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Abstract

It is imperative to ensure the stability of every001
prediction made by a language model; that is,002
a language’s prediction should remain consis-003
tent despite minor input variations, like word004
substitutions. In this paper, we investigate the005
problem of certifying a language model’s ro-006
bustness against Universal Text Perturbations007
(UTPs), which have been widely used in uni-008
versal adversarial attacks and backdoor attacks.009
Existing certified robustness based on random010
smoothing has shown considerable promise011
in certifying the input-specific text perturba-012
tions (ISTPs), operating under the assumption013
that any random alteration of a sample’s clean014
or adversarial words would negate the impact015
of sample-wise perturbations. However, with016
UTPs, masking only the adversarial words can017
eliminate the attack. A naive method is to sim-018
ply increase the masking ratio and the likeli-019
hood of masking attack tokens, but it leads to a020
significant reduction in both certified accuracy021
and the certified radius, due to input corruption022
by extensive masking. To solve this challenge,023
we introduce a novel approach, the superior024
prompt search method, designed to identify025
a superior prompt that maintains higher cer-026
tified accuracy under extensive masking. Addi-027
tionally, we theoretically motivate why ensem-028
bles are a particularly suitable choice as base029
prompts for random smoothing. The method is030
denoted by superior prompt ensembling tech-031
nique. We also empirically confirm this tech-032
nique, obtaining state-of-the-art results in mul-033
tiple settings. These methodologies, for the034
first time, enable high certified accuracy against035
both UTPs and ISTPs.036

1 Introduction037

Prompt-based Language Models (PLMs) (Thoppi-038

lan et al., 2022; Zeng et al., 2022; Achiam et al.,039

2023; Touvron et al., 2023; Chiang et al., 2023)040

have achieved significant success across a wide041

range of real-world applications (Wu et al., 2020;042

Brown et al., 2020; Wei et al., 2022; Chowdhery 043

et al., 2023). However, despite their prominent 044

performance, PLMs have been shown vulnerable 045

to noises and perturbations on the input (Xu et al., 046

2022; Shayegani et al., 2023). Such vulnerability 047

has notably restricted PLM’s utility, especially in 048

high-stake environments such as bank records anal- 049

ysis (Heaton et al., 2017), health care records anal- 050

ysis (Myszczynska et al., 2020). In these settings, 051

the stability of every prediction is critical, i.e., PLM 052

predictions should remain consistent despite minor 053

input variations, such as word substitutions (Alzan- 054

tot et al., 2018; Ren et al., 2019; Li et al., 2020a). 055

This concern aligns with the study of certified ro- 056

bust PLMs (Zeng et al., 2023), which guarantees 057

that all PLM predictions are accurate within the 058

local vicinity of the input. 059

Input perturbations can be classified into Univer- 060

sal Text Perturbations (UTPs) and Input-Specific 061

Text Perturbations (ISTPs). UTPs are characterized 062

by their ability to be applied across different inputs, 063

making them transferable, whereas ISTPs are tai- 064

lored to specific inputs. In detail, attackers employ- 065

ing ISTP strategies, exemplified by TextFooler (Jin 066

et al., 2020) and DeepWordBug (Gao et al., 2018), 067

craft a unique adversarial sentence for each tar- 068

get input sentence. Conversely, attackers utilizing 069

UTP methodologies, such as those found in Tro- 070

jLLM (Xue et al., 2023) and UAT (Wallace et al., 071

2019), identify a single or a small number of adver- 072

sarial tokens that can be inserted into any sentence 073

to influence the model’s prediction. This makes 074

UTPs a more considerable threat to the robustness 075

of PLMs since a specific set of adversarial tokens 076

could lead to mispredictions across any input. Ad- 077

ditionally, UTPs pose a greater challenge in miti- 078

gation compared to ISTPs. This challenge arises 079

because ISTPs depend on weaker adversarial pat- 080

terns that can be addressed by introducing modifi- 081

cations to the adversarial or clean tokens. However, 082

UTPs are based on stronger adversarial patterns, 083
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which require exact identification and masking of084

the adversarial tokens for effective mitigation.085

Random smoothing has been recognized as an086

effective defense offering certified robustness for087

models in computer vision (Horváth et al., 2021)088

and NLP (Zeng et al., 2023), yet its application has089

been limited to ISTPs. This method assumes that090

random alterations to a sample’s words counteract091

perturbations. However, this approach falls short092

against UTPs, which require precise masking of ad-093

versarial tokens for mitigation, unlike ISTPs which094

can be mitigated by randomly masking any tokens.095

Defending against UTPs is challenging due to the096

unknown positions of adversarial tokens, requiring097

a high mask ratio that could degrade PLM accuracy.098

Thus, ensuring certified robustness against UTPs099

in PLMs remains an unresolved challenge.100

Naively increasing the masking ratio can im-101

prove the chances of covering adversarial tokens102

in UTPs, potentially reducing the Attack Success103

Rate (ASR). However, this method often results in104

only minor ASR improvements due to the trade-105

off with certified accuracy. High masking ratios in106

random smoothing significantly diminish certified107

accuracy, leading to randomized model inferences108

as a large portion of input tokens are obscured,109

leaving insufficient data for accurate predictions.110

In this paper, we introduce CR-UTP, a method111

to equip PLMs with certified robustness against112

UTPs, achieving both high certified accuracy and113

low ASR. Our contributions are as follows:114

• We adapt the certified robustness method to115

PLMs and propose Superior Prompt Search116

for robust prompts with masked inputs.117

• We introduce a prompt ensemble method to118

reduce the variance of masked inputs and in-119

crease the certified accuracy with theoretical120

analysis and empirical implementation.121

• Through extensive experimentation, we show122

our CR-UTP effectively increases the certified123

accuracy by ∼ 15% and decreases the ASR124

by ∼ 35% compared to prior works.125

2 Background and Motivation126

Text Adversarial Attacks.Text adversarial attack127

methods generate adversarial sentences by perturb-128

ing original sentences to maximally increase the129

model’s prediction error, while maintaining the130

fluency and naturalness of the adversarial exam-131

ples. These attacks on prompt-based language132

models can be categorized into two groups: input- 133

specific text perturbation attacks (ISTPs) and uni- 134

versal adversarial perturbation attacks (UTPs). In 135

ISTP attacks, the attacker optimizes an adversar- 136

ial sentence for each input, mainly by replacing, 137

scrambling, and erasing characters (e.g., Deep- 138

WordBug (Gao et al., 2018) and HotFlip (Ebrahimi 139

et al., 2018)) or words (e.g., TextFooler (Jin et al., 140

2020)). Conversely, UTP attacks optimize a uni- 141

versal trigger for a prompt-based language model, 142

and the output of any input embedded with this 143

trigger will be manipulated (e.g., TrojLLM (Xue 144

et al., 2023) and UAT (Wallace et al., 2019)). 145

Certified Robustness in Language Models. Nu- 146

merous defense methods, such as adversarial train- 147

ing and perturbation-controlled approaches, have 148

been developed to counteract adversarial attacks 149

(Wang et al., 2019; Zhou et al., 2021; Goyal et al., 150

2023). However, these traditional tools may be- 151

come ineffective against novel, advanced attack 152

strategies. To address this, certified robustness has 153

been introduced, offering a guarantee against any 154

attack as long as the number of perturbed words re- 155

mains below a certain threshold. A model achieves 156

certification if it can consistently produce the cor- 157

rect output when the number of perturbations does 158

not exceed the certified radius. While models 159

of smaller size can obtain robustness certification 160

through deterministic methods (Li et al., 2020b; 161

Ostrovsky et al., 2022; Weng et al., 2018; Kolter 162

and Wong, 2017), the computational demands of 163

language models preclude such approaches. Con- 164

sequently, probabilistic methods, such as Random 165

Smoothing (Cohen et al., 2019), have been intro- 166

duced to certify the robustness of large language 167

models. 168

Random Smoothing. Random Smoothing, a 169

promising approach introduced by (Cohen et al., 170

2019; Weber et al., 2020), certifies the robustness 171

of large neural networks. This method enhances 172

a model’s robustness by adding Gaussian noise to 173

the original input (Salman et al., 2020; Li et al., 174

2023). It was quickly adopted for large language 175

models in the NLP field, exemplified by SAFER 176

(Ye et al., 2020) and Randomized [MASK] (Zeng 177

et al., 2021). To improve model performance with 178

random smoothing, the computer vision field has 179

explored re-training the original model to adapt to 180

Gaussian noise (Jeong and Shin, 2020; Zhai et al., 181

2020; Salman et al., 2019). However, applying 182

this re-training method in NLP to achieve a model 183

tolerant to smoothing is prohibitively expensive. 184
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Figure 1: Illustration of the prediction distributions. A superior prompt exhibits greater robustness compared to a
vanilla prompt, with ensembled prompts showing even higher robustness. Different colors represent various classes,
and different radii indicate varying levels of perturbation. The bars demonstrate the output class probabilities for the
smoothed PLMs given corresponding prompts. pA represents the minimum probability of the majority class, and
pB indicates the maximum probability of the second-most likely class.

0.3 0.5 0.6 0.7 0.8 0.9
Mask Ratio

40

60

80

100

Ac
cu

ra
cy

(%
)

(a)

0.3 0.5 0.6 0.7 0.8 0.9
Mask Ratio

0

20

40

60

80

100

U
TP

s 
AS

R(
%

)

(b)

Prior method for certified robustness on ISTPs Our CR-UTP

Figure 2: (a) Our CR-UTP shows higher certified ro-
bustness accuracy and (b) Our CR-UTP significantly
reduces ASR.

Instead, in the NLP domain, (Zhang et al., 2023)185

proposed a self de-noising method that allows the186

Pretrained Language Model (PLM) itself to recover187

the information lost due to masking.188

Motivation. Figure 2 illustrates that while random189

smoothing has been effective for ISTPs as shown190

in previous works (Zeng et al., 2023; Zhang et al.,191

2023), it struggles with UTPs. With a low mask192

ratio, the ASR for UTPs is high (∼96%), and in-193

creasing the mask ratio only marginally reduces194

ASR but significantly lowers accuracy. For exam-195

ple, increasing the mask ratio from 0.3 to 0.8 only196

reduces ASR by ∼6% while accuracy drops by197

∼35%. These findings highlight the inadequacy of198

ISTP methods for UTPs and lead us to develop new199

techniques that combine superior prompt search200

and ensembles, significantly improving robustness201

against UTPs with less impact on accuracy.202

To achieve a low Attack Success Rate (ASR)203

against Universal Text Perturbations (UTPs), a high204

mask ratio, exceeding 0.5, is necessary. Yet, as Fig-205

ure 1 (a) reveals, a vanilla prompt at this high mask206

ratio results in reduced accuracy due to the exten-207

sive masking of input tokens, which leaves limited208

information for precise classification. Figures 1 (b)209

and (c) illustrate that superior prompts can maintain210

higher accuracy under such conditions by incorpo- 211

rating random masking during the prompt design 212

phase. This approach allows superior prompts to 213

adjust to specific mask ratios, improving the lower 214

bound (pA) on the majority class probability and re- 215

ducing the upper bound (pB) on the runner-up class 216

probability. However, these prompts still exhibit 217

high variance across input samples. Ensembling 218

techniques (Liu et al., 2021; Horváth et al., 2021) 219

reduce this variance, thereby enhancing robustness. 220

As shown in Figure 1 (d), by combining superior 221

prompts, we can leverage their individual advan- 222

tages for a more favorable accuracy-ASR balance. 223

This insight leads us to further investigate supe- 224

rior prompt design and ensembling as methods to 225

bolster PLMs’ certified accuracy and robustness 226

against UTPs, aiming to lower the ASR while pre- 227

serving high accuracy. 228

3 CR-UTP Design 229

Overview. In Figure 3, we detail the workflow 230

of the proposed CR-UTP method. (a) Superior 231

Prompt Search: we start with a basic prompt and 232

employ a reinforcement learning approach to find 233

a superior prompt adept at handling inputs with 234

masked words. A unique reward function is uti- 235

lized, which incorporates random masking during 236

the prompt search phase to enhance the prompt’s 237

resilience to word masking. (b) Superior Prompt 238

Ensemble: for making predictions, CR-UTP gen- 239

erates various versions of the original input by ap- 240

plying random masking. Each prompt assesses 241

these versions and internally agrees on the optimal 242

prediction. (c) Certified Robust PLM: CR-UTP ag- 243

gregates the individual outcomes from each prompt 244

through a second voting process to get the final, 245

most robust prediction. 246

In particular, we generalize the random masking 247
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(a) Superior Prompt Search (b) Superior Prompt Ensemble
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Figure 3: Overview of CR-UTP. CR-UTP leverages superior prompt search and prompt ensembling techniques to
enhance the certified robustness of PLMs.

operation to PLMs and analyze using random mask-248

ing to defend UTPs in Section 3.1. Also, we intro-249

duce the Superior Prompt Search in Section 3.2 to250

search for prompts that can achieve a high certified251

accuracy even when a large proportion of the in-252

put tokens are masked. Finally, in Section 3.3, we253

proposed a Superior Prompt Ensemble to further254

improve the certified robustness.255

3.1 Adapting Random Smoothing to PLMs256

Using the random masking approach from Ran-257

MASK (Zeng et al., 2023), the random masking258

operation M : X ×M(h, k) → Xmask would take259

an input text x = x1x2...xh with h words and ran-260

domly replacing (h − k) word with the [MASK].261

Following this, we define a smoothed classifier262

g(x) built upon the base classifier f as follows:263

g(x) = argmax
c∈C

[
P

H∼U(h,k)
(f(M(x | H)) = c)

]
(1)264

Then it can be shown that g(x′) would return c265

when the certified condition is satisfied with proba-266

bility at least (1− α).267

We define a prompt-based language model for268

classification tasks as f : X → C, where X repre-269

sents the domain of input texts and C = 1, 2, ..., nc270

denotes the set of classification labels. The re-271

sponse of an input x to prompt p is y = f(p,x).272

The smoothed classifier g over such PLM can be273

expressed as274

gp(x) = argmax
c∈C

[
P

H∼H(h,k)
(f(p,M(x | H)) = c)

]
(2)275

and the same certification can be achieved under276

such prompt-based model.277

Defending against universal attacks with random278

masking necessitates a high mask ratio, especially279

in the context of UTPs, where the presence of any280

UTP token in the masked input guarantees the at-281

tack’s success. Therefore, to ensure the adversarial282

token is masked with a probability exceeding 50% 283

for the smoothed function g(x) to yield correct 284

outcomes, the masking probability for each UTP 285

token needs to be more than 0.5. Consequently, 286

for a UTP of length r, the likelihood that all UTP 287

tokens are masked should be pr > 0.5, implying 288

p > r
√
0.5. For instance, p > 0.5 for r = 1, and 289

p > 0.707 for r = 2. Ensuring correct results for 290

inputs masked without UTP requires the model to 291

perform effectively at high mask ratios. To allevi- 292

ate the effects of extensive masking, we introduce a 293

technique that enhances model performance under 294

random masking without necessitating retraining 295

of the language model, thereby reducing computa- 296

tional overhead. 297

3.2 Superior Prompt Search 298

Certified accuracy is influenced by the model’s per- 299

formance on randomly masked sentences, but high 300

mask ratios can decrease accuracy due to loss of 301

critical information. Enhancing a prompt-based 302

language model’s certified accuracy involves im- 303

proving its tolerance to information loss from ran- 304

dom masking. However, in few-shot and black- 305

box scenarios, fine-tuning the pre-trained model or 306

using gradient-based optimization for continuous 307

prompts is infeasible. To tackle this challenge with- 308

out gradient optimization, we approach it as a rein- 309

forcement learning (RL) problem to discover a dis- 310

crete, robust prompt—termed a superior prompt. A 311

direct approach involves searching for this prompt 312

using datasets with randomly masked sentences 313

to acclimate the model to diverse masking scenar- 314

ios. Nonetheless, at high mask ratios (e.g., 70%), 315

the reduced information in few-shot datasets limits 316

the effectiveness and generalizability of robustness 317

enhancements. To overcome this, we suggest align- 318

ing the superior prompt’s predictions on masked 319

sentences with the vanilla prompt’s on unmasked 320
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sentences, leveraging the existing knowledge of the321

vanilla prompt to offset the drawbacks of few-shot322

datasets and information loss from masking.323

Our aim, as expressed in Equation 3, involves324

identifying an optimized prompt ps that augments325

a basic vanilla prompt pv by adding a sequence326

of T tokens from the vocabulary V . This strat-327

egy is intended to boost the model’s accuracy328

ACC(f(ps, x̂i), yi) on inputs x̂i that have under-329

gone random word masking. The dataset D is330

composed of pairs of input sentences xi and their331

associated labels yi, with x̂i indicating the masked332

version of the input.333

max
ps∈VT

∑
(xi,yi)∈D

ACC(f(ps, x̂i), yi) (3)334

Masked Sentence Accuracy Reward. We intro-335

duce a two-fold reward function to guide the RL-336

based search for an optimal ps. The first compo-337

nent, known as the Masked Sentence Accuracy338

Reward (MSAR), is designed to directly maximize339

the PLM’s accuracy on masked sentences:340

RMSAR =
∑

(xi,yi)∈D

η1−sign
1 ηsign

2 Distance(x̂i, yi) (4)341

here the Distance(x̂i, yi) denotes f(yi|ps, x̂i) −342

maxy′ ̸=yf(y
′|ps, x̂i). The distance value is pos-343

itive for correct predictions and negative other-344

wise. We denote the distance sign as sign =345

1[Distance(x̂i, yi) > 0]. For a correct prediction346

(i.e., sign = 1), we multiply the positive reward347

by a large number η2 to indicate its desirability;348

otherwise, we multiply the negative rewards by an-349

other number η1. This reward aims to maximize350

the PLM’s accuracy on masked sentences.351

Predictive Distribution Alignment Reward. To352

mitigate the challenge posed by information loss353

due to word masking, which is exacerbated in a354

few-shot setting, we propose an additional reward355

function, a.k.a, Predictive Distribution Alignment356

Reward (PDAR). It is designed to minimize the KL357

divergence between the predictive distributions of358

the vanilla prompt on unmasked sentences and the359

superior prompt on their masked equivalents:360

RPDAR = −
∑

(xi,yi)∈D

KL(f(pv, xi) ∥ f(ps, x̂i)) (5)361

This reward is designed to ensure that ps retains362

alignment with pv’s predictive behavior, thereby363

leveraging the foundational knowledge encoded in364

pv to inform predictions in the face of partial in- 365

formation. Such strategic alignment enables ps to 366

infer missing data from the masked inputs, drawing 367

on the robust insights and patterns encapsulated by 368

pv. This method not only addresses the direct im- 369

pact of masking on information availability but also 370

enhances the model’s capacity for generalization 371

from limited examples. 372

Policy Model Update. As Figure 3 shows, the RL 373

search process involves an agent that sequentially 374

selects tokens [s1, ..., sT ] to construct the superior 375

prompt ps, aiming to maximize the combined re- 376

ward R = RMSAR + RPDAR. For each time step t, 377

the agent, given the previous tokens s<t, generates 378

the next token st based on the policy generator 379

Gθs(st|s<t). Completion of ps triggers the com- 380

putation of the task reward R. To facilitate this, 381

we employ a GPT-2 model as the backbone for 382

our policy generator, enhanced with an insertable 383

trainable Multilayer Perceptron (MLP) layer. The 384

optimization focuses on the parameters of this MLP 385

layer, tailoring the policy generator to effectively 386

navigate the prompt construction space under the 387

guidance of the designed reward function. 388

3.3 Superior Prompt Ensemble 389

Instead of relying on a single model, ensemble 390

methods leverage the strengths and mitigate the 391

weaknesses of various base classifiers. The core 392

idea behind ensemble modelling is that a group of 393

weak learners can come together to form a strong 394

learner, thereby improving the model’s ability to 395

generalize well to unseen data. In the following 396

section, we will demonstrate how random masking 397

can increase the variance of the output probabil- 398

ity and how model ensembling can mitigate the 399

performance drop introduced by random masking. 400

Suppose the probability that the smoothed 401

model with prompt p outputs class c is yc(x) = 402

PH∼U(h,k)(f(p,M(x | H)) = c) in [0, 1], then 403

the final probability output of the smoothed model 404

is determined by two random variables, y = yo + 405

ym (Horváth et al., 2021), where yo is determined 406

by the performance of the language model f with 407

prompt p on the original input, and ym corresponds 408

to the performance of prompt p when the input x 409

is randomly masked. Since yo is influenced by the 410

performance of prompt p and ym mostly depends 411

on the perturbation ratio ρ on the clean input x, we 412

can assume that yo and ym are independent. Sup- 413

pose yo has mean ac and covariance Σc, ym has 414

mean am and covariance Σm. Under this assump- 415
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tion, the probability of the smoothing operation416

for each prompt p has expectation and variance as417

follows:418

E[yk] = akc+akm, Var[yk] = Var[yko ]+Var[ykm].419

Since the mask operation can cause information420

loss in x, we assume pm has a negative mean, de-421

noted by am. Through empirical analysis of the422

performance of
∑

m with respect to the perturba-423

tion rate, as shown in figure 4, we observe the424

baseline model’s performance and conclude that425

while
∑

m varies with the perturbation ratio, it is426

significantly influenced by it. As the perturbation427

ratio increases, the variance σ2
m initially rises and428

then decreases. This pattern occurs because, as the429

mask ratio increases from 0 to 0.6, the masking430

operation introduces more noise to the input, in-431

creasing the variance of yc. However, when the432

mask ratio increases from 0.6 to 1, the remaining433

information decreases, leading the model to ran-434

domly guess any label, i.e., yc → 1/nc, and the435

variance σ2 → 0 as more words in the sentence are436

masked.437

With a high mask ratio, the random masking438

operation can significantly increase variance and439

reduce accuracy relative to the clean classifier’s440

output. Model ensembles have been shown to ef-441

fectively decrease the overall variance of voting442

outcomes, thereby improving the likelihood of ac-443

curate predictions as the number of ensembles in-444

creases (Horváth et al., 2021). However, the high445

computational cost makes training multiple lan-446

guage models unfeasible. Consequently, we intro-447

duce a technique that ensembles a set of prompts448

during inference to exploit the distinctive feature449

of PLMs, wherein the initial prompt markedly af-450

fects the model’s final output. By employing the451

superior prompt search method, we can create a col-452

lection of prompts that withstand the random mask-453

ing operation, with the ensemble of these prompts’454

outputs demonstrating enhanced performance on455

heavily masked inputs.456

Formally, we construct an ensemble classifier457

f̄ with a set of k different prompts P = {pi |458

i = 1, ..k}, via hard voting of all the outputs from459

different prompts pi,460

f̄(P ,x) = argmax
c∈C

k∑
i=1

I(f(pi,x) = c) (6)461

where I(f(pi,x) = c) is the indicator function that462

equals 1 when f(pi,x) output c and 0 otherwise.463

So the ensemble classifier would output the class 464

that most of the prompts agree on. 465

Since the prompts ensemble operates as a single 466

model, the certified robustness condition remains 467

applicable to the assembled model f̄(P ,x). There- 468

fore, we can establish a new smoothing function 469

ḡ(x) by applying the same random masking op- 470

eration to x. Building on our previous findings, 471

we anticipate performance improvements through 472

the prompts ensemble. Our analysis of how the 473

number of ensembles impacts the final probability 474

outcome, as depicted in 5, demonstrates a substan- 475

tial increase in the accuracy of the model ensemble 476

with a concurrent reduction in variance as the num- 477

ber of ensembles increases. 478

4 Experimental Methodology 479

Datasets and Model. In our evaluation, we utilize 480

the SST-2 dataset (Socher et al., 2013) for binary 481

classification tasks and the AgNews dataset (Zhang 482

et al., 2015) for a four-class classification task. We 483

adopt a 16-shot setting, which represents a typical 484

few-shot scenario. Our experiments are conducted 485

with the widely-used pre-trained language model 486

RoBERTa-large (Liu et al., 2019), an advanced 487

version of BERT (Kenton and Toutanova, 2019) 488

with 24 layers of Transformer architecture. 489

Evaluation Metrics. We adopted three key met- 490

rics in evaluations same with (Zeng et al., 2023). 491

Clean accuracy (CACC) refers to the classification 492

accuracy on clean sentences. The attack success 493

rate (ASR) quantifies the percentage of input in- 494

stances perturbed by an attack that successfully 495

causes the model to make incorrect predictions. 496

The poisoned accuracy (PACC) indicates the ac- 497

curacy of the prompt-based language model on 498

poisoned samples crafted from an attack. 499

Evaluated Attacks. We evaluated our CR-UTP 500

under two input-specific text perturbation (ISTP) 501

adversarial attacks, TextFooler (Jin et al., 2020) and 502

DeepWordBug (Gao et al., 2018), and one univer- 503

sal text perturbation (UTP) attack, TrojLLM (Xue 504

et al., 2023). TextFooler adversarially perturbs the 505

text inputs by the word-level substitutions, whereas 506

DeepWordBug performs the character-level pertur- 507

bations to each input by replacing, scrambling, and 508

erasing a few characters of some words. UTP attack 509

TrojLLM uses reinforcement learning to search 510

a universal trigger for a prompt-based language 511

model, any text inputs with this trigger will lead to 512

the model output target label. 513
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Implementation Details. For the superior prompt514

generator configuration, we adhered to the parame-515

ters established in RL-Prompt (Deng et al., 2022).516

Specifically, we use distilGPT-2, a large model517

with 82 million parameters, as a policy model for518

all tasks. Additionally, we use a multilayer per-519

ceptron (MLP) with one hidden layer which has520

2,048 hidden states, added to distilGPT-2’s existing521

768 hidden states. For the hyperparameters of re-522

ward functions in the Equation 4, we set balancing523

weights η1 = 180 and η2 = 200. During infer-524

ence of CR-UTP, we use an ensemble number of 5525

with the best 5 prompts derived from the superior526

prompt search. During the certification process, the527

prediction number is 500 and the certification num-528

ber is 1000. When using random masking to defend529

against adversarial attacks, the voting number is set530

to 100. All experiments are conducted on a single531

Nvidia Geforce RTX-3090 GPU. Searching time532

for superior prompts on SST-2 is 3.8 hours, the533

certification time for one sentence is ∼ 8 seconds.534

5 Results535

Comparison of CR-UTP with Random Mask.536

In Table 1, we conducted experiment compar-537

ing the performance of CR-UTP with Random538

Mask (Zeng et al., 2023) at a 70% masking ratio539

against three adversarial attacks, i.e., TextFool (Jin540

et al., 2020), DeepWordBug (Gao et al., 2018) and541

TrojLLM (Xue et al., 2023). Our CR-UTP ex-542

hibits superior performance over Random Mask543

across all metrics in the evaluated adversarial at-544

tacks. Notably, CR-UTP achieves a significant545

3.68% increase in clean accuracy (CACC). This546

improvement is attributed to its efficient prompt547

search method, which identifies robust prompts to548

random mask, and superior prompt ensemble tech-549

nique, further reducing CACC variance. Moreover,550

CR-UTP achieves a substantial reduction in attack551

success rate (ASR), averaging a 21.4% greater de-552

crease compared to Random Mask, with a remark-553

able 34.76% ASR reduction in the TrojLLM at-554

tack. This enhancement stems from CR-UTP’s555

ability to leverage the differential outputs of vari-556

ous prompts, enabling a robust ensemble prediction557

for improved defense outcomes against adversarial558

samples. Additionally, CR-UTP demonstrates a559

notable increase in poisoned accuracy (PACC), in-560

dicating its ability to maintain high accuracy even561

under attack scenarios.562

Table 1: The comparison of CR-UTP and Random Mask
against various attacks with a 70% mask ratio on the
SST-2 dataset.

Scheme Random Mask CR-UTP

CACC ASR PACC CACC ASR PACC

TextFool 81.60 42.88 57.12 85.28 37.39 62.61
DeepWordBug 81.13 45.18 54.82 85.61 21.25 78.75
TrojLLM 80.94 85.31 56.84 85.70 50.55 73.04

5.1 Ablation Study 563

In this section, we explore the design space of CR- 564

UTP and study the impact of various settings of 565

CR-UTP on its attacking effects using RoBERTa- 566

Large with SST-2 dataset. 567

CR-UTP Techniques Performance. In Table 2, 568

we analyze the impact of different CR-UTP tech- 569

niques on performance against TrojLLM on the 570

SST-2 and AgNews datasets. For SST-2, utilizing 571

the adapted random mask method (our baseline) 572

leads to a significant drop in CACC by over 22%, 573

mainly due to the loss of information from masking 574

70% of the words. However, incorporating superior 575

prompt search with reward RMSAR, improves CACC 576

by 11% as the superior prompt proves more ro- 577

bust to random masking. Furthermore, combining 578

rewards RMSAR + RPDAR, further increases CACC 579

to 84.90% by enhancing prompt search effective- 580

ness with RPDAR, which aligns outputs for clean and 581

masked sentences. Finally, employing the supe- 582

rior prompt ensemble technique elevates CACC to 583

85.70% and reduces ASR from 91.88% to 50.55%, 584

indicating significant improvements over the base- 585

line method. Similarly, on AgNews dataset, CR- 586

UTP surpasses the baseline with a 3.33% increase 587

in CACC to 84.27% and a 3.6% decrease in ASR, 588

highlighting CR-UTP’s effectiveness. 589

Table 2: An ablation study of CR-UTP techniques. Our
baseline is random mask with 70% ratio; RMSAR denotes
employing superior prompt search only using reward
RMSAR; RMSAR + RPDAR means using superior prompt
search with rewards RMSAR and RPDAR; CR-UTP incorpo-
rates all proposed techniques.

Method SST-2 AgNews

CACC ASR PACC CACC ASR PACC

w/o defense 92.69 91.88 53.76 88.91 94.54 78.64
Our baseline 70.50 85.31 56.84 80.94 22.42 75.71
RMSAR 81.93 47.28 76.83 82.09 21.31 75.78
RMSAR +RPDAR 84.90 63.93 66.61 83.06 18.89 78.65
CR-UTP 85.70 50.55 73.04 84.27 18.82 78.73
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Mask Ratio. To examine the effect of mask ratio590

on clean accuracy, we conduct experiments on the591

SST-2 dataset with varying mask ratios. Results in592

Figure 4 (a) show that while the baseline method’s593

accuracy sharply drops from 91.27% to 51.78%594

as the mask ratio increases from 10% to 90%, our595

superior prompt search technique leads to a more596

gradual decline, from 92.42% to 57.82%. Addi-597

tionally, employing our superior prompt ensemble598

method maintains a higher accuracy of 85.70%599

even at a 70% mask ratio, representing a signifi-600

cant improvement over the baseline method. In Fig-601

ure 4 (b), the variance analysis of certified accuracy602

shows that while increasing the mask ratio results603

in higher variance for both baseline and superior604

prompt methods, the use of ensemble techniques,605

particularly the superior prompt ensemble method,606

reduces variances, providing a more consistent out-607

put despite the effects of masking. The variance608

peaks at the 60% mask ratio, indicating the highest609

sentence diversity. This suggests that the variance610

is influenced not only by the volume of informa-611

tion loss due to masking but also by the diversity612

of sentences resulting from random masking. How-613

ever, the employment of ensemble techniques, even614

with baseline ensemble (vanilla prompts, not supe-615

rior prompts), results in a more gradual increase in616

variance. This stabilization is likely due to the en-617

semble’s ability to aggregate insights from multiple618

prompts, delivering a more consistent and reliable619

output despite the information loss introduced by620

masking. The superior prompt ensemble technique621

further reduces the variances.622
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Figure 4: (a) Clean accuracy and (b) variance of pro-
posed methods under different mask ratio.

Ensemble Numbers. To investigate the impact of623

the number of prompts within the superior prompt624

ensemble on clean accuracy, we conducted experi-625

ments on the SST-2 dataset using a large mask ratio626

of 70% to amplify the ensemble number’s effect627

on output performance. To mitigate the potential628

impact of differences in prompt selection perfor-629

mance on the output, each ensemble was selected to630

have similar mean accuracy. The results depicted 631

in Figure 5 show that as the number of prompts 632

in the ensemble increases from 1 to 50, there is a 633

consistent improvement in clean accuracy, rising 634

from 82.31% to 86.82%, accompanied by a cor- 635

responding decrease in variance. These findings 636

indicate that a larger ensemble leads to more stable 637

and accurate predictions. This enhancement can be 638

attributed to the ensemble’s capacity to integrate 639

diverse insights from multiple prompts, reducing 640

the impact of any single erroneous prediction and 641

fostering a consensus that is more resilient to the 642

introduction of masks. 643
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Figure 5: Clean accuracy and variance of CR-UTP un-
der different ensemble numbers.

6 Limitation 644

The limitations of our paper are as follows: (i) 645

Certified Accuracy. Although our CR-UTR has 646

demonstrated improvements in certified accuracy 647

and reduced ASR, achieving state-of-the-art results, 648

there remains a gap between clean accuracy and cer- 649

tified accuracy. (ii) Model. While our CR-UTP has 650

been evaluated on popular benchmark datasets SST- 651

2 and AgNews using the RoBERTa-large model, 652

it would be beneficial to assess its effectiveness 653

across more models and different architectures to 654

ensure its generalizability. 655

7 Conclusion 656

In conclusion, we address the challenge of certify- 657

ing language model robustness against Universal 658

Text Perturbations (UTPs) and input-specific text 659

perturbations (ISTPs). We introduce the superior 660

prompt search method and the superior prompt en- 661

sembling technique to enhance certified accuracy 662

against UTPs and ISTPs. Our approaches achieve 663

state-of-the-art results, ensuring stability and relia- 664

bility in language model predictions across diverse 665

attack scenarios. 666
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