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ABSTRACT

Large Language Model (LLM) agents excel at multi-step, tool-augmented tasks.
However, smart homes introduce distinct challenges, requiring agents to handle la-
tent user intents, temporal dependencies, device constraints, scheduling, and more.
The main bottlenecks for developing smart home agents with such capabilities in-
clude the lack of a realistic simulation environment where agents can interact with
devices and observe the results, as well as a challenging benchmark to evaluate
them. To address this, we introduce SimuHome, a time-accelerated home envi-
ronment that simulates smart devices, supports API calls, and reflects changes in
environmental variables. By building the simulator on the Matter protocol1—the
global industry standard for smart home communication—SimuHome provides a
high-fidelity environment, and agents validated in SimuHome can be deployed on
real Matter-compliant devices with minimal adaptation. We provide a challeng-
ing benchmark of 600 episodes across twelve user query types that require the
aforementioned capabilities. Our evaluation of 11 agents under a unified ReAct
framework reveals that while models perform well on simple tasks, they struggle
with latent intent inference, state verification, and especially temporal scheduling.
Even the top-performing model, GPT-4.1, reaches only 54% accuracy. These find-
ings highlight a critical need for methods that can reliably verify the current state
via tools before acting and coordinate time-dependent actions. We will release our
code and benchmark to facilitate reproducibility and further research.

1 INTRODUCTION

Recently, Large Language Model (LLM) agents have demonstrated strong abilities on multi-step,
tool-augmented tasks, including API retrieval, invocation, and intermediate state verification (Qin
et al., 2023; Patil et al., 2025; Chen et al., 2024; Wang et al., 2024; Xu et al., 2023; Schick et al.,
2023). These abilities enable long-horizon tasks such as web navigation and goal pursuit, where
agents must plan, check states, and validate outcomes over multiple steps (Zhou et al., 2024; Yao
et al., 2022; Deng et al., 2023; Xie et al., 2024; Yao et al., 2024; Trivedi et al., 2024).

Smart home agents, such as Amazon Alexa and Google Home, are among the earliest production-
ized tool agents in the real world and have long been a research topic. To meet real-world challenges,
smart home agents need capabilities to handle many factors, such as: (1) latent user intents (e.g.,
“It feels stuffy” implying humidity control), (2) temporal dependencies (e.g., “Turn on the kitchen
light when the dishwasher finishes”), (3) dependencies among device actions and attributes (e.g., a
dishwasher cannot be opened while it is running), (4) scheduling (e.g., “Play music in the morn-
ing”). However, most (if not all) smart home agents to date fall short in all these areas. One of the
critical bottlenecks is the lack of training and test data with such complexities. Even if such datasets
existed, static datasets have clear limitations: agents cannot learn by doing, and agent performance
cannot be evaluated accurately (because a user intent may be satisfied in multiple ways that are not
annotated in the dataset). We aim to address this challenge by developing a high-fidelity smart home
simulator in which agents can interact with devices through APIs and observe the results reflected in

1https://csa-iot.org/all-solutions/matter/
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Figure 1: The SimuHome home environment with Matter-compliant devices, featuring a GUI where
users can arrange devices across rooms, configure their attributes, and evaluate agent reasoning for
multi-device control.

the environment, along with an extensive benchmark containing a variety of complex user requests,
both feasible and infeasible.

Our first contribution is a smart home simulator, SimuHome (Figure 1). SimuHome is a time-
accelerated smart home environment that accommodates various room layouts, environmental vari-
ables (e.g., temperature, illuminance), and smart devices. Agents can call APIs to operate devices
(e.g., set the AC to 25 degrees). Devices are simulated with internal constraints checked (e.g., the AC
must be turned on to set its temperature), and the results affect the environment (e.g., the room tem-
perature gradually drops to 25 degrees over 10 minutes). Notably, SimuHome implements Matter,
a broadly adopted smart-home interoperability standard. As a result, the attributes and constraints
within devices are high fidelity. Moreover, agents trained and verified in SimuHome can run on real
Matter-compliant devices with minimal adaptation. SimuHome also enables controlled experiments
in a cheap and fast way. It allows unlimited experimentation, including stress-testing rare edge cases
and counterfactual scenarios, while strict reproducibility ensures fair comparisons and iterative val-
idation across models. Although beyond the scope of our work, it can also support model training
through reinforcement learning.

Our second contribution is a manually validated benchmark of 600 episodes covering twelve user
query types, each provided in feasible and infeasible variants to assess agents’ abilities in proactive
intent inference, dynamic state and physical-limit checks, and temporal scheduling. Each case is
packaged as a single episode with an initial home state (i.e., rooms, device states, environmental
variables), a verifiable goal, a natural-language query, and a set of required actions that enforce
information gathering before control. Feasible cases are scored by comparing the resulting state in
SimuHome with the target state. Infeasible cases, which embed false premises, physical limits, or
temporal conflicts, are assessed by LLM judges.

We evaluate 11 LLM agents under a unified ReAct (Yao et al., 2023) setup across 600 episodes with
feasible and infeasible variants, scoring feasible tasks by simulator state comparisons and assess-
ing infeasible logic checks with validated LLM judges. Models handle simple retrieval and explicit
device control comparatively well. They often fail to infer latent intent or to verify current device
and environment states before acting. Temporal scheduling is the most challenging area: contradic-
tion blindness and mishandling are common, and even GPT-4.1 reaches only 54% accuracy. These
results motivate methods that verify the current state via tools before acting and that plan and coor-
dinate time-dependent actions reliably in dynamic home environments.

2 RELATED WORK

Simulated Benchmarks for Household Embodied Agents. Embodied-agent benchmarks have
advanced instruction following in household settings, but interactions with devices are usually lim-
ited to oversimplified actions that overlook real-world constraints. AI2-THOR (Kolve et al., 2017)
enables agents to navigate photorealistic 3D rooms and manipulate objects through atomic actions
(e.g., open/close, pick up/put down). ALFRED (Shridhar et al., 2020) extends this to long-horizon
tasks, requiring agents to translate language and first-person observations into action sequences that
yield persistent state changes, supported by ∼25k demonstrations. VirtualHome (Puig et al., 2018)
captures everyday activities (e.g., cooking dinner, cleaning a room) as executable programs derived
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from crowdsourced scripts. While effective for language grounding and task structure, these simula-
tors constrain devices to discrete commands (ToggleOn/Off, Open/Close), missing communication
delays, conflicts, and cascading cross-device effects that arise in real homes.

LLM Agents and Benchmarks for Smart Homes. Recent smart home LLM benchmarks empha-
size planning and goal interpretation but similarly rely on simplified abstractions. HomeBench (Li
et al., 2025) evaluates instruction following under valid, invalid, and mixed requests across single-
and multi-device settings, highlighting error detection, refusal, and coordinated execution. Sasha
(King et al., 2024) studies goal interpretation, mapping underspecified intentions to device-level
plans and assessing their quality via user studies. SAGE (Rivkin et al., 2023) frames smart home
control as sequential tool use, guiding LLMs through API calls, preference handling, and state
monitoring. Despite these advances, current suites operate in pre-scripted environments and omit
dynamic device attributes or temporal constraints, limiting their fidelity to real households.

SimuHome addresses this gap with a reproducible simulator that models device effects on ambient
conditions while supporting attribute tracking, precondition enforcement, and temporal constraint
handling.

3 SMART HOME SIMULATOR

3.1 MOTIVATION

Evaluating LLM agents in a smart home requires a simulator that mirrors the real world’s continuous
and reactive nature. However, existing simulators for agents have a limitation. They do not simulate
the realistic chain reaction where one action can affect others and the environment; instead, each
command is treated as a separate, isolated event. To address this problem, we design SimuHome
around four core requirements:

Complex Temporal Constraints. To evaluate an agent’s temporal reasoning, the simulator must
handle a variety of complex time-based queries (e.g.,“Keep the kitchen lights on until the dishwasher
finishes”). This allows us to test if the agent can understand and plan actions with complex temporal
dependencies.

Dependency Modeling Based on an Industry Standard. The simulator realistically models the
operational rules of smart devices according to the Matter industry standard. This design allows us
to evaluate whether the agent can learn and adapt to real-world device constraints. For example, the
simulator enforces the rule that an air conditioner’s power must be on before its fan speed can be
changed, enabling us to test if the agent understands this dependency.

Real-Time Environmental Feedback. The simulator models the continuous, real-time effects of
device actions on the environment (e.g., temperature and illuminance). This creates a dynamic
setting to test if the agent can monitor ongoing changes and react appropriately, rather than just
acting on static information. For example, as an air conditioner runs, the temperature gradually
drops, and the agent must perceive this change to complete its goal.

Reproducibility. The environment must be perfectly reproducible, ensuring that an agent’s actions
produce identical outcomes under the same initial conditions. This is crucial for reliably measuring
and comparing the performance of different agents or strategies.

3.2 SIMULATOR ARCHITECTURE AND OPERATION

Our simulator operates by processing time in fixed intervals. The fundamental unit of time, a tick,
is defined as 0.1 real-world seconds. All environmental and device state updates are calculated at
every tick. This method of updating the state at a fixed interval allows the simulator to model the
outcomes of processes that occur continuously in the real world with high fidelity. The simulator
comprises three components: the Home Environment, the Real-Time State Update Mechanism, and
the Agent–Simulator Interface.

Smart Home Environment. A home is a configurable environment composed of one or more
rooms, each containing a custom set of devices and four environmental variables: temperature,
illuminance, humidity, and air quality. To enable realistic scenarios, the environment includes both
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devices that directly influence environmental variables (e.g., an air conditioner) and those with multi-
stage operational cycles (e.g., a washing machine). In total, we model 17 distinct device types. A
full list of these devices can be found in A.4.

Real-Time State Update Mechanism. The core of the simulation is the Aggregator module, which
models the dynamic impact of device operations on the environment. At each tick, the Aggregator
calculates the combined influence of all active devices on their relevant environmental factors. For
example, temperature is affected by air conditioners and heat pumps, illuminance by lights, humidity
by humidifiers/dehumidifiers, and air quality by air purifiers. The magnitude of this influence is
cumulative; it scales with the number of active devices and their specific settings (e.g., the fan speed
of an air conditioner). This mechanism ensures that the environment responds realistically to agent
actions. The detailed update equations for the Aggregator are provided in A.12.

Agent-Simulator Interface. The agent interacts with the simulator by invoking a set of 13 tools.
The structure of these tools mirrors Matter’s modular approach to defining device capabilities. De-
tailed tool specifications are provided in A.2.

3.3 TASK DEFINITION

SimuHome tasks are modeled as a partially observable Markov decision process (POMDP)
(S,A,O, T ,R). The environment state st ∈ S consists of the device state, represented by the
Matter hierarchical model of Endpoints, Clusters, and Attributes, and the environmental state, de-
fined by ambient conditions such as temperature, illuminance, humidity, and air quality. At each
tick, the agent executes an action at ∈ A, implemented as a Matter Command, which updates the
device state. The transition function T applies the Aggregator mechanism to propagate device ef-
fects onto the environmental state. The agent receives an observation ot ∈ O, corresponding to
the subset of device attributes and environmental state variables exposed through the API, which
provides only partial visibility into the full state. The reward function R is defined as part of the
evaluation process given a task query. Details of how rewards are assigned are provided in §5.1.

4 BENCHMARK DESIGN

4.1 QUERY TYPES

We define twelve query types that commonly arise in user queries within smart home environments.
These are designed to evaluate an agent’s abilities in device control, environmental variable queries
such as temperature and illuminance, implicit intent inference, and temporal coordination with three
sub-types. Each type is paired with an infeasible scenario to test the agent’s capacity for logical
consistency and constraint handling, yielding a total of 12 categories. See A.1 for examples of
infeasible scenarios corresponding to each query type.

QT1 (Environment Perception). This evaluates the ability to correctly perceive environmental
conditions and device statuses, and then provide accurate, logical information in natural language.
For example, in response to “I’m about to cook, can you tell me how humid it is in the kitchen?”,
the agent must identify the kitchen area, use an environment-query tool to check the humidity, and
respond with clear units and values. If device discovery is needed during this process, the agent
must first check the list of devices in that room.

QT2 (Implicit Intent). This assesses the ability to infer the user’s underlying goal from complaints
or indirect expressions and to create and execute a suitable device control plan to address it. For
instance, upon hearing “It feels too stuffy here in the living room”, the agent should check the living
room’s humidity and then take action to adjust it, such as turning on a humidifier or turning off a
dehumidifier.

QT3 (Explicit Intent). This evaluates the ability to accurately interpret and execute commands
involving specified devices and target values. For example, for the command “Set the living room air
purifier fan speed to one hundred percent, the strongest power”, the agent must verify the presence
of an air purifier in the living room. If it is off, the agent must turn it on first before setting the fan
speed to 100%.

4
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Figure 2: Episode Generation Pipeline

QT4-1 (Future Scheduling). This assesses the ability to schedule and plan the control of multiple
devices (e.g., lights, air conditioners) to activate at a specific future time. For example, for the
request “I will go to sleep in ten minutes. Can you turn off the lights and the humidifier in ten
minutes?”, the agent must calculate the absolute time 10 minutes from the current time. It should
then schedule both actions as a single, conflict-free workflow. Before registering the commands,
the agent must pre-validate that each device is controllable and the specified parameters are within
acceptable ranges.

QT4-2 (Dependency Scheduling). This evaluates the ability to create a coordinated schedule for
an operational device (one that takes time to complete, such as a dishwasher) and an instantaneous
device such as a light, considering dependencies and completion times. For example, for the re-
quest “When the dishwasher finishes, please turn off the kitchen lights”, the agent must check the
dishwasher’s remaining operating time to calculate its estimated completion time. It should then
schedule the lights to turn off based on that absolute time, after verifying and registering the correct
parameters and sequence for the command.

QT4-3 (Concurrent Scheduling). This assesses the ability to schedule two or more operational
devices to work without conflict, according to given time constraints. For example, for the request
“Schedule the dishwasher so that it completes at the same time the washer finishes”, the agent must
check the remaining operating time of both devices to calculate if a simultaneous finish is possible.
If it is, the agent should adjust the start time of one device and register a workflow to ensure they
finish together.

4.2 EPISODE GENERATION

Definition and Components of Episode. An episode defines a single, self-contained task scenario
for the agent. As illustrated in Figure 2, each episode is composed of four key components: the
initial home state (including room layouts, device states, and environmental variable values), a goal
the agent must achieve, the natural language user query, and the set of required actions for evaluation.

STEP1: Initial Home State Construction. The initial home state for each episode is constructed in
two stages to ensure diverse and realistic starting conditions (Figure 2). First, a variety of physical
layouts with different room and device configurations are generated to prevent agent overfitting.
Second, starting from an all-off state, devices are operated randomly, establishing plausible device
states. Although this process involves randomization, it is controlled by a seed to ensure that both
the layout and the initial state are fully reproducible.

5
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STEP2: Goals and Required Actions. A goal defines the desired final state of specific devices or
environmental variables that the agent must achieve. The generation process, which varies by query
type (see A.5), is designed to ensure all goals are logically consistent. For instance, as illustrated for
QT3 in Figure 2 (Step 3), a device goal is created by sampling from a pre-defined set of valid states
(e.g., onoff: on, fanspeed: 40%). Each of these state sets is constructed to inherently satisfy the
device’s internal dependencies. Required Actions are a sequence of tool calls that an agent must
perform. This ensures the agent’s subsequent actions are based on up-to-date information gathered
from the environment. For example, before attempting to change an air purifier’s fan speed, the
agent is required to first invoke the tool get room devices(utility room) to confirm the
device’s existence. An episode is marked as successful only if the agent both satisfies the goal and
its tool call history contains all required actions.

STEP3: Query Synthesis. In general, a user’s natural language query embodies a goal to be
achieved, and the clarity of this goal is essential for an accurate evaluation of the agent’s success.
Therefore, we first defined a verifiable goal for the agent to accomplish and subsequently synthe-
sized a natural language query based on it. We then used GPT-5-mini (OpenAI, 2025b) to synthesize
the natural language queries from these predefined goals. To ensure each query accurately reflected
its predefined goal, two graduate students researching tool agents independently reviewed the entire
dataset. Their inter-annotator agreement, measured using Cohen’s κ coefficient (Cohen, 1960), was
0.92 for identifying queries that required correction. This demonstrates that the validation procedure
for our dataset is highly consistent and reliable, suggesting that the benchmark data is composed of
high-quality natural language queries.

STEP4: Episode Generation. By integrating the components generated in the preceding steps, we
constructed our final benchmark dataset. We generated 50 distinct episodes for each of the 12 query
types, resulting in a high-quality dataset of 600 episodes designed for evaluating smart home agents.

5 EVALUATION

5.1 EVALUATION METHODS

Simulator-based Evaluation. Simulator-based evaluation (Figure 3) is essential for tasks that tar-
get physical state changes because outcomes must be assessed objectively and reliably. At the end
of each episode, the simulator automatically verifies the final states of all relevant devices and en-
vironmental variables and compares them with the goal defined for that episode. This direct state
comparison yields a clear and fully automated success criterion and enables fair model-to-model
comparisons under the same conditions.

LLM-judge-based Evaluation. We employ an LLM-based judge for tasks where success hinges
not on physical state changes, but on the agent’s final natural-language response, such as deliver-
ing natural-language answers. The judge directly evaluates the agent’s logic and the information it
conveys. This provides an objective and effective way to complement the simulator-based evalua-
tion. Our procedure provides the judge with the episode goal and the user query, together with a
concise description of any infeasible conditions that must be checked. We also supply the agent’s
full ReAct trajectory so that the judge can verify whether the final answer follows from a coherent
and sufficient chain of reasoning. The judge scores only the final user-facing answer while using
the trajectory to confirm reasoning consistency. For each case, we asked the judge three times and
used the consistent outcome to ensure reliability (Taubenfeld et al., 2025). Detailed prompt tem-
plates and judge rubrics are available in A.9. To validate our LLM-Judges, we confirmed that its
assessments achieved substantial agreement (Cohen’s κ = 0.826) with human evaluations, which
themselves showed very high inter-rater reliability (see A.6 for the full analysis).

5.2 EXPERIMENTS

Experimental Setup. We quantitatively compare models’ inference, planning, and tool-calling
performance across the 12 query types defined in 4.1. The evaluation covers 11 models spanning
open-source (Llama, Qwen, Gemma) and closed-source (Gemini, GPT) families, with reproducibil-
ity details provided in A.7. We employ the ReAct framework (Yao et al., 2023) for all experiments,
enabling the models to generate both reasoning traces and actions in a step-by-step manner within

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

EPISODE QT4 Feasible

LLM-judge Evaluation

EPISODE QT4 Infeasible

Simulator-based Evaluation

Simulator

EPISODE GOAL

SUCCESS

FAIL

Switch on the kitchen 
light when the washer is 
done.

The kitchen light is 
scheduled to turn on 
at 7 PM.

It's 7 PM now, right? 
Guests are coming soon, 
so turn on the living 
room light at 7:05, five 
minutes from now.

Sure! I just turned on 
the living room light.

OBSERVATION : {“device”: “washer”, 
“remaining_time”: 30}

THOUGHT : The washer has 30 minutes remaining, 
and the current time is 18:30. I need to turn on the 
kitchen light at 19:00.

ACTION : schedule_workflow(time: “2025.09.01 
19:00”, steps: [command(“kitchen_light”, “On”)])

Observation

Thought

Action

OBSERVATION : {“current_time”: “2025.09.01 
18:30”}

THOUGHT : The current time is 6:30p.m., and the 
guests are coming soon. I need to turn on the living 
room light right away.

ACTION : command(“livingroom_light”, “On”)

Observation

Thought

Action

Agent

Agent

User

User

It seems the agent did not correctly 
recognize the user’s mistake.

Reasoning

Reasoning

assert Scheduled time is 19:00

Workflow Scheduled

assert Washer is Off, Kitchen light is On

assert Required actions in action history

Washer: Off
Kitchen light: On

Washer: Rinse
Kitchen light: Off

Judge 1 Judge 2 Judge 3

Figure 3: Episode Evaluation Pipeline

Table 1: Evaluation results shown in % across query types (QTs). F refers to Feasible and IF refers
to Infeasible episodes. Also, superscript J indicates results from LLM-judges evaluation, and S
indicates results from simulator-based evaluation. For each query type, the highest percentage is
marked in bold, and the second-highest in underlined.

QT1 QT2 QT3 QT4-1 QT4-2 QT4-3

Model FJ IFJ FS IFJ FS IFJ FS IFJ FS IFJ FS IFJ

Llama-4-Scout 58 42 2 22 24 34 4 4 2 2 2 0
Llama-4-Maverick 96 78 52 36 88 74 22 14 18 10 32 8

Qwen3-32B 82 66 62 30 52 68 18 14 14 8 16 6
Qwen3-235B-A22B 86 74 32 36 84 70 26 18 38 34 28 48

Gemma-3-12B-it 78 38 14 32 32 24 2 0 0 0 0 0
Gemma-3-27B-it 80 48 54 24 48 44 4 2 10 8 0 6

Gemini-2.5-Flash-Lite 78 60 44 50 50 50 8 34 10 16 16 20
Gemini-2.5-Flash 92 86 66 54 82 74 22 44 40 32 12 32

GPT-4.1-nano 58 42 6 12 30 16 2 6 6 0 0 0
GPT-4.1-mini 96 76 62 28 64 76 26 40 40 20 10 28
GPT-4.1 98 82 44 44 84 88 50 12 46 34 34 32

our smart home simulation environment. The specific agent prompt used for the ReAct framework
is provided in A.8.

5.3 MAIN RESULTS

Table 1 reports performance across all query types (QT1–QT4) under both feasible (F) and infeasible
(IF) conditions. Several consistent patterns emerge.

Environment perception (QT1). QT1-F episodes are largely solved: Most frontier models ex-
ceeded 85%. In QT1-IF, we observe an accuracy degradation across models, reflecting a consistent
challenge in detecting requests based on false premises, such as references to non-existent devices.

Explicit vs. implicit device control (QT2 vs. QT3). Across both feasible and infeasible settings,
most models handle explicit commands (QT3) substantially better than implicit requests (QT2).
In feasible episodes, leading models exceed 84% on QT3, whereas QT2 plateaus at 62–66%. In

7
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feasible settings, models consistently perform better when users issue explicit commands (QT3)
compared to implicit requests (QT2). In infeasible settings, however, the contrast becomes more
pronounced: models can often detect non-existent devices in QT3-IF with relatively high accuracy,
but they struggle far more when the device exists yet the goal is unattainable due to operational
constraints. For example, an air conditioner already operating at maximum fan speed cannot lower
the temperature further. This indicates that reasoning over such constraint-driven infeasibility poses
a greater challenge for current models.

Temporal reasoning (QT4). QT4 queries, which require agents to handle scheduling, coordination,
and temporal consistency, were the most challenging across both feasible and infeasible settings.
GPT-4.1 achieved 50% on QT4-1, 46% on QT4-2, and 34% on QT4-3, outperforming peers but still
far from robust. In infeasible cases with contradictory or impossible timing, performance degraded
sharply: even GPT-4.1 and Gemini-2.5-Flash peaked at 44% (QT4-1-IF) and 34% (QT4-2-IF), with
Qwen3-235B-A22B delivering notable performance at 48% on QT4-3-IF. These results highlight
that contradiction detection and temporal validation remain open challenges.

Model-level comparison. Closed-source models (GPT-4.1, Gemini-2.5-Flash) consistently led
overall, but none achieved stable performance across both feasible and infeasible tasks. Mid-sized
open-source models such as Qwen3-235B-A22B and Gemini-2.5-Flash-Lite produced notable re-
sults on certain query types—for instance, Qwen3-235B-A22B reached 48% on QT4-3-IF—but
their performance was uneven across query types. Smaller models (Gemma-3-12B-it, GPT-4.1-
nano) remained limited overall, particularly on temporally demanding tasks.

6 ANALYSIS

6.1 ERROR ANALYSIS

We define eight error types to analyze agent failures: five for feasible episodes (EP, II, DC, AP, TR)
and three for infeasible episodes (CM, CB, LJ). Error taxonomy is provided in Table 2. Our analysis
centers on GPT-4.1, the best-performing model.

Figure 4 summarizes the error type distributions for GPT-4.1 across feasible and infeasible episodes.
For feasible episodes, figure (a) and (b) show error distribution in QT2 and QT4. In QT2 (indirect
requests), failures were dominated by Device Control (DC, 71%), where the model issued heuristic
guesses instead of using the correct API. Intent Inference (II) errors (11%) also appeared, reflecting
difficulty in mapping vague complaints such as “The room is too hot” to the appropriate device
action. QT4 (temporal scheduling) exhibited a more diverse mix: DC (40%), Temporal Reasoning
(TR, 25%), and Action Planning (AP, 19%) all contributed substantially, alongside smaller II errors
(11%). These distributions show that multi-step temporal reasoning requires coordinating multiple
skills simultaneously, making it substantially harder than direct execution tasks.

For infeasible queries, figure (c) and (d) highlight two dominant patterns. In QT1–QT3, GPT-4.1 of-
ten detected the contradiction but failed to follow the instructed protocol, resulting in Contradiction
Mishandling (CM). For example, when asked to raise the kitchen temperature using a non-existent
heat pump, it instead acted on the living-room heat pump. In QT4, the dominant issue was Con-
tradiction Blindness (CB): the model failed to recognize temporal infeasibility (e.g., contradictory
deadlines) and proceeded as if the request were valid. Even when contradictions were recognized,
responses were frequently mishandled (CM).

6.2 ROLE OF TOOL FEEDBACK

To better understand agent dynamics, we examined QT3, where most models were relatively strong.
Figure 5 shows that over 40% of successful QT3 episodes involved recovery after an initial invalid
tool call. In other words, agents did not require perfect prior knowledge of the Matter protocol
but learned reactively from error messages. This ability to recover explains their robustness on
explicit device-control queries. In contrast, the weakness on QT4 stems in part from its deferred-
feedback: agents typically call the tool schedule workflow, which returns only a scheduling
acknowledgment (i.e., a success/failure message) without validating executability. Consequently,
the simulator provides little corrective signal, leaving the agent unable to revise its plan.
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Category Error Type Definition

Feasible Environment Perception (EP) Failure to correctly perceive environmental variables.
Intent Inference (II) Misinterpreting the user’s underlying goal.
Device Control (DC) Operating the wrong device or command.
Action Planning (AP) Incomplete or incorrect planning of actions.
Temporal Reasoning (TR) Miscalculating times or sequence alignment.

Infeasible Contradiction Mishandling (CM) Detects a contradiction but fails to follow the instruction.
Contradiction Blindness (CB) Fails to detect a contradiction.
LLM-Judge (LJ) Misclassification by LLM-Judge.

Table 2: Error taxonomy. Detailed descriptions and examples are provided in §A.10.

(a) QT2-F! (b) QT4-F! (c) QT2-IF" (d) QT4-IF"

Figure 4: Error type distributions of GPT-4.1 on QT2 and QT4. (a) and (b) show the distributions
for feasible episodes, while (c) and (d) present the distributions for infeasible episodes.
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Figure 5: Tool-call error patterns of four models on QT3-F. The left chart shows the average number
of errors relative to the average number of tool calls in successful cases. The right chart shows the
proportion of tasks achieved through first-try success versus those requiring error recovery.

7 CONCLUSION

We propose SimuHome, a Matter-aligned simulator and benchmark that reproducibly evaluates
smart-home LLM agents under realistic, dynamically changing conditions. We model 4 environ-
mental variables (i.e., temperature, illuminance, humidity, air quality) and 17 device types with
time-based effects and strict reproducibility, enabling near drop-in transfer to real Matter-compliant
devices. We provide 600 episodes across 12 query types with feasible and infeasible variants, pack-
aging each episode with an initial state, a verifiable goal, a natural-language query, and required
actions for process-aware, objective scoring. We score feasible tasks by final state-to-goal compari-
son in the simulator and assess infeasible logic checks with LLM judge that shows high agreement
with human evaluation. We evaluate 11 agents under the ReAct setup. Current open- and closed-
source LLMs handle explicit control and simple retrieval well but often fail at latent-intent inference,
live-state verification, and temporal scheduling; GPT-4.1 achieves an overall success rate of 54%
across all query types.
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report. arXiv preprint arXiv:2503.19786, 2025.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A controllable world of
apps and people for benchmarking interactive coding agents. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (ACL), 2024.

Xiaohan Wang, Dian Li, Yilin Zhao, Sinbadliu, and Hui Wang. Metatool: Facilitating large language
models to master tools with meta-task augmentation. arXiv preprint arXiv:2407.12871, 2024.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. In Proceedings
of the 41st International Conference on Machine Learning (ICML) — Spotlight, 2024.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models. arXiv preprint arXiv:2305.16504,
2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations, 2023. URL https://openreview.net/forum?id=WE_
vluYUL-X.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan.
tau-bench: A benchmark for tool-agent-user interaction in real-world domains. arXiv preprint
arXiv:2406.12045, 2024.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Zhipeng Li, Zhengyu Liu, Zihan Wang, Jilei
Zhang, and Lichao Sun. Webarena: A realistic web environment for building autonomous
agents. In International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=oKn9c6ytLx.

11

https://proceedings.neurips.cc/paper_files/paper/2023/hash/02120bee420311dce5a9bdb228f4118f-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/02120bee420311dce5a9bdb228f4118f-Abstract-Conference.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Shridhar_ALFRED_A_Benchmark_for_Interpreting_Grounded_Instructions_for_Everyday_Tasks_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Shridhar_ALFRED_A_Benchmark_for_Interpreting_Grounded_Instructions_for_Everyday_Tasks_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Shridhar_ALFRED_A_Benchmark_for_Interpreting_Grounded_Instructions_for_Everyday_Tasks_CVPR_2020_paper.html
https://aclanthology.org/2025.findings-acl.1030/
https://aclanthology.org/2025.findings-acl.1030/
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=oKn9c6ytLx
https://openreview.net/forum?id=oKn9c6ytLx


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 INFEASIBLE QUERY TYPES

QT1 Infeasible. This evaluates the ability to identify requests based on a false premise, such as
asking for information about non-existent devices or unsupported attributes. For example, for the
request “Can you tell me the vendor ID for the air purifier in the living room?”, the agent must
check the list of devices in the living room, confirm the absence of an air purifier, and explain that
the request’s premise is invalid.

QT2 Infeasible. This assesses the ability to identify situations where, even if the user’s intent
is correctly inferred, the goal is impossible to achieve due to environmental constraints or device
limitations. For example, in response to “The living room feels like a sauna”, the agent must verify
that the living room’s cooling system is already operating at maximum capacity and explain, with
supporting reasons, why further cooling is not possible.

QT3 Infeasible. This evaluates the ability to identify and reject a command to control a non-
existent device. For example, for the request “Turn on the humidifier in the living room”, the agent
must check the device list for the living room and confirm the absence of a humidifier. It should then
explain that the request cannot be fulfilled and terminate the task without altering any device’s state.

QT4-1 Infeasible. This assesses the ability to identify and explain situations where a scheduling
request is invalid because the user’s specified relative and absolute times are contradictory, or be-
cause the user has a misunderstanding of the current time. For example, if a user asks, “It’s 6 p.m.
now, right? Turn on the kitchen light five minutes later at 6:05 p.m.”, but the actual time is not 6
p.m., the agent must check the current time, detect the discrepancy between the relative expression
“five minutes later” and the absolute time “6:05 p.m.”, and clearly explain the contradiction.

QT4-2 Infeasible. This evaluates the ability to identify and explain, with evidence, requests where
the user incorrectly assumes a device’s completion time or creates a contradiction by providing both
relative and absolute times. For example, suppose a washer is set to finish at 6:30 p.m., but the user
requests, “I think the washer finishes at 6 p.m., so start the dehumidifier at 5:50 p.m., which is 10
minutes before it finishes”. The agent must check the washer’s actual estimated completion time.
It then needs to point out that the user’s assumption (6 p.m.), the relative expression (“10 minutes
before”), and the absolute time (“5:50 p.m.”) are all inconsistent. The agent must not register the
schedule until the contradiction is resolved and should ask the user to reconfirm the correct timing.

QT4-3 Infeasible. This evaluates the ability to identify and explain that a requested deadline is
physically impossible to meet, given the current progress of two operating devices. For example, if
the user requests, “Guests arrive at 6 p.m., so ensure both the washer and the dishwasher are com-
pleted by 5:30 p.m.”, the agent must check the current time and the minimum time required for each
device to finish. Based on this, it should explain with clear reasoning why a 5:30 p.m. completion
is not feasible and suggest the earliest possible completion time or an alternative sequential plan.
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A.2 LIST OF TOOLS

Table 3: Tool List for Agent

Name Description Args

finish Complete the task and return the final natural-language
answer. answer (str, required): Final response text.

execute command Execute a command on a device (e.g., turn on light, set
level, set setpoint).

device id (str, req); endpoint id (int, req);
cluster id (str, req); command id (str, req);
args (dict, req).

write attribute Directly set a device attribute value.
device id (str, req); endpoint id (int, req);
cluster id (str, req); attribute id (str, req);
value (any, req).

get all attributes Get all attributes of a device. device id (str, req).

get attribute Get a specific attribute of a device. device id (str, req); endpoint id (int, req);
cluster id (str, req); attribute id (str, req).

get device structure Get device structure (endpoints, clusters, attributes,
and commands). device id (str, req).

get rooms Get all rooms in the home along with their display
names. (none)

get room devices Get all devices in a room. room id (str, req).

get room states Get environmental states of a room (temperature, hu-
midity, illuminance, PM10). room id (str, req).

get cluster doc
Perform semantic search across Matter cluster docu-
mentation (covering specifications for clusters, com-
mands, and attributes).

query (str, req); top k (int, req).

schedule workflow
Schedule a sequential workflow of steps at a virtual ab-
solute time. The scheduled time must be in the future
relative to the current time.

start time (str, req; “YYYY-MM-DD
HH:MM:SS”); steps (list, req; e.g., {"tool":. . . ,
"args":. . .}).

get current time Get current virtual time as human-friendly string
“YYYY-MM-DD HH:MM:SS”. (none)

get workflow list Get list of workflows with optional filtering. (none)

A.3 LIST OF MATTER CLUSTERS

Table 4: Implemented Matter clusters.
Cluster Attributes Commands
Basic Information VendorName, VendorID, ProductName, ProductID None
Descriptor DeviceTypeList, ServerList, ClientList, PartsList, TagList None
OnOff GlobalSceneControl, OnTime, OffWaitTime, StartUpOnOff Off, On, Toggle
Level Control CurrentLevel, RemainingTime, MinLevel, MaxLevel,

CurrentFrequency, MinFrequency, MaxFrequency,
OnOffTransitionTime, OnLevel, OnTransitionTime,
OffTransitionTime, DefaultMoveRate, Options, StartUpCurrentLevel

MoveToLevel, Move, Step, Stop,
MoveToClosestFrequency

Fan Control FanMode, FanModeSequence, PercentSetting, PercentCurrent Step
MediaPlayback CurrentState Play, Pause, Stop, StartOver,

Previous, Next, Rewind,
FastForward

Channel ChannelList, Lineup, CurrentChannel ChangeChannel,
ChangeChannelByNumber,
SkipChannel

KeypadInput SupportedKeys SendKey
Identify IdentifyTime, IdentifyType Identify, TriggerEffect
Operational State PhaseList, Current Phase, CountdownTime, Operational State List,

Operational State, Operational Error
Pause, Resume, Stop, Start,
OperationalCommandResponse

Power Source ClusterRevision, FeatureMap, Status, Order, Description,
EndpointList, WiredAssessedInputVoltage, BatVoltage,
BatPercentRemaining, BatChargeState, ActiveBatFaults

None

Power Topology ClusterRevision, FeatureMap, AvailableEndpoints, ActiveEndpoints None
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Cluster Attributes Commands
Electrical Power
Measurement

PowerMode, NumberOfMeasurementTypes, Accuracy,
ReactiveCurrent, ApparentCurrent, ReactivePower, ApparentPower,
RMSVoltage, RMSCurrent, RMSPower, Frequency, PowerFactor

StartMeasurement,
StopMeasurement,
ResetMeasurement,
GetMeasurementSnapshot

Electrical Energy
Measurement

Accuracy, CumulativeEnergyImported, CumulativeEnergyExported,
PeriodicEnergyImported, PeriodicEnergyExported,
CumulativeEnergyReset

StartEnergyMeasurement,
StopEnergyMeasurement,
ResetCumulativeEnergy,
GetEnergySnapshot

Device Energy Management ESAType, ESACanGenerate, ESAState, AbsMinPower,
AbsMaxPower, PowerAdjustmentCapability, Forecast, OptOutState

None

Dishwasher Mode SupportedModes, CurrentMode ChangeToMode,
GetSupportedModes

Dishwasher Alarm Mask, Latch, State, Supported Reset, ModifyEnabledAlarms,
GetAlarmState, GetActiveAlarms

Refrigerator And
Temperature Controlled
Cabinet Mode

SupportedModes, CurrentMode ChangeToMode

RVC Clean Mode SupportedModes, CurrentMode ChangeToMode
RVC Operational State PhaseList, CurrentPhase, CountdownTime, Operational StateList,

Operational State, OperationalError
Pause, Resume, GoHome

RVC Run Mode SupportedModes, CurrentMode Start, Stop, Map, StopMap
Temperature Control TemperatureSetpoint, MinTemperature, MaxTemperature, Step,

SelectedTemperatureLevel, SupportedTemperatureLevels
SetTemperature

Temperature Measurement MeasuredValue, MinMeasuredValue, MaxMeasuredValue None
Thermostat LocalTemperature, OccupiedCoolingSetpoint,

OccupiedHeatingSetpoint, ControlSequenceOfOperation,
SystemMode

SetpointRaiseLower

WindowCovering Type, ConfigStatus, OperationalStatus, EndProductType, Mode,
SafetyStatus, CurrentPositionLiftPercent100ths,
TargetPositionLiftPercent100ths, NumberOfActuationsLift, etc.

UpOrOpen, DownOrClose,
StopMotion, GoToLiftPercentage

Laundry Dryer Controls SupportedDrynessLevels, SelectedDrynessLevel None
Laundry Dryer Mode SupportedModes, CurrentMode ChangeToMode
Laundry Washer Controls SpinSpeeds, SpinSpeedCurrent, NumberOfRinses, SupportedRinses None
Laundry Washer Mode SupportedModes ChangeToMode
Relative Humidity
Measurement

MeasuredValue, MinMeasuredValue, MaxMeasuredValue, Tolerance None

A.4 LIST OF DEVICE TYPES

Table 5: List of implemented device types and their corresponding clusters.
Device type Clusters
Air Conditioner Basic Information, Fan Control, OnOff, Thermostat
Air Purifier Basic Information, Descriptor, Fan Control, Identify, OnOff
Dehumidifier Basic Information, Fan Control, OnOff, Relative Humidity Measurement
Dimmable Light Basic Information, Level Control, OnOff
Dishwasher Basic Information, OnOff, Operational State
Electrical Sensor Basic Information, Electrical Energy Measurement, Electrical Power Measurement, Power Topology
Fan Basic Information, Fan Control, OnOff
Freezer Basic Information, Descriptor, Refrigerator And Temperature Controlled Cabinet Mode,

Temperature Control, Temperature Measurement
Heat Pump Basic Information, Descriptor, Device Energy Management, Electrical Energy Measurement,

Electrical Power Measurement, Power Source, Power Topology, Thermostat
Humidifier Basic Information, Fan Control, OnOff, Relative Humidity Measurement
Laundry Dryer Basic Information, Laundry Dryer Controls, Laundry Dryer Mode, OnOff, Operational State
Laundry Washer Basic Information, Laundry Washer Controls, LaundryWasherMode, OnOff, Operational State,

Temperature Control
On Off Light Basic Information, OnOff
Refrigerator Basic Information, Descriptor, Refrigerator And Temperature Controlled Cabinet Mode,

Temperature Control, Temperature Measurement
RVC Basic Information, RVCCleanMode, RVCOperational State, RVCRunMode
TV Basic Information, Channel, KeypadInput, Level Control, MediaPlayback, OnOff
Window Covering Controller Basic Information, Window Covering

A.5 GOAL EXAMPLES
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Table 6: Query type examples
Query Type Query Required Actions Goal
QT1 Feasible How bright is the utility room

lighting right now? I am sorting
some boxes and wondering if there
is enough light. Also how is the
living room humidity doing? I am
thinking about the plants there and
want to know if they are
comfortable.

get room states(utility room)
get room states(living room)

The utility room illuminance is
1000 lux. The living room humidity
is 50%.

QT1 Infeasible I am about to shower and
wondering what fan modes are
available for fan 1 in the bathroom?

get room devices(bathroom) Bathroom fan 1 not found; mode
unavailable.

QT2 Feasible Ugh the kitchen feels really dry my
hands are tight I left the bread
rising there so I am already a bit
worried about it. The living room
feels dusty my eyes are itching and
my throat is a little raw like there is
grit in the air.

get room devices(kitchen)
get room devices(living room)

Increase kitchen humidity; decrease
living room PM10.

QT2 Infeasible Ugh the office is so chilly, my
hands go numb just thinking about
working there later

get room devices(office) Office heat pump 1 is missing;
cannot increase temperature.

QT3 Feasible Set a softer light in the living room
for evening reading, turn the living
room dimmer light 1 on and set it
to level 50. Cool the study a bit for
working comfort, turn the study
room AC 1 on, switch it to cooling
mode and set the fan to 50 percent.

get room devices(living room)
get room devices(study room)

Living room dimmable light 1 on at
level 50; study room air conditioner
1 on, cooling mode, fan 50%.

QT3 Infeasible It’s a bit stuffy this morning, please
turn on the bedroom air purifier 1
and set the fan to 80 percent.

get room devices(bedroom) Not feasible: bedroom air purifier 1
is missing; cannot set fan to 80%.

QT4-1 While I am out here sorting
laundry and trying to clear damp
air, get the bathroom comfortable
so it feels fresh by the time I walk
over. Power on fan 1 in the
bathroom 9 minutes from now at
30 percent, and bump it up to 40
percent 7 minutes after the prior
action. Power on dimmer light 1 in
the bathroom 28 minutes from now
at level 10, and raise it to level 40
17 minutes after the prior action.

get room devices(bathroom) At 9 minutes: bathroom fan 1 on,
30%. At 16 minutes: bathroom fan
1 on, 40%. At 28 minutes:
bathroom dimmable light 1 on, level
10. At 45 minutes: bathroom
dimmable light 1 on, level 40.

QT4-1
Temporal-Conflict

Can you from the kitchen schedule
dimmer light 1 in the living room
to turn on and set to 80 percent in
eight minutes from now, which
will be 11:25 AM, I need it like
that to warm up the room for
guests and the start of the movie

None At 8 minutes: living room dimmable
light 1 on, level 80.

QT4-2 I am folding laundry and getting
things ready. 20 minutes after the
washer 1 in the utility room
finishes, power on air purifier 1 in
the living room and set the fan to
40 percent and switch heat pump 1
in the utility room to heating mode

get room devices(living room)
get room devices(utility room)

At 79 minutes: living room air
purifier 1 on, fan 40%; utility room
heat pump 1 in heating mode.

QT4-2
Temporal-Conflict

The wash leaves the utility room
humid and cool so I want the air
cleaned and the space warmed
right after it settles. Exactly 20
minutes after washer 1 in the utility
room finishes and at 12 36 PM,
turn on air purifier 1 in the living
room to a gentle fan speed and turn
on heat pump 1 in the utility room
for heating.

None At 79 minutes: living room air
purifier 1 on, fan 40%; utility room
heat pump 1 in heating mode.

QT4-3 Waiting on the kitchen steam to
clear so the laundry does not get
musty. When dishwasher 1 in the
kitchen finishes wait 11 minutes.
Then start dryer 1 in the utility
room. Set it to running and dryness
level 1.

get room devices(utility room) At 99 minutes: utility room dryer 1
stopped. At 100 minutes: utility
room dryer 1 running with dryness
level 1.
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Query Type Query Required Actions Goal
QT4-3
Temporal-Conflict

Start dryer 1 in the bathroom at
twelve thirty six PM. Pause dryer 1
in the bathroom immediately when
dryer 1 in the utility room finishes
to avoid tripping the breaker and
keep the laundry loads in order.

None At 43 minutes: bathroom dryer 1
running with dryness level 1; at 44
minutes: bathroom dryer 1 paused.

A.6 LLM JUDGE VALIDATION

To validate the LLM-based judging, we compared its assessments to human labels on a random subset of 70 episodes spanning all judge-scored
tasks. Human annotators showed very high inter-rater reliability (Cohen’s κ = 0.913). The LLM-Judge achieved substantial agreement with
the consensus human labels (Cohen’s κ = 0.826). These results support using the LLM-Judge as a reliable substitute for human evaluation in
our benchmark.

After manually reviewing the 155 cases that the LLM-Judge evaluated as incorrect, we found that only 5 were misclassifications, underscoring
the reliability of the evaluation. The detailed error distributions can be found in Table A.11.

A.7 EXPERIMENTAL SETUP

We evaluate 11 recent closed and open-source models: Llama-4-Scout (Meta AI, 2024), Llama-4-Maverick (Meta AI, 2024), Qwen3-32B
(Yang et al., 2025), Qwen3-235B-A22B (Yang et al., 2025), Gemma-3-12B-it (Team et al., 2025), Gemma-3-27B-it (Team et al., 2025),
Gemini-2.5-Flash (Comanici et al., 2025), Gemini-2.5-Flash-Lite (Comanici et al., 2025), GPT-4.1, GPT-4.1-mini (OpenAI, 2025a), and
GPT-4.1-nano (OpenAI, 2025a). All models were accessed via the OpenRouter API (OpenRouter, 2025) to ensure standardized access and
comparability.

A.8 REACT PROMPT

ReAct Prompt

You are a Smart Home Assistant that uses tools to control devices and provide
information based on the Matter protocol, with the goal of fulfilling the User
Query.

You operate under the ReAct framework with structured JSON responses.

[REACT FRAMEWORK]
- LOOP: (‘thought’ -> ‘action’ -> ‘action_input’) -> ‘observation’ -> repeat until

completion.
- Each response must contain exactly ONE step with reasoning, tool name, and JSON-

formatted parameters.
- ’action_input’ must always be provided as a JSON-formatted STRING.
- Thoroughly analyze each ’observation’ before generating the next step.
- End with the ’finish’ tool when the query is fully satisfied: {"action": "finish", "

action_input": "{\"answer\": \"your final answer\"}"}

[CRITICAL REQUIREMENTS]
- Use ONLY exact tool names from the available tools list.
- NEVER fabricate, assume, or guess information - always verify through tools.
- Analyze user query intent carefully: distinguish between information requests and

device control actions.
- If rooms or devices do not exist, explicitly state this in the final answer.
- Always include the correct device id, room id, and room state in your responses.
- If the user’s request contains contradictions between relative and absolute times, or

if temporal inconsistencies make the situation ambiguous, stop execution and
clearly inform the user about the conflict.

- When explaining outcomes to the user, use simple, everyday conversational language
instead of technical jargon.

[DEVICES]
- Supported device types: on_off_light(light), dimmable_light(dimmer light),

air_conditioner, air_purifier, tv, heat_pump, humidifier, dehumidifier,
window_covering_controller(blinds), dishwasher, laundry_washer(washer),
laundry_dryer(dryer), fan, rvc, freezer, refrigerator

- Do not confuse ‘light’ with ‘dimmer light’.

[MATTER PROTOCOL]
- Hierarchy: Device -> Endpoint -> Cluster -> Attribute/Command
- Use exact IDs from API responses (device_id, endpoint_id, cluster_id, attribute_id,

command_id).
- When unsure about device capabilities or cluster operations:
• Use get_device_structure to explore device endpoints and clusters.
• Use get_cluster_doc to understand cluster attributes, commands, and dependencies.
• Learn Matter protocol dynamically through these discovery tools.

- For devices with operational state cluster:
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• Use get_device_structure to explore mode characteristics and estimate operation
durations.

• Use countdownTime attribute to predict operation end time when device is running.

[DATA HANDLING & UNITS]
- Room State Units (scale conversion):

• Temperature: hundredths of °C (1850 = 18.50°C)
• Humidity: hundredths of % (7250 = 72.50%)
• Illuminance: direct lux (1000 = 1000 lux)

• PM10 (air quality): direct µg/m3 (125 = 125µg/m3)

[WORKFLOW SCHEDULING]
- WARNING: A success response indicates that scheduling was successful, but it does not

guarantee that all steps will execute successfully.
- Ensure execute_command and write_attribute parameters in workflow steps are

completely accurate.
- MANDATORY preparation before scheduling:
• Verify device capabilities and clusters (see [MATTER PROTOCOL] section).
• Schedule only with completely validated parameters.

[VERIFICATION & ACCURACY]
- Users may confuse the time, request control of inaccurate or non-existent devices, or

issue requests that contain logical or temporal inconsistencies.
- ALWAYS verify user statements before acting:

• Use get_rooms to confirm that rooms exist and obtain their correct room ids.
• Use get_current_time to confirm temporal information.
• Use get_room_states to verify room states.
• Use get_room_devices to verify device existence and obtain accurate device ids.

- Base final answers strictly on tool observations, not user claims.
- If operations fail or resources are missing, clearly explain why.
- Never claim successful operations without confirmation.

[AVAILABLE TOOLS]
<Tool List>

A.9 LLM JUDGE PROMPT

This section presents examples of the LLM Judge Prompts that were used to evaluate smart home LLM agents. Each query type (QT) has a
dedicated evaluation prompt with specific criteria.

A.9.1 QT1 FEASIBLE JUDGE PROMPT

QT1 Feasible Judge Prompt (Normal)

System
You are a strict evaluator for smart home LLM agents that respond to user queries.
Return EXACTLY ONE character: ’A’ (pass) or ’B’ (fail). No other text.

EVALUATION TARGET:
- Users may ask questions about the value of a device attribute
- Users may ask questions about the value of room states
- The agent uses tools to retrieve information and provides Final Answer
- You must evaluate whether the agent’s Final Answer is accurate and properly grounded

MATTER PROTOCOL CONTEXT:
- Device attributes follow format: ’endpoint.cluster.attribute’
- Example: ’1.OnOff.OnOff’ means endpoint 1, OnOff cluster, OnOff attribute
- Endpoint: functional unit within a device (e.g., endpoint 1 for main controls)
- Cluster: group of related attributes and commands (e.g., OnOff cluster for power

control)
- Attribute: specific property or value (e.g., OnOff attribute for current power state)
- Agent must retrieve exact attribute values from tools

ROOM STATE UNITS:
- Temperature: scaled by 100 (e.g., 2300 = 23.0°C, 2550 = 25.5°C)
- Humidity: scaled by 100 (e.g., 5500 = 55.0%, 4200 = 42.0%)
- Illuminance: direct lux values (e.g., 250 = 250 lux)

- PM10: direct µg/m3 values (e.g., 15 = 15 µg/m3)
All of the above room state values are valid in both raw and converted forms.

Pass (A) ONLY IF the agent’s Final Answer meets ALL conditions:
1) Goal Fulfillment: Agent addresses all goals specified in the evaluation
2) Room State Accuracy: For room_state goals, values match tool observations
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3) Room Name Accuracy: Agent mentions the correct room name for both device attributes
and room states

Otherwise, output ’B’.

User
- User Query:
<User Query>

- Goals (what should be evaluated):
<Goals>

- Agent’s ReAct Steps (tool calls and observations):
<ReAct Steps>

- Agent’s Final Answer:
<Final Answer>

EVALUATION STEPS:
1. For each goal, check if the agent called the appropriate action (get_room_devices

for device_attribute, get_room_states for room_state)
2. For device_attribute goals: Check if agent called get_device_structure with correct

device_id and extracted the right attribute value
3. For room_state goals: Check if agent extracted the correct room state value from

get_room_states observation
4. Verify the agent’s Final Answer correctly reflects the actual observation values (

considering unit conversion rules)
5. Ensure the agent mentions the correct room name in the Final Answer for both devices

and room states

Your Decision: A or B

A.9.2 QT1 INFEASIBLE JUDGE PROMPT

QT1 Infeasible Judge Prompt

System
You are a strict evaluator for smart home LLM agents that respond to user queries.
Return EXACTLY ONE character: ’A’ (pass) or ’B’ (fail). No other text.

EVALUATION TARGET:
- Users may ask questions about a device attribute, but target device does NOT exist in

specified room
- Users may ask about room states, which should be answered accurately
- The agent should recognize device absence and inform user appropriately
- You must evaluate whether the agent properly handled missing devices AND accurately

answered room state questions

ROOM STATE UNITS:
- Temperature: scaled by 100 (e.g., 2300 = 23.0°C, 2550 = 25.5°C)
- Humidity: scaled by 100 (e.g., 5500 = 55.0%, 4200 = 42.0%)
- Illuminance: direct lux values (e.g., 250 = 250 lux)

- PM10: direct µg/m3 values (e.g., 15 = 15 µg/m3)
All of the above room state values are valid in both raw and converted forms.

Pass (A) ONLY IF the agent’s Final Answer meets ALL conditions:
1) Goal Fulfillment: Agent addresses all goals specified in the evaluation
2) Room State Accuracy: For room_state goals, values match tool observations
3) Room Name Accuracy: Agent mentions the correct room name for both device attributes

and room states
4) Device Non-existence Recognition: For device_attribute goals, agent explicitly

indicates the device does NOT exist
5) No Fabricated Device Data: Agent does NOT provide made-up attribute values for

nonexistent devices

Otherwise, output ’B’.

User
- User Query:
<User Query>

- Goals (what should be evaluated):
<Goals>

- Agent’s ReAct Steps (tool calls and observations):
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<ReAct Steps>

- Agent’s Final Answer:
<Final Answer>

EVALUATION STEPS:
1. For device_attribute goals: Check if agent called get_room_devices and discovered

the target device does NOT exist in the room
2. For device_attribute goals: Verify agent’s Final Answer explicitly states the device

does NOT exist (not just missing data)
3. For room_state goals: Check if agent called get_room_states and extracted correct

values from observations
4. For room_state goals: Verify Final Answer reflects actual observation values (

considering unit conversion rules)
5. Ensure the agent mentions the correct room name in the Final Answer for both devices

and room states
6. Ensure agent does NOT fabricate or make up attribute values for nonexistent devices

Your Decision: A or B

A.9.3 QT2 INFEASIBLE JUDGE PROMPT

QT2 Infeasible Judge Prompt

System
You are a strict evaluator for smart home LLM agents that respond to room state change

requests.
Return EXACTLY ONE character: ’A’ (pass) or ’B’ (fail). No other text.

EVALUATION TARGET - INFEASIBLE CASE:
- Users ask to change room states (temperature, humidity, illuminance, PM10) in

specific directions
- In infeasible cases, controllable devices exist but the requested change is

contextually impossible
- Common reasons include:

* Illuminance decrease: All lights already OFF, or all dimmable lights are at their
minimum level (level = 1 on a 1-254 scale), so illuminance cannot be reduced
further.

* Temperature decrease: In the target room, all AC units are ON with fan = 100
percent and CoolingSetpoint < current room temperature. Also heaters are not
actively heating (SystemMode is not 4 or HeatingSetpoint < current room
temperature). Because AC is already at full capacity, further decrease is
impossible.

* Temperature increase: ACs are OFF, or fan = 0, or CoolingSetpoint current room
temperature. And heat pump is in heating mode (SystemMode = 4) and HeatingSetpoint
> current room temperature.

* Humidity control: Humidifiers/dehumidifiers at maximum capacity in opposite
direction

- The agent should recognize this contextual impossibility and explain the specific
limitation

- You must evaluate whether the agent properly identified and explained the
infeasibility

Pass (A) ONLY IF the agent’s Final Answer meets ALL conditions:
1) Goal Fulfillment: Agent addresses all goals specified in the evaluation
2) Infeasibility Recognition: Agent explicitly states it CANNOT fulfill the request due

to contextual limitations
3) Specific Reasoning: Agent provides specific explanation for why the request is

infeasible
4) Room Name Accuracy: Agent mentions the correct room name
5) No False Claims: Agent does NOT claim to have made changes or provide fake

confirmation
6) Tool Consistency: Any factual claims match the tool observations
Otherwise, output ’B’.

User
- User Query:
<User Query>

- Goals (what should be evaluated):
<Goals>

- Agent’s ReAct Steps (tool calls and observations):
<ReAct Steps>
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- Agent’s Final Answer:
<Final Answer>

EVALUATION STEPS - INFEASIBLE CASE:
1. Check if agent explored the room and identified controllable devices
2. Verify agent discovered the contextual limitation making the request infeasible:
- For illuminance decrease: Identified all lights are OFF or all dimmable lights are

at minimum level (1/254)
- For temperature decrease: Verified ALL ACs: OnOff.OnOff=True, FanControl.

CurrentPercent=100, OccupiedCoolingSetpoint < current_room_temperature and heater
inactive (SystemMode is not 4 or OccupiedHeatingSetpoint <
current_room_temperature)

- For temperature increase: Verified AC OFF or FanControl.CurrentPercent=0 or
CoolingSetpoint current_room_temperature and heat pump heating (SystemMode=4)
with OccupiedHeatingSetpoint > current_room_temperature

- For humidity: Found devices at maximum capacity in opposite direction
3. Ensure agent’s Final Answer explicitly states the inability to fulfill the request
4. Confirm agent provides specific reasoning for the infeasibility (not generic

explanations)
5. Verify agent mentions the correct room name in the Final Answer
6. Confirm agent does NOT fabricate successful operations or fake device controls
7. Verify any factual claims are consistent with tool observations
Your Decision: A or B

A.9.4 QT2 INFEASIBLE-NONEXISTANCE JUDGE PROMPT

QT2 Infeasible Judge Prompt

System
You are a strict evaluator for smart home LLM agents that respond to room state change

requests.
Return EXACTLY ONE character: ’A’ (pass) or ’B’ (fail). No other text.

EVALUATION TARGET - NONEXISTANCE CASE:
- Users ask to change room states (temperature, humidity, illuminance, PM10) in

specific directions
- In nonexistance cases, NO controllable device/actuator exists in the target room to

make the requested change
- The room might have devices, but none that can control the specific requested state
- The agent should recognize this limitation and inform user appropriately
- You must evaluate whether the agent properly handled the impossible request

Pass (A) ONLY IF the agent’s Final Answer meets ALL conditions:
1) Goal Fulfillment: Agent addresses all goals specified in the evaluation
2) Infeasibility Recognition: Agent explicitly states it CANNOT fulfill the request due

to contextual limitations
3) Device Analysis: Agent demonstrates understanding of what devices exist vs what’s

needed
4) Room Name Accuracy: Agent mentions the correct room name
5) No False Claims: Agent does NOT claim to have made changes or provide fake

confirmation
6) Tool Consistency: Any factual claims match the tool observations
Otherwise, output ’B’.

User
- User Query:
<User Query>

- Goals (what should be evaluated):
<Goals>

- Agent’s ReAct Steps (tool calls and observations):
<ReAct Steps>

- Agent’s Final Answer:
<Final Answer>

EVALUATION STEPS - NONEXISTANCE CASE:
1. Check if agent explored the room and discovered no controllable devices for the

requested room state change
2. Verify agent’s Final Answer explicitly states the inability to fulfill the request
3. Ensure agent demonstrates understanding of existing devices vs required capabilities
4. Verify agent mentions the correct room name in the Final Answer
5. Confirm agent does NOT fabricate successful operations or fake device controls
6. Verify any factual claims are consistent with tool observations
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Your Decision: A or B

A.9.5 QT3 INFEASIBLE JUDGE PROMPT

QT3 Infeasible Judge Prompt

System
You are a strict evaluator for smart-home agents that respond to device operation

requests.
Return EXACTLY ONE character: ’A’ (pass) or ’B’ (fail). No other text.

EVALUATION TARGET:
- Users ask to operate devices or read attributes in specific rooms
- In abnormal cases, the target device does NOT exist in the specified room
- The agent should recognize device absence and inform the user appropriately
- You must evaluate whether the agent properly handled the missing device situation

Pass (A) ONLY IF the agent’s Final Answer meets ALL conditions:
1) Goal Fulfillment: Agent addresses all goals specified in the evaluation
2) Device Non-existence Recognition: Agent explicitly states the specified device does

NOT exist in the target room
3) Room Name Accuracy: Agent mentions the correct room name
4) No False Operations: Agent does NOT claim to have operated the device or read its

attributes
5) No Fabricated Device Data: Agent does NOT provide made-up device information or

attribute values
Otherwise, output ’B’.

User
- User Query:
<User Query>

- Goals (what should be evaluated):
<Goals>

- Agent’s ReAct Steps (tool calls and observations):
<ReAct Steps>

- Agent’s Final Answer:
<Final Answer>

EVALUATION STEPS:
1. For each goal, check if agent explored the room and discovered the target device

does NOT exist
2. Verify agent’s Final Answer explicitly states the device is not available in the

specified room
3. Ensure agent mentions the correct room name in the Final Answer
4. Confirm agent does NOT claim to have operated the device or accessed its attributes
5. Verify agent does NOT fabricate device information or attribute values

Your Decision: A or B

A.9.6 QT4-1 JUDGE PROMPT

QT4-1 Judge Prompt

System
You are a strict evaluator for smart-home agents handling temporal conflicts in device

scheduling scenarios.
Return EXACTLY ONE character: ’A’ (pass) or ’B’ (fail). No other text.

STRICT RULE: All time comparisons must allow up to 1 minute tolerance. Any difference
within this window should be treated as equal.

Pass (A) IF ALL of these conditions are satisfied:
1) CONFLICT RECOGNITION: The agent explicitly recognizes that the request is impossible

due to the timing mismatch.
2) RESOLUTION POLICY: The agent either (a) clearly refuses to execute the request as

given, or (b) stops and requests clarification from the user without proceeding
with execution.

Fail (B) ONLY if the agent:
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- Ignores the timing conflict and proceeds with execution, OR
- Claims in its final response that the task was successfully completed despite being

impossible.

User
- Original Query:
<Original Query>

- Conflict Context:
<Conflict Context>

- Agent’s Reasoning Process:
<ReAct Reasoning Summary>

- Agent’s Final Answer:
<Final Answer>

Your Decision: A or B

A.9.7 QT4-2 JUDGE PROMPT

QT4-2 Judge Prompt

System
You are a strict evaluator for smart-home agents handling temporal conflicts in smart

device coordination scenarios.
Return EXACTLY ONE character: ’A’ (pass) or ’B’ (fail). No other text.

STRICT RULE: All time comparisons must allow up to 1 minute tolerance. Any difference
within this window should be treated as equal.

Pass (A) IF ALL of these conditions are satisfied:
1) COMPLETION RECOGNITION: The agent must correctly recognize the actual completion

time of the anchor device by referencing the CountdownTime attribute in the
OperationalState cluster.

2) CONFLICT RECOGNITION: The agent identifies that the calculated relative time
conflicts with the specified absolute clock time.

3) RESOLUTION POLICY: The agent either (a) refuses to execute as given because both
timing constraints cannot be satisfied simultaneously, or (b) stops and requests
clarification by asking the user to choose one timing option; in either case, it
does NOT proceed with execution.

Fail (B) ONLY if the agent:
- Ignores the timing conflict and proceeds with execution, OR
- States in the final response that it successfully completed the task despite the

execution being impossible
- Does not obtain CountdownTime during the ReAct steps prior to the final response.

User
- Original Query:
<Original Query>

- Conflict Context:
<Conflict Context>

- Agent’s Reasoning Process:
<ReAct Reasoning Summary>

- Agent’s Final Answer:
<Final Answer>

Your Decision: A or B

A.9.8 QT4-3 JUDGE PROMPT

QT4-3 Judge Prompt

System
You are a strict evaluator for smart-home agents handling temporal conflicts in

appliance coordination scenarios.
Return EXACTLY ONE character: ’A’ (pass) or ’B’ (fail). No other text.
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STRICT RULE: All time comparisons must allow up to 1 minute tolerance. Any difference
within this window should be treated as equal.

Pass (A) IF ALL of these conditions are satisfied:

COMPLETION RECOGNITION: The agent must correctly recognize the actual completion time
of <anchor_id> by referencing the CountdownTime attribute or OperationalState
attribute in the OperationalState cluster.

CONFLICT RECOGNITION: The agent clearly identifies that the request is impossible
because the anchor has already finished at <anchor_end_time>, so <targets_ids>
cannot be started and then paused at the anchor’s finish time.

RESOLUTION POLICY: The agent either (a) states that <targets_ids> cannot be started and
then paused at <conflict_time>, OR (b) explains that since <anchor_id> will
finish before <targets_ids> starts, there is no need to pause <targets_ids>.

Fail (B) ONLY if the agent:

Completely ignores the temporal conflict, OR

States in the final response that it successfully completed the task despite the
execution being impossible, OR

Does not examine the OperationalState attribute of <anchor_id> during the ReAct steps
prior to the final response.

User
- Original Query:
<Original Query>

- Conflict Context:
<Conflict Context>

- Agent’s Reasoning Process:
<ReAct Reasoning Summary>

- Agent’s Final Answer:
<Final Answer>

Your Decision: A or B
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A.10 ERROR TAXONOMY DETAILS

Table 7: Error Types in Feasible Episodes
Error Type Definition Example
Environment Perception
Errors (EP)

Failure to correctly perceive or retrieve a value of environmental
variables.

Querying wrong sensor,
misidentifying device state,
guessing instead of perceiving.

Intent Inference Errors (II) Misinterpreting user’s underlying goal. Not executing actual commands
even when a user’s intention is clear.

Device Control Errors (DC) Executing the wrong device, wrong command, or missing control
steps.

setting wrong channel, adjusting fan
speed without turning it on first.

Action Planning Errors
(AP)

Incorrect or incomplete construction of the control workflow. Breaking logical dependencies, only
executing part of a multi-goal query
without consideration.

Temporal Reasoning Errors
(TR)

Miscalculating relative/absolute times or sequence alignment. Scheduling “in 10 minutes” at
wrong time, miscomputing
dishwasher completion.

Table 8: Error Types in Infeasible Episodes
Error Type Definition Example
Contradiction Mishandling
Errors (CM)

The agent detects a contradiction but does not follow the proper
instruction-following rule.

e.g., instead of informing the user
that a requested action is impossible,
it arbitrarily manipulates other
devices or ignores the instruction.

Contradiction Blindness
Errors (CB)

The agent completely fails to recognize a contradiction and executes
the request as if it were valid.

e.g., dimming an on/off light,
scheduling conflicting temporal
actions without noticing
inconsistency.

LLM-Judge Errors (LJ) Errors caused not by the agent but by the evaluation system
misclassifying or overlooking behavior.

e.g., penalizing an informative
refusal as a failure, or wrongly
accepting hallucinated control as
valid.

A.11 ERROR TYPE DISTRIBUTIONS

Error Type QT2 QT3 QT4-1 QT4-2 QT4-3
Environment Perception (EP) 3 0 4 1 0
Intent Inference (II) 3 1 0 4 5
Device Control (DC) 20 7 13 13 8
Action Planning (AP) 2 0 6 3 7
Temporal Reasoning (TR) 0 0 2 6 13
Total 28 8 25 27 33

Table 9: Error type distribution of GPT-4.1 in feasible episodes.

Error Types QT1 QT2 QT3 QT4-1 QT4-2 QT4-3
Contradiction Mishandling (CM) 8 24 6 5 6 1
Contradiction Blindness (CB) 0 5 0 40 25 30
LLM-Judge (LJ) 1 0 0 0 1 2
Total 9 29 6 45 32 33

Table 10: Error type distribution of GPT-4.1 in infeasible episodes.

A.12 EQUATIONS OF AGGREGATORS

Sr,t+1 = Sr,t +
∑

d∈DS,r

∆Sd,r(t), (1)

where DS,r denotes the set of devices in room r that are defined to affect state S, and ∆Sd,r(t)
represents the contribution of device d at tick t to S in room r.
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A.13 QT3 ERROR TYPE DISTRIBUTION

n=41

Gemini-2.5-Flash

n=33

Llama-4-Mav.

n=27

GPT-4.1

n=42

Qwen3-235B

Error Types
CLUSTER_NOT_FOUND
COMMAND_EXECUTION_ERROR
COMMAND_NOT_FOUND
INTERNAL_ERROR
MISSING_PARAMETERS
READ_ONLY
VALIDATION_ERROR

Figure 6: Distribution of tool execution error types in successful QT3 Feasible cases across four
models.

A.14 LLM USAGE

In accordance with the ICLR 2026 policy on large language model (LLM) usage, we disclose that
LLMs (OpenAI GPT-5) were used as a general-purpose assistant for language editing, including
polishing wording, improving clarity, and maintaining consistency. LLMs were not involved in
research design, implementation, experiments, or analysis. All scientific contributions and claims in
this paper are the sole responsibility of the authors.
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