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Abstract

Direct Preference Optimization (DPO) is a widely used preference optimization
algorithm in large language model (LLM) alignment, which reparameterizes the
reward function in reinforcement learning with human feedback (RLHF) without
requiring a separate reward model. However, during the DPO training process,
when a large negative gradient is applied to low-confidence samples, LLMs with a
softmax output head tend to squeeze the confidence in the model’s output distri-
bution towards the highest-confidence sentence, which may lead to a decrease in
the confidence of both preference and non-preference samples, while increasing
the confidence of unrelated tokens. This phenomenon becomes more complex in
reasoning tasks. In this work, focusing on reasoning tasks, we propose VPO, a
negative gradient constraint method for human non-preference samples based on
V-usable information. By using V-usable information to measure the similarity
between preference pairs and selectively constrain the negative gradient, VPO
can alleviate the squeezing effect of DPO, enhance alignment with the generation
objective, and maintain the model’s ability to distinguish between preference and
non-preference samples. We compare VPO with DPO and its latest variants on
mathematical reasoning tasks using the LLama 3.1 and Qwen 2.5 series, including
both Base and Instruct models. Our results demonstrate that VPO consistently and
significantly outperforms existing methods. Specifically, on Qwen2.5-7B-Base,
VPO achieves 7.80% and 13.25% improvement over DPO on MATH500 and
AMC?23, respectively. We also conduct ablation experiments and in-depth analysis
on VPO to explain its effectiveness and rationale.

1 Introduction

Recently, large language models (LLMs) have undergone rapid iteration and evolution, attracting
widespread attention across various industries, such as finance, healthcare, and education [9, 26, 4, 38,
31]. Post-training has emerged as a critical phase in the LLM training pipeline, serving to align model
outputs with human values and preferences, ensuring their safety and impartiality, and enhancing
reasoning reliability. Preference optimization, as a post-training alignment method, has been shown
to be more advantageous than simple supervised fine-tuning in aligning with human preferences.
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Compared to the multi-stage training process of reinforcement learning from human feedback (RLHF)
[27, 36, 6], which first requires training a reward model from preference data and then optimizing the
policy model to maximize this reward, Direct preference optimization (DPO) [32] directly derives
the reward signal from preference data by reparameterizing RLHF’s reward function, thus bypassing
the need for an explicit reward model. However, DPO’s implicit reward is calculated based on
the log probability ratio between the policy model and the reference model. Since the reference
model is absent during inference, there exists a discrepancy between DPQO’s optimization objective
and the goal of optimizing the log probability of preference samples in inference. Besides, DPO
is sensitive to the initial policy model and often exhibits the phenomenon where log-probabilities
decrease simultaneously for both preference and non-preference samples [11].

Recently, “squeezing effect” [33] is introduced to explain the underlying cause of the decrease
in the log probability of preference data during the DPO training process. Specifically, for any
LLM with a softmax output head, when a sample’s confidence resides in the “valley” region of the
model’s predicted distribution, applying a large negative gradient to that sample will significantly
suppress the entire output distribution curve, except for the sentence with the highest confidence
before the update. Since DPO uses fixed, pre-collected “off-policy” data, there is a distribution shift
between the updated policy model and the initial policy model used for data collection, leading to
a non-uniform confidence distribution over preference pairs. Besides, DPO focuses more on how
to avoid generating non-preference samples [11], which makes non-preference samples more likely
to fall into the “valley” region under the influence of the negative gradient. When the token with
the highest confidence is unrelated to the preference pair, it causes the log probabilities of both
preference and non-preference samples to decrease simultaneously. The issue of preference sample
probability decline in DPO becomes more severe in reasoning tasks, even leading to a decrease in
model performance [28, 5, 22, 29].

In this work, to alleviate this issue, we propose VPO, a negative gradient constraint method for
human non-preference samples based on V-usable information. V-usable information is proposed
for quantifying the amount of information about the label Y that can be extracted from the input X
through a given model family V [10, 42]. A series of studies have extended V-usable information to
quantify the amount of label-related information introduced by the chain-of-thought (CoT) generated
by LLMs, relative to the input X [30, 39]. VPO consists of two main components: (1) Non-preference
sample information measurement, which uses V-usable information to measure the additional amount
of information about the label Y contained in the non-preference sample reasoning chain, relative
to the input X. (2) Negative gradient constraint, which constrains the negative gradients of non-
preference samples based on their V-usable information.

In our methodology, we first demonstrate that the negative gradient constraint in DPO can enhance
the positive gradient of preference samples. Therefore, this constraint helps restrain the squeezing
effect caused by large negative gradients, while also directing preference samples toward the region of
highest confidence. Next, we categorize non-preference samples into two types based on the V-usable
information in their reasoning chains: (1) Samples that introduce positive }V-usable information about
the label. These samples are considered highly correlated with preference samples, since nearly all
V-usable information from the reasoning chains of preference samples is positive. For such samples,
we impose no constraints to ensure the model can effectively distinguish them. (2) Samples that
introduce negative VV-usable information about the label. These samples have a weaker correlation
with preference samples, thus the positive gradient from preference samples has a weaker impact
on them. As a result, they experience a relatively larger negative gradient, causing their confidence
to drop sharply, which makes them more prone to the squeezing effect. For these samples, we
apply a stronger negative gradient constraint based on their normalized V-usable information. In
conclusion, by applying selective negative gradient constraints to different non-preference samples,
VPO mitigates the squeezing effect caused by large negative gradients, enhances the log probability
of preference samples, and prevents the issue of a small log probability gap between preference
samples due to excessive constraints on negative gradients.

Extensive experiments demonstrate that, on both the base and instruct models of the Qwen-2.5 [31]
and LLaMA 3.1 [14] series, VPO consistently exhibits superior overall performance on reasoning
tasks compared to DPO and its variants. For instance, on the Qwen-2.5-7B-Base model, VPO
outperforms DPO by 7.80%, 4.02%, 2.57%, 3.41%, and 12.25% on MATHS500 [17], GSM8k [8],
Minerva MATH, [20] Olympiad MATH[16], and AMC23, respectively. In addition, when DPO
encounters a squeezing effect that causes a decline in model performance, VPO is still able to improve
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Figure 1: Sample confidence changes in DPO. (a) DPO reduces log-likelihood for both preference/non-
preference samples. (b) Squeezing effect in DPO from strong negative gradients applied to low-
confidence non-preference samples. (c) VPO’s gradient constraints restrain the squeezing effect.

model performance. Through ablation experiments and in-depth analysis of VPO, we further reveal
the effectiveness and rationale behind its key design choices.

2  VPO: Reasoning Preference Optimization Based on )V-usable information

In this section, we first introduce the background of DPO (§2.1). Next, we analyze the discrepancy
between the optimization objective of DPO and the actual generation objective, and introduce how
the squeezing effect [33] leads to a decrease in the log probability of DPO-preference samples. We
then propose a negative gradient constraint method to alleviate the squeezing effect and strengthen the
alignment between DPO and the generation objective (§2.2). Finally, we derive the objective of VPO
by introducing V-usable information to selectively constrain the negative gradient of non-preference
samples from the perspective of informational similarity. (§2.3).

2.1 Preliminaries

Direct preference optimization (DPO) is a preference optimization method that has gained
widespread attention. Instead of learning a reward model, DPO reparameterizes the reward function
r in RLHF using a closed-form expression with an optimal strategy, which can be represented as:

o (y|z)
Tre (y]2)
where 7y represents the policy model, 7, represents the reference model, Z(z) is the partition
function, and § is a hyperparameter that controls the deviation between 7y and 7,..y . By combining
the reparameterized r with the Bradley-Terry ranking objective [3], p*(yw = yi|x) = o(r*(x, yuw) —
r*(z,y;)), DPO can use the policy model rather than the reward model to represent the probability of
preference data. The maximum likelihood objective of the policy model can be represented as:
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2.2 Negative Gradient Constraint of DPO

As shown in Eq. 2, the objective of DPO is to optimize the margin of the log-likelihood ratio between
preference and non-preference samples. However, since the reference model is not involved in the
inference process, the reward optimized during DPO training (Eq. 1) does not directly align with the
objective of log-likelihood optimization of preference samples during actual inference. Therefore,
during DPO training, it is possible for the log probabilities of both preference and non-preference
samples to decrease simultaneously (as shown in Figure 1a).

Recently, squeezing effect [33] has been proposed, offering both theoretical and experimental insights
into the observed decrease in log probabilities of preference data during DPO training. Specifically,
for any model utilizing a softmax output layer to generate probability distributions, when negative



gradients act on low-confidence samples, the following phenomena occur: (1) When model’s output
distribution p’ exhibits even slight non-uniformity, p; with smaller p! tend to decrease; (2) When p*
becomes highly concentrated (where the majority of probability mass is captured by ¢*), then under
the influence of negative gradients, all other p; (i # i*) will decrease, leading to further compression
of probability mass toward ¢*.

Off-policy DPO is more prone to the aforementioned squeezing effect for the following reasons:
First, since the preference data is fixed and pre-collected, a distribution shift occurs between the
updated policy model and the initial sampling model, resulting in a non-uniform output distribution
for preference pairs in the model. Second, due to the discrepancy between the DPO optimization
objective and the generation objective, there may be a mismatch between the highest-confidence
sample y* and the preference sample y,,. Finally, given that DPO focuses more on avoiding the
generation of non-preference responses [11], the non-preference samples y; are more likely to fall
into the low-confidence region of the model’s predictions. When a large negative gradient is applied
to non-preference samples in the “valley” region, the probability of all responses y except the
highest-confidence response y* is reduced (i.e., the probability mass is pushed towards y*). This may
simultaneously decrease the log-probability of both preference and non-preference samples, while
increasing the probabilities of certain tokens unrelated to the samples (as shown in Figure 1b).

Compared to incorporating a regularization term into DPO to prevent over-optimization or focusing on
increasing the likelihood probability of human preference data, we adopt a negative gradient constraint
strategy to mitigate the issue of decreased likelihood probability of preference samples caused by the
squeezing effect during the DPO training process. Specifically, we introduce a constraint term v into
the DPO loss function:
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Where v is a hyperparameter, 1 > v > 0. To derive the gradients of modified DPO for both preference
and non-preference samples, we rewritten the above expression as:

mo(Yw|z) mowlz)
7Tref(l/w |£E) 7Tref(yl |CC)

By taking the derivatives of the probabilities for the preference and non-preference samples, we
obtain the following expressions:
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When v > 0, we can observe that r decreases compared to the original DPO (because the log-
likelihood ratio of non-preference samples is negative). This increases the absolute value of (o (r)—1),
and thus enhances the gradient of preference samples. Moreover, because the sigmoid function’s
slope is below 1, the gradient for non-preference samples in Eq.6 monotonically decreases with
increasing v. This adjustment ensures that y,, is more likely to converge toward the y* region, while
reducing the probability of non-preference samples y; being trapped in “valley” regions with large
gradients, thereby mitigating the squeezing effect.

2.3 VPO: Selective Negative Gradient Constraint Based on V-usable information

However, we identify a critical trade-off in the negative gradient constraints of DPO: strong constraints
(v — 0) will effectively mitigate the squeezing effect while diminishing the discriminability between
preference and non-preference samples; Conversely, weak constraints (v — 1) approximate standard
DPO by maintaining discriminative power while failing to alleviate the squeezing effect. This reveals
two fundamental limitations: (1) potential performance sub-optimality may be induced by static
constraints, and (2) failure to adapt to sample-specific characteristics such as noise or informativeness.
These findings highlight the necessity for adaptive constraint mechanisms that can dynamically
reconcile the competing objectives of alleviating the squeezing effect and maintaining effective
preference learning in DPO.



Since preference and non-preference samples will mutually influence each other during DPO training
[33], this interaction inevitably perturbs their intrinsic gradient to some degree. In this section,
focusing on reasoning tasks, we propose a selective negative gradient constraint strategy from
the perspective of the correlation between preference samples and non-preference samples. We
characterize the correlation between texts at two levels: the token-level and the information-level.
However, in token-level correlation evaluation, two factors may introduce potential biases: (1) prefix
similarity, aligned LLMs tend to generate similar prefixes in reasoning tasks [18, 1]; (2) solution path
diversity, reasoning tasks typically admit multiple valid solutions [43]. Therefore, our work focuses
on the informational similarity between preference and non-preference samples.

We introduce V-usable information [10, 42] to measure the amount of new label-related information
introduced by the reasoning chain of non-preference samples, compared to the input. Specifically, let
X and Y represent two random variables, with their sample spaces denoted as X and ), respectively.
The conditional V-entropy employs a model family V to learn the mapping from X to Y, replacing
the conventional conditional entropy which becomes ineffective when the true joint distribution of X
and Y is unknown. It is defined as:

Hy(Y|X) = inf B[~ log f[X)(Y)] )

where f[X] yields a probability distribution across the labels. For models f € V, the goal is
to maximize the log-likelihood of label data, both with and without input. Based on the content
mentioned above, V-usable information [42] is proposed, which generalizes the Shannon information
[35] to quantify the information about Y that can be extracted from X under model family ), denoted
as Iy(X — Y), and is defined as follows:

(X =Y)=Hy(Y | @) - Hy(Y | X) ®)

Furthermore, Pointwise V-Information (PVI) [10] is proposed, which extends the V-usable informa-
tion framework from the dataset level to the instance level. [24] further extends this to evaluation in
different contexts, which is defined as:

PVI(z — y) = —log g[2](y) + log g[z](y) )

Following previous studies [30, 39], We use PVI to quantify the amount of label-related information
introduced by the reasoning chain of non-preference samples under the policy model 7y in the initial
state, beyond the input X. We define it as PVI;, which can be expressed as:

PVI; = PVI(¢; — y|x) = —logmo (y|x) + log 7o (y|x, ¢1) (10)

where ¢; is the reasoning chain in non-preference samples. For the preference sample, it can be
expressed as: PVIL,, = PVI(c,, — y|z). Notably, nearly all preference samples’ reasoning chains
contain positive label-related information (PVI,, > 0). We categorize non-preference samples based
on their PVI; into the following two cases: (1) If PVI; > 0, it indicates a stronger correlation with
preference samples (since all their PVI are positive, reflecting that both can introduce additional
positive label-relevant information) and a stronger interaction between them. At this point, the
non-preference sample is somewhat ’pulled up’ by the positive gradient (weaker than the positive
gradient of the preference samples), which constrains its own negative gradient and alleviates the
squeezing effect. In this case, we do not apply constraints to the negative gradient to ensure the
distinction between preference and non-preference samples (i.e., v = 0). (2) If PV]; <0, it indicates a
weaker correlation with the information of the preference samples and a reduced interaction between
them. The non-preference sample still maintains a large negative gradient, making the squeezing
effect more likely. In this case, we constrain the negative gradient based on the normalized PVI;. As
the PVI; decreases (correlation weakens), the gradient constraint on the negative sample increases
(i.e., v = —PVI;). Based on this, we can derive the objective of VPO as:

£vp0 (305 Tres) = ~Ee ) 1080 (Blog Zelfelfiedy — 51— v)log ettlel )|
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where v is calculated as :
PVI
_ 0, 1 >0 (12)
o(—PVI;), PVL; <0

In summary, VPO employs V-usable information to measure the information similarity between pref-
erence and non-preference samples, selectively constraining the negative gradient of non-preference
samples. This helps to better coordinate and balance the competing objectives of alleviating the
squeezing effect and preserving effective preference learning in DPO.



3 Experimental Setup

Models and training settings. We use two types of models: Llama-3.1-8B [14] and Qwen-2.5-7B
[31], and perform preference optimization under two model settings: base model and instruction-
tuned model. VPO focuses on optimizing reasoning tasks, so we use tasks that require the model
to perform intermediate reasoning (i.e., generating a reasoning chain before answering, otherwise
performance would be poor), including: (1) GSMS8K [8], a dataset containing real, high-quality
elementary school math application problems; and (2) MATH [17], a dataset containing challenging
mathematics competition problems. Each question in both datasets contains a problem x and the final
numerical answer y, and both datasets have 7.5k questions in their training sets.

We use the few-shot prompt for sampling, which includes the problem, reasoning chain, and answer,
and follows a specific format to allow the extraction of the predicted answer later (the exact prompt
can be found in Appendix A.1). For each model used, we sample N = 10 solutions for each
question, with a temperature setting of 0.8. Following previous studies [29], we classify responses
that match the predicted answer with the label as preference samples, and those that do not match as
non-preference samples, which can be expressed as:

DY ={c},yiaf |1} =1} Di=A{c},yl",a} | r} =0}

(2 (2

When all 10 solutions sampled by the LLM are either entirely correct or entirely incorrect, we discard
the query. We then simultaneously select samples from D and D! to generate K pairs of indices,
thereby constructing the preference pair dataset:

ppairs _ {(C;Uk7yzﬂk)’ (Cﬁ’“,yf’“) Vx; € Dand k € [K]}

For Llama 3.1-8B-Base, Llama-3.1-8B Instruct, and Qwen-2.5-7B-Base, we retain 5 preference pairs
for each query. For Qwen-2.5-7B-Instruct, we retain 10 preference pairs for each query. In total, the
training data constructed for each model contains 30k-40k sample pairs.

Evaluation benchmarks. We evaluate the model’s performance on standard mathematical reasoning
benchmarks, including: (1) GSMS8K [8]; (2) MATHS500 [17]; (3) OlympiadBench-Math [16]; (4)
AMC23; (5) Minerva Math [20].

Baselines. We compare VPO with several offline preference optimization methods. RPO [29,
23] introduces a negative log-likelihood term to regularize the policy model, aiming to improve
performance on inference tasks. SimPO [25] uses average log-probability of a sequence as an implicit
reward, making it more aligned with the generation objectives and eliminating the need for a reference
model. TPO [2] avoids the assumptions of DPO by replacing pairwise preferences with pointwise
rewards. It regularizes the policy model towards the reference model by controlling the gap between
the log-likelihood ratios. TDPO [45] is a token-level optimization strategy that uses the Bradley-Terry
model to build a token-based reward system, enhancing the control over the KL divergence. We list
the optimization objectives and training details of different baselines in Appendix A.2.

4 Experimental Results

In this section, we present the main results of our experiments, highlighting the superior perfor-
mance of VPO across different settings. Subsequently, we conduct ablation experiments on VPO,
demonstrating the effectiveness of the negative gradient constraint method and the selective constraint
method using PVI (§4.1). Finally, we provide an in-depth understanding and analysis of VPO (§4.2).

4.1 Main results and Ablation study

VPO consistently outperforms existing preference optimization methods across different set-
tings. As shown in Table 1, VPO significantly improves performance over DPO across all benchmarks
and settings by selectively constraining the negative gradients of non-preference samples from the
perspective of information similarity. Moreover, we can observe that VPO achieves the best overall
performance across all benchmark tests and settings. Specifically, VPO outperforms all variants
of DPO on Qwen-2.5-7B-Base. Compared to the best-performing baseline, VPO achieves a 2.4%
improvement on MATHS500, a 3.26% improvement on Olympiad MATH, and a 12.05% improvement
on AMC23. The same trend is also observed in the experimental results for other models. For



Table 1: Results of VPO, DPO and its variants on diverse mathematical reasoning tasks. The best
results are highlighted in bold, while the second-best ones are underlined.

Qwen2.5-7B-Base Qwen2.5-7B-Instruct
Method MATH Minerva  Olympiad AMC MATH Minerva  Olympiad AMC
s00 OSMBKNvatH maTH 23 A8 5o OSMBK viatw maTH 23 AR
Base 59.00 79.98 15.07 21.93 18.07 3881 73.20 84.23 27.94 36.44 44.58 53.28
DPO 61.00 80.89 21.32 27.11 32.53 4457  45.60 75.66 28.31 33.63 44.58 45.56
TDPO 59.20 79.68 17.28 26.22 28.92 4226  48.00 77.33 23.53 20.15 3494  40.79
SimPO 64.60 74.15 20.59 26.07 3373 43.83  43.80 72.86 19.85 14.52 18.07 33.82
PO 51.80 75.51 15.44 23.41 3253 39.74  71.20 84.99 26.84 37.19 44.58 5296
RPO 66.40 84.46 21.69 27.26 31.33  46.23  56.20 81.27 27.81 33.93 39.76  47.79
VPO 68.80 84.91 23.89 30.52 45.78 50.78 71.60 86.73 28.31 36.44 48.19 54.26
Llama-3.1-8B-Base Llama-3.1-8B-Instruct
Method MATH Minerva Olympiad AMC MATH Minerva Olympiad AMC
soo  OSM8K ‘viatH  maATH 23 A& 500 OSMBK niatw matH 23 AV
Base 17.40 55.80 0.37 0.15 0.00 1474  45.00 80.52 2243 15.26 27.71 38.18
DPO 10.00 54.51 4.04 1.93 241 1458  18.40 54.51 9.93 5.48 723 19.11
TDPO 14.80 59.29 1.47 1.33 0.00 1538 2275 73.09 12.50 6.52 6.02 24.18
SimPO 19.20 55.88 8.46 1.63 4.82  18.00 31.80 74.60 10.66 7.70 15.66  28.09
PO 3.80 61.94 0.00 0.15 1.20 1342  47.20 81.35 20.22 15.41 2530 37.90
RPO 19.60 65.14 7.35 2.37 843 20.58 31.20 81.80 14.71 9.48 723  28.88
VPO 20.80 63.84 6.62 3.56 843 20.65 4640 83.62 20.96 15.41 30.12  39.30
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Figure 2: The log probability change curves of preference (chosen) and non-preference (rejected)
samples for VPO and DPO across different models. Left: Llama-3.1-8B-Base, Right: Llama-3.1-8B-
Instruct.

example, on AMC23, Qwen2.5-7B-Instruct and Llama-3.1-8B-Instruct show improvements of 3.61%
and 2.41%, respectively, compared to the best-performing baseline.

VPO effectively alleviates the squeezing effect. From Table 1, we observe a decline in the model’s
performance after DPO training on the Instruct model. We present the change curves of the log
probabilities for preference and non-preference samples under DPO and VPO on Llama-3.1-8B-Base
and Llama-3.1-8B-Instruct in Figure 2. As shown in Figure 2, due to the squeezing effect, DPO
exhibits a decrease in the log probability of preference samples during training, deviating from
the objective of optimizing the log probability of preference samples during inference. This issue
becomes more pronounced on Llama-3.1-8B-Instruct. Notably, VPO improves the log probability
of preference samples on both the Base and Instruct models. For Base models, the margin between
preference and non-preference samples is even larger than in DPO.

For Instruct models, while the constraint on negative gradients slows the decline of log-probability
for non-preference samples, we observe no significant difference in log probability gaps between
preference pairs in VPO (logp gap = 244) and DPO (logp gap = 274). Qwen-2.5 series model exhibits
the same trend, as detailed in Appendix B.1. This indicates that VPO can effectively mitigate the
squeezing effect without compromising DPO’s core optimization objective.

Both key designs in VPO are crucial. In the Table 2, we perform an ablation analysis of the key
components of VPO: (1) negative gradient constraint; (2) sample information measurement (i.e.,
the calculation of PVI;). We set v to range from 0.1 to 0.9 to compare the DPO under the negative
gradient constraint with the original DPO. To ensure the distinctiveness of the experimental results,



Table 2: Performance comparison of DPO vs VPO across diverse math benchmarks under varying
v-constraints. The best results are highlighted in bold, while the second-best ones are underlined.

Llama-3.1-8B-Instruct Qwen2.5-7B-Base
Method MATH Minerva  Olympiad ~AMC MATH Minerva  Olympiad AMC
soo  OSMBK viatH  maTH 23 A& sp0  OSMBK it maTH 23 AV
Base 45.00 80.52 2243 15.26 27.71 38.18  59.00 79.98 15.07 21.93 18.07 38.81
DPO 18.40 54.51 9.93 5.48 723 19.11  61.00 80.89 21.32 27.11 3253  47.58
0.1 22.80 64.06 13.97 6.37 6.02 2264 67.60 84.46 22.79 29.19 31.33  51.01
0.2 21.80 67.55 11.76 6.81 12.05 24.00 68.60 84.84 20.59 29.04 39.76  50.77
0.3 25.00 70.74 15.44 6.96 9.64 2556  68.80 84.15 20.96 29.48 38.55 50.85
0.4 31.60 76.50 15.81 9.33 10.84 28.82  68.60 83.40 20.59 29.33 43.37 5048
0.5 34.20 74.75 16.91 11.85 12.05 2995 68.40 83.62 21.32 28.59 39.76  50.48
0.6 39.20 76.50 17.65 12.59 18.01 3279  66.60 85.67 20.22 27.20 40.96  49.92
0.7 44.80 79.53 18.01 13.78 1446 34.12  65.60 86.28 20.59 28.89 3735 50.34
0.8 44.40 77.18 19.12 14.07 2530 36.01 65.80 85.97 19.49 27.56 42.17  49.70
0.9 16.40 48.90 0.74 4.41 1.20 1433  66.80 85.37 20.22 27.56 39.76  49.99
VPO 46.40 83.62 20.96 15.41 30.12 39.30  68.80 84.91 23.89 30.52 45.78 52.03
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Figure 3: Decline curves of log-probabilities for non-preference samples under different configura-
tions. Left: positive and negative non-preference samples in full training. Right: independent training
on 3k preference pairs consisting exclusively of positive and negative non-preference samples.

we choose Qwen-2.5-7B-Base to replace Llama-3.1-8B-Base as the base model. Experimental
results show that negative gradient constraints at almost all levels lead to performance improvements
compared to the original DPO. For example, for Llama-3.1-8B-Instruct, when v = 0.3, compared to
DPO, there are improvements of 26.4%, 25.20%, 8.08% on MATHS500, GSM8k, Minerva MATH,
respectively. We present the trend of changes in preference and non-preference samples with different
negative gradient constraint intensities in the Appendix B.3. Besides, we can observe that the optimal
constraint intensity varies for different models. For example, for Llama-3.1-8B-Instruct, the best
performance is achieved when v € [0.7,0.8], while for Qwen2.5-7B-Base, the optimal performance
occurs when v € [0.1,0.3]. Notably, VPO consistently outperforms DPO even at its optimal negative
gradient constraint levels across different models. This validates the effectiveness of employing PVI;
for selective negative gradient constraint on non-preference samples.

4.2 In-depth analysis of VPO

We define non-preference samples into two categories: samples with a high correlation to preference
samples (positive, PVI; > 0) and samples with a low correlation to preference samples (negative,
PVI; < 0).

PVI; can effectively measure the correlation between preference and non-preference samples.
We design the following experiment:(1) track the log probabilities of positive and negative non-
preference samples during the full data training. (2) to avoid mutual interference between positive
and negative non-preference samples during the full data training, we separately train two subsets: 3k
preference pairs containing either positive-only or negative-only non-preference samples, selected
from the preference dataset. The experimental results presented in Figure 3 demonstrate that, both in
full dataset training and in separate training, the decline rate of the positive non-preference samples is
slower than that of the negative non-preference samples. This trend strongly supports our analysis in
section §2.3, namely that due to the positive gradient influence of preference samples, the negative
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Figure 4: The log probability change curves of preference pairs under negative gradient constraint
(negative) and unconstrained (positive) conditions during VPO training. Left: Llama-3.1-8B-Base,
Right: Llama-3.1-8B-Instruct.

Table 3: Results of VPO, DPO, and their variants on Qwen3-14B-Base across various mathematical
reasoning tasks. The dashed line represents the Negative Gradient Constraint method based on
different similarity metrics: Embedding Cosine similarity and Jaccard-based textual similarity.

Method MATHS500 GSMS8k Minerva MATH Olympiad MATH AMC23 AIME24  Avg
Base 63.60 93.93 24.63 21.78 22.89 0.00 37.81
DPO 76.40 94.09 28.68 33.63 45.78 20.00  49.76
TDPO 70.40 94.31 26.47 27.56 38.55 13.33 45.10
Simpo 75.60 95.75 31.25 32.44 43.37 16.67  49.18
PO 64.60 94.24 25.00 22.81 22.89 10.00 39.92
RPO 78.00 95.68 32.35 34.67 51.81 13.33 50.97
77777777777777777777 Negative Gradient Constraint
“Cosine 7560 9575 2978 3467 4458 20.00  50.06
Jaccard 78.00 95.98 32.35 37.78 49.40 16.67 51.70
VPO 79.00 96.06 35.66 35.41 53.01 26.67  54.30

gradient of positive non-preference samples is constrained, causing their log-probability to decrease
more slowly than that of negative non-preference samples. This demonstrates the effectiveness of
PV]; in quantifying the information correlation between preference and non-preference samples.

Trend of log-probability changes for different preference pairs in VPO training. Figure 4
shows the log-probability trajectories during VPO training for preference pairs containing positive
non-preference samples (v = 0) and preference pairs containing negative non-preference samples
(v > 0) under the full dataset. We present the results of the Qwen2.5 model in Appendix B.2. We
can observe that, under varying configurations, negative non-preference samples exhibit slower log
probability decline, while the log probability of their corresponding preference samples is increased.
Notably, even in the absence of negative gradient constraints on positive non-preference samples,
their corresponding preference samples still exhibit log-probability enhancement. We attribute
this improvement to two key factors: (1) the intrinsic positive gradients from samples themselves
combined with the "pull-up" effect from reinforced positive gradients of similar preference samples,
and (2) the strong correlation between positive non-preference samples and preference samples,
which constrains the negative gradient of non-preference samples, prevents their log probability from
decreasing sharply (Fig.3), thereby restrains the squeezing effect (Fig.1c). We can also observe that
the log-probability gap between positive non-preference samples and their preference samples remains
significant. These results suggest that the selective negative gradient constraint on non-preference
samples in VPO effectively restrains the sequeezing effect, better aligning with the generation
objective, while preserving the distinguishability between strongly correlated sample pairs.

4.3 Ablation Study

The performance of VPO on different model size. To evaluate the impact of model size on different
preference optimization algorithms, we also conducted experiments on Qwen3-14B-Base. The
experimental results are shown in Table 3. The results indicate that, on the larger-scale Qwen3-



14B model, VPO outperforms other preference optimization algorithms across all datasets. This
demonstrates the performance stability of VPO across different model scales.

The effect of Negative Gradient Constraint combined with different correlation evaluation
methods. To further investigate the effect of Negative Gradient Constraint combined with different
correlation evaluation methods, we compare VPO (based on PVI) with methods based on Embedding
Cosine similarity and Jaccard-based textual similarity. The experimental results in Table 3 show that
the PVI-based Negative Gradient Selective Constraint method outperforms other similarity evaluation
methods. We attribute this to the fact that, compared to other embedding and text similarity-based
metrics, V-available information can capture deeper language structures and semantic relationships,
providing interpretable insights into causal relationships and dependency directions. With these
advantages, VPO achieves a more significant performance improvement.

The effectiveness of VPO in complex common-
sense reasoning. To explore reasoning abilities

. B TDPO IPO VPO
beyond mathematics, we use the ARC dataset [7], —DPO Simpo mEE RPO
which covers multiple scientific domains. The 901 675

dataset contains 7.7k questions, divided into an 85
easy set and a challenge set. We sample 3.37k

83.4 837
813 81.7
786 793 79.7
77.0
training samples from both the easy and challenge ] 745 e
. . ! 7.2

sets, performing 30 samplings per query to con- 704 .

struct a preference dataset of approximately 10k o

pairs. We test on the ARC-Challenge test set, [ ]

. . . . 60
which contains 1,172 questions. Figure 5 shows Llama-3.1-8B-Instruct Qwen2.5.75-Base

that VPO continues to demonstrate superior per- ' '
formance on this dataset, proving its effectiveness ~Figure 5: Performance comparison of different
beyond mathematical reasoning tasks. methods on ARC-Challenge.

ARC-C Score
>

@
a

5 Limitations

By applying selective negative gradient constraints to different non-preference samples, VPO can
mitigate the squeezing effect caused by large negative gradients, enhance the log probability of
preference samples, and prevent the issue of a small log probability gap between preference samples
due to excessive constraints on negative gradient. Through various experiments, we demonstrate the
rationale and effectiveness of the proposed VPO. However, our method is not without its flaws. In
detail, since PV]; is typically not between 0 and 1, we simply use a sigmoid function for normalization.
Future research could explore other normalization functions and investigate the effect of normalizing
the loss function after considering the interaction between PVI; and the PVI of preference samples.

6 Conclusion

In this work, we propose VPO, an efficient reasoning preference optimization method. By using
V-usable information to selectively constrain the negative gradient of non-preference samples from
the perspective of information similarity, VPO can alleviate the issue of log probability reduction for
preference samples, enhance alignment with the generation target, and maintain the model’s ability to
distinguish between preference and non-preference samples. Compared to existing methods, VPO
consistently achieves better overall performance across various training settings. Extensive analysis
shows that the negative gradient constraint and the information similarity measure design in VPO are
crucial, validating the rationale and effectiveness of VPO.
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A Details on Experimental Setup

A.1 Prompts

GSMSK. For each GSMS8K question, we use the following prompt as the input to the LLM. Specifi-
cally, the prompts include four fixed context examples selected from [12].

Your task is to answer the question below. Give step by step reasoning
before you answer and when you’re ready to answer, use the format "The
answer is ..."

Question: [question for the first example]
Let’s think step by step [solution for the first example]
The answer is [answer (e.g., number) here]

Question: [question for the second example]
Let’s think step by step [solution for the second example]
The answer is [answer (e.g., number) here]

Question: [question for the third examplel
Let’s think step by step [solution for the third example]
The answer is [answer (e.g., number) here]

Question: [question for the fourth example]
Let’s think step by step [solution for the fourth example]
The answer is [answer (e.g., number) here]

Question: [the question to be solved]

MATH. For each MATH question, we use the following prompt as the input to the LLM. Specifically,
the prompts include four fixed context examples selected from [12], and the format of demonstrations
in Few-shot is consistent with that of GSMS8K.

Your task is to answer the last question below. Give step by step reasoning
before you answer, and when you’re ready to answer, please wrap your answer
in \\boxed, and conclude using the format "The answer is ..."

ARC. For each ARC question, we use the following prompt as input for the LLM, assuming the
question has four options.

Your task is to answer the question below. Give step by step reasoning
before you answer, and when you’re ready to answer, conclude using the
format "Final answer: (insert letter here)"

Question: [question here]

(A) [option A here]

(B) [option B here]

(C) [option C here]

(D) [option D here]

A.2 Optimization Objectives of Different Baselines and Training Details

The optimization objectives of different off-policy preference optimization methods compared in the
experiment are shown in Table 4. For training, we perform full-parameter preference optimization
training on the model, training all baseline methods for 2 epochs with a learning rate of 5 x 1077,
The coefficient 5 in the DPO loss is tuned in {0.05, 0.1, 0.5, 1.0}, and we end up using 0.05 in this
experiment. For the parameters + and +/( in SimPO, we tried the following combinations: {2.0,
0.5}, {2.5, 0.55}, {10, 0.3}, {10, 0.5}, and {10, 0.1}. Ultimately, we select {10, 0.5} to train all
models.

A.3 Computation Environment.

All experimental results in this paper were conducted on GPUs with 8xH800 and 8xH?20 configura-
tions, with the same GPU model used across all experiments in each set.
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Table 4: Optimization Objectives of Different Baselines

Method  Objective
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Figure 6: The log probability change curves of preference (chosen) and non-preference (rejected)
samples for VPO and DPO across different models. Left: Qwen2.5-7B-Base, Right: Qwen2.5-7B-
Instruct.

B Log Probability Change Curves of VPO and DPO Preference Pairs under
Different Experimental Settings

B.1 Log Probability Change Curves of VPO and DPO Preference Pairs on the Qwen2.5
Model

In Figure 6, we present the log probability change curves of preference and non-preference samples
for DPO and VPO on the Qwen-2.5-7B-Base model and the Qwen-2.5-7B-Instruct model. We can
observe that, similar to the Llama 3.1 model, VPO is still able to enhance the log probability of
preference samples on the Qwen 2.5 model. From Figure 2, we can see that compared to the Llama-
3.1 model, the Qwen-2.5 model exhibits a relatively smaller log probability difference between
preference and non-preference samples during training. We can observe that, although the log
probability of non-preference samples in VPO decreases only slightly during training, there remains
a certain difference between preference and non-preference samples. Specifically, the maximum log
probability difference of the preference pairs in Qwen 2.5-7B-Instruct is 56 for VPO and 72 for DPO;
for the Qwen 2.5-7B-Instruct preference pairs, the maximum log probability difference is 48 for VPO
and 69 for DPO.

B.2 Log Probability Change Curves of different preference pairs for VPO on the Qwen2.5
model.

As shown in Figure 7, on both the Qwen2.5-7B-Base model and the Qwen2.5-7B-Instruct model,
VPO can slow down the decrease in the log-probability of negative non-preference samples while
boosting the log-probability of their corresponding preference samples. For unconstrained positive
non-preference samples, VPO can still enhance the log-probability of preference samples, as analyzed
in section 4.2, while maintaining the log-probability difference between positive non-preference
samples and preference samples. These results indicate that the selective negative gradient constraint
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Figure 8: The log probability change curves of preference and non-preference samples under different
strengths of negative gradient constraints in DPO. Left: Llama-3.1-8B-Instruct, Right: Qwen2.5-7B-
Base.

on non-preference samples in VPO effectively suppresses the squeezing effect, allowing it to better
align with the generation target while preserving the distinguishability between strongly correlated
preference pairs.

B.3 Comparison of Log Probability Curve Changes of DPO under Different Negative
Gradient Constraint Intensities.

Figure 8 shows the log probability change curves of preference and non-preference samples under
different levels of negative gradient constraints for DPO. To clearly illustrate the changes in the
curves, we only present the log probability change curves for five cases: v = {0.2,0.4,0.6,0.8}
and DPO (v = 0.0). As shown in Figure 8, the log probabilities of preference samples exhibit a
monotonic increase during DPO optimization with negative gradient constraints (v > 0). However, it
is noteworthy that when v — 1 the probability discriminability between preference pairs significantly
diminishes due to intensified constraints. Conversely, as v — 0, the model reduces to standard DPO,
where the log probability of preference samples decreases, and the squeezing effect is more likely to
occur.

C Related Work

Offline preference optimization. Aligning LLMs with human preferences and values is a key
component of post-training for LLMs. RLHF is a technique used to ensure that LLMs align with
human preferences [27, 36, 6]. RLHF typically consists of three stages: supervised fine-tuning
[46], reward model training [13, 21], and policy optimization [34]. This algorithm is complex and
challenging to optimize. DPO reparameterizes the reward function of RLHF to obtain a closed-form
expression for the optimal policy, enabling it to directly learn the policy model from preference data
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without the need for an explicit reward model. However, DPO lacks the ability to sample preference
pairs from the optimal policy model, preventing the policy model from receiving immediate feedback
on its generated content and causing a distribution shift between the initial and aligned policy models,
turning the alignment process into off-policy learning. To address this issue, existing methods extend
to iterative training frameworks, where the reference model is continuously updated with the latest
policy model to generate new preference pairs in each iteration, or LLMs are used as annotators to
provide online feedback during training iterations [29, 15, 41, 40]. In this study, we focus solely on
the offline scenario of DPO, avoiding any iterative training processes.

Reasoning preference optimization. DPO has been successful in general instruction tasks, but it still
faces challenges when applied to reasoning and mathematical problems [11, 5, 19]. While several
methods have been proposed to curate or distill training data for the reasoning task [37, 44], this study
focuses more on the optimization of the algorithm itself. Several research methods aim to achieve
preference optimization while maintaining a high generation probability for preference examples.
For instance, RPO [29, 23] add the negative log-likelihood of preference samples to DPO, explicitly
regularizing the policy model to mimic the initial policy model. [22] uses contrastive estimation
to identify key tokens in the reasoning chain that significantly impact incorrect results, providing
token-level signals for preference optimization. IPO [2] regularizes the policy model to the reference
model by controlling the gap between the log-likelihood ratios. In contrast, our research focuses on
selectively constraining the negative gradient of DPO to mitigate the squeezing effect, adjust the
preference optimization direction, and thereby improve the alignment between the DPO optimization
objective and the actual generation target.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in these sections reflect the contributions of the paper and
are validated by extensive empirical results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Appendix 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: This paper provides a complete and correct proof for the theoretical results
used.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide our training details and settings to reproduce our results.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: We will release our code in the near future.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]
Justification: We presented experiment settings and details in Section 3 and Appendix A.2.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We use greedy decoding for evaluation (temperature = 0). For sampling with
temperature > 0, we did not evaluate the potential errors it may introduce due to the high
computational cost.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We mentioned our computation environment in Appendix A.3.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research was conducted in accordance with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is a methodological paper focused on improving preference opti-
mization algorithms and does not have direct societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to point out that an improvement in the quality of generative models could be used to
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that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve the release of data or models with a high risk of
misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have appropriately credited the creators of the assets used in this paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: We will release our code in the near future.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We describe our experiments with LLMs in Section 3 and Appendix A.2.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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