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Abstract
Despite the exceptional performance of Large
Language Models (LLMs), the substantial vol-
ume of key-value (KV) pairs cached during in-
ference presents a barrier to their efficient de-
ployment. To ameliorate this, recent works have
aimed to selectively eliminate these caches, in-
formed by the attention scores of associated to-
kens. However, such cache eviction invariably
leads to output perturbation, regardless of the
token choice. This perturbation escalates with
the compression ratio, which can precipitate a
marked deterioration in LLM inference perfor-
mance. This paper introduces Cache Merging
(CaM) as a solution to mitigate this challenge.
CaM adaptively merges to-be-evicted caches into
the remaining ones, employing a novel sampling
strategy governed by the prominence of attention
scores within discarded locations. In this manner,
CaM enables memory-efficient LLMs to preserve
critical token information, even obviating the need
to maintain their corresponding caches. Extensive
experiments utilizing LLaMA, OPT, and GPT-
NeoX across various benchmarks corroborate
CaM’s proficiency in bolstering the performance
of memory-efficient LLMs. Code is released at
https://github.com/zyxxmu/cam.

1. Introduction
The unparalleled efficacy of Large Language Models
(LLMs) across varied application domains has paved an
unprecedented trajectory toward the realization of Artificial
General Intelligence (AGI) (Brown et al., 2020; Touvron
et al., 2023; Bommarito II & Katz, 2022). Nevertheless, de-
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ploying LLMs at inference time poses considerable financial
and energetic burdens, chiefly attributed to their substantial
scale that requires massive computational resources and
GPU memory (Zhao et al., 2023). Consequently, the
generative procedure of LLMs frequently integrates a
Key-Value (KV) Cache mechanism intended to streamline
the generation process. During each step of generation,
the key-value embeddings from the attention module are
retained in memory, thereby obviating the need for redun-
dant key-value calculations in subsequent steps. Despite
its utility, the memory footprint of the KV cache swells
with the enlargement of the model dimensions and lengths
of generation sequences, imposing significant demands on
device memory capacity. Consider LLaMA-65B (Touvron
et al., 2023) as an illustrative example: for a batch size of
128 and a sequence length of 2048, approximately 365GB
of KV cache memory is required, which is nearly threefold
that of the model’s parameters (around 130GB). Therefore,
advancing the memory efficiency of the KV cache, while
simultaneously preserving the generative efficiency and
quality of LLMs, represents a critical task.

A promising group of methods has recently emerged where
a proportion of KV cache can be evicted at inference time
to reduce memory consumption and accelerate token gen-
eration (Zhang et al., 2023b; Xiao et al., 2023b; Ge et al.,
2023; Liu et al., 2023). Nevertheless, such token selection
constitutes a challenging task since the eviction of salient
tokens might cause critical information loss, thereby leading
to notable performance declines (Zhang et al., 2023b). To
date, the bulk of research is grounded on the attention scores
respective to tokens, which ostensibly mirrors their influ-
ence on the output after cache eviction—expressed, w.r.t,
O = A · V , where O,A, and V symbolize the attention
output, attention weights, and value cache, respectively. For
instance, Zhang et al. (2023b) suggested a more adaptive
selection method by preserving KV caches of tokens that
accumulate higher attention scores throughout the genera-
tive process. Xiao et al. (2023b) contended the existence of
“sink tokens” at the beginning of the sequence exhibits pro-
nounce attention scores, thereby proposing StreamingLLM
to simply keep the initial 4 tokens and the current window’s
KV cache.

Despite the ongoing efforts to substantially diminish the
KV cache memory burden throughout LLM inference (Han
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(a) Dense Attention (b) StreamingLLM (c) Cache Merging (Ours) (d) Performance Comparison

Figure 1: (a) Attention maps using dense attention. (b) StreamingLLM (Xiao et al., 2023b) mitigates the memory overhead
by evicting token caches considered non-essential, determined by attention scores. (c) CaM merges caches of to-be-evicted
tokens with higher attention score (purple frame) into subsequent tokens, hence (d) resulting in smaller output perturbations
caused by cache eviction and leading to superior inference performance (LLaMA-7B with 20% memory budget).

et al., 2023; Xiao et al., 2023b; Zhang et al., 2023b), a con-
spicuous constraint persists. Fundamentally, regardless of
the chosen token selection criteria, cache eviction invariably
induces inferential discrepancies—a consequence inevitably
linked to the essential linear dot product calculations under-
pinning the attention mechanism in LLMs. Such discrep-
ancy will be greatly magnified with a large compression
ratio, particularly for long sequence generation.

In response to this issue, this paper presents Cache Merg-
ing (CaM), a new approach that strategically merges the
intended-to-be-eliminated KV cache into the preserved
cache, instead of permanently evicting them. The impe-
tus behind CaM is rooted in the fundamental processes of
attention computation: by establishing the merge rate in
proportion to the attention score ratio between the token
sets designated for eviction and those selected for merging,
the output remains theoretically unchanged, i.e., LLM infer-
ence outcomes do not differ even cache memory is reduced.
Nevertheless, such lossless merging heavily relies on as-
signing merge ratios to reflect the attention proportion of
tokens being evicted and those being merged. Such a ratio
pertinent to future generation steps is unpredictable, thereby
rendering the efficacy of merging difficult to ascertain.

Fortunately, we empirically observe that the mean attention
spanning across a sequence of tokens exhibits significant
constancy within future generation steps. This observation
has prompted us to propose a strategy that evenly merges
the cache destined for eviction into the remaining caches.
Building on this, we further employ CaM a sampling deci-
sion based on the cumulative attention scores accrued by
the to-be-evacuated token in comparison to other tokens, to
ascertain its merging necessity. Through theoretical substan-
tiation and empirical verification, we demonstrate that such
an adaptive process for even cache merging invariably leads
to less output perturbation than direct cache eviction. Uti-
lizing CaM, we observed that the inferential performance

of memory-efficient LLMs is markedly enhanced across
diverse testing tasks, encompassing question-answering,
text summarization, and extensive language modeling tasks,
as illustrated in Fig 2 (d). For example, CaM enhances
StreamingLLM (Xiao et al., 2023b) by 5.1% in zero-shot
accuracy on the RTE (Wang et al., 2018) benchmark while
retaining 20% of the cache within LLaMA-7B (Touvron
et al., 2023). The contributions of this paper are delineated
as follows:

• We propose CaM to merge caches scheduled for evic-
tion back into the residual caches to reduce the output
discrepancies caused by cache eviction. This repre-
sents the first concept of cache merging within the
domain of LLM inference, to our best knowledge.

• Extensive experimental results demonstrate that CaM
effectively bolsters the performance of memory-
efficient LLMs over a wide spectrum of tasks and se-
quence length conditions.

• We provide comparative studies to substantiate the
strategic rationale behind cache merging. Hopefully,
these results can serve as both a useful tool for future
research in cache merging for memory-efficient LLMs.

2. Related Work
LLMs Inference Breakdown. The memory load of LLMs
at inference is attributed by three primary components: the
volume of model parameters, the size of the activation buffer,
and the size of the KV cache. Model compression tech-
niques, inclusive of parameter quantization (Lin et al., 2023;
Frantar et al., 2022; Dettmers et al., 2022; Xiao et al., 2023a)
and network pruning (Frantar & Alistarh, 2023; Sun et al.,
2023; Zhang et al., 2023a; Yin et al., 2023), have demon-
strated impressive progress in addressing the former two
components. Analogously, the memory overhead of KV
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caches in LLMs is linked to the models’ hidden dimensions,
yet with a greater dependency on sequence lengths and batch
sizes during inference. The requisite memory for the KV
cache proportionally increases as the previous key-value em-
beddings in attention are stored persistently to generate new
tokens. In scenarios involving extended sequences, such as
those spanning 2048 tokens, memory consumption typically
escalates to 2.5 to 5 times the size of the model itself (Ge
et al., 2023; OpenAI, 2023).

KV Cache Compression. Efforts to alleviate the KV cache
burden in LLM inference have been broadly divided into two
categories: introducing sparsity to discard non-essential to-
kens and reducing the bit requirements for each KV embed-
ding. For the first category, notable works like H2O (Zhang
et al., 2023b) and Scissorhands (Liu et al., 2023) identifying
important tokens based accumulated attention scores (Wang
et al., 2021), while TOVA (Oren et al., 2024) suggests uti-
lizing the recent attention pattern. StreamingLLM (Xiao
et al., 2023b) and LM-Infinite (Han et al., 2023) propose the
concept of ’sink tokens’, i.e., the beginning of the sequences,
suggesting the removal of KV caches for intermediate to-
kens. Additionally, (Ge et al., 2023) investigates attention
importance across different attention heads and layers, and
prosposes an adaptive KV cache eviction policy. The sec-
ond category aims to reduce the bits needed for storing
KV embeddings, such as FlexGen (Sheng et al., 2023) and
KIVI (Liu et al.) that recommend quantizing keys per chan-
nel and values per token. Meanwhile, recent approaches
like landmark tokens (Mohtashami & Jaggi, 2023) or Gist
tokens (Mu et al., 2023) compress KV cache costs by set-
ting special tokens, though they require extra training and
cannot be seamlessly integrated into existing LLMs. Dis-
tinct from previous methods, our Cache Merging (CaM)
method presents a novel approach by merging caches to
minimize information loss during compression. A closely
related work, SparQ (Ribar et al., 2023), enhances KV cache
eviction with a global embedding that is averaged across all
tokens. However, averaging all tokens risks compromising
the original output of the current token. Our CaM method,
therefore, offers a unique and potentially more effective
solution to the challenges of KV cache compression.

Token Prune and Merge in ViTs. Within the Vision Trans-
former (ViT) domain, compressing superfluous image to-
kens has been an extensively explored research topic (Rao
et al., 2021; Yin et al., 2022; Bolya & Hoffman, 2023; Bolya
et al., 2023). Early inquiries aimed at creating metrics
for pinpointing and then discarding redundant tokens (Rao
et al., 2021; Yin et al., 2022). The advent of Token Merge
(ToMe) (Bolya et al., 2023; Bolya & Hoffman, 2023) in-
troduced a pivotal advancement, effectively minimizing the
performance degradation associated with token pruning by
merging said visual tokens. Chen et al. (2023) delved into
optimizing hyperparameters and calculating merge ratios.

Different from previous work, CAM for the first time ex-
plores the possibility of merging the KV cache produced
in the generation step, serving as a starting point for future
research in KV cache merging for memory-efficient LLMs.

3. Methodology
3.1. Preliminary

We first give a basic preliminary about the memory usage for
storing attention keys and values in LLMs inference. LLMs
are typically built with transformer layer (Vaswani et al.,
2017). Here we only consider one attention head within
a specific layer for simplicity. Let the attention module
weights be Wq ∈ Rd×d, Wk ∈ Rd×d, Wv ∈ Rd×d, where
d represents the hidden dimension of the model. LLM in-
ference follows an autoregressive fashion, generating one
token at each step conditioned on the previous steps. At
each step, the key-value embedding in attention is stored
in memory to avoid repetitive key-value projection compu-
tation at future steps. Denote the the key and value cache
as K,V , given prompt input of a specific layer in LLMs as
Xprompt = [x1, ..., xp], where p is the prompt length, the KV
cache is initialized as

K = XpromptWk, V = XpromptWv. (1)

Let the input of the attention module at generation step t
be xt ∈ Rd, where we omitted the batch dimension for
simplicity. xt is firstly mapped into a set of queries, keys,
and values {Qt,Kt, Vt} as

Qt = xtWq,Kt = xtWk, Vt = xtWv. (2)

Then, the KV cache gets updated as K = [K,Kt], V =
[V, Vt]. Finally, the t-th step outputs Ot is computed by first
calculating the attention weights at t-th step At ∈ Rt as

At = softmax(Q⊤
t K), (3)

where softmax is the softmax function, and O is derived as

Ot =

t∑
k=1

At
kVk. (4)

Despite the effectiveness of KV caching mechanism in cir-
cumventing redundant computation of key-value projections
in LLMs inference, it incurs considerable memory consump-
tion—markedly in instances with extended sequences that
may encompass thousands of tokens (Rae et al., 2019). Con-
sequently, devising methods to diminish the cache’s memory
footprint without compromising generative quality remains
an imperative challenge.

3.2. Revisiting KV Cache Eviction

Extensive research endeavors have been undertaken to
reduce the burden of Key-Value (KV) cache without com-
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promising the quality of inference (Zhang et al., 2023b; Xiao
et al., 2023b; Liu et al., 2023; Ge et al., 2023). The funda-
mental goal of KV cache compression lies in preserving the
fidelity of outputs obtained with a full cache when certain
KV pairs are excised from the cache. Formally, upon the
eviction of a selected KV cache pair Ki and Vi, the resulting
perturbation ∆t in output can be quantified using Eq. (4) as:

∆t = −At
iVi. (5)

Remark 3.1. Prevailing studies (Zhang et al., 2023b; Liu
et al., 2023; Xiao et al., 2023b) predominantly utilize
the magnitude of the attention scores as a criterion for
determining which caches should be discarded. These
approaches are theoretically supported by Eq. (5), as
removing caches corresponding to tokens with lower
attention scores ostensibly reduces variations in the output.

Despite the ongoing advancements, we contend that the cur-
rent methods employed for the eviction of the KV cache
exhibit an obvious limitation. Independent of the metric
used for token selection, the eviction of entries from the
cache inherently causes fluctuations in the output, as in-
ferred from Eq. (5). Concomitantly, an increase in the com-
pression ratio of the KV cache exacerbates output pertur-
bations, consequently precipitating a marked deterioration
in the performance of LLM during inference, as shown in
Figure 1 (d).

3.3. Cache Merging

In response to this issue, we introduce Cache Merge (CaM)
to merge caches that is designed to be evicted into the re-
maining caches, instead of the customary eviction process
found in prior works. The impetus for CaM originates from
the theorem delineated hereunder.

Theorem 3.2. Consider indices i and j corresponding to
tokens whose associated KV cache pairs are designated for
eviction and retention, respectively. The perturbation in
output at the t-th generative step, denoted by Θt, is nullified
when the value cache Vi is merged into Vj , via an updated

cache V̄j = Vj +
At

i

At
j
Vi.

Proof. We can express the output perturbation as follows:

Θt =

t∑
k=1

At
kVk −

 t∑
k=1
k ̸=i,j

At
kVk +At

j V̄j



=

t∑
k=1

At
kVk −

 t∑
k=1
k ̸=i,j

At
kVk +At

j

(
Vj +

At
i

At
j

Vi

)
= 0. ■

(6)

Figure 2: Variance on attention weights over sequence gen-
eration. (Llama-7b on the first sample of the XSUM testset).
We divided tokens into multiple consecutive groups for vi-
sualization, each group includes 64 tokens. Take x-axis
of 0 for example, the blue point represents the variance of
mean attention across consecutive 64 tokens within [0,64]
indexes, and the green points draw the attention variance of
those individual tokens. The average attention weights of
consecutive tokens hold significantly smaller variances.

This theorem demonstrates that it is feasible to alleviate the
output perturbation engendered by cache eviction—even
achieving a state of zero loss. The updating strategy for Vj

assumes a prerequisite comprehension of the proportional
distribution of attention scores among the tokens undergo-
ing merging. This understanding appears to be absent in
subsequent generative processes after we merge Vi. In real
cases, the perturbation of the output at the (t+ 1)-th gener-
ation step, denoted as Θt+1, can be inferred from Equation
(6) as follows:

Θt+1 = At+1
j (Vj + rVi)−At+1

j Vj −At+1
i Vi

= (rAt+1
j −At+1

i )Vi,
(7)

where r represents the merge ratio of Vi into Vj . It
can be referred that Θt+1 equates to zero if and only if
r = At+1

i /At+1
j . Conversely, lets say the worst situation,

the output perturbation may even exceed the magnitude
of the perturbation caused by the direct eviction of Vi, as
demonstrated by

|Θt+1|−|∆t+1| = |(rAt+1
j −At+1

i )Vi|−|−At+1
i Vi| > 0,

(8)
with ∆t+1 representing the perturbation resulting from the
direct eviction of Vi, according to Eq. (5). To encapsu-
late, while cache merging serves as a potential strategy to
drastically reduce the output perturbation caused by cache
eviction, it equally holds the propensity to amplify output
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discrepancies. Consequently, we engineer CaM to not only
minimize Θt+1 but also ensure that |Θt+1| − |∆t+1| < 0,
thereby perpetually endowing the advantageous of cache
merging for memory-efficient LLM inference.

In particular, Eq.(7) suggests that the crux of minimizing
the output perturbations hinges upon the precise estimation
for r that equalizes the proportions between At+1

j and At+1
i .

However, precisely predicting the evolution of a given to-
ken’s future attention as the inferential sequence advances
proves empirically arduous. Fortuitously, our observation,
typified in Figure 2, indicates that when considering the
mean attention across an extent of m continuous tokens,
there manifests a stable trend. This insight has propelled us
to transition from innovate a shift from merging into a single
cache Vj to merging into an expanse of multiple continuous
tokens’ value caches, encapsulated by Vj , Vj+1, . . . , Vj+m,
with m characterizing the span of local tokens. The merging
strategy of CaM is thus formulated as follows:

V̄k = Vk +
Vi

m
, for k = j, . . . , j +m, (9)

where V̄k represents the merged token. Consequently, the
perturbation of the output at the (t+ 1)-th generation step
is given by:

Θt+1 =

j+m∑
k=j

Vi

m
At+1

k −At+1
i Vi

=
(
avg

(
At+1

j:j+m

)
−At+1

i

)
Vi.

(10)

Minimizing Eq.(10) entails aligning At+1
i with

avg
(
At+1

j:j+m

)
, yet At+1

i still exhibits inherent vari-
ability and may fluctuate considerably. We contend,
however, that it is feasible to selectively merge tokens to
circumvent situations wherein the perturbations resulting
from cache merges surpass those from evictions. This
hypothesis is supported by the following theorem.

Theorem 3.3. Cache merging induces a smaller output
perturbation than cache eviction, that is,

∣∣Θt+1
∣∣ < ∣∣∆t+1

∣∣
provided that avg(At+1

j:j+m) < 2At+1
i .

Proof. The inequality
∣∣Θt+1

∣∣ < ∣∣∆t+1
∣∣ can be inferred

from Eq.(10) and Eq. (5) as follows:

|(avg(At+1
j:j+m)−At+1

i )Vi| < | −At+1
i Vi|. (11)

Dividing both sides of the equation by |Vi| yields:∣∣avg(At+1
j:j+m)−At+1

i

∣∣ < ∣∣At+1
i

∣∣ . (12)

Given that the attention scores in a Softmax function are
exclusively positive, we can drop the absolute values, ob-
taining:

0 < avg(At+1
j:j+m) < 2At+1

i . (13)

Algorithm 1 Cache Merging at t-th Generation Step

1: Input: Attention weights A, V-Cache V , i, j,m ∈ N
2: Let i denote the index of to-be-evicted cache
3: Let j denote the first index of local tokens
4: Let m denote the number of to-be-merged tokens
5: Ā =

∑t
k=1 A

k

6: M = Bernoulli(clamp( Āi

avg(Āj:j+m)
, 0, 1)) ◁ Eq. (14)

7: for k = j to j +m do
8: V̄k = Vk +M Vi

m ◁ Eq. (10)
9: Vk = V̄k

10: end for
11: Output: Updated V-Cache V

With avg(At+1
j:j+m) > 0, the proof is complete. ■

Building upon this theorem, we advance CaM to use a binary
merging mask M for ascertaining whether a cache should
be amalgamated by employing the subsequent probabilistic
model:

M = Bernoulli(clamp(
Āi

avg(Āj:j+m)
, 0, 1)), (14)

where Bernoulli(·) represents the Bernoulli sampling func-
tion and clamp(·) signifies the clamp operation, correspond-
ingly. The term Ā =

∑t
k=1 A

k denotes the cumulative
attention score across previous generation steps, which su-
persedes the conventional individual attention at a single
step and has been demonstrated to be more robust in predict-
ing future attention as detailed in (Zhang et al., 2023b). The
process of cache merging is subsequently realized through
the following operation:

V̄k = Vk +M
Vi

m
, for k = j, . . . , j +m. (15)

The sampling of M affords a judicious enhancement
of merge choices, particularly when 2Āt

i surpasses
avg(Āt

j:j+m), thereby attenuating perturbations in the out-
put than cache eviction. The ideal circumstance is mani-
fested when Āi = avg(Āj:j+m), where Eq.(10) intimates
the realization of lossless compression. Conversely, a
diminutive Āi severely curtails the likelihood of merging,
thus eschewing errors that could potentially exceed those
entailed by eviction.

The workflow of our proposed CaM method is delineated
in Algorithm 1. It is worth noting that CaM does not con-
stitute a selection algorithm for token eviction; instead, it
integrates the value cache of evicted tokens exhibited in pre-
vailing methods (Xiao et al., 2023b; Zhang et al., 2023b; Liu
et al., 2023). Consequently, the index of the evicted token is
incorporated as an input to CaM. Moreover, CaM uniformly
amalgamates the cache with local tokens, w.r.t, tokens prox-
imal to the current generated token. Since preserving local
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Figure 3: Performance comparison between full KV cache memory, Streaming LLM, and our proposed CaM for compressing
KV cache of mainstream LLMs on multiple language tasks.

tokens is a consistent feature in all extant methods, CaM has
considerable adaptability, facilitating its application across
a spectrum of existing cache compression methods, and
markedly augmenting their efficacy for memory-efficient
LLMs inference. In addition, CaM is also highly efficient
as it does not involve any matrix multiplication operations,
as we demonstrate in the subsequent section.

4. Empirical Evaluation
In this section, we quantitatively examine the effectiveness
of the proposed CaM method for enhancing the performance
of memory-efficient LLMs. Initially, Section 4.1 sum-
marily delineates the experimental settings. Subsequently,
in Section 4.2, we employ the Streaming LLM (Xiao
et al., 2023b)—a pioneer profiling method in the domain of
memory-efficient LLMs that preserves the initial and recent
token caches—to sweep the efficacy of CaM over a wide
spectrum of LLMs and benchmarks. In Sec 4.3, we further
quantitatively compare the performance of CaM when amal-
gamated with other KV cache compression methods (Zhang
et al., 2023b; Liu et al., 2023) and show that it can achieve
state-of-the-art performance. Conclusively, we undertake

performance analysis to ablate the strategic merge decisions
embodied in CaM, coupled with efficiency assessment.

4.1. Experimental settings

Tasks. We conduct experiments on representative tasks for
LLM evaluation including question-answering, text summa-
rization, and language modeling. Respectively, for question
answering, we test six tasks using lm-eval-harness (Gao
et al., 2021) framework: COPA (Roemmele et al., 2011),
MathQA (Amini et al., 2019), OpenBookQA (Mihaylov
et al., 2018), PiQA (Bisk et al., 2020), RTE (Wang et al.,
2018), Winogrande (Sakaguchi et al., 2021). For text
summarization, we use HELM framework to evaluate the
XSUM (Narayan et al., 2018), and CNN/DailyMail (Nallap-
ati et al., 2016) tasks. For language modeling, we evaluate
the Perplexity performance of LLMs on Wikitext-2 (Merity
et al., 2016) and PG-19 (Rae et al., 2019) datasets.

Model and baselines. Our evaluation is based on two
representative model families of LLMs, including the
OPT (Zhang et al., 2022), LLaMA (Touvron et al., 2023)
and GPT-NeoX (Black et al., 2022) with model sizes rang-
ing from 7 billion to 65 billion. We choose three baseline
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Table 1: Performance comparison between different methods w. or w.o. CaM. Experiments are conducted with zero-shot
evaluation under 20% KV cache budget.

Model Method OpenBookQA PiQA Winogrande COPA RTE MathQA

LLaMA-7B StreamingLLM 30.0 67.6 52.7 64.0 49.5 21.9
LLaMA-7B w. CaM 31.8±0.2 69.8±0.2 54.5±0.1 68.0±0.0 54.6±0.2 22.6±0.1

LLaMA-7B H2O 22.8 66.9 50.3 47.0 48.3 22.1
LLaMA-7B w. CaM 27.6±0.1 67.2±0.2 50.9±0.1 56.0±0.0 49.2±0.1 22.4±0.0

LLaMA-7B Scissorhands 22.0 50.3 51.6 58.0 51.6 22.1
LLaMA-7B w. CaM 25.4±0.2 51.0±0.1 52.1±0.2 60.0±0.0 53.4±0.1 22.7±0.2

OPT-13B StreamingLLM 29.4 68.9 52.4 67.0 51.6 21.1
OPT-13B w. CaM 31.4±0.1 69.4±0.1 53.5±0.2 71.0±0.0 56.6±0.3 21.7±0.1

OPT-13B H2O 24.0 60.6 47.9 61.0 53.0 22.2
OPT-13B w. CaM 25.2±0.2 61.7±0.1 49.4±0.0 64.0±0.0 54.2±0.1 22.6±0.1

OPT-13B Scissorhands 31.0 53.3 54.2 65.0 51.6 21.5
OPT-13B w. CaM 32.1±0.1 55.2±0.1 55.7±0.2 66.0±0.0 52.1±0.1 22.1±0.2

method for comparison, including StreamingLLM (Xiao
et al., 2023b), H2O (Zhang et al., 2023b), and Scis-
sorhands (Liu et al., 2023).

Implementation details. For the implementation of CaM,
we evenly merge the to-be-evicted value cache into all lo-
cal tokens across all transformer layers. Given that all ex-
tant KV cache compression approaches conserve local to-
kens, CaM can be ubiquitously applied to them in a consis-
tent manner. All experiments were conducted on NVIDIA
Tesla A800 GPUs, utilizing five distinct random seeds, from
which we report both the mean and variance of the results.

4.2. Model and Task Sweep

We first evaluate the efficacy of CaM when merging caches
evicted by StreamingLLM (Xiao et al., 2023b). Figure 3 lists
the performance comparisons for compressing KV cache
memory at ratios ranging from 10% to 90%. With dif-
ferent KV cache budgets, CaM substantially enlarges the
performance of StreamingLLM over a wide range of main-
stream LLMs with model sizes ranging from 6.7 billion to
65 billion. Such performance improvements persist across
a myriad of task types and sequence lengths, ranging from
hundreds (question-answering), to thousands (text summa-
rization), and up to tens of thousands (language modeling
on PG-19). These results prove the effectiveness of CaM in
enhancing the performance of memory-efficient LLMs.

Analysis. It is discernible that the enhancements conferred
by CaM are more pronounced in challenging tasks such
as text summarization and question-answering, exempli-
fied by benchmarks like XSUM and MathQA, whereas
in comparatively simpler tasks such as language model-
ing, StreamingLLM inherently maintains good performance.
This phenomenon appears logical: language modeling pri-

marily requires the retention of local tokens to support the
generation of subsequent tokens. In contrast, for text sum-
marization and question-answering, critical information is
dispersed throughout the entire sequence, making the evic-
tion of token caches from intermediate positions result in
significant output perturbation. This elucidates the particular
effectiveness of CaM for these tasks as it reintegrates caches
containing vital information, which would have otherwise
been discarded by Streaming LLM, thereby mitigating the
performance decline caused by cache eviction.

4.3. Comparison with Other Works

Table 1 further elucidates the results of applying the pro-
posed CaM to an expanded set of existing baselines, in-
cluding H2O (Zhang et al., 2023b) and Scissorhands (Liu
et al., 2023). These methods selectively preserve preced-
ing caches of tokens by looking at their attention scores.
Since these strategies inherently retain local tokens, the
application policy for CaM remains consistent. Empirical
evidence illustrates that CaM invariably elevates the infer-
ential performance of all methods over a spectrum of tasks.
For instance, CaM manages to augment the performance
of H2O in removing the memory budget of LLaMA-7b,
yielding improvements by 4.8%, 3.3%, and 9.0% on Open-
BookQA, PiQA, and COPA datasets, respectively. These
results imply that CaM is a versatile and scalable approach,
complementary to current techniques aimed at ameliorating
the output fluctuations engendered by cache eviction.

4.4. Performance Analysis

In Table 2, we ablate the merge choices made in CaM.
Specifically, w.o. Avg Merge means that the evicted cache
is merged to a randomly selected local token, whereas w.o.
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Table 2: Ablation studies of CaM. We use StreamingLLM
as baseline and respectively remove each components of
CaM to investigate the performance change.

Method OpenBookQA COPA RTE

Baseline 30.0 64.0 49.5
w.o. Avg Merge 30.4±0.3 66.0±0.0 52.1±0.3
w.o. Merge Mask 30.2±0.0 63.0±0.0 48.1±0.0
w.o. Acc. Attention 31.5±0.4 67.0±1.0 54.5±0.2
CaM 31.8±0.2 68.0±0.0 54.6±0.2

Table 3: Accuarcy comparison of setting different clamp
intervals when sampling the merging mask. Experiments
are conducted with 20% KV cache budget on LLaMA-7b,
utilizing StreamingLLM as the baseline of CaM.

Clamp Interval OpenBookQA COPA RTE

Baseline 30.0 64.0 49.5
[0.5, 1] 30.3±0.1 65.0±0.0 52.7±0.1
[0, 0.5] 30.8±0.2 64.0±0.0 51.9±0.1
[0, 0.75] 32.0±0.3 67.0±0.0 53.5±0.2
[0, 1] 31.8±0.2 68.0±0.0 54.6±0.2

Merging Mask implies that the merging operation is per-
formed on all caches marked for eviction. In the case of w.o.
Acc. Attention, only the attention from the current step is uti-
lized for deriving the merging mask. The results reveal that
both average merging and accumulating attention confer per-
formance benefits by stabilizing the estimation of attention
errors. Notably, the absence of merging mask significantly
diminishes the inferential performance, even degrading it
below the baseline. Such a phenomenon aligns with our
analysis from Theorem 3.3 that indiscriminately merging
all tokens earmarked for removal could introduce an output
fluctuation that surpasses the impact of their direct evic-
tion. In summary, it can be deduced that each step within
CaM plays a pivotal role in enhancing the performance of
memory-efficient LLMs.

As the merging mask serves as a pivotal factor in CaM, we
delve further into the performance impacts exerted by vary-
ing clamping intervals within Eq. (14). Table 3 draws the
results across three downstream tasks. Intuitively, elevating
the lower limit of the interval results in an increased num-
ber of merged tokens, and vice versa. It is observable that
adjusting the upper limit of the clamp range can enhance
performance in certain tasks. However, setting a high lower
limit invariably precipitates a decline in performance. These
results suggest that selectively merging the removable cache
is vitally important. In this paper, we adopt a consistent
clamping interval of [0,1] to ensure that CaM remains a
flexible and easy-to-use approach. Undoubtedly, these find-
ings highlight the design of the merge mask as a highly
promising avenue for future research.

Table 4: Generation throughput and GPU memory consump-
tion on an NVIDIA 3090 GPU. We use the first sample of
the PG-19 test set for evaluation, where all methods are
under memory budget of 1024 tokens. “OOM” means out-
of-memory. We use StreamingLLM as the baseline of CaM.

Method Throughput GPU memory

Full cache - OOM
StreamingLLM 26.1 ms/token 19.1GB
CaM 27.3 ms/token 19.3GB

Finally, we turn our attention to the efficiency of CaM. As
delineated in Table 4, applying CaM in StreamingLLM
does not notably reduce the generation speed nor increase
memory usage. This is intuitive, given that CaM does not
introduce any complex matrix operations or iterative loops.
Coupled with previous experimental findings, we posit that
CaM stands as a plug-and-play approach that can effec-
tively enhance the performance of existing methods while
realizing memory-efficient LLMs.

5. Limitation
We further discuss unexplored limitations of our proposed
CaM method, which will be our future focus. First, cache
merging entails both benefits and risks for preserving LLM
inference performance as discussed before. While the pro-
posed adaptive merge strategy based on attention score sam-
pling has been theoretically and experimentally validated
to be robust in diminishing the output perturbation, devis-
ing more advancing selection of being merged tokens and
merging ratio remains an avenue worthy of exploration.
Meanwhile, since the attention distribution and variance of
tokens vary across different layers of LLMs, there is also
substantial scope for investigation into layer-wise cache
merge adaptability techniques.

6. Conclusion
Deploying LLMs in a memory-efficient manner is urgently
needed but comes with challenges due to diminished perfor-
mance consequent to the direct eviction of cached key-value
pairs. In this paper, we introduce Cache Merging (CaM),
which integrates caches slated for eviction with extant ones
to bolster the efficacy of prevailing key-value cache com-
pression methodologies. The potency of CaM has been
corroborated by comprehensive experiments encompassing
question-answering, text summarization, and language mod-
eling, achieving state-of-the-art results in each task. We
anticipate that CaM will not only equip practitioners with
a robust LLM inference tool but also lay the groundwork
for subsequent explorations into cache merge for memory-
efficient LLMs.
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