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Abstract

It is imperative to ensure the stability of every
prediction made by a language model; that is,
a language’s prediction should remain consis-
tent despite minor input variations, like word
substitutions. In this paper, we investigate the
problem of certifying a language model’s ro-
bustness against Universal Text Perturbations
(UTPs), which have been widely used in uni-
versal adversarial attacks and backdoor attacks.
Existing certified robustness based on random
smoothing has shown considerable promise
in certifying the input-specific text perturba-
tions (ISTPs), operating under the assumption
that any random alteration of a sample’s clean
or adversarial words would negate the impact
of sample-wise perturbations. However, with
UTPs, masking only the adversarial words can
eliminate the attack. A naive method is to sim-
ply increase the masking ratio and the likeli-
hood of masking attack tokens, but it leads to a
significant reduction in both certified accuracy
and the certified radius, due to input corruption
by extensive masking. To solve this challenge,
we introduce a novel approach, the superior
prompt search method, designed to identify
a superior prompt that maintains higher cer-
tified accuracy under extensive masking. Addi-
tionally, we theoretically motivate why ensem-
bles are a particularly suitable choice as base
prompts for random smoothing. The method is
denoted by superior prompt ensembling tech-
nique. We also empirically confirm this tech-
nique, obtaining state-of-the-art results in mul-
tiple settings. These methodologies, for the
first time, enable high certified accuracy against
both UTPs and ISTPs.

1 Introduction

Prompt-based Language Models (PLMs) (Thoppi-
lan et al., 2022; Zeng et al., 2022; Achiam et al.,
2023; Touvron et al., 2023; Chiang et al., 2023)
have achieved significant success across a wide
range of real-world applications (Wu et al., 2020;

Brown et al., 2020; Wei et al., 2022; Chowdhery
et al., 2023). However, despite their prominent
performance, PLMs have been shown vulnerable
to noises and perturbations on the input (Xu et al.,
2022; Shayegani et al., 2023). Such vulnerability
has notably restricted PLM’s utility, especially in
high-stake environments such as bank records anal-
ysis (Heaton et al., 2017), health care records anal-
ysis (Myszczynska et al., 2020). In these settings,
the stability of every prediction is critical, i.e., PLM
predictions should remain consistent despite minor
input variations, such as word substitutions (Alzan-
tot et al., 2018; Ren et al., 2019; Li et al., 2020a).
This concern aligns with the study of certified ro-
bust PLMs (Zeng et al., 2023), which guarantees
that all PLM predictions are accurate within the
local vicinity of the input.

Input perturbations can be classified into Univer-
sal Text Perturbations (UTPs) and Input-Specific
Text Perturbations (ISTPs). UTPs are characterized
by their ability to be applied across different inputs,
making them transferable, whereas ISTPs are tai-
lored to specific inputs. In detail, attackers employ-
ing ISTP strategies, exemplified by TextFooler (Jin
et al., 2020) and DeepWordBug (Gao et al., 2018),
craft a unique adversarial sentence for each tar-
get input sentence. Conversely, attackers utilizing
UTP methodologies, such as those found in Tro-
JLLM (Xue et al., 2023) and UAT (Wallace et al.,
2019), identify a single or a small number of adver-
sarial tokens that can be inserted into any sentence
to influence the model’s prediction. This makes
UTPs a more considerable threat to the robustness
of PLMs since a specific set of adversarial tokens
could lead to mispredictions across any input. Ad-
ditionally, UTPs pose a greater challenge in miti-
gation compared to ISTPs. This challenge arises
because ISTPs depend on weaker adversarial pat-
terns that can be addressed by introducing modifi-
cations to the adversarial or clean tokens. However,
UTPs are based on stronger adversarial patterns,



which require exact identification and masking of
the adversarial tokens for effective mitigation.

Random smoothing has been recognized as an
effective defense offering certified robustness for
models in computer vision (Horvith et al., 2021)
and NLP (Zeng et al., 2023), yet its application has
been limited to ISTPs. This method assumes that
random alterations to a sample’s words counteract
perturbations. However, this approach falls short
against UTPs, which require precise masking of ad-
versarial tokens for mitigation, unlike ISTPs which
can be mitigated by randomly masking any tokens.
Defending against UTPs is challenging due to the
unknown positions of adversarial tokens, requiring
a high mask ratio that could degrade PLM accuracy.
Thus, ensuring certified robustness against UTPs
in PLMs remains an unresolved challenge.

Naively increasing the masking ratio can im-
prove the chances of covering adversarial tokens
in UTPs, potentially reducing the Attack Success
Rate (ASR). However, this method often results in
only minor ASR improvements due to the trade-
off with certified accuracy. High masking ratios in
random smoothing significantly diminish certified
accuracy, leading to randomized model inferences
as a large portion of input tokens are obscured,
leaving insufficient data for accurate predictions.

In this paper, we introduce CR-UTP, a method
to equip PLMs with certified robustness against
UTPs, achieving both high certified accuracy and
low ASR. Our contributions are as follows:

* We adapt the certified robustness method to
PLMs and propose Superior Prompt Search
for robust prompts with masked inputs.

* We introduce a prompt ensemble method to
reduce the variance of masked inputs and in-
crease the certified accuracy with theoretical
analysis and empirical implementation.

* Through extensive experimentation, we show
our CR-UTP effectively increases the certified
accuracy by ~ 15% and decreases the ASR
by ~ 35% compared to prior works.

2 Background and Motivation

Text Adversarial Attacks.Text adversarial attack
methods generate adversarial sentences by perturb-
ing original sentences to maximally increase the
model’s prediction error, while maintaining the
fluency and naturalness of the adversarial exam-
ples. These attacks on prompt-based language

models can be categorized into two groups: input-
specific text perturbation attacks (ISTPs) and uni-
versal adversarial perturbation attacks (UTPs). In
ISTP attacks, the attacker optimizes an adversar-
ial sentence for each input, mainly by replacing,
scrambling, and erasing characters (e.g., Deep-
WordBug (Gao et al., 2018) and HotFlip (Ebrahimi
et al., 2018)) or words (e.g., TextFooler (Jin et al.,
2020)). Conversely, UTP attacks optimize a uni-
versal trigger for a prompt-based language model,
and the output of any input embedded with this
trigger will be manipulated (e.g., TrojJLLM (Xue
et al., 2023) and UAT (Wallace et al., 2019)).
Certified Robustness in Language Models. Nu-
merous defense methods, such as adversarial train-
ing and perturbation-controlled approaches, have
been developed to counteract adversarial attacks
(Wang et al., 2019; Zhou et al., 2021; Goyal et al.,
2023). However, these traditional tools may be-
come ineffective against novel, advanced attack
strategies. To address this, certified robustness has
been introduced, offering a guarantee against any
attack as long as the number of perturbed words re-
mains below a certain threshold. A model achieves
certification if it can consistently produce the cor-
rect output when the number of perturbations does
not exceed the certified radius. While models
of smaller size can obtain robustness certification
through deterministic methods (Li et al., 2020b;
Ostrovsky et al., 2022; Weng et al., 2018; Kolter
and Wong, 2017), the computational demands of
language models preclude such approaches. Con-
sequently, probabilistic methods, such as Random
Smoothing (Cohen et al., 2019), have been intro-
duced to certify the robustness of large language
models.

Random Smoothing. Random Smoothing, a
promising approach introduced by (Cohen et al.,
2019; Weber et al., 2020), certifies the robustness
of large neural networks. This method enhances
a model’s robustness by adding Gaussian noise to
the original input (Salman et al., 2020; Li et al.,
2023). It was quickly adopted for large language
models in the NLP field, exemplified by SAFER
(Ye et al., 2020) and Randomized [MASK] (Zeng
et al., 2021). To improve model performance with
random smoothing, the computer vision field has
explored re-training the original model to adapt to
Gaussian noise (Jeong and Shin, 2020; Zhai et al.,
2020; Salman et al., 2019). However, applying
this re-training method in NLP to achieve a model
tolerant to smoothing is prohibitively expensive.



(a) Vanilla Prompt

(b) Superior Prompt 1
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Figure 1: Illustration of the prediction distributions. A superior prompt exhibits greater robustness compared to a
vanilla prompt, with ensembled prompts showing even higher robustness. Different colors represent various classes,
and different radii indicate varying levels of perturbation. The bars demonstrate the output class probabilities for the
smoothed PLMs given corresponding prompts. p 4 represents the minimum probability of the majority class, and
75 indicates the maximum probability of the second-most likely class.
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Figure 2: (a) Our CR-UTP shows higher certified ro-
bustness accuracy and (b) Our CR-UTP significantly
reduces ASR.

Instead, in the NLP domain, (Zhang et al., 2023)
proposed a self de-noising method that allows the
Pretrained Language Model (PLM) itself to recover
the information lost due to masking.

Motivation. Figure 2 illustrates that while random
smoothing has been effective for ISTPs as shown
in previous works (Zeng et al., 2023; Zhang et al.,
2023), it struggles with UTPs. With a low mask
ratio, the ASR for UTPs is high (~96%), and in-
creasing the mask ratio only marginally reduces
ASR but significantly lowers accuracy. For exam-
ple, increasing the mask ratio from 0.3 to 0.8 only
reduces ASR by ~6% while accuracy drops by
~35%. These findings highlight the inadequacy of
ISTP methods for UTPs and lead us to develop new
techniques that combine superior prompt search
and ensembles, significantly improving robustness
against UTPs with less impact on accuracy.

To achieve a low Attack Success Rate (ASR)
against Universal Text Perturbations (UTPs), a high
mask ratio, exceeding 0.5, is necessary. Yet, as Fig-
ure 1 (a) reveals, a vanilla prompt at this high mask
ratio results in reduced accuracy due to the exten-
sive masking of input tokens, which leaves limited
information for precise classification. Figures 1 (b)
and (c) illustrate that superior prompts can maintain

higher accuracy under such conditions by incorpo-
rating random masking during the prompt design
phase. This approach allows superior prompts to
adjust to specific mask ratios, improving the lower
bound (p 4) on the majority class probability and re-
ducing the upper bound (pp) on the runner-up class
probability. However, these prompts still exhibit
high variance across input samples. Ensembling
techniques (Liu et al., 2021; Horvéth et al., 2021)
reduce this variance, thereby enhancing robustness.
As shown in Figure 1 (d), by combining superior
prompts, we can leverage their individual advan-
tages for a more favorable accuracy-ASR balance.
This insight leads us to further investigate supe-
rior prompt design and ensembling as methods to
bolster PLMs’ certified accuracy and robustness
against UTPs, aiming to lower the ASR while pre-
serving high accuracy.

3 CR-UTP Design

Overview. In Figure 3, we detail the workflow
of the proposed CR-UTP method. (a) Superior
Prompt Search: we start with a basic prompt and
employ a reinforcement learning approach to find
a superior prompt adept at handling inputs with
masked words. A unique reward function is uti-
lized, which incorporates random masking during
the prompt search phase to enhance the prompt’s
resilience to word masking. (b) Superior Prompt
Ensemble: for making predictions, CR-UTP gen-
erates various versions of the original input by ap-
plying random masking. Each prompt assesses
these versions and internally agrees on the optimal
prediction. (c) Certified Robust PLM: CR-UTP ag-
gregates the individual outcomes from each prompt
through a second voting process to get the final,
most robust prediction.

In particular, we generalize the random masking
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Figure 3: Overview of CR-UTP. CR-UTP leverages superior prompt search and prompt ensembling techniques to

enhance the certified robustness of PLMs.

operation to PLMs and analyze using random mask-
ing to defend UTPs in Section 3.1. Also, we intro-
duce the Superior Prompt Search in Section 3.2 to
search for prompts that can achieve a high certified
accuracy even when a large proportion of the in-
put tokens are masked. Finally, in Section 3.3, we
proposed a Superior Prompt Ensemble to further
improve the certified robustness.

3.1 Adapting Random Smoothing to PLMs

Using the random masking approach from Ran-
MASK (Zeng et al., 2023), the random masking
operation M : X Xx M(h, k) — Xpqsk would take
an input text * = x1xs...x, with h words and ran-
domly replacing (h — k) word with the [MASK].
Following this, we define a smoothed classifier
g(x) built upon the base classifier f as follows:

(M@ H) =] O

g(x) = argmax [ P
ceC H~U(R,K)
Then it can be shown that g(z’) would return ¢
when the certified condition is satisfied with proba-
bility at least (1 — ).

We define a prompt-based language model for
classification tasks as f : X — C, where X repre-
sents the domain of input texts and C = 1,2, ..., n,
denotes the set of classification labels. The re-
sponse of an input  to prompt pis y = f(p, x).
The smoothed classifier g over such PLM can be
expressed as

go(@) =argmax | B (fp,M(@|H) =) @

cec  LH~H(hK)
and the same certification can be achieved under
such prompt-based model.

Defending against universal attacks with random
masking necessitates a high mask ratio, especially
in the context of UTPs, where the presence of any
UTP token in the masked input guarantees the at-
tack’s success. Therefore, to ensure the adversarial

token is masked with a probability exceeding 50%
for the smoothed function g(x) to yield correct
outcomes, the masking probability for each UTP
token needs to be more than 0.5. Consequently,
for a UTP of length r, the likelihood that all UTP
tokens are masked should be p" > 0.5, implying
p > v/0.5. For instance, p > 0.5 forr =1, and
p > 0.707 for r = 2. Ensuring correct results for
inputs masked without UTP requires the model to
perform effectively at high mask ratios. To allevi-
ate the effects of extensive masking, we introduce a
technique that enhances model performance under
random masking without necessitating retraining
of the language model, thereby reducing computa-
tional overhead.

3.2 Superior Prompt Search

Certified accuracy is influenced by the model’s per-
formance on randomly masked sentences, but high
mask ratios can decrease accuracy due to loss of
critical information. Enhancing a prompt-based
language model’s certified accuracy involves im-
proving its tolerance to information loss from ran-
dom masking. However, in few-shot and black-
box scenarios, fine-tuning the pre-trained model or
using gradient-based optimization for continuous
prompts is infeasible. To tackle this challenge with-
out gradient optimization, we approach it as a rein-
forcement learning (RL) problem to discover a dis-
crete, robust prompt—termed a superior prompt. A
direct approach involves searching for this prompt
using datasets with randomly masked sentences
to acclimate the model to diverse masking scenar-
ios. Nonetheless, at high mask ratios (e.g., 70%),
the reduced information in few-shot datasets limits
the effectiveness and generalizability of robustness
enhancements. To overcome this, we suggest align-
ing the superior prompt’s predictions on masked
sentences with the vanilla prompt’s on unmasked



sentences, leveraging the existing knowledge of the
vanilla prompt to offset the drawbacks of few-shot
datasets and information loss from masking.

Our aim, as expressed in Equation 3, involves
identifying an optimized prompt p, that augments
a basic vanilla prompt p, by adding a sequence
of T' tokens from the vocabulary V. This strat-
egy is intended to boost the model’s accuracy
ACC(f(ps,Zi),y:) on inputs &; that have under-
gone random word masking. The dataset D is
composed of pairs of input sentences x; and their
associated labels y;, with z; indicating the masked
version of the input.

max
DPs cyvT

S ACC(fpai)y) B

(%i,yi)€D

Masked Sentence Accuracy Reward. We intro-
duce a two-fold reward function to guide the RL-
based search for an optimal ps. The first compo-
nent, known as the Masked Sentence Accuracy
Reward (MSAR), is designed to directly maximize
the PLM’s accuracy on masked sentences:

Rusar = »_  m 5" Distance(di,yi)  (4)

(z;,Y:)ED

here the Distance(Z;,y;) denotes f(y;|ps, Ti) —
maxy 4y f (Y |ps, :). The distance value is pos-
itive for correct predictions and negative other-
wise. We denote the distance sign as sign =
1[Distance(Z;,y;) > 0]. For a correct prediction
(i.e., sign = 1), we multiply the positive reward
by a large number 72 to indicate its desirability;
otherwise, we multiply the negative rewards by an-
other number 7;. This reward aims to maximize
the PLM’s accuracy on masked sentences.
Predictive Distribution Alignment Reward. To
mitigate the challenge posed by information loss
due to word masking, which is exacerbated in a
few-shot setting, we propose an additional reward
function, a.k.a, Predictive Distribution Alignment
Reward (PDAR). It is designed to minimize the KL
divergence between the predictive distributions of
the vanilla prompt on unmasked sentences and the
superior prompt on their masked equivalents:

Reoar = —  »_  KL(f(po,z:) || f(ps, ) ()

(zi,y:)€ED

This reward is designed to ensure that p, retains
alignment with p,’s predictive behavior, thereby
leveraging the foundational knowledge encoded in

P, to inform predictions in the face of partial in-
formation. Such strategic alignment enables p; to
infer missing data from the masked inputs, drawing
on the robust insights and patterns encapsulated by
Py. This method not only addresses the direct im-
pact of masking on information availability but also
enhances the model’s capacity for generalization
from limited examples.

Policy Model Update. As Figure 3 shows, the RL
search process involves an agent that sequentially
selects tokens [s1, ..., s7| to construct the superior
prompt p,, aiming to maximize the combined re-
ward R = Rusar + Reoar- For each time step ¢,
the agent, given the previous tokens s, generates
the next token s; based on the policy generator
Gy, (St|s<¢). Completion of ps triggers the com-
putation of the task reward R. To facilitate this,
we employ a GPT-2 model as the backbone for
our policy generator, enhanced with an insertable
trainable Multilayer Perceptron (MLP) layer. The
optimization focuses on the parameters of this MLP
layer, tailoring the policy generator to effectively
navigate the prompt construction space under the
guidance of the designed reward function.

3.3 Superior Prompt Ensemble

Instead of relying on a single model, ensemble
methods leverage the strengths and mitigate the
weaknesses of various base classifiers. The core
idea behind ensemble modelling is that a group of
weak learners can come together to form a strong
learner, thereby improving the model’s ability to
generalize well to unseen data. In the following
section, we will demonstrate how random masking
can increase the variance of the output probabil-
ity and how model ensembling can mitigate the
performance drop introduced by random masking.

Suppose the probability that the smoothed
model with prompt p outputs class ¢ is y.(x) =
Przainpy(f (0, M(@ | ) = ) in [0, 1], then
the final probability output of the smoothed model
is determined by two random variables, y = y, +
ym (Horvéth et al., 2021), where y, is determined
by the performance of the language model f with
prompt p on the original input, and y,,, corresponds
to the performance of prompt p when the input «
is randomly masked. Since y, is influenced by the
performance of prompt p and y,, mostly depends
on the perturbation ratio p on the clean input x, we
can assume that y, and y,, are independent. Sup-
pose Yy, has mean a. and covariance Y., y,, has
mean a,, and covariance 3,,,. Under this assump-



tion, the probability of the smoothing operation
for each prompt p has expectation and variance as
follows:

Ely*] = ag+ay,, Varly*] = Var[ys]+Var[yy].

Since the mask operation can cause information
loss in x, we assume p,, has a negative mean, de-
noted by a,,. Through empirical analysis of the
performance of ), = with respect to the perturba-
tion rate, as shown in figure 4, we observe the
baseline model’s performance and conclude that
while ) = varies with the perturbation ratio, it is
significantly influenced by it. As the perturbation
ratio increases, the variance o2, initially rises and
then decreases. This pattern occurs because, as the
mask ratio increases from 0 to 0.6, the masking
operation introduces more noise to the input, in-
creasing the variance of y.. However, when the
mask ratio increases from 0.6 to 1, the remaining
information decreases, leading the model to ran-
domly guess any label, i.e., y. — 1/n., and the
variance 02 — 0 as more words in the sentence are
masked.

With a high mask ratio, the random masking
operation can significantly increase variance and
reduce accuracy relative to the clean classifier’s
output. Model ensembles have been shown to ef-
fectively decrease the overall variance of voting
outcomes, thereby improving the likelihood of ac-
curate predictions as the number of ensembles in-
creases (Horvith et al., 2021). However, the high
computational cost makes training multiple lan-
guage models unfeasible. Consequently, we intro-
duce a technique that ensembles a set of prompts
during inference to exploit the distinctive feature
of PLMs, wherein the initial prompt markedly af-
fects the model’s final output. By employing the
superior prompt search method, we can create a col-
lection of prompts that withstand the random mask-
ing operation, with the ensemble of these prompts’
outputs demonstrating enhanced performance on
heavily masked inputs.

Formally, we construct an ensemble classifier
f with a set of k different prompts P = {p; |
i =1, ..k}, via hard voting of all the outputs from
different prompts p;,

k
f(P,x) = argmaxZ]I(f(pi,a:) =c) (6)

ceC i—1

where I( f(p;, ) = c) is the indicator function that
equals 1 when f(p;, x) output ¢ and O otherwise.

So the ensemble classifier would output the class
that most of the prompts agree on.

Since the prompts ensemble operates as a single
model, the certified robustness condition remains
applicable to the assembled model f(P, x). There-
fore, we can establish a new smoothing function
g(x) by applying the same random masking op-
eration to x. Building on our previous findings,
we anticipate performance improvements through
the prompts ensemble. Our analysis of how the
number of ensembles impacts the final probability
outcome, as depicted in 5, demonstrates a substan-
tial increase in the accuracy of the model ensemble
with a concurrent reduction in variance as the num-
ber of ensembles increases.

4 Experimental Methodology

Datasets and Model. In our evaluation, we utilize
the SST-2 dataset (Socher et al., 2013) for binary
classification tasks and the AgNews dataset (Zhang
et al., 2015) for a four-class classification task. We
adopt a 16-shot setting, which represents a typical
few-shot scenario. Our experiments are conducted
with the widely-used pre-trained language model
RoBERTa-large (Liu et al., 2019), an advanced
version of BERT (Kenton and Toutanova, 2019)
with 24 layers of Transformer architecture.
Evaluation Metrics. We adopted three key met-
rics in evaluations same with (Zeng et al., 2023).
Clean accuracy (CACC) refers to the classification
accuracy on clean sentences. The attack success
rate (ASR) quantifies the percentage of input in-
stances perturbed by an attack that successfully
causes the model to make incorrect predictions.
The poisoned accuracy (PACC) indicates the ac-
curacy of the prompt-based language model on
poisoned samples crafted from an attack.
Evaluated Attacks. We evaluated our CR-UTP
under two input-specific text perturbation (ISTP)
adversarial attacks, TextFooler (Jin et al., 2020) and
DeepWordBug (Gao et al., 2018), and one univer-
sal text perturbation (UTP) attack, TrojLLM (Xue
et al., 2023). TextFooler adversarially perturbs the
text inputs by the word-level substitutions, whereas
DeepWordBug performs the character-level pertur-
bations to each input by replacing, scrambling, and
erasing a few characters of some words. UTP attack
TrojLLM uses reinforcement learning to search
a universal trigger for a prompt-based language
model, any text inputs with this trigger will lead to
the model output target label.



Implementation Details. For the superior prompt
generator configuration, we adhered to the parame-
ters established in RL-Prompt (Deng et al., 2022).
Specifically, we use distilGPT-2, a large model
with 82 million parameters, as a policy model for
all tasks. Additionally, we use a multilayer per-
ceptron (MLP) with one hidden layer which has
2,048 hidden states, added to distilGPT-2’s existing
768 hidden states. For the hyperparameters of re-
ward functions in the Equation 4, we set balancing
weights 71 = 180 and 72 = 200. During infer-
ence of CR-UTP, we use an ensemble number of 5
with the best 5 prompts derived from the superior
prompt search. During the certification process, the
prediction number is 500 and the certification num-
ber is 1000. When using random masking to defend
against adversarial attacks, the voting number is set
to 100. All experiments are conducted on a single
Nvidia Geforce RTX-3090 GPU. Searching time
for superior prompts on SST-2 is 3.8 hours, the
certification time for one sentence is ~ 8 seconds.

5 Results

Comparison of CR-UTP with Random Mask.
In Table 1, we conducted experiment compar-
ing the performance of CR-UTP with Random
Mask (Zeng et al., 2023) at a 70% masking ratio
against three adversarial attacks, i.e., TextFool (Jin
et al., 2020), DeepWordBug (Gao et al., 2018) and
TrojLLM (Xue et al., 2023). Our CR-UTP ex-
hibits superior performance over Random Mask
across all metrics in the evaluated adversarial at-
tacks. Notably, CR-UTP achieves a significant
3.68% increase in clean accuracy (CACC). This
improvement is attributed to its efficient prompt
search method, which identifies robust prompts to
random mask, and superior prompt ensemble tech-
nique, further reducing CACC variance. Moreover,
CR-UTP achieves a substantial reduction in attack
success rate (ASR), averaging a 21.4% greater de-
crease compared to Random Mask, with a remark-
able 34.76% ASR reduction in the TrojLLM at-
tack. This enhancement stems from CR-UTP’s
ability to leverage the differential outputs of vari-
ous prompts, enabling a robust ensemble prediction
for improved defense outcomes against adversarial
samples. Additionally, CR-UTP demonstrates a
notable increase in poisoned accuracy (PACC), in-
dicating its ability to maintain high accuracy even
under attack scenarios.

Table 1: The comparison of CR-UTP and Random Mask
against various attacks with a 70% mask ratio on the
SST-2 dataset.

Random Mask CR-UTP
Scheme
CACC ASR PACC CACC ASR PACC
TextFool 81.60 42.88 57.12 85.28 37.39 62.61

DeepWordBug 81.13 45.18 54.82 85.61 21.25 78.75
TrojLLM 80.94 85.31 56.84 85.70 50.55 73.04

5.1 Ablation Study

In this section, we explore the design space of CR-
UTP and study the impact of various settings of
CR-UTP on its attacking effects using RoBERTa-
Large with SST-2 dataset.

CR-UTP Techniques Performance. In Table 2,
we analyze the impact of different CR-UTP tech-
niques on performance against TrojLLM on the
SST-2 and AgNews datasets. For SST-2, utilizing
the adapted random mask method (our baseline)
leads to a significant drop in CACC by over 22%,
mainly due to the loss of information from masking
70% of the words. However, incorporating superior
prompt search with reward Rysar, improves CACC
by 11% as the superior prompt proves more ro-
bust to random masking. Furthermore, combining
rewards Rusar + Rpoar, further increases CACC
to 84.90% by enhancing prompt search effective-
ness with Rppar, which aligns outputs for clean and
masked sentences. Finally, employing the supe-
rior prompt ensemble technique elevates CACC to
85.70% and reduces ASR from 91.88% to 50.55%,
indicating significant improvements over the base-
line method. Similarly, on AgNews dataset, CR-
UTP surpasses the baseline with a 3.33% increase
in CACC to 84.27% and a 3.6% decrease in ASR,
highlighting CR-UTP’s effectiveness.

Table 2: An ablation study of CR-UTP techniques. Our
baseline is random mask with 70% ratio; Rusar denotes
employing superior prompt search only using reward
Rusar; Rusar + Repar mMeans using superior prompt
search with rewards Rusar and Repar; CR-UTP incorpo-
rates all proposed techniques.

SST-2 AgNews
CACC ASR PACC CACC ASR PACC

92.69 91.88 53.76 88.91 94.54 78.64
Our baseline  70.50 85.31 56.84 80.94 22.42 75.71
Rmsar 81.93 47.28 76.83 82.09 21.31 75.78
Rusar + Reoar 84.90 63.93 66.61 83.06 18.89 78.65
CR-UTP 85.70 50.55 73.04 84.27 18.82 78.73

Method

w/o defense




Mask Ratio. To examine the effect of mask ratio
on clean accuracy, we conduct experiments on the
SST-2 dataset with varying mask ratios. Results in
Figure 4 (a) show that while the baseline method’s
accuracy sharply drops from 91.27% to 51.78%
as the mask ratio increases from 10% to 90%, our
superior prompt search technique leads to a more
gradual decline, from 92.42% to 57.82%. Addi-
tionally, employing our superior prompt ensemble
method maintains a higher accuracy of 85.70%
even at a 70% mask ratio, representing a signifi-
cant improvement over the baseline method. In Fig-
ure 4 (b), the variance analysis of certified accuracy
shows that while increasing the mask ratio results
in higher variance for both baseline and superior
prompt methods, the use of ensemble techniques,
particularly the superior prompt ensemble method,
reduces variances, providing a more consistent out-
put despite the effects of masking. The variance
peaks at the 60% mask ratio, indicating the highest
sentence diversity. This suggests that the variance
is influenced not only by the volume of informa-
tion loss due to masking but also by the diversity
of sentences resulting from random masking. How-
ever, the employment of ensemble techniques, even
with baseline ensemble (vanilla prompts, not supe-
rior prompts), results in a more gradual increase in
variance. This stabilization is likely due to the en-
semble’s ability to aggregate insights from multiple
prompts, delivering a more consistent and reliable
output despite the information loss introduced by
masking. The superior prompt ensemble technique
further reduces the variances.
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Figure 4: (a) Clean accuracy and (b) variance of pro-
posed methods under different mask ratio.

Ensemble Numbers. To investigate the impact of
the number of prompts within the superior prompt
ensemble on clean accuracy, we conducted experi-
ments on the SST-2 dataset using a large mask ratio
of 70% to amplify the ensemble number’s effect
on output performance. To mitigate the potential
impact of differences in prompt selection perfor-
mance on the output, each ensemble was selected to

have similar mean accuracy. The results depicted
in Figure 5 show that as the number of prompts
in the ensemble increases from 1 to 50, there is a
consistent improvement in clean accuracy, rising
from 82.31% to 86.82%, accompanied by a cor-
responding decrease in variance. These findings
indicate that a larger ensemble leads to more stable
and accurate predictions. This enhancement can be
attributed to the ensemble’s capacity to integrate
diverse insights from multiple prompts, reducing
the impact of any single erroneous prediction and
fostering a consensus that is more resilient to the
introduction of masks.
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Figure 5: Clean accuracy and variance of CR-UTP un-
der different ensemble numbers.

6 Limitation

The limitations of our paper are as follows: (i)
Certified Accuracy. Although our CR-UTR has
demonstrated improvements in certified accuracy
and reduced ASR, achieving state-of-the-art results,
there remains a gap between clean accuracy and cer-
tified accuracy. (ii) Model. While our CR-UTP has
been evaluated on popular benchmark datasets SST-
2 and AgNews using the RoBERTa-large model,
it would be beneficial to assess its effectiveness
across more models and different architectures to
ensure its generalizability.

7 Conclusion

In conclusion, we address the challenge of certify-
ing language model robustness against Universal
Text Perturbations (UTPs) and input-specific text
perturbations (ISTPs). We introduce the superior
prompt search method and the superior prompt en-
sembling technique to enhance certified accuracy
against UTPs and ISTPs. Our approaches achieve
state-of-the-art results, ensuring stability and relia-
bility in language model predictions across diverse
attack scenarios.
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