependency Modeling Based on an Industry Standard. The simulator realistically models the
operational rules of smart devices according to the Matter industry standard. This design allows us
to evaluate whether the agent can learn and adapt to real-world device constraints. For example, the
simulator enforces the rule that an air conditioner’s power must be on before its fan speed can be
changed, enabling us to test if the agent understands this dependency.

Real-Time Environmental Feedback. The simulator models the continuous, real-time effects of
device actions on the environment (e.g., temperature and illuminance). This creates a dynamic
setting to test if the agent can monitor ongoing changes and react appropriately, rather than just
acting on static information. For example, as an air conditioner runs, the temperature gradually
drops, and the agent must perceive this change to complete its goal.

Reproducibility. The environment must be perfectly reproducible, ensuring that an agent’s actions
produce identical outcomes under the same initial conditions. This is crucial for reliably measuring
and comparing the performance of different agents or strategies.

3.2 SIMULATOR ARCHITECTURE AND OPERATION

Our simulator operates by processing time in fixed intervals. The fundamental unit of time, a tick, is
defined as 0.1 real-world seconds. All environmental and device state updates are calculated at every
tick. This method of updating the state at a fixed interval allows the simulator to model the outcomes
of processes that occur continuously in the real world with high fidelity. The simulator comprises
three components: the Smart Home Environment, the Real-Time State Update Mechanism, and the
Agent-Simulator Interface.
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Smart Home Environment. A home is a configurable environment composed of one or more
rooms, each containing a custom set of devices and four environmental variables: temperature,
illuminance, humidity, and air quality. To enable realistic scenarios, the environment includes both
devices that directly influence environmental variables (e.g., an air conditioner) and those with multi-
stage operational cycles (e.g., a washing machine). In total, we model 17 distinct device types. A
full list of these devices can be found in Appendix

Real-Time State Update Mechanism. The core of the simulation is the Aggregator module, which
models the dynamic impact of device operations on the environment. At each tick, the Aggregator
calculates the combined influence of all active devices on their relevant environmental factors. For
example, temperature is affected by air conditioners and heat pumps, illuminance by lights, humidity
by humidifiers/dehumidifiers, and air quality by air purifiers. The magnitude of this influence is
cumulative; it scales with the number of active devices and their specific settings (e.g., the fan speed
of an air conditioner). This mechanism ensures that the environment responds realistically to agent
actions. The detailed update equations for the Aggregator are provided in Appendix [P}

Agent-Simulator Interface. The agent interacts with the simulator by invoking a set of 17 tools.
The structure of these tools mirrors Matter’s modular approach to defining device capabilities. De-
tailed tool specifications are provided in Appendix

3.3 TASK DEFINITION

SimuHome tasks are modeled as a partially observable Markov decision process (POMDP)
(8,A,0,T,R). The environment state s; € S consists of the device state, represented by the
Matter hierarchical model of Endpoints, Clusters, and Attributes, and the environmental state, de-
fined by ambient conditions such as temperature, illuminance, humidity, and air quality. At each
tick, the agent executes an action a; € .4, implemented as a Matter Command, which updates the
device state. The transition function 7 applies the Aggregator mechanism to propagate device ef-
fects onto the environmental state. The agent receives an observation o; € O, corresponding to
the subset of device attributes and environmental state variables exposed through the API, which
provides only partial visibility into the full state. The reward function R is defined as part of the
evaluation process given a task query. Details of how rewards are assigned are provided in

4 BENCHMARK DESIGN

4.1 QUERY TYPES

We define twelve query types that commonly arise in user queries within smart home environments.
These are designed to evaluate an agent’s abilities in device control, environmental variable queries
such as temperature and illuminance, implicit intent inference, and temporal coordination with three
sub-types. Each type is paired with an infeasible scenario to test the agent’s capacity for logical
consistency and constraint handling, yielding a total of 12 categories. See Appendix [A]for examples
of infeasible scenarios corresponding to each query type.

QT1 (Environment Perception). This evaluates the ability to correctly perceive environmental
conditions and device statuses, and then provide accurate, logical information in natural language.
For example, in response to “I’m about to cook, can you tell me how humid it is in the kitchen?”,
the agent must identify the kitchen area, use an environment-query tool to check the humidity, and
respond with clear units and values. If device discovery is needed during this process, the agent
must first check the list of devices in that room.

QT2 (Implicit Intent). This assesses the ability to infer the user’s underlying goal from complaints
or indirect expressions and to create and execute a suitable device control plan to address it. For
instance, upon hearing “It feels too stuffy here in the living room”, the agent should check the living
room’s humidity and then take action to adjust it, such as turning on a humidifier or turning off a
dehumidifier.

QT3 (Explicit Intent). This evaluates the ability to accurately interpret and execute commands
involving specified devices and target values. For example, for the command “Set the living room air
purifier fan speed to one hundred percent, the strongest power”, the agent must verify the presence
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Figure 2: Episode Generation Pipeline

of an air purifier in the living room. If it is off, the agent must turn it on first before setting the fan
speed to 100%.

QT4-1 (Future Scheduling). This assesses the ability to schedule and plan the control of multiple
devices (e.g., lights, air conditioners) to activate at a specific future time. For example, for the
request “I will go to sleep in ten minutes. Can you turn off the lights and the humidifier in ten
minutes?”, the agent must calculate the absolute time 10 minutes from the current time. It should
then schedule both actions as a single, conflict-free workflow. Before registering the commands,
the agent must pre-validate that each device is controllable and the specified parameters are within
acceptable ranges.

QT4-2 (Dependency Scheduling). This evaluates the ability to create a coordinated schedule for
an operational device (one that takes time to complete, such as a dishwasher) and an instantaneous
device such as a light, considering dependencies and completion times. For example, for the re-
quest “When the dishwasher finishes, please turn off the kitchen lights”, the agent must check the
dishwasher’s remaining operating time to calculate its estimated completion time. It should then
schedule the lights to turn off based on that absolute time, after verifying and registering the correct
parameters and sequence for the command.

QT4-3 (Concurrent Scheduling). This assesses the ability to schedule two or more operational
devices to work without conflict, according to given time constraints. For example, for the request
“Schedule the dishwasher so that it completes at the same time the washer finishes”, the agent must
check the remaining operating time of both devices to calculate if a simultaneous finish is possible.
If it is, the agent should adjust the start time of one device and register a workflow to ensure they
finish together.

4.2 EPISODE GENERATION

Definition and Components of Episode. An episode defines a single, self-contained task scenario
for the agent. As illustrated in Figure 2] each episode is composed of four key components: the
initial home state (including room layouts, device states, and environmental variable values), a goal
the agent must achieve, the natural language user query, and the set of required actions for evaluation.

STEP1: Initial Home State Construction. The initial home state for each episode is constructed
in two stages to ensure diverse and realistic starting conditions (Figure[2). First, a variety of physical
layouts with different room and device configurations are generated. Second, starting from an all-
off state, devices are operated randomly, establishing plausible device states. Although this process
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Figure 3: Episode Evaluation Pipeline

involves randomization, it is controlled by a seed to ensure that both the layout and the initial state
are fully reproducible.

STEP2: Goals and Required Actions. A goal defines the desired final state of specific devices or
environmental variables that the agent must achieve. The generation process, which varies by query
type (see Appendix [LJ), is designed to ensure all goals are logically consistent. For instance, as
illustrated for QT3 in Figure[2] (Step 3), a device goal is created by sampling from a pre-defined set
of valid states (e.g., onoff: on, fanspeed: 40%). Each of these state sets is constructed to inherently
satisfy the device’s internal dependencies. Required Actions are a sequence of tool calls that an
agent must perform. This ensures the agent’s subsequent actions are based on up-to-date information
gathered from the environment. For example, before attempting to change an air purifier’s fan speed,
the agent is required to first invoke the tool get_room_devices (utility_room) to confirm
the device’s existence. An episode is marked as successful only if the agent both satisfies the goal
and its tool call history contains all required actions.

STEP3: Query Synthesis. In general, a user’s natural language query embodies a goal to be
achieved, and the clarity of this goal is essential for an accurate evaluation of the agent’s success.
Therefore, we first defined a verifiable goal for the agent to accomplish and subsequently synthe-
sized a natural language query based on it. We then used GPT-5-mini (OpenAlL|2025c)) to synthesize
the natural language queries from these predefined goals. To ensure each query accurately reflected
its predefined goal, two graduate students researching tool agents independently reviewed the entire
dataset. Their inter-annotator agreement, measured using Cohen’s « coefficient (Cohen, |1960), was
0.92 for identifying queries that required correction. This demonstrates that the validation procedure
for our dataset is highly consistent and reliable, suggesting that the benchmark data is composed of
high-quality natural language queries.

STEP4: Episode Generation. By integrating the components generated in the preceding steps, we
constructed our final benchmark dataset. We generated 50 distinct episodes for each of the 12 query
types, resulting in a high-quality dataset of 600 episodes designed for evaluating smart home agents.

4.3 EVALUATION METHODS

As illustrated in Figure 3] we evaluate agent performance across the 12 query types defined in §4.1]
using two complementary methods: simulator-based and LLM-judge-based evaluation.

Simulator-based Evaluation. Simulator-based evaluation is essential for episodes that target phys-
ical state changes because outcomes must be assessed objectively and reliably. At the end of each
episode, the simulator automatically verifies the final states of all relevant devices and environmental
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Table 1: Evaluation results show success rates (in %) across query types (QTs). F and IF refer to
Feasible and Infeasible episodes, respectively. Superscripts J and .S indicate results from LLM-
judge-based and simulator-based evaluation, respectively.

QT1 QT2 QT3 QT4-1 QT4-2 QT4-3
Models F ¥ FF ¥ F 1IF F 1IF F 1IF F IF

Open Source Large Language Models (<7B)

Llama3.2-1B-it 0 0 0 0 0 0 0 0 0 0 0 0
Llama3.2-3B-it 10 12 0 2 4 0 2 0 2 0 0 0
Gemma3-4B-it 44 32 12 10 28 8 0 0 2 0 0 4
Open Source Large Language Models (Standard)
Llamad4-Scout 58 42 2 22 24 34 4 4 2 2 2 0
Llamad4-Maverick 96 78 52 36 88 74 22 14 18 10 32 8
Qwen3-32B 82 66 62 30 52 68 18 14 14 8 16 6
Qwen3-235B-A22B 86 74 32 36 8 70 26 18 38 34 28 48
Gemma3-12B-it 78 38 14 32 32 24 2 0 0 0 0 0
Gemma3-27B-it 80 48 54 24 48 44 4 2 10 8 0 6

Closed Source Large Language Models (Standard)
Gemini2.5-Flash-Lite 78 60 44 50 50 50 8 34 10 16 16 20

Gemini2.5-Flash 92 8 66 54 82 74 22 4 40 32 12 32

GPT-4.1-nano 58 42 6 12 30 16 2 6 6 0 0 0

GPT-4.1-mini 96 76 62 28 64 76 26 40 40 20 10 28

GPT-4.1 98 82 44 44 84 88 50 12 46 34 34 32
Closed Source Large Language Models (with Reasoning)

Gemini2.5-Pro 96 78 60 56 76 72 44 94 60 76 46 50

GPT-5.1 100 94 8 50 8 92 60 100 72 92 56 44

variables, and compares them with the goal defined for that episode. In the QT4-Feasible episode
shown in Figure [3] after the agent completes all its actions, the simulator accelerates time to 19:00,
when the laundry cycle finishes. The goal state (washer off, kitchen light on) is then compared with
the simulator’s final state to determine success. This direct state comparison enables fully automated
and fair model-to-model comparisons. We apply simulator-based evaluation to all feasible episodes
in QT2, QT3, and QT4, which involve physical state changes in the home environment.

LLM-judge-based Evaluation. We employ an LLM-based judge for episodes where success de-
pends on the agent’s final natural-language response rather than physical state changes. The judge
receives the episode goal, user query, and the agent’s full reasoning trajectory, along with a descrip-
tion of any infeasible conditions that must be verified. This allows the judge to assess whether the
final answer is supported by coherent reasoning. For example, in the QT4-Infeasible episode shown
in Figure 3] the LLM-judge evaluates the agent’s explanation of a scheduling conflict.

We apply LLM-judge-based evaluation to all infeasible episodes (QT1-IF through QT4-IF), which
require assessing whether the agent correctly identifies and explains constraint violations. Addi-
tionally, QT1-Feasible also uses LLM-judge evaluation because success depends on providing ac-
curate information in natural language rather than changing device states. For reliability, we query
the judge three times per case and adopt the consistent outcome (Taubenfeld et al., [2025). Our
LLM-judges achieved substantial agreement (Cohen’s « = 0.826) with human evaluations (see Ap-
pendix [M)). Detailed prompt templates are in Appendix[0.2]

5 EXPERIMENTS

Experimental Setup. We evaluate 16 models across the 12 query types defined in §4.1] spanning
four categories: open-source models under 7B parameters, open-source standard models, closed-
source standard models, and closed-source reasoning models. All experiments use the ReAct frame-
work (Yao et al.l 2023), enabling step-by-step reasoning and action generation. Reproducibility
details and agent prompts are in Appendix [N]and [O.1]



Under review as a conference paper at ICLR 2026

Table 2: Error taxonomy. Detailed descriptions and examples are provided in Appendix

Category  Error Type Definition

Feasible Environment Perception (EP) Failure to correctly perceive environmental variables.
Intent Inference (II) Misinterpreting the user’s underlying goal.
Device Control (DC) Operating the wrong device or command.
Action Planning (AP) Incomplete or incorrect planning of actions.
Temporal Reasoning (TR) Miscalculating times or sequence alignment.

Infeasible Contradiction Mishandling (CM) Detects a contradiction but fails to follow the instruction.

Contradiction Blindness (CB) Fails to detect a contradiction.
LLM-Judge (LJ) Misclassification by LLM-Judge.
L
AP EP . . J ™
7% n 6%
11% T11% 17% ’
DC 4.
11% EP 40%
19% AP
71%
DC 25% 86%
[}
TR CB
(a) QT2-FS (b) QT4-FS (c) QT2-IF) (d) QT4-IF!

Figure 4: Error type distributions of GPT-4.1 on QT2 and QT4.

5.1 MAIN RESULTS

Table [T] presents the performance across all query types (QT1-QT4). We analyze the results by
categorizing models into three groups based on scale and reasoning capability.

Lightweight Models. Models under 7B exhibit severe limitations across all query types. For in-
stance, Llama3.2-1B-it achieves 0% across all tasks, while Gemma3-4B-it shows marginal success
on basic tasks such as information retrieval (QT1-F: 44%) and explicit commands (QT3-F: 28%).
However, these models completely fail on complex reasoning tasks, with near-zero success rates
on implicit intent inference (QT2) and temporal reasoning (QT4), indicating insufficient reasoning
capabilities for our benchmark.

Standard Models. This group comprises closed-source models (e.g., GPT-4.1, Gemini2.5-Flash)
and large open-source models (e.g., Llama4-Maverick). Even GPT-4.1, the best-performing stan-
dard model, struggles with implicit intent inference (QT2) and temporal reasoning (QT4). GPT-4.1
achieves only 44% on QT2-F, compared to 84% on explicit device control (QT3-F). This gap high-
lights the difficulty of interpreting ambiguous user queries. Performance on temporal reasoning
(QT4) plateaus at approximately 30-50% for feasible episodes and degrades further in infeasible
scenarios (12-34%), revealing limited ability to detect temporal contradictions.

Reasoning Models. Advanced reasoning models (Gemini2.5-Pro, GPT-5.1) demonstrate substantial
improvements over standard models, particularly in temporal reasoning and implicit intent inference.
On temporal reasoning tasks (QT4-F), GPT-5.1 achieves 56—72% compared to GPT-4.1’s 34-50%.
The improvement is especially pronounced in infeasible episodes, where GPT-5.1 reaches 100% on
QT4-1-IF and 92% on QT4-2-IF, compared to GPT-4.1’s 12% and 34%. This demonstrates stronger
capability in detecting temporal contradictions. Beyond temporal reasoning, GPT-5.1 also achieves
80% on QT2-F compared to GPT-4.1’s 44%, indicating improved interpretation of latent user intents.

5.2 ANALYSIS
5.2.1 ERROR ANALYSIS.

We define eight error types to analyze agent failures: five for feasible episodes (EP, I, DC, AP, TR)
and three for infeasible episodes (CM, CB, LJ). Error taxonomy is provided in Table[2] Our analysis
centers on GPT-4.1, the best-performing model. Figure[d]summarizes the error type distributions for
GPT-4.1 across feasible and infeasible episodes. For feasible episodes, figure (a) and (b) show error
distribution in QT2 and QT4.
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Table 3: Average episode completion time (seconds) across query types. While reasoning models
achieve high accuracy, they incur significant latency costs compared to the standard model (GPT-
4.1).

QT1 QT2 QT3 QT4-1 QT4-2 QT4-3

Model F IF F IF F IF F IF F IF F IF
Gemini-2.5-Pro 24.1 224 575 488 66.1 27.8 74.0 125 577 37.0 537 53.1
GPT-5.1 3577 384 1094 99.6 786 543 121.1 135 1351 76.0 1127 111.0
GPT-4.1 83 7.8 236 202 229 94 266 123 28.7 237 29.7 259
£ 10 9.5 9.4 9.2 GPT4.1 57.1%
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Figure 5: Tool-call error patterns of four models on QT3-F. The left chart shows the average number
of errors relative to the average number of tool calls in successful cases. The right chart shows the
proportion of tasks achieved through first-try success versus those requiring error recovery.

In QT2 (indirect requests), failures were dominated by Device Control (DC, 71%), where the model
issued heuristic guesses instead of using the correct API. Intent Inference (II) errors (11%) also
appeared, reflecting difficulty in mapping vague complaints such as “The room is too hot” to the
appropriate device action.

QT4 (temporal scheduling) exhibited a more diverse mix: DC (40%), Temporal Reasoning (TR,
25%), and Action Planning (AP, 19%) all contributed substantially, alongside smaller II errors
(11%). These distributions show that multi-step temporal reasoning requires coordinating multi-
ple skills simultaneously, making it substantially harder than direct execution tasks.

For infeasible queries, figure (c) and (d) highlight two dominant patterns. In QT1-QT3, GPT-4.1 of-
ten detected the contradiction but failed to follow the instructed protocol, resulting in Contradiction
Mishandling (CM). For example, when asked to raise the kitchen temperature using a non-existent
heat pump, it instead acted on the living-room heat pump. In QT4, the dominant issue was Con-
tradiction Blindness (CB): the model failed to recognize temporal infeasibility (e.g., contradictory
deadlines) and proceeded as if the request were valid. Even when contradictions were recognized,
responses were frequently mishandled (CM).

5.2.2 ROLE OF TooL FEEDBACK

To better understand agent dynamics, we examined QT3, where most models were relatively strong.
Figure 5| shows that over 40% of successful QT3 episodes involved recovery after an initial invalid
tool call. In other words, agents did not require perfect prior knowledge of the Matter protocol
but learned reactively from error messages. This ability to recover explains their robustness on
explicit device-control queries. In contrast, the weakness on QT4 stems in part from its deferred-
feedback: agents typically call the tool schedule_workflow, which returns only a scheduling
acknowledgment (i.e., a success/failure message) without validating executability. Consequently,
the simulator provides little corrective signal, leaving the agent unable to revise its plan.

5.2.3 PERFORMANCE-LATENCY TRADE-OFF

As discussed in §5.1] advanced reasoning models demonstrate significant performance gains. How-
ever, these gains come with a critical trade-off in latency. Table [3|shows the average episode com-
pletion time for high-performing models. Reasoning models have unacceptably large latency for
practical deployment. For instance, GPT-5.1 takes up to 135.1 seconds and Gemini-2.5-Pro takes
up to 74.0 seconds on average. In a smart home context, users typically expect immediate responses
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in less than a second. Therefore, even GPT-4.1 (best-performing standard model) cannot meet real-
time requirements, as it takes up to 29.7 seconds. The extended latency of reasoning models further
limits practical utility despite their accuracy improvements. At the other end of the spectrum, models
under 7B parameters are more practical choices for deployment but achieved minimal performance
as shown in §5.1] This suggests that the complex reasoning and tool-use coordination required by
SimuHome present significant challenges for real-world smart home environments.

5.2.4 DISENTANGLING FRAMEWORK LIMITATIONS FROM MODEL CAPABILITIES

To investigate whether the failures in QT4 stem from 80

mmm GPT-4.1 + ReAct GPT-4.1 + HiAgent

the ReAct framework itself or from the models’ core
reasoning capabilities, we conducted two ablation
studies.

Adopting a Complex Planning Algorithm. We
adopted HiAgent (Hu et al.| [2025)), a framework that
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incorporates hierarchical working memory and ad- 0
vanced planning algorithms. We compared its per-
formance against ReAct on QT4 tasks using GPT-
4.1. Figure [6] shows that HiAgent outperformed
ReAct on QT4-2 and QT4-3, but underperformed
on QT4-1, achieving only 40% compared to Re-
Act’s 50%. These results indicate that while ReAct’s

QT4-1-F QT4-2-F QT4-3-F
Figure 6: Performance comparison between

ReAct and HiAgent on QT4 tasks.

Table 4: Recovery rates from QT4 failures
using self-review.

framework has limited support for complex tempo- Type  Failures Recoveries Rate Steps
ral coordination, not all temporal reasoning failures  QT4-1 25 2 80% 64.4
stem from the framework. QT4-2 27 5 18.5% 26.8

QT4-3 33 0 0.0% 29.7

Enabling Runtime Periodic Self-Review. We
tested a realistic setting where agents can adjust
plans through periodic self-review. After scheduling workflows, the agent received callback trig-
gers to review and correct its plans before and immediately after execution. The agent was required
to independently evaluate the outcome to determine the appropriate subsequent actions. The re-
sults in Table @] reveal that self-review achieved only 0% to 18.5% recovery rates across QT4 tasks.
Crucially, even when the agent was explicitly prompted to inspect the home state immediately after
execution, it failed to recognize the task failure in most cases.

The continued failure on QT4 tasks, even after adopting advanced planning techniques and enabling
runtime periodic self-review, demonstrates that the primary bottleneck is not the ReAct framework
itself. Instead, the failures are likely attributed to the inherently limited capabilities of current models
to ground complex home states and perform precise temporal reasoning.

6 CONCLUSION

We propose SimuHome, a Matter-aligned simulator and benchmark that reproducibly evaluates
smart home LLM agents under realistic, dynamically changing conditions. We model 4 environ-
mental variables (i.e., temperature, illuminance, humidity, air quality) and 17 device types with
time-based effects and strict reproducibility, enabling near drop-in transfer to real Matter-compliant
devices. We provide 600 episodes across 12 query types with feasible and infeasible variants, pack-
aging each episode with an initial state, a verifiable goal, a natural-language query, and required
actions for process-aware, objective scoring. We score feasible tasks by final state-to-goal compari-
son in the simulator and assess infeasible logic checks with LLM judge that shows high agreement
with human evaluation. We evaluate 16 models under the ReAct setup. Even high-performing
standard models struggle with implicit intent inference, state verification, and temporal scheduling.
While reasoning models consistently outperform standard models across all query types, they in-
cur prohibitive latency costs. These results highlight a critical performance-practicality trade-off,
positioning SimuHome as a vital testbed to address these challenges for real-world deployment.
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A INFEASIBLE QUERY TYPES

QT1 Infeasible. This evaluates the ability to identify requests based on a false premise, such as
asking for information about non-existent devices or unsupported attributes. For example, for the
request “Can you tell me the vendor ID for the air purifier in the living room?”, the agent must
check the list of devices in the living room, confirm the absence of an air purifier, and explain that
the request’s premise is invalid.

QT2 Infeasible. This assesses the ability to identify situations where, even if the user’s intent
is correctly inferred, the goal is impossible to achieve due to environmental constraints or device
limitations. For example, in response to “The living room feels like a sauna”, the agent must verify
that the living room’s cooling system is already operating at maximum capacity and explain, with
supporting reasons, why further cooling is not possible.

QT3 Infeasible. This evaluates the ability to identify and reject a command to control a non-existent
device. For example, for the request “Turn on the humidifier in the living room”, the agent must
check the device list for the living room and confirm the absence of a humidifier. It should then
explain that the request cannot be fulfilled and terminate the task without altering any device’s state.

QT4-1 Infeasible. This assesses the ability to identify and explain situations where a scheduling re-
quest is invalid because the user’s specified relative and absolute times are contradictory, or because
the user has a misunderstanding of the current time. For example, if a user asks, “It’s 6 p.m. now,
right? Turn on the kitchen light five minutes later at 6:05 p.m.”, but the actual time is not 6 p.m.,
the agent must check the current time, detect the discrepancy between the relative expression “five
minutes later” and the absolute time “6:05 p.m.”, and clearly explain the contradiction.

QT4-2 Infeasible. This evaluates the ability to identify and explain, with evidence, requests where
the user incorrectly assumes a device’s completion time or creates a contradiction by providing both
relative and absolute times. For example, suppose a washer is set to finish at 6:30 p.m., but the user
requests, “I think the washer finishes at 6 p.m., so start the dehumidifier at 5:50 p.m., which is 10
minutes before it finishes”. The agent must check the washer’s actual estimated completion time.
It then needs to point out that the user’s assumption (6 p.m.), the relative expression (“10 minutes
before”), and the absolute time (“5:50 p.m.”) are all inconsistent. The agent must not register the
schedule until the contradiction is resolved and should ask the user to reconfirm the correct timing.

QT4-3 Infeasible. This evaluates the ability to identify and explain that a requested deadline is
physically impossible to meet, given the current progress of two operating devices. For example, if
the user requests, “Guests arrive at 6 p.m., so ensure both the washer and the dishwasher are com-
pleted by 5:30 p.m.”, the agent must check the current time and the minimum time required for each
device to finish. Based on this, it should explain with clear reasoning why a 5:30 p.m. completion
is not feasible and suggest the earliest possible completion time or an alternative sequential plan.

B LisT OF TOOLS

Table 5: Tool List for Agent

Name Description Args

finish Complete the task and return the answer (str, req): Final response
final natural-language answer. text.
Get control rules for a specific state (str, req): Environmental

et_environment_control_rules . i
& environmental state. state (temp, humidity, etc).

Ask the user a question to gather
additional information, clarify
ambiguity, confirm preferences, or
get missing details.

ask_user question (str, req).

Continued on next page...
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Table 5: Tool List for Agent (Continued)

Name

Description

Args

execute_command

write_attribute

get_all_attributes

get_attribute

get_device_structure

get_rooms

get_room_devices

get_room_states

get_cluster_doc

get_current_time

schedule_workflow

cancel_workflow
get_workflow_status

get_workflow _list

Execute a command on a device
(e.g., turn on light, set level, set
setpoint).

Directly set a device attribute
value.

Get all attributes of a device.
Get a specific attribute of a device.

Get device structure (endpoints,
clusters, attributes, and
commands).

Get all rooms in the home along
with their display names.

Get all devices in a room.

Get environmental states of a room
(temperature, humidity,
illuminance, PM10).

Perform semantic search across
Matter cluster documentation.

Get current virtual time as
human-friendly string
“YYYY-MM-DD HH:MM:SS”.

Schedule a sequential workflow of
steps at a virtual absolute time.

Cancel a scheduled workflow by
id.

Get workflow status by id.

Get list of workflows with optional
filtering.

device_id, endpoint_id,
cluster_id, command_id
(strs/ints, req); args (dict, req).

device_id, cluster_id,
attribute_id (strs, req);
value (any, req).

device_id (str, req).

device_id, cluster_id,
attribute_id (str, req).
device_id (str, req).
(none)

room-_id (str, req).

room_1id (str, req).

query (str, req); top_k (int, req).

(none)

start_time (str, req); steps
(list, req).

workflow_id (str, req).
workflow_id (str, req).

(none)

C LiIST OF MATTER CLUSTERS

Table 6: Implemented Matter clusters.

Cluster Attributes Commands
. . VendorName, VendorID, ProductName,
Basic Information None
ProductID
Descriptor DeV1<?eTypeLlst, ServerList, ClientList, PartsList, None
TagList
OnOff GlobalSceneControl, OnTime, OffWaitTime, Off, On, Toggle

StartUpOnOff
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Table 6: Implemented Matter clusters (Continued)

Cluster

Attributes

Commands

Level Control

Fan Control

MediaPlayback

Channel

KeypadInput

Identity

Operational State

Power Source

Power Topology

Electrical Power
Measurement

Electrical Energy
Measurement

Device Energy
Management

Dishwasher Mode

Dishwasher Alarm

Refrigerator And
Temperature
Controlled Cabinet
Mode

CurrentLevel, RemainingTime, MinLevel,
MaxLevel, CurrentFrequency, MinFrequency,
MaxFrequency, OnOffTransitionTime, OnLevel,
OnTransitionTime, OffTransitionTime,
DefaultMoveRate, Options, StartUpCurrentLevel

FanMode, FanModeSequence, PercentSetting,
PercentCurrent

CurrentState

ChannelList, Lineup, CurrentChannel

SupportedKeys
IdentifyTime, IdentifyType

PhaseList, Current Phase, CountdownTime,
Operational State List, Operational State,
Operational Error

ClusterRevision, FeatureMap, Status, Order,
Description, EndpointList,
WiredAssessedInputVoltage, BatVoltage,
BatPercentRemaining, BatChargeState,
ActiveBatFaults

ClusterRevision, FeatureMap,
AvailableEndpoints, ActiveEndpoints

PowerMode, NumberOfMeasurementTypes,
Accuracy, ReactiveCurrent, ApparentCurrent,
ReactivePower, ApparentPower, RMS Voltage,
RMSCurrent, RMSPower, Frequency,
PowerFactor

Accuracy, CumulativeEnergyImported,
CumulativeEnergyExported,
PeriodicEnergylmported,
PeriodicEnergyExported, CumulativeEnergyReset

ESAType, ESACanGenerate, ESAState,
AbsMinPower, AbsMaxPower,
PowerAdjustmentCapability, Forecast,
OptOutState

SupportedModes, CurrentMode

Mask, Latch, State, Supported

SupportedModes, CurrentMode

MoveToLevel, Move, Step,
Stop,
MoveToClosestFrequency

Step

Play, Pause, Stop, StartOver,
Previous, Next, Rewind,
FastForward

ChangeChannel,
ChangeChannelByNumber,
SkipChannel

SendKey
Identify, TriggerEffect

Pause, Resume, Stop, Start,
Operational Comman-
dResponse

None

None

StartMeasurement,
StopMeasurement,
ResetMeasurement,
GetMeasurementSnapshot

StartEnergyMeasurement,
StopEnergyMeasurement,
ResetCumulativeEnergy,
GetEnergySnapshot

None

ChangeToMode,
GetSupportedModes

Reset,
ModifyEnabledAlarms,
GetAlarmState,
GetActiveAlarms

ChangeToMode
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Table 6: Implemented Matter clusters (Continued)

Cluster Attributes Commands

RVC Clean Mode SupportedModes, CurrentMode ChangeToMode

RVC Operational PhaseList, CurrentPhase, CountdownTime,

P Operational StateList, Operational State, Pause, Resume, GoHome

State .
OperationalError

RVC Run Mode SupportedModes, CurrentMode Start, Stop, Map, StopMap
TemperatureSetpoint, MinTemperature,

Temperature MaxTemperature, Step, SetTemperature

Control SelectedTemperatureLevel, P
SupportedTemperatureLevels

Temperature MeasuredValue, MinMeasured Value, None

Measurement MaxMeasured Value
LocalTemperature, OccupiedCoolingSetpoint,

Thermostat OccupiedHeatingSetpoint, SetpointRaiseLower
ControlSequenceOfOperation, SystemMode
Type, ConfigStatus, OperationalStatus,
EndProductType, Mode, SafetyStatus, UpOrOpen, DownOrClose,

WindowCovering CurrentPositionLiftPercent100ths, StopMotion,
TargetPositionLiftPercent100ths, GoToLiftPercentage
NumberOfActuationsLift, etc.

Laundry Dryer SupportedDrynessLevels, SelectedDrynessLevel None

Controls pp y ’ y

Laundry Dryer

Mode SupportedModes, CurrentMode ChangeToMode

Laundry Washer SpinSpeeds, SpinSpeedCurrent, None

Controls NumberOfRinses, SupportedRinses

Laundry Washer

Mode SupportedModes ChangeToMode

Relative Humidity MeasuredValue, MinMeasured Value, None

Measurement

MaxMeasuredValue, Tolerance

D LIST OF DEVICE TYPES

Table 7: List of implemented device types and their corresponding clusters.

Device type Clusters

Air Conditioner Basic Information, Fan Control, OnOff, Thermostat

Air Purifier Basic Information, Descriptor, Fan Control, Identify, OnOff
Dehumidifier Basic Information, Fan Control, OnOff, Relative Humidity Measurement
Dimmable Light Basic Information, Level Control, OnOff

Dishwasher Basic Information, OnOff, Operational State

Electrical Sensor

Basic Information, Electrical Energy Measurement, Electrical Power
Measurement, Power Topology

Fan

Basic Information, Fan Control, OnOff

Freezer

Basic Information, Descriptor, Refrigerator And Temperature Controlled
Cabinet Mode, Temperature Control, Temperature Measurement

Continued on next page
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Device type Clusters

Heat Pump Basic Information, Descriptor, Device Energy Management, Electrical Energy
Measurement, Electrical Power Measurement, Power Source, Power
Topology, Thermostat

Humidifier Basic Information, Fan Control, OnOff, Relative Humidity Measurement

Laundry Dryer Basic Information, Laundry Dryer Controls, Laundry Dryer Mode, OnOff,
Operational State

Laundry Washer Basic Information, Laundry Washer Controls, LaundryWasherMode, OnOff,
Operational State, Temperature Control

On Off Light Basic Information, OnOff

Refrigerator Basic Information, Descriptor, Refrigerator And Temperature Controlled
Cabinet Mode, Temperature Control, Temperature Measurement

RVC Basic Information, RVCCleanMode, RVCOperational State, RVCRunMode

TV Basic Information, Channel, KeypadInput, Level Control, MediaPlayback,

OnOff

Window Covering
Controller

Basic Information, Window Covering

E ERROR ANALYSIS

E.1 ERROR TAXONOMY DETAILS
Table 8: Error Types in Feasible Episodes
Error Type Definition Example

Environment Perception
Errors (EP)

Intent Inference Errors (II)

Device Control Errors
(DO)

Action Planning Errors
(AP)

Temporal Reasoning Errors
(TR)

Failure to correctly perceive or
retrieve a value of environmental
variables.

Misinterpreting user’s underlying
goal.

Executing the wrong device, wrong
command, or missing control steps.

Incorrect or incomplete construction
of the control workflow.

Miscalculating relative/absolute
times or sequence alignment.

Querying wrong sensor,
misidentifying device state,
guessing instead of perceiving.

Not executing actual commands
even when a user’s intention is clear.

Setting wrong channel, adjusting
fan speed without turning it on first.

Breaking logical dependencies, only
executing part of a multi-goal query
without consideration.

Scheduling “in 10 minutes” at
wrong time, miscomputing
dishwasher completion.

Table 9: Error Types in Infeasible Episodes

Error Type

Definition

Example

Contradiction Mishandling
Errors (CM)

Contradiction Blindness
Errors (CB)

The agent detects a contradiction
but does not follow the proper
instruction-following rule.

The agent completely fails to
recognize a contradiction and
executes the request as if it were
valid.

18

Instead of informing the user
regarding impossibility, it arbitrarily
manipulates other devices or
ignores the instruction.

Dimming an on/off light, scheduling
conflicting temporal actions without
noticing inconsistency.
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Table 9 continued from previous page

Error Type Definition Example

Errors caused not by the agent but
by the evaluation system
misclassifying or overlooking
behavior.

Penalizing an informative refusal as
a failure, or wrongly accepting
hallucinated control as valid.

LLM-Judge Errors (LJ)

E.2 ERROR TYPE DISTRIBUTIONS

Error Type QT2 QT3 QT4-1 QT4-2 QT4-3
Environment Perception (EP) 3 0 4 1 0
Intent Inference (II) 3 1 0 4 5
Device Control (DC) 20 7 13 13 8
Action Planning (AP) 2 0 6 3 7
Temporal Reasoning (TR) 0 0 13
Total 28 8 25 27 33

Table 10: Error type distribution of GPT-4.1 in feasible episodes.

Error Types QT1 QT2 QT3 QT4-1 QT4-2 QT4-3
Contradiction Mishandling (CM) 8 24 6 5 6 1
Contradiction Blindness (CB) 0 5 0 40 25 30
LLM-Judge (L)) 1 0 0 0 1 2
Total 9 29 6 45 32 33

Table 11: Error type distribution of GPT-4.1 in infeasible episodes.

E.3 DISTRIBUTION OF API RESPONSE ERRORS FOR QT3

S

91%)
310%
6.1%:
148157o) n=33
Error Types
mmm CLUSTER_NOT_FOUND
- COMMAND_EXECUTION_ERROR
Gemini-2.5-Flash Llama-4-Mav.

mmm COMMAND_NOT_FOUND
mmm INTERNAL_ERROR

== MISSING_PARAMETERS
mmm READ_ONLY

== VALIDATION_ERROR

Qwen3-235B

Figure 7: Distribution of API response errors encountered during successful episodes on QT3-
Feasible.
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F MULTI-TURN INTERACTIVE DIALOGUE EXPERIMENTS

To investigate the impact of multi-turn interactions on task performance, we implemented two experimental
settings using the QT2-F dataset. In these experiments, we used the GPT-4.1 model.

Experiment 1: Multi-turn Providing Context. To examine scenarios where users provide clarifications and
additional context, we built a user simulator based on GPT-4.1-mini designed to provide goal-aligned informa-
tion when requested. We enabled the agent to ask for clarification from the user through an ask_user() tool and
configured the prompt to encourage its use when information is uncertain.

The success rate increased slightly from 44% to 50%. However, the model did not sufficiently utilize the
ask_user() tool, despite our explicit prompt to use this action when clarification is needed. Only 10 out of
28 failed cases called the ask_user() tool. We attribute this to the model’s inability to recognize situational
ambiguity on its own.

Experiment 2: Multi-turn Correcting Misunderstandings. To examine scenarios where users correct mis-
understandings across multiple turns, we implemented a correction loop where, if the agent fails to complete a
task, the user simulator provides explicit feedback such as “Incorrect. Please review and try again”. Note that
users are highly likely to perceive such cases as failures anyway.

The success rate improved from 44% to 54%. However, despite receiving explicit feedback, the failure rate
remained high. This suggests that the model’s self-correction capability, the ability to diagnose and fix its own
reasoning errors, is still limited.

Overall, our multi-turn experiments confirmed that conversational interaction improves performance from 44%
to 50-54%. However, the performance plateau at this level indicates that multi-turn interaction remains insuffi-
cient to fully address the underlying challenges, suggesting that low performance stems primarily from lack of
fundamental capabilities rather than insufficient user interaction.

G DYNAMIC RE-EVALUATION WITH POST-EXECUTION FAILURE NOTICE

To examine whether agents can recover from scheduling failures through dynamic re-evaluation, we imple-
mented a multi-turn feedback loop to test post-execution re-evaluation when a failure is explicitly reported. We
focused on episodes where GPT-4.1 initially failed on QT4-1, QT4-2, and QT4-3-F.

At the scheduled execution time, the SimuHome simulator checks whether the target device state was achieved.
If not, a user simulator (GPT-5-mini) provides natural language feedback to the agent (e.g., “The device you
scheduled is not in the expected state”). The agent then re-attempts the task with this feedback. It is important to
note that this setting is quite unrealistic and highly favorable to the agent, because in real scenarios, it is difficult
to expect an oracle to immediately notify the agent of an execution failure at the scheduled time. Instead, the
agent is expected to inspect the success or failure of the scheduled task without the involvement of an oracle
or the user. Table[I2]shows that post-execution failure notice enables recovery in 55-67% of failed cases with

Table 12: Recovery rates from QT4 failures with post-execution failure notice. An oracle notifies
the agent when scheduled tasks fail.

Query Type Failed Cases Recovery Success Recovery Rate Avg. Steps

QT4-1 25 15 60.0% 6.7
QT4-2 27 15 55.6% 4.7
QT4-3 33 22 66.7% 4.4

efficient step counts (4.4-6.7 steps). Specifically, recovery rates were 60.0% for QT4-1 (15 out of 25 failed
cases), 55.6% for QT4-2 (15 out of 27 failed cases), and 66.7% for QT4-3 (22 out of 33 failed cases). However,
the results should be interpreted with caution and viewed as a topline estimate of model performance, because
this setting is quite unrealistic, as failure notices require the involvement of an oracle. For users, the initial
failure is still perceived as a failure, even if the model can correct it after the user’s complaint.

H FINE-TUNING EXPERIMENT: ASSESSING MEMORIZATION RISK

To empirically investigate the potential memorization of the 12 query types, we conducted an additional SFT
experiment. First, we constructed a high-quality training dataset by compiling 204 gold trajectories (17 per
type) that GPT-5.1 successfully solved on newly generated episodes distinct from the original benchmark.
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For the experiment, we evaluated small-scale models (<7B) such as Llama3.2-1B/3B-it and Gemma3-4B-it
due to time constraints. We selected Gemma3-4B-it because it was the only model that recorded non-zero
performance on the main tasks. A non-zero baseline is essential to meaningfully measure the impact of SFT.

Table 13: Performance of fine-tuned Gemma3-4B-it on query types involving physical state changes.

Model QT2-F QT3-F QT4-1.F QT4-2-F QT4-3-F
Gemma3-4b-it 120% 280%  0.0% 2.0% 0.0%
Gemma3-4b-it SFT ~ 22.0%  24.0%  4.0% 4.0% 0.0%

Table |13 shows mixed outcomes: while QT2-F improved from 12% to 22%, QT3-F decreased from 28% to
24%, and temporal reasoning tasks (QT4) remained near zero. Despite explicit training on gold trajectories,
the model failed to generalize to dynamic environmental variations. This demonstrates that the tasks in our
benchmark cannot be accomplished by simply memorizing successful trajectories, and static datasets alone
have clear limitations in handling dynamic environmental changes.

I ANALYSIS OF GPT-4.1 PERFORMANCE ON QT2-F

As shown in Table |1} GPT-4.1 shows lower performance on QT2-F (44%) compared to GPT-4.1-mini and
Gemini2.5-Flash. The root cause lies in the transition_time parameter for dimmable lights, which specifies
the duration for brightness changes. GPT-4.1-mini and Gemini2.5-Flash set this parameter to 0 seconds for
immediate brightness changes, while GPT-4.1 set it to 2-3 seconds for gradual transitions. We opt to verify the
home states immediately after task completion because the queries do not request gradual transitions and it is
better to avoid unexpected environment changes that may interfere with the lights during the transition. As a
result, GPT-4.1 had not yet reached the target brightness at evaluation time. When we allow a 3-second delay,
GPT-4.1’s success rate increases to 62% from 44%.

J ADDRESSING DEFERRED FEEDBACK THROUGH SIMULATION-BASED
PRE-VALIDATION

Deferred feedback poses a fundamental challenge in smart home environments, as agents often cannot verify the
success of scheduled actions until execution time. This raises a critical question regarding the future direction
of research: whether to focus on developing better pre-validation tools for immediate feedback or on advancing
agent architectures to handle deferred outcomes.

We believe the most promising path forward is to integrate SimuHome directly into the agent architecture as a
runtime world model for pre-validation, going beyond simple API checkers.

Pre-validation is a non-trivial task because feasibility in smart home environments is not determined by fixed
rules but varies depending on dynamic state changes and interactions between devices. For instance, a sched-
uled workflow that was considered valid at the registration time could become invalid and lead to execution
failure if other events occur between scheduling and execution time and conditions change. Therefore, we be-
lieve that running simulations is crucial and that agent reasoning alone may not be sufficient to account for the
complexity of dynamic environments.

Specifically, in a real-world deployment scenario, upon receiving a scheduling request, the agent would first
execute the plan within SimuHome. By leveraging SimuHome’s time acceleration capability, the agent can
immediately observe future outcomes and detect potential conflicts. If issues arise, the agent revises the plan
within the simulation before committing to the real-world action. Furthermore, simulations can be conducted
periodically to enable the agent to detect potential execution errors in advance. This approach combines the
benefits of both pre-validation and architectural advances by embedding simulation-based reasoning directly
into the agent’s decision-making process.

K DiscussioN ON COMPLEX ENVIRONMENTAL INTERACTIONS

To support increasingly realistic smart home scenarios, SimuHome’s Aggregator architecture can be extended
to accommodate more complex interactions, including Environment— Environment and Device—Device inter-
actions.

Environment— Environment interactions can be implemented by introducing additional devices that mediate
environmental variables. For example, a window can be modeled as a standard device with Open/Close/Out-
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sideTemperature attributes that directly affects indoor temperature. By adding an external heat influx coefficient
to the Aggregator equation, the simulator can dynamically reduce the cooling efficiency of the air conditioner
when the window is in the Open state.

Device—Device interactions can be implemented by introducing additional environmental variables that me-
diate between devices. For instance, total power load can be defined and tracked as an environmental variable,
analogous to temperature or illuminance, whose value is adjusted by the power consumption of devices in the
home. This variable can then mediate interactions between devices. If the total power load exceeds a safety
threshold, the simulator can forcibly shut down all devices, thereby simulating a breaker trip scenario.

These extensions demonstrate the flexibility of SimuHome’s architecture for future enhancements in modeling
complex smart home environments.

L GoAL EXAMPLES

Table 14: Example goals for each query types

Query Type

Query

Required Actions

Goal

QT1 Feasible

How bright is the utility room
lighting right now? I am
sorting some boxes and
wondering if there is enough
light. Also how is the living
room humidity doing? I am
thinking about the plants there
and want to know if they are
comfortable.

get_room-_
states
(utility_room)
get_room-
states
(living_-room)

The utility room
illuminance is 1000
lux. The living room
humidity is 50%.

I am about to shower and

. get_room- Bathroom fan 1 not

QT1 Infeasible wondering what fan modes are devices found; mode

available for fan 1 in the :

bathroom? (bathroom) unavailable.

Ugh the kitchen feels really

dry my hands are tight I left get_room_

the bread rising there so I am devices .

. . . , Increase kitchen

QT2 Feasible already a bit worried about it. (kitchen) humidity: decrease

The living room feels dusty get_room- livi Y

o ) iving room PM10.

my eyes are itching and my devices

throat is a little raw like there (living_room)

is grit in the air.

Ugh the office is so chilly, my get_room_ Office heat pump 1 is
QT2 Infeasible hands go numb just thinkin, devices missing; cannot

g J g g

about working there later (office) increase temperature.

Set a softer light in the living

room for evening reading, turn -

.. . ; get_room._ Living room
the living room dimmer light 1 . . .
. devices dimmable light 1 on

on and set it to level 50. Cool (living.room) at level 50; stud
QT3 Feasible the study a bit for working 9- Vs study

comfort. turn the study room get_room- room air conditioner

’ Y devices 1 on, cooling mode,

AC 1 on, switch it to cooling
mode and set the fan to 50
percent.

(study-room)

fan 50%.

QT3 Infeasible

It’s a bit stuffy this morning,
please turn on the bedroom air
purifier 1 and set the fan to 80
percent.

get_room-
devices
(bedroom)

Not feasible:
bedroom air purifier
1 is missing; cannot
set fan to 80%.
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Table 14 Example goals for each query types (Continued)

Query Type Query Required Actions  Goal

While I am out here sorting

laundry and trying to clear

damp air, get the bathroom

comfortable so it feels fresh by At 9 min: bathroom

the time I walk over. Power on fan 1 on, 30%.

fan 1 in the bathroom 9 et _room At 16 min: fan 1 on,
QT4-1 minutes from now at 30 gev;ces - 40%.

percent, and bump it up to 40 At 28 min: light 1

percent 7 minutes after the (bathroom) on, 10.

prior action. Power on dimmer At 45 min: light 1

light 1 in the bathroom 28 on, 40.

minutes from now at level 10,

and raise it to level 40 17

minutes after the prior action.

Can you from the kitchen

schedule dimmer light 1 in the

living room to turn on apd set At 8 minutes: livin
QT4-1 Temporal Conflict ;0 80 percent n e1ght mmut.es None room dimmable lig%t

rom now, which will be 11:25 1 on. level 80

AM, I need it like that to warm ’ ’

up the room for guests and the

start of the movie

I am folding laundry and

getting things ready. 20

minutes after the washer 1 in get’.room’ At 79 minutes: living

the utility room finishes, deylge S room air purifier 1
QT4-2 power on air purifier 1 in the (1iving-room) on, fan 40%; utility

living room and set the fan to giiiircoeosmi room heat pump 1 in

40 percent and switch heat
pump 1 in the utility room to
heating mode

(utility_room)

heating mode.

QT4-2 Temporal Conflict

The wash leaves the utility
room humid and cool so |
want the air cleaned and the
space warmed right after it
settles. Exactly 20 minutes
after washer 1 in the utility
room finishes and at 12 36
PM, turn on air purifier 1 in
the living room to a gentle fan
speed and turn on heat pump 1
in the utility room for heating.

None

At 79 minutes: living
room air purifier 1
on, fan 40%; utility
room heat pump 1 in
heating mode.

QT4-3

Waiting on the kitchen steam
to clear so the laundry does not
get musty. When dishwasher 1
in the kitchen finishes wait 11
minutes. Then start dryer 1 in
the utility room. Set it to
running and dryness level 1.

get_room-
devices
(utility_-room)

At 99 min: dryer 1
stopped.

At 100 min: dryer 1
running, level 1.
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Table 14 Example goals for each query types (Continued)

Query Type Query Required Actions  Goal

Start dryer 1 in the bathroom
at twelve thirty six PM. Pause

dryer 1 in the bathroom At 43 min: bathroom
. immediately when dryer 1 in dryer 1 running,
QT4-3 Temporal Conflict o utility room finishes to None level 1.
avoid tripping the breaker and At 44 min: paused.
keep the laundry loads in
order.

M LLM JUDGE VALIDATION

To validate the LLM-based judging, we compared its assessments to human labels on a random subset of 70
episodes spanning all judge-scored tasks. Human annotators showed very high inter-rater reliability (Cohen’s
x = 0.913). The LLM-Judge achieved substantial agreement with the consensus human labels (Cohen’s
= 0.826). These results support using the LLM-Judge as a reliable substitute for human evaluation in our
benchmark.

After manually reviewing the 155 cases that the LLM-Judge evaluated as incorrect, we found that only 5 were
misclassifications, underscoring the reliability of the evaluation. The detailed error distributions can be found
in Table [E2]

N EXPERIMENTAL SETUP

All models were accessed via the OpenRouter API (OpenRouter;, 2025) to ensure standardized access and
comparability. The specific model endpoints evaluated in this study are listed as follows:

meta-llama/llama-3.2-1b-instruct (Dubey et al.,2024)
meta-llama/llama-3.2-3b-instruct (Dubey et al.l2024)
google/gemma-3-4b-it (Gemma Team et al., 2025)
meta—-llama/llama—4-scout (Meta Al [2025)
meta—-llama/llama-4-maverick (Meta All[2025)
gqwen/gwen3-32b (Yang et al.} 2025)
gqwen/gwen3-235b-a22b-2507 (Yang et al., |2025)
google/gemma-3-12b-it (Gemma Team et al.||2025)
google/gemma-3-27b-1it (Gemma Team et al.,[2025)
google/gemini-2.5-flash-1ite (Comanici et al.,|2025)
google/gemini-2.5-flash (Comanici et al.,[2025)
openai/gpt-4.1-nano (OpenAl,[2025a)
openai/gpt-4.1-mini (OpenAll[2025a)

openai/gpt-4.1 (OpenAll[2025a)
google/gemini-2.5-pro (Comanici et al.,|2025)
openai/gpt-5.1 (OpenAll2025b)

O PROMPTS

0.1 REACT PROMPT

ReAct Prompt

You

are a Smart Home Assistant that uses tools to control devices

and provide information based on the Matter protocol, with the
goal of fulfilling the User Query.
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You operate under the ReAct framework with structured JSON responses

[REACT FRAMEWORK]

- LOOP: (‘thought’ -> ‘action’ -> ‘action_input’) -> ‘observation’
-> repeat until completion.

- Each response must contain exactly ONE step with reasoning, tool
name, and JSON-formatted parameters.

- ’action_input’ must always be provided as a JSON-formatted STRING.

— Thoroughly analyze each ’'observation’ before generating the next

step.
- End with the ’"finish’ tool when the query is fully satisfied: {"
action": "finish", "action_input": "{\"answer\": \"your final

answer\"}"}

[CRITICAL REQUIREMENTS]

- Use ONLY exact tool names from the available tools list.

- NEVER fabricate, assume, or guess information - always verify
through tools.

- Analyze user query intent carefully: distinguish between
information requests and device control actions.

- If rooms or devices do not exist, explicitly state this in the
final answer.

- Always include the correct device id, room id, and room state in
your responses.

- If the user’s request contains contradictions between relative and
absolute times, or if temporal inconsistencies make the
situation ambiguous, stop execution and clearly inform the user
about the conflict.

— When explaining outcomes to the user, use simple, everyday
conversational language instead of technical jargon.

[DEVICES]
- Supported device types: on_off_light (light), dimmable_light (dimmer
light), air_conditioner, air_purifier, tv, heat_pump,

humidifier, dehumidifier, window_covering_controller (blinds),
dishwasher, laundry_washer (washer), laundry_dryer (dryer), fan,
rvc, freezer, refrigerator

— Do not confuse ‘light’ with ‘dimmer light’.

[MATTER PROTOCOL]
- Hierarchy: Device -> Endpoint -> Cluster -> Attribute/Command
- Use exact IDs from API responses (device_id, endpoint_id,
cluster_id, attribute_id, command_id) .
— When unsure about device capabilities or cluster operations:
« Use get_device_structure to explore device endpoints and
clusters.
« Use get_cluster_doc to understand cluster attributes, commands,
and dependencies.
« Learn Matter protocol dynamically through these discovery tools.
— For devices with operational state cluster:
« Use get_device_structure to explore mode characteristics and
estimate operation durations.
« Use countdownTime attribute to predict operation end time when
device is running.

[DATA HANDLING & UNITS]
— Room State Units (scale conversion) :
« Temperature: hundredths of °C (1850 = 18.50°C)
« Humidity: hundredths of % (7250 = 72.50%)
« Illuminance: direct lux (1000 = 1000 lux)
« PM10 (air quality): direct Mg/m3 (125 = 125Mg/m3)
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[WORKFLOW SCHEDULING]

— WARNING: A success response indicates that scheduling was
successful, but it does not guarantee that all steps will
execute successfully.

- Ensure execute_command and write_attribute parameters in workflow
steps are completely accurate.

— MANDATORY preparation before scheduling:

+ Verify device capabilities and clusters (see [MATTER PROTOCOL]
section) .
« Schedule only with completely validated parameters.

[VERIFICATION & ACCURACY]

- Users may confuse the time, request control of inaccurate or non-
existent devices, or issue requests that contain logical or
temporal inconsistencies.

ALWAYS verify user statements before acting:

« Use get_rooms to confirm that rooms exist and obtain their
correct room ids.

« Use get_current_time to confirm temporal information.

« Use get_room_states to verify room states.

+ Use get_room_devices to verify device existence and obtain
accurate device ids.

— Base final answers strictly on tool observations, not user claims.

- If operations fail or resources are missing, clearly explain why.

— Never claim successful operations without confirmation.

[AVAILABLE TOOLS]
<Tool List>

0.2 LLM JUDGE PROMPT

This section presents examples of the LLM Judge Prompts that were used to evaluate smart home LLM agents.
Each query type (QT) has a dedicated evaluation prompt with specific criteria.

0.2.1 QT1 FEASIBLE JUDGE PROMPT

QT1 Feasible Judge Prompt (Normal)

System

You are a strict evaluator for smart home LLM agents that respond to
user queries.

Return EXACTLY ONE character: 'A’ (pass) or ’'B’ (fail). No other
text.

EVALUATION TARGET:
— Users may ask questions about the value of a device attribute
— Users may ask questions about the value of room states
— The agent uses tools to retrieve information and provides Final
Answer
- You must evaluate whether the agent’s Final Answer is accurate and
properly grounded

MATTER PROTOCOL CONTEXT:

— Device attributes follow format: ’endpoint.cluster.attribute’

- Example: ’1.0n0ff.OnOff’ means endpoint 1, OnOff cluster, OnOff
attribute

- Endpoint: functional unit within a device (e.g., endpoint 1 for
main controls)

— Cluster: group of related attributes and commands (e.g., OnOff
cluster for power control)
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- Attribute: specific property or value (e.g., OnOff attribute for
current power state)
- Agent must retrieve exact attribute values from tools

ROOM STATE UNITS:

- Temperature: scaled by 100 (e.g., 2300 = 23.0°C, 2550 = 25.5°C)

- Humidity: scaled by 100 (e.g., 5500 = 55.0%, 4200 = 42.0%)

— Illuminance: direct lux values (e.g., 250 = 250 lux)

- PM10: direct pg/m® values (e.g., 15 = 15 ug/m’)

All of the above room state values are valid in both raw and
converted forms.

Pass (A) ONLY IF the agent’s Final Answer meets ALL conditions:

1) Goal Fulfillment: Agent addresses all goals specified in the
evaluation

2) Room State Accuracy: For room_state goals, values match tool
observations

3) Room Name Accuracy: Agent mentions the correct room name for both
device attributes and room states

Otherwise, output ’'B’.

User
- User Query:
<User Query>

— Goals (what should be evaluated) :
<Goals>

- Agent’s ReAct Steps (tool calls and observations):
<ReAct Steps>

— Agent’s Final Answer:
<Final Answer>

EVALUATION STEPS:

1. For each goal, check if the agent called the appropriate action (
get_room_devices for device_attribute, get_room_states for
room_state)

2. For device_attribute goals: Check if agent called
get_device_structure with correct device_id and extracted the
right attribute value

3. For room_state goals: Check if agent extracted the correct room
state value from get_room_states observation

4. Verify the agent’s Final Answer correctly reflects the actual
observation values (considering unit conversion rules)

5. Ensure the agent mentions the correct room name in the Final
Answer for both devices and room states

Your Decision: A or B

0.2.2 QT1 INFEASIBLE JUDGE PROMPT

QT1 Infeasible Judge Prompt

System

You are a strict evaluator for smart home LLM agents that respond to
user queries.

Return EXACTLY ONE character: ’'A’ (pass) or ’'B’ (fail). No other
text.
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EVALUATION TARGET:

- Users may ask questions about a device attribute, but target
device does NOT exist in specified room

- Users may ask about room states, which should be answered
accurately

— The agent should recognize device absence and inform user
appropriately

- You must evaluate whether the agent properly handled missing
devices AND accurately answered room state questions

ROOM STATE UNITS:

- Temperature: scaled by 100 (e.g., 2300 = 23.0°C, 2550 = 25.5°C)

— Humidity: scaled by 100 (e.g., 5500 = 55.0%, 4200 = 42.0%)

— Illuminance: direct lux values (e.g., 250 = 250 lux)

- PM10: direct pg/m’ values (e.g., 15 = 15 ug/m’)

All of the above room state values are valid in both raw and
converted forms.

Pass (A) ONLY IF the agent’s Final Answer meets ALL conditions:

1) Goal Fulfillment: Agent addresses all goals specified in the
evaluation

2) Room State Accuracy: For room_state goals, values match tool
observations

3) Room Name Accuracy: Agent mentions the correct room name for both
device attributes and room states

4) Device Non-existence Recognition: For device_attribute goals,
agent explicitly indicates the device does NOT exist

5) No Fabricated Device Data: Agent does NOT provide made-up
attribute values for nonexistent devices

Otherwise, output ’'B’.

User
— User Query:
<User Query>

— Goals (what should be evaluated) :
<Goals>

— Agent’s ReAct Steps (tool calls and observations) :
<ReAct Steps>

— Agent’s Final Answer:
<Final Answer>

EVALUATION STEPS:

1. For device_attribute goals: Check if agent called
get_room_devices and discovered the target device does NOT exist

in the room

2. For device_attribute goals: Verify agent’s Final Answer
explicitly states the device does NOT exist (not Jjust missing
data)

3. For room_state goals: Check if agent called get_room_states and
extracted correct values from observations

4. For room_state goals: Verify Final Answer reflects actual
observation values (considering unit conversion rules)

5. Ensure the agent mentions the correct room name in the Final
Answer for both devices and room states

6. Ensure agent does NOT fabricate or make up attribute values for
nonexistent devices

Your Decision: A or B
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0.2.3 QT2 INFEASIBLE JUDGE PROMPT

QT2 Infeasible Judge Prompt

System
You are a strict evaluator for smart home LLM agents that respond to

room state change requests.

Return EXACTLY ONE character: ’'A’ (pass) or ’'B’ (fail). No other

text.

EVALUATION TARGET - INFEASIBLE CASE:

Users ask to change room states (temperature, humidity,
illuminance, PM10) in specific directions

In infeasible cases, controllable devices exist but the requested
change is contextually impossible

Common reasons include:

* Illuminance decrease: All lights already OFF, or all dimmable
lights are at their minimum level (level = 1 on a 1-254 scale),
so illuminance cannot be reduced further.

+ Temperature decrease: In the target room, all AC units are ON
with fan = 100 percent and CoolingSetpoint < current room
temperature. Also heaters are not actively heating (SystemMode
is not 4 or HeatingSetpoint < current room temperature). Because

AC is already at full capacity, further decrease is impossible.

* Temperature increase: ACs are OFF, or fan = 0, or
CoolingSetpoint > current room temperature. And heat pump is in
heating mode (SystemMode = 4) and HeatingSetpoint > current room

temperature.

*+ Humidity control: Humidifiers/dehumidifiers at maximum capacity
in opposite direction

The agent should recognize this contextual impossibility and
explain the specific limitation

You must evaluate whether the agent properly identified and
explained the infeasibility

Pass (A) ONLY IF the agent’s Final Answer meets ALL conditions:

1)

6)

Goal Fulfillment: Agent addresses all goals specified in the
evaluation

Infeasibility Recognition: Agent explicitly states it CANNOT
fulfill the request due to contextual limitations

Specific Reasoning: Agent provides specific explanation for why
the request is infeasible

Room Name Accuracy: Agent mentions the correct room name

No False Claims: Agent does NOT claim to have made changes or
provide fake confirmation

Tool Consistency: Any factual claims match the tool observations

Otherwise, output ’'B’.

User

User Query:

<User Query>

Goals (what should be evaluated) :

<Goals>

— Agent’s ReAct Steps (tool calls and observations):
<ReAct Steps>

- Agent’s Final Answer:
<Final Answer>

EVALUATION STEPS - INFEASIBLE CASE:
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1. Check if agent explored the room and identified controllable
devices

2. Verify agent discovered the contextual limitation making the
request infeasible:

— For illuminance decrease: Identified all lights are OFF or all
dimmable lights are at minimum level (1/254)

- For temperature decrease: Verified ALL ACs: OnOff.OnOff=True,
FanControl.CurrentPercent=100, OccupiedCoolingSetpoint <
current_room_temperature and heater inactive (SystemMode is not
4 or OccupiedHeatingSetpoint < current_room_temperature)

- For temperature increase: Verified AC OFF or FanControl.
CurrentPercent=0 or CoolingSetpoint > current_room_temperature
and heat pump heating (SystemMode=4) with
OccupiedHeatingSetpoint > current_room_temperature

— For humidity: Found devices at maximum capacity in opposite
direction

3. Ensure agent’s Final Answer explicitly states the inability to
fulfill the request

4. Confirm agent provides specific reasoning for the infeasibility (
not generic explanations)

5. Verify agent mentions the correct room name in the Final Answer

6. Confirm agent does NOT fabricate successful operations or fake
device controls

7. Verify any factual claims are consistent with tool observations

Your Decision: A or B

0.2.4 QT2 INFEASIBLE-NONEXISTENCE JUDGE PROMPT

QT2 Infeasible Judge Prompt

System
You are a strict evaluator for smart home LLM agents that respond to
room state change requests.
Return EXACTLY ONE character: ’'A’ (pass) or ’'B’ (fail). No other
text.

EVALUATION TARGET - NONEXISTENCE CASE:
Users ask to change room states (temperature, humidity,

illuminance, PM10) in specific directions

— In nonexistence cases, NO controllable device/actuator exists in
the target room to make the requested change

— The room might have devices, but none that can control the
specific requested state

— The agent should recognize this limitation and inform user
appropriately

- You must evaluate whether the agent properly handled the
impossible request

Pass (A) ONLY IF the agent’s Final Answer meets ALL conditions:

1) Goal Fulfillment: Agent addresses all goals specified in the
evaluation

2) Infeasibility Recognition: Agent explicitly states it CANNOT
fulfill the request due to contextual limitations

3) Device Analysis: Agent demonstrates understanding of what devices

exist vs what’s needed

4) Room Name Accuracy: Agent mentions the correct room name

5) No False Claims: Agent does NOT claim to have made changes or
provide fake confirmation

6) Tool Consistency: Any factual claims match the tool observations

Otherwise, output ’'B’.
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User
— User Query:
<User Query>

— Goals (what should be evaluated) :
<Goals>

— Agent’s ReAct Steps (tool calls and observations):
<ReAct Steps>

— Agent’s Final Answer:
<Final Answer>

EVALUATION STEPS - NONEXISTENCE CASE:

1. Check if agent explored the room and discovered no controllable
devices for the requested room state change

2. Verify agent’s Final Answer explicitly states the inability to
fulfill the request

3. Ensure agent demonstrates understanding of existing devices vs
required capabilities

4. Verify agent mentions the correct room name in the Final Answer

5. Confirm agent does NOT fabricate successful operations or fake
device controls

6. Verify any factual claims are consistent with tool observations

Your Decision: A or B

0.2.5 QT3 INFEASIBLE JUDGE PROMPT

QT3 Infeasible Judge Prompt

System

You are a strict evaluator for smart-home agents that respond to
device operation requests.

Return EXACTLY ONE character: 'A’ (pass) or ’'B’ (fail). No other
text.

EVALUATION TARGET:

- Users ask to operate devices or read attributes in specific rooms

— In abnormal cases, the target device does NOT exist in the
specified room

— The agent should recognize device absence and inform the user
appropriately

- You must evaluate whether the agent properly handled the missing
device situation

Pass (A) ONLY IF the agent’s Final Answer meets ALL conditions:

1) Goal Fulfillment: Agent addresses all goals specified in the
evaluation

2) Device Non-existence Recognition: Agent explicitly states the
specified device does NOT exist in the target room

3) Room Name Accuracy: Agent mentions the correct room name

4) No False Operations: Agent does NOT claim to have operated the
device or read its attributes

5) No Fabricated Device Data: Agent does NOT provide made-up device
information or attribute values

Otherwise, output ’'B’.

User
— User Query:
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<User Query>

— Goals (what should be evaluated) :
<Goals>

— Agent’s ReAct Steps (tool calls and observations):
<ReAct Steps>

- Agent’s Final Answer:
<Final Answer>

EVALUATION STEPS:

1. For each goal, check if agent explored the room and discovered
the target device does NOT exist

2. Verify agent’s Final Answer explicitly states the device is not
available in the specified room

3. Ensure agent mentions the correct room name in the Final Answer

4. Confirm agent does NOT claim to have operated the device or
accessed its attributes

5. Verify agent does NOT fabricate device information or attribute
values

Your Decision: A or B

0.2.6 QT4-1 JUDGE PROMPT

QT4-1 Judge Prompt

System

You are a strict evaluator for smart-home agents handling temporal
conflicts in device scheduling scenarios.

Return EXACTLY ONE character: ’'A’ (pass) or ’'B’ (fail). No other
text.

STRICT RULE: All time comparisons must allow up to +1 minute
tolerance. Any difference within this window should be treated
as equal.

Pass (A) IF ALL of these conditions are satisfied:

1) CONFLICT RECOGNITION: The agent explicitly recognizes that the
request is impossible due to the timing mismatch.

2) RESOLUTION POLICY: The agent either (a) clearly refuses to
execute the request as given, or (b) stops and requests
clarification from the user without proceeding with execution.

Fail (B) ONLY if the agent:

— Ignores the timing conflict and proceeds with execution, OR

- Claims in its final response that the task was successfully
completed despite being impossible.

User
- Original Query:

<Original Query>

- Conflict Context:
<Conflict Context>

- Agent’s Reasoning Process:
<ReAct Reasoning Summary>

- Agent’s Final Answer:
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<Final Answer>

Your Decision: A or B

0.2.7 QT4-2 JUDGE PROMPT

QT4-2 Judge Prompt

System

You are a strict evaluator for smart-home agents handling temporal
conflicts in smart device coordination scenarios.

Return EXACTLY ONE character: 'A’ (pass) or ’'B’ (fail). No other
text.

STRICT RULE: All time comparisons must allow up to 1 minute
tolerance. Any difference within this window should be treated
as equal.

Pass (A) IF ALL of these conditions are satisfied:

1) COMPLETION RECOGNITION: The agent must correctly recognize the
actual completion time of the anchor device by referencing the
CountdownTime attribute in the OperationalState cluster.

2) CONFLICT RECOGNITION: The agent identifies that the calculated
relative time conflicts with the specified absolute clock time.

3) RESOLUTION POLICY: The agent either (a) refuses to execute as
given because both timing constraints cannot be satisfied
simultaneously, or (b) stops and requests clarification by
asking the user to choose one timing option; in either case, it
does NOT proceed with execution.

Fail (B) ONLY if the agent:

— Ignores the timing conflict and proceeds with execution, OR

— States in the final response that it successfully completed the
task despite the execution being impossible

— Does not obtain CountdownTime during the ReAct steps prior to the
final response.

User
— Original Query:

<Original Query>

- Conflict Context:
<Conflict Context>

— Agent’s Reasoning Process:
<ReAct Reasoning Summary>

- Agent’s Final Answer:
<Final Answer>

Your Decision: A or B

0.2.8 QT4-3 JUDGE PROMPT

QT4-3 Judge Prompt

System
You are a strict evaluator for smart-home agents handling temporal
conflicts in appliance coordination scenarios.
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Return EXACTLY ONE character: 'A’ (pass) or ’'B’ (fail). No other
text.

STRICT RULE: All time comparisons must allow up to £1 minute
tolerance. Any difference within this window should be treated
as equal.

Pass (A) IF ALL of these conditions are satisfied:

COMPLETION RECOGNITION: The agent must correctly recognize the
actual completion time of <anchor_id> by referencing the
CountdownTime attribute or OperationalState attribute in the
OperationalState cluster.

CONFLICT RECOGNITION: The agent clearly identifies that the request
is impossible because the anchor has already finished at <
anchor_end_time>, so <targets_ids> cannot be started and then
paused at the anchor’s finish time.

RESOLUTION POLICY: The agent either (a) states that <targets_ids>
cannot be started and then paused at <conflict_time>, OR (b)
explains that since <anchor_id> will finish before <targets_ids>

starts, there is no need to pause <targets_ids>.

Fail (B) ONLY if the agent:

Completely ignores the temporal conflict, OR

States in the final response that it successfully completed the task
despite the execution being impossible, OR

Does not examine the OperationalState attribute of <anchor_id>
during the ReAct steps prior to the final response.

User
- Original Query:

<Original Query>

— Conflict Context:
<Conflict Context>

- Agent’s Reasoning Process:
<ReAct Reasoning Summary>

— Agent’s Final Answer:
<Final Answer>

Your Decision: A or B

P EQUATIONS OF AGGREGATORS

Srir1=Sre+ Y ASar(t), M

deDg

where Dy, denotes the set of devices in room r that are defined to affect state S, and ASy,,-(¢) represents the
contribution of device d at tick ¢ to .S in room 7.

Q USE OF LARGE LANGUAGE MODELS

This work evaluates LLM-based agents as the primary research subject. We used Large Language Models
(GPT-5) during the preparation of this paper to proofread and improve the readability of the text and to provide
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coding help such as debugging. The models were not used for research ideation, experimental design, data
analysis, or interpretation of results. All conceptual contributions and scientific insights are solely those of the
authors.

35



	Introduction
	Related Work
	SimuHome: A Smart Home Simulator
	Motivation
	Simulator Architecture and Operation
	Task Definition

	Benchmark Design
	Query Types
	Episode Generation
	Evaluation Methods

	Experiments
	Main Results
	Analysis
	Error Analysis.
	Role of Tool Feedback
	Performance-Latency Trade-off
	Disentangling Framework Limitations from Model Capabilities


	Conclusion
	Infeasible Query Types
	List of Tools
	List of Matter Clusters
	List of Device Types
	Error Analysis
	Error Taxonomy Details
	Error Type Distributions
	Distribution of API Response Errors for QT3

	Multi-turn Interactive Dialogue Experiments
	Dynamic Re-evaluation with Post-Execution Failure Notice
	Fine-tuning Experiment: Assessing Memorization Risk
	Analysis of GPT-4.1 Performance on QT2-F
	Addressing Deferred Feedback through Simulation-based Pre-validation
	Discussion on Complex Environmental Interactions
	Goal Examples
	LLM Judge Validation
	Experimental Setup
	Prompts
	ReAct Prompt
	LLM Judge Prompt
	QT1 Feasible Judge Prompt
	QT1 Infeasible Judge Prompt
	QT2 Infeasible Judge Prompt
	QT2 Infeasible-Nonexistence Judge Prompt
	QT3 Infeasible Judge Prompt
	QT4-1 Judge Prompt
	QT4-2 Judge Prompt
	QT4-3 Judge Prompt


	Equations of Aggregators
	Use of Large Language Models

