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Abstract

Glass surfaces challenge object detection models as they mix
the transmitted background with the reflected surrounding,
creating confusing visual patterns. Previous methods rely-
ing on low-level cues (e.g., reflections and boundaries) or
surrounding semantics are often unreliable in complex real-
world scenarios. A glass image inherently comprises three
distinct semantic components: semantics of the transmitted
content, semantics of the reflected content, and semantics of
the surrounding content. In this work, we observe that there
is a relationship among these three types of semantics, where
reflection semantics closely resembles surrounding seman-
tics, while these two types of semantics tend to be differ-
ent from the transmission semantics. For example, when on
a street, we may see into a cafeteria through a glass wall,
intermixed with reflection of the street, while the glass is sur-
rounded by other street contents like shops and pedestrians,
thereby creating a unique multi-semantic signature. Based on
this observation, we propose the Multi-Semantic Net, MSNet,
which identifies transmission, reflection, and surrounding se-
mantics from glass images and exploits their relationships for
glass surface detection. MSNet consists of two novel mod-
ules: (1) A Semantic Decomposition Module (SDM) contain-
ing Dual-Semantics Extraction Block to extract original im-
age and reflection semantics and Semantic Elimination Block
to progressively derive transmission and surrounding seman-
tics, and (2) An Adaptive Semantic Fusion Module (ASFM)
to fuse these semantic components and adaptively learn their
relationships to handle varying reflection conditions. Exten-
sive experiments demonstrate that MSNet surpasses SOTA
methods on public glass detection benchmarks. Code will be
available at https://github.com/chengqianyu03/MSNet.

Introduction
Glass surface detection (GSD) poses a critical challenge in
computer vision due to glass’s unique physical property of
being both transparent and reflective, resulting in complex
visual patterns that confound conventional object detection
algorithms. Accurate detection of glass surfaces can benefit
applications such as autonomous navigation and robotic sys-
tems (for safety navigation), as well as comprehensive scene
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Figure 1: Semantic Similarity Analysis. We quantify sim-
ilarity among transmission semantics (semantics of glass
transmitted content), reflection semantics (semantics of
glass reflected content), and surrounding semantics (seman-
tics of non-glass regions) based on CLIP, evaluated on GDD
(top), GSD (middle) and DSD-T (bottom) datasets. Results
consistently indicate a higher similarity between reflection
and surrounding semantics, while both differ from transmis-
sion semantics. (Positive numbers indicate similarity scores,
and negative numbers indicate dissimilarity scores.)

understanding (Weibel et al. 2023; Sajjan et al. 2020). Ex-
isting approaches for GSD suffer from various distinct lim-
itations. Methods relying primarily on low-level visual cues
like reflections or boundaries (Mei et al. 2020; Lin, He, and
Lau 2021; Mei et al. 2023; He et al. 2021; Yu et al. 2022) can
be less effective when these specific cues are subtle or un-
available. Another strategy infers glass presence by analyz-
ing the surrounding content (Lin, Yeung, and Lau 2022). Re-
cent techniques leveraging physical effects, such as ghosting
effect (Yan et al. 2025), provide valuable insights, but their
effectiveness often depends on acquiring high-quality, close-
up images in order for these subtle physical artifacts to be
detectable. These limitations highlight the need for a more
robust framework that focuses on intrinsic high-level prop-
erties of glass surfaces.

In this paper, we introduce a novel approach to glass de-
tection by leveraging the inherent relationships among three
distinctive types of semantics present in glass scenes: trans-
mission semantics (semantics of the transmitted content of
glass regions), reflection semantics (semantics of the re-



flected content of glass regions), and surrounding semantics
(semantics of non-glass regions). This is based on our obser-
vation that reflection semantics typically shares high simi-
larity with surrounding semantics, while both of these se-
mantics are distinctly different from the transmission seman-
tics. For example, when viewing into a cafe with glass walls
from the street, the glass wall creates a composite visual
experience: it transmits the interior scene of the cafe (e.g.,
furniture), reflects the street scene (e.g., traffic lights, pass-
ing cars), while the glass wall is framed by the surrounding
street environment (e.g. sidewalks, trees). Together, these
three layers form a cohesive yet multi-semantic signature.

Our experimental analysis in Fig. 1 validates this semantic
relationship hypothesis. By separately extracting the three
types of semantics, a consistent pattern emerges across di-
verse glass datasets, GDD (Mei et al. 2020), GSD (Lin, He,
and Lau 2021) and GSD-S (Lin, Yeung, and Lau 2022) that
reflection semantic features exhibit strong cosine similarity
with surrounding semantic features, while both have signif-
icantly lower similarity when compared to transmission se-
mantic features. This characteristic relationship provides a
distinctive signature for glass surfaces, establishing a robust
foundation for GSD across diverse scene conditions.

Inspired by this observation, we present the Multi-
Semantic Net, MSNet, to exploit multi-view semantics for
GSD. It consists of two novel modules: Semantic Decompo-
sition Module (SDM) and Adaptive Semantic Fusion Mod-
ule (ASFM), along with a base model: Glass-Specific SAM
(GSSAM). The SDM employs a Dual-Semantics Extraction
Block (DSEB) to identify reflections present in images and
obtain reflection and original image semantics, followed by
a Semantic Elimination Block (SEB) to effectively separate
transmission semantics from the input image using the re-
flection semantics, and further disentangles surrounding se-
mantics by analyzing the differences between the input im-
age and the transmission semantics. Subsequently, the trans-
mission, reflection, and surrounding semantics are fed into
the ASFM, which adaptively learns the relationships among
these three semantic components to handle scenes under di-
verse reflection conditions. The ASFM encodes the relation-
ships among these separated semantics into prompts com-
patible with GSSAM, thereby guiding it to detect glass sur-
faces. GSSAM is a SAM model fine-tuned through Low-
Rank Adaptation (LoRA) (Hu et al. 2022), which, com-
pared to the original SAM, places greater emphasis on glass-
related features during the encoding phase.

Our main contributions are summarized as follows:

• We propose a novel perspective for glass detection by ex-
plicitly modeling the interplay among transmission, re-
flection, and surrounding semantics, framing glass as a
semantic boundary that partitions distinct semantic re-
gions in everyday scenes.

• We propose MSNet, a novel glass surface detec-
tion framework with a Semantic Decomposition Mod-
ule (SDM) and an Adaptive Semantic Fusion Module
(ASFM) to extract, separate, and adaptively fuse trans-
mission, reflection, and surrounding semantics, enabling
robust glass surface detection in challenging scenarios.

• We conduct extensive experiments to demonstrate that
our MSNet achieves state-of-the-art performances on
publicly available glass detection benchmarks.

Related Work
Glass Detection aims to identify glass surfaces in images.
Existing methods fall into three main categories: (1) those
using low-level cues like reflections and boundaries (Mei
et al. 2020; Lin, He, and Lau 2021; Mei et al. 2023; He
et al. 2021; Yu et al. 2022), (2) those analyzing contextual
information of the surrounding scene (Lin, Yeung, and Lau
2022), and (3) those exploiting physical phenomena like the
ghosting effect (Yan et al. 2025).

GDNet (Mei et al. 2020) pioneered computational glass
detection, introducing a large-scale benchmark and a mod-
ule for contextual feature exploration. GSDNet (Lin, He, and
Lau 2021) later improved upon this by incorporating both
contextual information and reflection maps. Concurrently,
several boundary-based strategies emerged. EBLNet (He
et al. 2021) focused on boundary cues to address glass trans-
parency, while GDNet-B (Mei et al. 2023) enhanced GDNet
with boundary supervision. However, while reflection-based
methods can fail with weak reflections, boundary-based
methods may be unreliable for scenes with non-glass bound-
aries, such as an open window.

Moving beyond low-level cues, PGSNet (Yu et al. 2022)
fused high- and low-level features but struggled when com-
plex reflected content obscured semantics on the glass.
GlassSemNet (Lin, Yeung, and Lau 2022) leveraged sur-
rounding semantic relationships but faltered when such con-
text was insufficient, for example, when glass dominated the
image. Recently, Yan et al. (Yan et al. 2025) utilized the
ghosting artifacts, a physical effect of glass, but generally
worked on close-up images for the artifacts to be visible.

Video Glass Detection, a more recent and challenging
extension, addresses the limitations of static methods in dy-
namic scenes. Liu et al. (Liu et al. 2024) proposed VGSD-
Net, which integrates multi-view dynamic reflection cues
as a temporal prior by leveraging the observation that re-
flections on glass change with camera motion. However, as
VGSD-Net requires multiple frames to detect glass in dy-
namic scenes, a direct comparison with our single-image
based method is not applicable.

Mirror Detection has evolved significantly over the
years, starting with MirrorNet (Yang et al. 2019), which
pioneered the field by modeling semantical and low-level
color/texture discontinuities. PMDNet (Lin, Wang, and Lau
2020) progressively learns content similarity between mir-
ror interiors and exteriors using a relational contextual con-
trasted local (RCCL) module. Guan et al. (Guan, Lin, and
Lau 2022) leveraged semantic associations between mirrors
and surrounding objects, while HetNet (He, Lin, and Lau
2023) combined low-level and high-level understandings to
mimic human behavior. SAT-Net (Huang et al. 2023) fo-
cused on symmetry relationships between objects and their
reflections, and VCNet (Tan et al. 2023) used visual chiral-
ity as a pixel-level cue. Lin et al. (Lin and Lau 2023) intro-
duced the first self-supervised approach, capturing mid-level



Figure 2: The MSNet Pipeline. MSNet exploits the similarity between reflection and surrounding semantics, while contrasting
them with transmission semantics for glass detection. The Semantic Decomposition Module (SDM) disentangles these semantic
layers, and the Glass-Specific SAM extracts complementary glass-specific features. The Adaptive Semantic Fusion Module
(ASFM) then integrates these semantic features to generate prompts for the mask decoder, to produce the final glass mask.

features without supervised ImageNet pre-training.
However, transferring mirror detection techniques to glass

detection faces fundamental challenges. While mirrors only
reflect surroundings, glass surfaces have dual optical proper-
ties, simultaneously reflecting and transmitting content. This
superimposition creates complex visual patterns where fore-
ground and background elements overlap. This optical com-
plexity makes glass detection substantially more challeng-
ing, rendering mirror-specific methods inadequate for effec-
tive glass detection tasks.

Method
Overview
We observe that glass inherently acts as a semantic bound-
ary separating three distinct semantic contexts, transmission
semantics, reflection semantics and surrounding semantics.
While the reflection semantics often corresponds closely to
the surrounding semantics, both differ remarkably from the
transmission semantics. Motivated by this observation, we
develop MSNet for glass surface detection (GSD) by explic-
itly modeling these semantic relationships and leveraging
the similarity between reflection and surrounding semantics
as well as their contrast with transmission semantics to lo-
calize glass regions effectively.

Fig. 2 shows the pipeline of our proposed MSNet. Given
an input image I ∈ RH×W×3, we begin by disentangling
its semantic layers using the proposed Semantic Decom-
position Module (SDM). The SDM first applies a Dual-
Semantics Extraction Block (DSEB) to derive a reflection
map R ∈ RH×W×3 from the input image. It then en-
codes I and R with separate CLIP Surgery (Li et al. 2025)
as semantic encoders, producing semantic feature tensors,
FI ∈ R768×7×7 and Fr ∈ R768×7×7. These semantic fea-
tures are then processed by our Semantic Elimination Block
(SEB) to obtain transmission features Ft ∈ R768×7×7 by re-

moving reflection semantics Fr from the original image se-
mantics FI . It derives surrounding semantic features Fs ∈
R768×7×7 by separating Ft from FI . We also extract the
glass-specific features Fg ∈ R256×64×64 using our Glass-
Specific SAM (GSSAM), a LoRA-tuned (Hu et al. 2022)
variant of SAM (Kirillov et al. 2023), to complement the se-
mantic cues above. All semantic features and glass-specific
features, i.e., FI , Fr, Ft, Fs and Fg, are fed into our Adap-
tive Semantic Fusion Module (ASFM). The ASFM em-
ploys a dynamic weighting mechanism to adaptively learn
the relationships among these multi-semantic features un-
der varying reflection conditions, and outputs both sparse
and dense glass-specific prompts Ps ∈ Rpnum×256 and
Pd ∈ R256×H×W . Finally, we employ a mask decoder to
transform the glass-specific prompts into the fine-grained
glass mask M ∈ RH×W×1.

Semantic Decomposition Module (SDM)
Due to glass’s inherent property of simultaneously reflect-
ing surrounding environments and transmitting background
scenes, glass surfaces typically present superimposed se-
mantics, adversely affecting object detection models. To
tackle this challenge, we propose the Semantic Decompo-
sition Module (SDM) to first employ a Dual-Semantics Ex-
traction Block (DSEB) to isolate surface reflections and ob-
tain image and reflection semantics, and then a Semantic
Elimination Block (SEB) to remove the reflection seman-
tics from the glass surface features to obtain the underlying
transmission semantics. We further separate the surrounding
semantics by excluding the transmission semantics from the
entire scene semantics. This decomposition enables the ex-
ploitation of relationships between various semantic layers.

Dual-Semantics Extraction Block (DSEB). Given an in-
put image I ∈ RH×W×3, semantic extraction is performed
in two stages, targeting both visual and semantic represen-



tations. First, we employ a reflection extraction network to
detect visual reflections:

R = Freflection(I), (1)
where R ∈ RH×W×3 is the extracted reflection map. The
reflection extraction network Freflection(·) is based on an ex-
isting reflection removal model (Dong et al. 2021), repur-
posed to extract reflection content rather than removing it.

To capture deeper semantic cues, we then use LoRA fine-
tuned CLIP visual encoders to extract features from both the
original image and the reflection map:

FI = ECLIP(I) ∈ R768×7×7, (2)
Fr = ECLIP(R) ∈ R768×7×7, (3)

where ECLIP(·) denotes the LoRA fine-tuned CLIP feature
extractor, serving as the semantic encoder in our framework.
We utilize the intermediate transformer layer (layer 10 for
ViT-B) as the source of semantic features, since intermedi-
ate features can preserve spatial information better, which is
crucial for the detection task.

Semantic Elimination Block (SEB). After obtaining FI

and Fr, we then introduce the Semantic Elimination Block
(SEB) to disentangle transmission and surrounding seman-
tics from the original image features, upon which their in-
terrelations can be modeled. We first obtain the transmission
features by removing the reflection semantics from the orig-
inal image semantics as:

Ft = FI · Attn(FI ,Fr)− Fr, (4)
where Ft is the transmission features, and Attn(·, ·) com-
putes an attention map highlighting regions where reflec-
tion features dominate. This mechanism utilizes the cor-
relation between reflections and glass surfaces to coarsely
localize glass regions. By focusing on these regions and
subsequently suppressing reflection semantics, we isolate
the transmission semantics corresponding to objects visible
through the glass regions.

We then extract the surrounding semantics by removing
the transmission semantics from the full-image semantics as:

Fs = FI − Attn(FI ,Ft) · Ft, (5)
where Ft denotes the transmission features. Therefore,
the SDM breaks down complex glass semantics into four
components: original image, reflection, transmission, and
surrounding semantics. This multi-semantic decomposition
equips the model with rich semantic priors, particularly
emphasizing the boundaries and transitions that typically
emerge at glass surfaces.

Glass-Specific SAM. We propose a glass-specific SAM
by utilizing SAM (Kirillov et al. 2023)’s image encoder as
the backbone and applying LoRA adaptation (Cheng et al.
2024) for parameter-efficient fine-tuning. These LoRA mod-
ules project high-dimensional features into a compressed la-
tent space and then reconstruct them to their original dimen-
sionality, enabling effective learning of glass-specific rep-
resentations while updating only a small subset of parame-
ters (Aghajanyan, Gupta, and Zettlemoyer 2021). The glass-
specific SAM retains SAM’s decoder as a trainable compo-
nent and replaces the original prompt encoder with our glass
prompting mechanism SDM and ASFM.

Figure 3: The ASFM Architecture. We design the Adaptive
Semantic Fusion Module to effectively integrate all semantic
features, i.e., FI , Fr, Ft, Fs, and Fg , which correspond to
the image semantics, reflection semantics, transmission se-
mantics, surrounding semantics, and glass-specific features.
By fusing these diverse representations, ASFM learns to
generate sparse and dense glass prompts that guide the mask
decoder to output fine-grained masks.

Adaptive Semantic Fusion Module (ASFM)
As shown in Fig. 3, the ASFM takes multi-semantic fea-
tures as input and learns to adaptively model their relation-
ships to generate prompts for GSD. The motivation behind
our fusion design is to address the diverse and complex na-
ture of reflection conditions and handle potential unreliabil-
ity of the off-the-shelf reflection removal model. Through
adaptive feature weighting, when reflection extraction is less
reliable due to model limitations, ASFM dynamically em-
phasizes other semantic cues (transmission and surrounding
semantics) to maintain robust detection. Under strong reflec-
tions, the module learns to separate the transmission seman-
tics from the reflection semantics. In contrast, under weak
reflections or when reflection features are unreliable, it fo-
cuses on distinguishing between surrounding semantics and
transmission semantics to effectively localize glass surfaces.
Specifically, we first project each input semantic feature map
into a unified feature space as:

F̂j = Wj(Fj), j ∈ {I, r, t, s, g}, (6)

where Wj(·) denotes a 1×1 convolutional layer that projects
each feature map to a unified dimensionality, enabling se-
mantic fusion. The index j refers to the semantic features
extracted from the SDM and the Glass-Specific SAM. Col-
lectively, these projected features offer complementary cues
that enhance the robustness of glass detection.

We implement the adaptive weighting mechanism by
computing fusion weights dynamically based on the in-
put features to capture diverse semantic relationships across
complex glass-containing scenes, as:

wj = Fweight(F̂j), j ∈ {I, r, t, s, g}, (7)

Ffused =

∑
i∈{I,r,t,s,g} e

wi ∗ F̂i∑
j∈{I,r,t,s,g} e

wj
, (8)



Table 1: Quantitative comparison with SOTA methods on
GSD-S. The best results are in bold, while the second best
results are underline.

Method Pub. IoU ↑ MAE ↓ Fβ ↑ BER ↓
GSD-S (Lin, Yeung, and Lau 2022)

SCA-SOD ICCV’21 0.558 0.087 0.689 15.03
SETR CVPR’21 0.567 0.086 0.679 13.25
Swin ICCV’21 0.596 0.082 0.702 11.34
ViT ICLR’21 0.562 0.087 0.693 14.72
SegFormer NeurIPS’21 0.547 0.094 0.683 15.15
Twins NeurIPS’21 0.590 0.084 0.703 12.43
Mask2Forme CVPR’22 0.732 0.043 0.838 8.93
MaskDINO CVPR’23 0.687 0.049 0.816 11.67
FASeg CVPR’23 0.725 0.048 0.843 10.26
MP-Former CVPR’23 0.734 0.042 0.827 8.67
NAT CVPR’23 0.730 0.041 0.846 10.16

X-Decoder CVPR’23 0.320 0.218 0.452 26.82
SAM ICCV’23 0.502 0.110 0.618 18.75
SEEN NeurIPS’23 0.318 0.209 0.474 26.95
SEEN(Fine-tune) NeurIPS’23 0.751 0.039 0.856 8.98

GDNet CVPR’20 0.529 0.101 0.642 18.17
GSDNet CVPR’21 0.721 0.061 0.821 10.02
GlassSemNet NeurIPS’22 0.754 0.041 0.861 9.77
GhostingNet TPAMI’25 0.560 0.099 0.703 16.30

Ours 0.817 0.027 0.892 6.09

where Fweight(·) is a lightweight module that assesses the
importance of each feature stream based on the current in-
put, outputting a scalar weight. This mechanism allows the
model to dynamically modulate the contribution of each se-
mantic component in response to the reflection characteris-
tics specific to each image. The fused features are subse-
quently refined by a network composed of three convolu-
tional layers followed by ReLU activations, which serves to
enhance the semantic relationships:

Frefined = F refine(Ffused). (9)

To incorporate spatial structure information and improve
positional awareness, we add a learnable positional encoding
to the fused features:

Fspatial = Frefined + P ∈ R256×H′×W ′
, (10)

where P is a learnable positional encoding tensor that is bi-
linearly interpolated to match the spatial dimension of the
refined features, helping the model understand spatial rela-
tionships between all types of semantics.

Finally, the enhanced features are used to generate both
sparse and dense prompts for the mask decoder:

Psparse = Fsparse(Fspatial) ∈ Rp num×256, (11)

Pdense = Fdense(Fspatial) ∈ R256×H×W , (12)
where Fsparse(·) consists of fully-connected layers to gener-
ate point-based prompts, while Fdense(·) comprises convo-
lutional layers and upsampling operations to produce dense
prompts. These prompts guide the mask decoder in predict-
ing glass masks by decoding the glass-specific features.

Table 2: Quantitative comparison with SOTA methods on
GDD and GSD. The best results are in bold, while the sec-
ond best results are underline.

Method Pub. IoU ↑ MAE ↓ Fβ ↑ BER ↓
GDD (Mei et al. 2020)

MirrorNet ICCV’19 0.851 0.083 0.903 7.67
PMD CVPR’20 0.870 0.067 0.930 6.17
GDNet CVPR’20 0.876 0.063 0.937 5.62
GSDNet CVPR’21 0.881 0.059 0.932 5.71
EBLNet ICCV’21 0.887 0.055 0.940 5.36
PGSNet TIP’22 0.878 0.062 0.901 5.56
GlassSemNet NeurIPS’22 0.902 0.059 0.942 4.67
RFENet IJCAI’23 0.874 0.062 0.929 5.79
GhostingNet TPAMI’25 0.893 0.054 0.943 5.13

Ours 0.915 0.043 0.955 4.17

GSD (Lin, He, and Lau 2021)

MirrorNet ICCV’19 0.742 0.090 0.828 10.76
PMD CVPR’20 0.817 0.061 0.890 6.74
GDNet CVPR’20 0.790 0.069 0.869 7.72
GSDNet CVPR’21 0.836 0.055 0.901 6.12
EBLNet ICCV’21 0.817 0.059 0.878 6.75
PGSNet TIP’22 0.837 0.054 0.868 6.25
GlassSemNet NeurIPS’22 0.854 0.068 0.903 5.69
RFENet IJCAI’23 0.836 0.049 0.904 6.24
GhostingNet TPAMI’25 0.838 0.055 0.904 6.06

Ours 0.878 0.042 0.916 4.69

Experiments
Implementation
We implement our method using PyTorch and conduct all
experiments on a RTX4090 GPU. Our framework integrates
a multi-semantic prompt generation mechanism into the pre-
trained SAM-ViT-H model (Kirillov et al. 2023), which
is fine-tuned efficiently by applying Low-Rank Adaptation
(LoRA) (Hu et al. 2022) to its attention layers with empiri-
cally selected rank r = 512 and scaling factor α = 512. For
semantic decomposition, we extract features from the CLIP
Surgery model (Li et al. 2025), applying LoRA (r = 128,
α = 256) to its transformer blocks. We use the AdamW
optimizer with a weight decay of 5× 10−4 and a base learn-
ing rate of 1 × 10−5, with a 10× higher rate applied to the
SDM and ASFM, as they are more lightweight. Training
images undergo data augmentation including random hori-
zontal flipping, scaling (±20%), rotation (±15°), and mixup
(α = 0.2). The loss function is a weighted combination of
binary cross-entropy, Dice loss, and focal loss (Lin et al.
2017), with an equal weight of 1.0 for each component. We
train MSNet for 50 epochs with a batch size of 1. We adopt
IoU, MAE, F-measure (Fβ), and BER to evaluate the model.

Main Results
Quantitative Comparison. We evaluate our method on the
most recent and challenging GSD-S (Lin, Yeung, and Lau
2022) benchmark, which features complex scene seman-
tics and contains glass surfaces of relatively small size.
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Figure 4: Qualitative Comparison. Our method (f) consistently yields more accurate results than existing methods (b-e).

As shown in Table 1, we compare our method against a
broad set of state-of-the-art methods, including SOD meth-
ods (SCA-SOD (Siris et al. 2021)), transformer-based meth-
ods (SETR (Zheng et al. 2021), Swin (Liu et al. 2021),
ViT (Dosovitskiy et al. 2021), SegFormer (Xie et al. 2021),
Twins (Chu et al. 2021)), recent advanced segmentation
models (Mask2Former (Cheng et al. 2022), MaskDINO (Li
et al. 2023), FASeg (He et al. 2023), MP-Former (Zhang
et al. 2023), NAT (Hassani et al. 2023)), universal segmenta-
tion approaches (X-Decoder (Zou et al. 2023a), SEEN (Zou
et al. 2023b), SAM (Kirillov et al. 2023)), and glass sur-
face detection methods (GDNet (Mei et al. 2020), GSD-
Net (Lin, He, and Lau 2021), GlassSemNet (Lin, Yeung, and
Lau 2022), GhostingNet (Yan et al. 2025)).

Due to the rich semantic information in this dataset,
GlassSemNet (Lin, Yeung, and Lau 2022), which leverages
surrounding semantic context to localize glass regions, per-
forms strongly. However, our method goes further by de-
composing the complex semantics of glass surfaces and ex-
plicitly modeling multiple semantic cues, enabling more ro-
bust GSD. It surpasses GlassSemNet by 8.4% (IoU), 34.1%
(MAE), 3.6% (Fβ), and 37.7% (BER), highlighting its ef-
fectiveness in tackling semantically complex GSD tasks.

We also compare our method with glass and mirror detec-
tion models on the GDD (Mei et al. 2020) and GSD (Lin, He,
and Lau 2021) benchmarks (Table 2). Compared to GSD-

S, the GSD dataset contains larger glass regions, whereas
GDD consists of simpler scenes with less semantic infor-
mation. Our method improves over GhostingNet by 2.5% in
IoU, 1.3% in Fβ , while reducing MAE and BER by 20.4%
and 18.7% on GDD. On GSD, we achieve improvements of
4.8% (IoU), 1.3% (Fβ), and reductions of 23.6% (MAE) and
22.6% (BER) when compared with GhostingNet. In contrast
to GlassSemNet (Lin, Yeung, and Lau 2022), which focuses
on surrounding semantic context, and GhostingNet (Yan
et al. 2025), which relies on detecting double reflections,
our method models relationships among multiple seman-
tics for a comprehensive semantic understanding, leading to
consistently strong performances across diverse scenarios.
Our model (907M parameters) achieves an inference time of
∼120ms (512×512 image) with 6.78GB GPU memory cost.
Qualitative Comparison. Fig. 4 presents qualitative com-
parisons between MSNet and previous SOTA GSD meth-
ods. As shown in the 1st and 2nd rows, previous methods
that rely only on surrounding context or reflections often
miss some glass surfaces in scenes with multiple glass in-
stances. In contrast, our model leveraging multiple seman-
tic cues effectively captures all glass instances, including
those that reflect outdoor vegetation or reveal indoor envi-
ronments. In the 3rd row, other methods mistakenly detect
the open door as a glass region (false positive), whereas our
model accurately excludes it, even though it is surrounded



Table 3: Ablation study of the key components in MSNet.
DSEB: Dual-Semantics Extraction Block in SDM, SEB: Se-
mantic Elimination Block in SDM. R: Reflection semantics,
T: Transmission semantics, S: Surrounding semantics.

ID Backbone SDM Semantics ASFM IoU↑ MAE↓ Fβ ↑ BER↓

1 SAM - - - 0.651 0.212 0.738 20.9
2 GSSAM - - - 0.897 0.052 0.944 4.93
3 GSSAM DSEB R - 0.905 0.048 0.940 4.60
4 GSSAM DSEB+SEB R+T - 0.899 0.052 0.940 4.76
5 GSSAM DSEB+SEB R+T+S - 0.907 0.048 0.945 4.58
6 GSSAM DSEB R ✓ 0.903 0.050 0.943 4.70
7 GSSAM DSEB+SEB R+T ✓ 0.910 0.045 0.945 4.48
8 GSSAM DSEB+SEB R+T+S ✓ 0.915 0.043 0.955 4.17

by glass surfaces. Our method also performs well across a
wide range of glass surface sizes. In contrast, other methods
often over- or under-detect extremely large or small glass in-
stances, e.g., the large viewing glass in the 4th row and the
small bookshelf glass window in the 5th row. Our method is
also able to generate accurate masks even for glass surfaces
with irregular shapes (6th row).

Ablation Study
To evaluate the contribution of each major component in our
proposed MSNet framework, we conduct a series of ablation
studies, as summarized in Table 3. Our analysis focuses on
three key aspects: the adaptation of SAM for GSD (Glass-
Specific SAM), the effect of Semantic Decomposition Mod-
ule (SDM), and the role of Adaptive Semantic Fusion Mod-
ule (ASFM) in integrating multi-semantic cues.
Glass-Specific SAM (GSSAM). We begin with the base-
line SAM (Kirillov et al. 2023) model (ID 1), which offers
robust general-purpose segmentation performance. How-
ever, its effectiveness in detecting glass surfaces is limited
due to glass’s unique visual characteristics. By introduc-
ing a lightweight adaptation using Low-Rank Adaptation
(LoRA) (Hu et al. 2022), we construct a Glass-Specific SAM
(GSSAM, ID 2), which significantly improves performance
across all metrics: IoU rises from 0.651 to 0.897, MAE drops
from 0.212 to 0.052, Fβ increases from 0.738 to 0.944, and
BER falls from 20.9 to 4.93. These improvements show that
our GSSAM is a suitable backbone for GSD.
Semantic Decomposition Module (SDM). We evaluate the
effectiveness of SDM by integrating DSEB into GSSAM (ID
3), which incorporates reflection semantics. This modifica-
tion yields a modest performance improvement, i.e., IoU in-
creases by 0.9% and MAE decreases by 7.7%, indicating
that reflection cues aid in the GSD task. However, extending
SDM with SEB to include transmission semantics (ID 4) re-
sults in comparable performance (IoU: 0.899). The minor
performance differences from ID 3 to ID 5 suggest that sim-
ply adding semantic components without considering their
relationships offers limited benefit. These findings under-
score our idea that a mechanism is needed to dynamically
integrate and balance multiple semantic cues.
Adaptive Semantic Fusion Module (ASFM). ASFM
shows clear benefits when fusing multiple semantics but

Figure 5: MSNet limitations in extreme lighting.

offers limited improvement with only reflection semantics
(ID 6 - IoU: 0.903 vs. ID 3 IoU: 0.905). As more se-
mantic cues are introduced, the effectiveness of ASFM be-
comes more apparent. With reflection/transmission seman-
tics (ID 7), ASFM brings a clear performance gain over ID
4, improving IoU from 0.899 to 0.910 and reducing BER
from 4.76 to 4.48. This demonstrates its ability to manage
complex semantic interactions and enhance feature integra-
tion. The full model (ID 8), by combining reflection/trans-
mission/surrounding semantics through ASFM, achieves the
best results across all metrics, reaching an IoU of 0.915,
MAE of 0.043, Fβ of 0.955, and BER of 4.17. Compared
to ID 2, our multi-semantic modeling achieves a 2.0% in-
crease in IoU and a 17.3% decrease in MAE, confirming the
importance of adaptive fusion for integrating multiple se-
mantic cues. These ablation results validate that both multi-
semantic extraction and adaptive fusion are crucial for robust
glass surface detection across diverse scenarios.

Conclusion

In this paper, we have proposed MSNet, a multi-semantic
framework for GSD. MSNet explicitly models the interplay
among reflection/transmission/surrounding semantic cues. It
builds upon a Glass-Specific SAM enhanced with a Seman-
tic Decomposition Module (SDM) to disentangle these se-
mantic components. It then uses an Adaptive Semantic Fu-
sion Module (ASFM) to learn the relationships between se-
mantic cues and fuse them effectively. Extensive experi-
ments across three benchmarks show that MSNet achieves
SOTA performance, particularly excelling in challenging
scenes involving complex reflections and diverse glass sizes.

Despite its success, MSNet does have its limitations. For
example, it struggles under extreme lighting conditions that
affect the detected semantic cues. In Fig. 5, under-detection
occurs when both transmission and reflection semantics are
weak: (top row) the glass panels with dark backgrounds and
minimal reflections, and (bottom row) dim lighting on the
glass table surface preventing the model from distinguishing
between different semantic components.
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