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ABSTRACT

Detecting out-of-distribution (OOD) samples is essential when deploying machine
learning models in open-world scenarios. Zero-shot OOD detection, requiring no
training on in-distribution (ID) data, has been possible with the advent of vision-
language models like CLIP. This scenario presents a more practical alternative than
traditional OOD detection. By building a text-based classifier with only closed-set
labels, the model can achieve impressive OOD detection performance. However,
this largely restricts the inherent capability of CLIP to recognize samples from large,
open label space, making it insufficient to detect hard OOD samples effectively.
In this paper, we provide a new perspective to tackle the constraints posed by
exclusively employing closed-set ID labels in zero-shot OOD detection. We
propose leveraging the expert knowledge and reasoning capability of large language
models (LLM) to Dream potential Outlier Semantics, termed DOS, without access
to any actual OOD data. Owing to better consideration of open-world scenarios,
DOS can be generalized to different OOD detection tasks, including far, near, and
fine-grained OOD detection. Technically, we design (1) LLM prompts based on
visual similarity to generate potential outlier class labels specialized for OOD
detection, as well as (2) a new score function based on the proportionality between
potential outlier and ID class labels to distinguish hard OOD samples effectively.
Empirically, our method achieves new state-of-the-art performance across different
OOD tasks and can be effectively scaled to the large-scale ImageNet-1K dataset.

1 INTRODUCTION

Machine learning models excel in closed-set scenarios, where training and testing datasets share
identical distribution. However, in open-world settings, especially in high-stakes scenarios like
autonomous driving where the consequence of making an error can be fatal, these models often
encounter out-of-distribution (OOD) samples that fall outside the label space of the training dataset,
leading to unpredictable and frequently erroneous model behaviors. Consequently, there is a growing
interest in OOD detection (Yang et al., 2021; 2022; Salehi et al., 2021), aiming to distinguish OOD
samples from test-time data while maintaining classification accuracy.

Most existing OOD detection methods (Hendrycks & Gimpel, 2017; Lee et al., 2018; Hendrycks
et al., 2019b; Liu et al., 2020; Sehwag et al., 2021) can effectively detect OOD samples based on a
well-trained in-distribution (ID) classifier. However, they are constrained to ID datasets with different
label spaces. Besides, these methods solely depend on vision patterns, ignoring the connection
between visual images and textual labels. Recently, Ming et al. (2022) introduced the setting of
zero-shot OOD detection, which aims to leverage the capabilities of large-scale vision-language
models (VLMs), e.g., CLIP (Radford et al., 2021), to detect OOD samples across diverse ID datasets
without training samples. By constructing a textual classifier with only ID class labels, Ming et al.
(2022) achieves impressive performance compared to traditional OOD detection methods.

However, such an approach often fails when encountering hard OOD samples, as shown in Fig-
ure. 1 (a). One might wonder 1) if this issue arises because the pre-trained models (e.g., CLIP) are not
strong enough or require further fine-tuning; or 2) if it is attributable to the usages of these pre-trained
models, e.g., an exclusive reliance on closed-set ID classes. Surprisingly, our findings suggest that
CLIP can achieve superior OOD detection results (as depicted in Figure. 1 (b)) by incorporating
actual OOD class labels. This reinforces that relying solely on ID class labels is inadequate for
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Figure 1: Comparison of zero-shot OOD detection score distribution. Compared to the model
using only closed-set ID classes (a), adding actual OOD class labels (b) can largely increase the
OOD detection performance. By adding the outlier classes generated by our method (c), the OOD
detection results can also be significantly improved without using the actual OOD class labels. We
use CUB-200-2011 (Wah et al., 2011) as ID classes and Places (Zhou et al., 2017) as OOD classes.

distinguishing hard OOD samples. Unfortunately, we are unable to access the actual OOD label space
in practical open-world scenarios. Therefore, we raise an open question:

Is it possible to generate the potential outlier class labels for OOD detection
without access to test-time data?

To answer this question, we take a step further in this work and ponder whether we can employ
large language models (LLMs) to address this challenge. We propose a knowledge-enhanced
approach that harnesses the expert knowledge and reasoning capabilities of LLMs to Dream potential
Outlier Semantics, termed DOS, without relying on any actual or auxiliary OOD data, as shown
in Figure. 1 (c). Technically, we design LLM prompts to generate potential outlier class labels
specialized for OOD detection, following a visual similarity rule. For example, "Give three categories
that visually resemble a horse", in which horse is an ID class. Furthermore, we introduce a new scoring
function based on the proportionality between potential outlier and ID class labels to distinguish
hard OOD samples effectively. Significantly different from ZOC (Esmaeilpour et al., 2022) and
CLIPN (Wang et al., 2023) that also attempt to generate “NOT ID” classes, our DOS neither requires
additional training on a text-based image description generator (as ZOC) nor necessitates an extra
dataset to train the CLIP architecture (as CLIPN).

The proposed DOS brings significant performance improvements and enjoys the advantages of:
(1) OOD-Agnostic, which does not require any prior knowledge of the unknown OOD data; (2) Zero-
Shot, which serves various task-specific ID datasets with a single pre-trained model; (3) Scalability
and Generalizability, which effectively scales to large-scale datasets such as ImageNet-1K (Deng
et al., 2009) that it is flexible and generalizable across far, near, and fine-grained OOD detection tasks.

Our contributions can be summarized as follows:

• We propose a new paradigm, called DOS, which leverages expert knowledge from LLM to dream
potential outlier class labels for zero-shot OOD detection.

• We provide three LLM prompts to dream potential outlier class labels for OOD detection, which are
applicable to a variety of datasets within far, near, and fine-grained OOD detection tasks.

• We design a new score function based on the proportionality between potential outlier class labels
and ID class labels, helping the model effectively distinguish between ID samples and OOD samples.

• Our DOS is superior, significantly outperforming the strong baseline. Without an increase in inference
time, DOS achieves improvements of 2.47%, 1.80%, 7.12%, and 12.77% on the far OOD, near OOD,
fine-grained OOD, and ImageNet-1K far OOD detection tasks in terms of FPR95.

2 PRELIMINARIES

Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021) is trained on 400 million
(image, text) pairs collected from the internet using self-supervised contrastive representation learn-
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Figure 2: The framework of the proposed DOS. Given a set of ID class labels Yid, we first leverage
the designed prompts to generate a set of outlier class labels, Ydood, by using a LLM. Then, we input
both the ID and generated OOD class labels into the text encoder for building the textual classifier.
During the test stage, given an input image, we obtain the visual feature by the image encoder and
calculate the similarities between the visual feature and the textual classifier. Finally, the OOD score
is obtained by scaling the similarities with the proposed detector score function SDOS.

ing (Tian et al., 2020). The model comprises an image encoder I(·), adopting either ViT (Dosovitskiy
et al., 2021) or ResNet (He et al., 2016) architecture, and a text encoder T (·), utilizing the Trans-
former (Vaswani et al., 2017) architecture. During testing, the model evaluates the similarity of visual
and textual features to choose the best-matching class label. CLIP enables open-set textual inputs as
class labels without retraining or fine-tuning based on specific training data, making it widely applied
to zero-shot downstream tasks, such as visual classification, detection, segmentation, and so on.

Large Language Models (LLMs) refer to natural language processing models trained on massive
data, with more than hundreds of billions or more parameters, such as GPT-3 (Brown et al., 2020)
GPT-4 (OpenAI, 2023), PaLM (Chowdhery et al., 2022) and LLaMA (Touvron et al., 2023). These
models demonstrate the proficiency to understand and generate natural language text, thus enabling
them to undertake a multitude of linguistic tasks. Considering the comprehensive nature of their
training datasets, which span a wide variety of knowledge domains, the expert knowledge embedded
in LLMs can be employed to provide class labels visually similar to the ID class to meet our needs.

Zero-Shot OOD Detection (Esmaeilpour et al., 2022; Ming et al., 2022; Wang et al., 2023) enables
detecting OOD samples across diverse ID datasets using the same pre-trained model, e.g., CLIP,
without re-training on any unseen ID data. It can be viewed as a binary classification problem:

Gλ(x;Yid, I, T ) =

{
ID S(x) ≥ λ

OOD S(x) < λ
, (1)

where G(·) is the OOD detector, x denotes the input image, x∈X ,X :={ID,OOD} and Yid defines
the space of ID class labels. The OOD detection score function S is derived from the similarity
between the visual representation I(x) and textual representation T (t). t is the textual input to the
text encoder, such as "a photo of a <ID class>". λ is the threshold to distinguish ID/OOD classes.

3 DREAMING OUTLIER SEMANTICS FOR ZERO-SHOT OOD DETECTION

In this paper, we aim to enhance zero-shot OOD detection performance by harnessing LLM to
generate potential outlier class labels. However, several challenges require attention: (1) How to
guide LLM to generate the desired outlier class label? (2) How can we sharpen the distinction
between ID and OOD samples given the dreamed outlier class label? To address these issues, we
propose LLM prompts specifically tailored for OOD detection and introduce a novel score function
for better differentiation. The overall framework of our method is illustrated in Figure. 2.
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3.1 ACQUIRING DREAMED OUTLIER CLASS LABELS FOR OOD DETECTION

We first categorize OOD detection tasks into three types: Far, Near, and Fine-grained OOD Detection.
Then, we elaborate the corresponding three LLM prompts anchored on visual similarity to produce
outlier class labels as follows, which are general to different datasets for each OOD task, respectively.

Far OOD Detection refers to identifying OOD classes that are distant from the ID classes in the
label space, with most being effectively discerned. Building upon the existing ID class labels, we first
guide LLM to summarize these classes and determine their respective major categories. Subsequently,
we ask LLM to provide outlier class labels that are visually similar to these major categories. Since
LLM first summarizes the ID classes into major categories, our approach can be easily extended to
large-scale datasets, such as ImageNet-1K. The LLM prompt for far OOD detection is illustrated
in Figure 3. Wherein, the Yid represents the set of ID class labels, Yid := {y1, y2, · · · , yK}, and the
K signifies the total number of categories encompassed within the ID class labels. Similarly, Ydood
indicates the set of dreamed outlier class labels generated by LLM, and Ydood := {n1, n2, · · · , nL}.

Q: I have gathered images of K distinct categories: Yid. Summarize what broad cate-
gories these categories might fall into based on visual features. Now, I am looking to
identify L classes that visually resemble these broad categories but have no direct rela-
tion to these broad categories. Please list these L categories for me.

A: These L categories are:Far OOD prompt

Figure 3: LLM prompt for far OOD detection, consisting of both the contents of Q and A.

Near OOD Detection pertains to identifying OOD classes that are relatively close to the ID class,
e.g., horse and zebra, presenting an increased propensity to come across OOD samples that bear
visual resemblances to ID classes. Consequently, for each ID class label, we instruct LLM to provide
l outlier class labels that exhibit visual resemblance with ID class labels, l ×K = L. Overlapping
classes in Ydood with Yid are removed by string matching. Figure 4 illustrates the LLM prompt here.

Q: Given the image category yi, please suggest visually similar categories that are not
directly related or belong to the same primary group as yi. Provide suggestions that
share visual characteristics but are from broader and different domains than yi.

A: There are l classes similar to yi, and they are
from broader and different domains than yi:

Near OOD prompt

Figure 4: LLM prompt for near OOD detection.

Fine-grained OOD Detection, also known as open-set recognition (OSR) (Vaze et al., 2021), focuses
on semantic shift instead of distributional shift primarily comprised in traditional OOD detection.
In fine-grained OOD detection, both ID and OOD samples fall under the same major category (e.g.,
bird), and intrinsic visual similarities exist among subclasses (e.g., Frigatebird, Ovenbird). Therefore,
it is more appropriate to instruct the LLM to provide different subclasses within the same major
category directly. The LLM prompt for fine-grained OOD detection is presented below Figure 5,
where class-type refers to the major category, such as "bird".

Q: I have a dataset containing K different species of class-type. I need a list of L dis-
tinct class-type species that are NOT present in my dataset, and ensure there are no
repetitions in the list you provide. For context, the species in my dataset are: Yid.

A: The other L class-type species not in the
dataset are:Fine-grained OOD prompt

Figure 5: LLM prompt for fine-grained OOD Detection.

For detailed LLM prompts and the outlier class labels generated by LLM, please refer to Appendix. E.
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3.2 A NEW OOD DETECTOR SCORE

Given the dreamed outlier class labels, a straightforward strategy would be to classify input samples
that exhibit the highest similarity on the outlier classes as OOD samples. Yet, this risks misidentifying
an excessive number of ID inputs as OOD, resulting in decreased performance. To solve this problem,
we introduce a new score function SDOS based on the proportionality between Ydood and Yid to
distinguish hard OOD samples effectively. First, the label-wise matching score si(x) is expressed as:

si(x) =
I(x) · T (ti)

∥I(x)∥ · ∥T (ti)∥
; ti ∈ Did ∪ Ddood. (2)

Subsequently, taking into account the outlier class labels, the proposed score SDOS(·) is defined as:

SDOS(x;Yid,Ydood, T , I) = max
i∈[1,K]

esi(x)/τ∑K+L
j=1 esj(x)/τ

− max
k∈[K+1,K+L]

βesk(x)/τ∑K+L
j=1 esj(x)/τ

, (3)

where τ is the temperature. β indicates the proportion between outlier and ID class labels, formulated
as β = K

K+L . For more details on the design of SDOS, please refer to the Appendix. A. Based on
SDOS, the OOD detector G(x;Yid, I, T ) can be viewed as the binary classification as:

Gλ(x;Yid,Ydood, T , I) =
{

ID SDOS(x) ≥ λ

OOD SDOS(x) < λ
, (4)

where λ is a selected threshold such that a high fraction of ID data (typically 95%) exceeds this value.

We summarize the advantages of our approach as follows:

1. OOD-Agnostic: DOS does not rely on prior knowledge of unknown OOD data, making it
particularly suitable and adaptable to open-world scenarios.

2. Zero-Shot: A single pre-trained model efficiently serves various task-specific ID datasets
without the need for individual training on each specific ID dataset. DOS can achieve
superior OOD detection performance by merely knowing the ID class labels.

3. Scalability and Generalizability: In contrast to the existing zero-shot OOD detection
method (Esmaeilpour et al., 2022) that generates candidate OOD class labels, DOS can be
easily applied to large-scale datasets like ImageNet-1K. Moreover, DOS exhibits generaliz-
ability across diverse tasks, including far, near, and fine-grained OOD detection.

4 EXPERIMENTS

4.1 SETUPS

Far OOD Detection. The ID datasets for far OOD detection encompass CUB-200-2011 (Wah et al.,
2011), STANFORD-CARS (Krause et al., 2013), Food-101 (Bossard et al., 2014), Oxford-IIIT
Pet (Parkhi et al., 2012) and ImageNet-1K (Deng et al., 2009). As for the OOD datasets, we use the
large-scale OOD datasets iNaturalist (Van Horn et al., 2018), SUN (Xiao et al., 2010), Places (Zhou
et al., 2017), and Texture (Cimpoi et al., 2014) curated by MOS (Huang & Li, 2021).

Near OOD Detection. We adopt ImageNet-10 and ImageNet-20 alternately as ID and OOD datasets,
proposed by MCM (Ming et al., 2022), both of which are subsets extracted from ImageNet-1K. The
ImageNet-10 dataset curated by MCM mimics the class distribution of CIFAR-10 (Krizhevsky et al.,
2009). The ImageNet-20 dataset consists of 20 classes semantically similar to ImageNet-10 (e.g.,
dog (ID) vs. wolf (OOD)).

Fine-grained OOD Detection. We split CUB-200-2011, STANFORD-CARS, Food-101, and Oxford-
IIIT Pet. Specifically, half of the classes from each dataset are randomly selected as ID data, while
the remaining classes constitute OOD data. Importantly, there is no overlap between the above ID
dataset and the corresponding OOD dataset.

Evaluation Metrics. We employ two widely-used metrics for evaluation: (1) FPR95, the false
positive rate of OOD data when the true positive rate is at 95% for ID data, where a lower value
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Table 1: Zero-shot far OOD detection results. The bold indicates the best performance on each
dataset. The gray indicates that the comparative methods require an additional massive auxiliary
dataset.

ID Dataset Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CUB-200-2011

CLIPN 0.10 99.97 0.06 99.98 0.33 99.91 0.17 99.95 0.17 99.95
Energy 0.46 99.89 0.03 99.99 0.30 99.92 0.02 100.00 0.20 99.95

MaxLogit 0.35 99.92 0.06 99.99 0.35 99.91 0.00 100.00 0.19 99.95
MCM 9.83 98.24 4.93 99.10 6.65 98.57 6.99 98.75 7.10 98.67
Ours 0.07 99.98 0.02 100.00 0.33 99.90 0.00 100.00 0.10 99.97
GT - - - - 0.29 99.93 0.00 99.99 - -

STANFORD-CARS

CLIPN 0.00 99.99 0.02 99.99 0.13 99.96 0.02 99.99 0.04 99.98
Energy 0.01 100.00 0.04 99.99 0.42 99.90 0.04 99.99 0.13 99.97

MaxLogit 0.00 100.00 0.02 99.99 0.26 99.94 0.00 100.00 0.07 99.98
MCM 0.05 99.77 0.02 99.95 0.24 99.89 0.02 99.96 0.08 99.89
Ours 0.00 100.00 0.01 100.00 0.07 99.99 0.00 100.00 0.02 100.00
GT - - - - 0.07 99.99 0.00 100.00 - -

Food-101

CLIPN 0.70 99.83 0.10 99.96 0.26 99.94 5.35 98.19 1.60 99.48
Energy 0.92 99.75 0.20 99.92 0.54 99.86 12.45 96.55 3.53 99.02

MaxLogit 0.56 99.86 0.09 99.95 0.49 99.88 8.33 97.44 2.37 99.28
MCM 0.64 99.78 0.90 99.75 1.86 99.58 4.04 98.62 1.86 99.43
Ours 0.06 99.99 0.00 100.00 0.10 99.98 2.46 99.05 0.65 99.76
GT - - - - 0.02 99.99 0.59 99.83 - -

Oxford-IIIT Pet

CLIPN 0.01 99.99 1.08 99.78 0.97 99.80 1.42 99.61 0.87 99.80
Energy 0.08 99.97 0.05 99.98 0.23 99.94 0.35 99.88 0.18 99.94

MaxLogit 0.01 99.98 0.05 99.97 0.20 99.94 0.27 99.91 0.13 99.95
MCM 2.80 99.38 1.05 99.73 2.11 99.56 0.80 99.81 1.69 99.62
Ours 0.00 100.00 0.01 99.99 0.16 99.95 0.12 99.97 0.07 99.98
GT - - - - 0.08 99.98 0.09 99.98 - -

Average

CLIPN 0.20 99.95 0.32 99.93 0.42 99.90 1.74 99.44 0.67 99.80
Energy 0.37 99.90 0.08 99.97 0.37 99.91 3.22 99.11 1.01 99.72

MaxLogit 0.23 99.94 0.05 99.98 0.33 99.92 2.15 99.34 0.69 99.79
MCM 3.33 99.29 1.72 99.63 2.72 99.40 2.96 99.29 2.68 99.40
Ours 0.03 99.99 0.01 100.00 0.17 99.96 0.64 99.75 0.21 99.93
GT - - - - 0.12 99.97 0.17 99.95 - -

indicates better performance; (2) AUROC, the area under the receiver operating characteristic curve,
with a higher value signifying superior performance.

DOS Setups. We employ CLIP (Ilharco et al., 2021) as the backbone of our framework. Specifically,
the image encoder is selected from ViT-B/16 or ViT-L/14, with the latter having more parameters.
Unless otherwise specified, we adopt ViT-B/16 as the image encoder and masked self-attention
Transformer (Vaswani et al., 2017) as the text encoder in our experiments. The pre-trained weights of
CLIP are sourced from the official weights provided by OpenAI. In addition, we adopt the GPT-3.5-
turbo-16k model as the LLM for our research, setting the temperature parameter to 0. To reduce the
potential impact of randomness, we instruct LLM to dream outlier class three times on each dataset
independently, and the final reported results are the average of these three experiments. Throughout
all our experiments, the temperature coefficient τ in score function SDOS is set to 1.

Compared Methods. We compare our method with state-of-the-art (SOTA) OOD detection methods,
including zero-shot and those requiring fine-tuning. For fair comparisons, all compared methods
employ CLIP as their backbone, consistent with DOS. With respect to fine-tuning methods, we
consider MSP (Hendrycks & Gimpel, 2017), Energy (Liu et al., 2020), MOS (Huang & Li, 2021), and
fort (Fort et al., 2021). As for zero-shot methods, our comparisons are drawn towards MCM (Ming
et al., 2022) and CLIPN (Wang et al., 2023). What’s more, We implement post-hoc methods
(Energy (Liu et al., 2020) and MaxLogit (Hendrycks et al., 2019a)) as additional baselines on CLIP
bacone. It is worth noting that CLIPN relies on a large-scale auxiliary dataset (Sharma et al., 2018) to
additionally pre-train an encoder. Instead, our DOS does not require any such dataset.

4.2 MAIN RESULTS

Far OOD Detection. Table. 1 presents the comparison with the recent state-of-the-art zero-shot OOD
detection method (MCM Ming et al. (2022)) across four ID datasets: CUB-200-2011, STANFORD-
CARS, Food-50, and Oxford-IIIT Pet. For each dataset, we guide the LLM to dream 500 outlier
classes, i.e., L = 500. Clearly, DOS achieves superior results on these four ID datasets, with an
average FPR95 of 0.21% and AUROC of 99.93%. This indicates substantial improvement over the
strong baseline. Notably, our DOS outperforms the strong baseline by 7% when using CUB-200-2011
as the ID dataset.
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Table 2: Zero-shot far OOD detection results for ImageNet-1K as ID dataset. The black bold
indicates the best performance. The gray indicates that the comparative methods require training or
an additional massive auxiliary dataset. Energy (FT) requires fine-tuning, while Energy is post-hoc.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MOS (BiT) 9.28 98.15 40.63 92.01 49.54 89.06 60.43 81.23 39.97 90.11
Fort 15.07 96.64 54.12 86.37 57.99 85.24 53.32 84.77 45.12 88.25
Energy(FT) 21.59 95.99 34.28 93.15 36.64 91.82 51.18 88.09 35.92 92.26
MSP 40.89 88.63 65.81 81.24 67.90 80.14 64.96 78.16 59.89 82.04
CLIPN 19.13 96.20 25.69 94.18 32.14 92.26 44.60 88.93 30.39 92.89
Energy 81.08 85.09 79.02 84.24 75.08 83.38 93.65 65.56 82.21 79.57
MaxLogit 61.63 89.32 64.36 87.43 63.70 85.95 86.67 71.69 69.09 83.60
MCM 30.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11 42.74 90.77
Ours 7.10 98.32 16.72 96.49 26.48 94.00 69.57 80.65 29.97 92.37
GT - - - - 13.24 96.96 24.29 95.04 - -

Table 3: Zero-shot near OOD Detection results. The bold indicates the best performance on each
dataset, and the gray indicates methods requiring an additional massive auxiliary dataset.

Method ID ImageNet-10 ImageNet-20 AverageOOD ImageNet-20 ImageNet-10

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
CLIPN 7.80 98.07 13.67 97.47 10.74 97.77
Energy 10.30 97.94 16.40 97.37 13.35 97.66
MaxLogit 9.70 98.09 14.00 97.81 11.85 97.95
MCM 5.00 98.71 17.40 97.87 11.20 98.29
Ours 4.00 99.09 14.80 98.01 9.40 98.55
GT 0.20 99.80 0.20 99.93 0.20 99.87

We then conduct experiments on the larger-scale dataset (ImageNet-1K) for far OOD detection.
Results are reported in Table. 2. We adopt the results of fine-tuning methods reported by MCM. DOS
is comparable to fine-tuning methods and surpasses MCM. Although CLIPN performs better than
DOS on the ViT-B/16 backbone, such a comparison does not do justice to DOS. This is because
CLIPN requires an additional text encoder and large-scale datasets for training the “no” prompt.
Furthermore, CLIPN utilizes an ensemble strategy for the textual inputs, in which the ensemble
and learnable textual inputs are effective in enhancing performance (Radford et al., 2021; Zhou
et al., 2022b;a). We also explore the effectiveness of using a larger backbone (ViT-B/16) and
different VLM (ALIGN (Jia et al., 2021)). When using ViT-B/16 or ALIGN as the backbone, our
DOS’s performance is significantly better than MCM. These results indicate that our DOS is more
generalizable to different VLMs. Please refer to Table 5 in the Appendix. B for the details. What’s
more, we perform experiments with CIFAR-10/CIFAR-100 (Krizhevsky et al., 2009) benchmarks to
support our methodology further. Please refer to the Appendix. C for the results.

Near OOD Detection. The results for near OOD detection are presented in Table. 3. For each
ID class label, DOS instructs the LLM to return three outlier class labels. DOS outperforms the
strong baseline MCM by achieving improvements of 1.80% in average FPR95 and 0.26% in AUROC.
Compared to CLIPN, which uses extra large datasets for re-training, our DOS clearly outperforms
it when using ImageNet-10 as the ID dataset and achieves competitive results with it when using
ImageNet-20 as the ID dataset.

Fine-grained OOD Detection. Table. 4 shows the performance of fine-grained OOD detection. DOS
guides the LLM to generate 500 outlier class labels for each ID dataset. Compared to MCM, our
DOS largely increases the average OOD performance by 7.12% in FPR95 and 3.22% in AUROC.
Despite the unfair comparison, our DOS still outperforms CLIPN on the CUB-100 and Food-50
datasets in terms of FPR95.

4.3 ABLATION STUDY

Score Function. To demonstrate the superiority of the proposed OOD detector score SDOS, we
compare it with the other score functions: SMAX, SMSP, SEenergy and SMaxLogit. Please refer to Ap-
pendix. D.1 for the specific forms of these score functions. The comparison of these score functions
is shown in Figure. 6 (a). Results show that our SDOS achieves the best OOD performance. This
verifies the superiority and importance of the proposed OOD detector score.
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Table 4: Zero-shot fine-grained OOD Detection results. The bold indicates the best performance on
each dataset, and the gray indicates methods requiring an additional massive auxiliary dataset.

Method ID CUB-100 Stanford-Cars-98 Food-50 Oxford-Pet-18 AverageOOD CUB-100 Stanford-Cars-98 Food-51 Oxford-Pet-19

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
CLIPN 73.54 74.65 53.33 82.25 43.33 88.89 53.90 86.92 56.05 83.18
Energy 76.13 72.11 73.78 73.82 44.95 89.97 68.51 88.34 65.84 81.06

MaxLogit 76.89 73.00 72.18 74.80 41.73 90.79 65.66 88.49 64.12 81.77
MCM 83.58 67.51 83.99 68.71 43.48 91.75 63.92 84.88 68.72 78.21
Ours 71.57 74.12 77.88 71.08 39.04 91.81 57.89 88.72 61.60 81.43
GT 61.23 81.42 58.31 83.71 11.34 97.79 29.17 95.58 40.01 89.63
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ImageNet-10; OOD dataset: ImageNet-20.
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Figure 7: Evaluation on the number of outlier class labels. When the number of outlier class labels is
zero, the method reduces to the baseline MCM.

LLM Prompts. To underscore the efficacy of visually resemble, we design two types of LLM
prompts, one termed visually irrelevant and the other visually dissimilar, as well as maintaining the
rest of the LLM prompts constant. Specifically, the ‘irrelevant’ LLM prompt instructs the LLM
to generate arbitrary outlier class labels for the ID class without adhering to a visually resemble
constraint. Conversely, the ‘dissimilar’ LLM prompt asks the LLM to dream outlier class labels for
the ID class under a visual dissimilar constraint. As shown in Figure. 6 (b), without the visually
resemble constraint proposed in our DOS, the OOD performance degrades on both FPR95 and
AUROC metrics, indicating the importance of the proposed constraint. For detailed LLM prompts
and the outlier class labels generated by LLM, please refer to Appendix. D.2.

Various LLMs. We conduct experiments with various LLMs to provide a more comprehensive
understanding of DOS’s effectiveness. Specifically, we use LLaMA2-7B or Claude2 to dream outlier
class labels. The results on ImageNet10 (ID) are shown in Figure. 6 (c). All the variants, which
use different LLMs, achieve better results than the baseline MCM. Moreover, Claude2 outperforms
bo-16k in the FPR95 metric. These results demonstrate the universality of our method.

Number of Outlier Class Labels. We conduct experiments to investigate the impact of the number
of outlier class labels, i.e., L, generated by LLM. We instruct the LLM to return 100, 300, and 500
outlier class labels for the far and fine-grained OOD detection for each ID dataset. For the near OOD
detection, we ask the LLM to return outlier class labels in quantities of 1, 3, and 10 for each ID class.
Figure. 7 presents the respective average metrics for different numbers of outlier class labels within
the three tasks. In near OOD detection, a limited number of outlier class labels (e.g., 1) leads to a
significant decline in performance. This is attributed to an increased propensity to encounter hard
samples in near OOD detection. Although L influences DOS performance, DOS can consistently
outperform the baseline MCM and achieve relatively stable performance when L is not too small.

4.4 VISUALIZATION

To better understand our DOS, we display the visualizations derived from the softmax output for the
label-wise matching score via T-SNE (Van Der Maaten, 2014). Results compared between our DOS
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and the baseline MCM are shown in Figure. 8. We can find that MCM tends to cluster all the OOD
samples together. In our DOS, 1) OOD samples belonging to the same class tend to be clustered
together and 2) samples in the same group are classified into the dreamed outlier class that is visually
similar to them (Steam Locomotive vs Submarine). These observations indicate that our DOS is more
semantically explainable.

5 RELATED WORKS

Traditional OOD Detection. Methods adopted for traditional OOD detection can be broadly

(a) MCM (b) DOS

Selected OOD Samples 

(Steam Locomotive)

Illustration of Assigned Dreamed Class 
 (Submarine)

ID Samples

OOD Samples

Figure 8: T-SNE visualizations obtained by the
classifier output. ID set: ImageNet-10; OOD set:
ImageNet-20. We use distinct colors to represent
different OOD classes. The illustrated dreamed
OOD name is the class assigned with the corre-
sponding cluster, and its examples are generated
by Stable Diffusion (Rombach et al., 2022). Best
viewed with zoom in.

categorized into classification-based, density-
based (Ren et al., 2019; Xiao et al., 2020), and
reconstruction-based (Denouden et al., 2018;
Zhou, 2022; Liu et al., 2023). The classification-
based methods leverage a well-trained ID clas-
sifier and formulate a scoring function to recog-
nize OOD samples. The score function can be
formulated from input (Perera et al., 2020), hid-
den (Sun et al., 2022; Lee et al., 2018; Sun & Li,
2022), output (Hendrycks & Gimpel, 2017; Liu
et al., 2020), and gradient space (Huang et al.,
2021). When the label space of the test ID data
differs from that of the training data, the model
needs to be re-trained from scratch or fine-tuned
in traditional OOD detection scenarios, which
require significant computational overhead.

Zero-Shot OOD Detection. Owing to the pow-
erful capabilities of the VLMs, zero-shot OOD
detection methods have shown promising results.
Typically, the similarity between the feature representations of input images and the textual input is
measured to identify OOD samples. MCM (Ming et al., 2022) is entirely dependent on closed-set ID
class labels and does not effectively harness the potent abilities of CLIP for handling open-world
inputs. Although ZOC (Esmaeilpour et al., 2022) and CLIPN (Wang et al., 2023) take into account
the open-world setting, ZOC requires an additional auxiliary dataset to train a text-based image
description generator to generate candidate unknown class names for each input sample. This makes
ZOC ill-suited for handling large-scale datasets. Similarly, CLIPN requires an extra auxiliary dataset
for training the text encoder. By contrast, DOS not only considers the open-world scenario but
also foregoes the need for any auxiliary datasets for extra training and can be easily scaled to large
datasets.

LLM for Visual Classification. Drawing upon the expert knowledge embedded in LLMs has
emerged as a novel trend in vision tasks and remains under-explored. Menon & Vondrick (2023);
Maniparambil et al. (2023) employ the expertise within LLMs to extract the inherent information
contained in ID class labels, thereby enhancing the performance of image classification (classification
by description). Differing from this, DOS leverages the expert knowledge in LLMs to dream outlier
OOD classes based on the visual similarity rule, harnessing the capabilities of VLMs more effectively,
thus improving the performance of identifying OOD samples.

6 CONCLUSION

In this paper, we propose a new paradigm for zero-shot OOD detection, called DOS, by harnessing
the expert knowledge embedded in LLMs to dream outlier semantics without relying on actual or
auxiliary OOD data. Based on the designed visual similarity rule, the proposed three LLM prompts are
applicable across various datasets for far, near, and fine-grained OOD detection tasks. We introduce
a new score function based on the proportionality between potential outlier and ID class labels,
enabling us to recognize OOD samples effectively. Extensive experiments show that DOS achieves
new state-of-the-art performance and can be effectively scaled to the large-scale ImageNet-1K dataset.
We hope this work could open a new door in future research in the OOD detection field.
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REPRODUCIBILITY STATEMENT

The experimental setups for evaluation are described in detail in Section 4, and the experiments are
all conducted using public datasets. The detailed LLM prompts and outlier class labels generated by
LLM are provided in Appendix. E. We will release the code upon publication.
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A SCORE FUNCTION DETAILS

The design of our score function SDOS jointly considers two key aspects: the utilization of dreamed out-
lier class labels and the balancing of their quantity. As for the former, the intuitive idea is to incorporate
the dreamed class into the denominator of the MSP score (i.e., SMSP(x) = maxi∈[1,K]

esi(x)/τ∑K+L
j=1 esj(x)/τ ).

However, in this case, the dreamed class only functions in the denominator, which doesn’t significantly
impact the final score distribution, implying that the dreamed class is not fully utilized. To amplify the
role of the dream class, DOS further subtracts the second item(−maxk∈[K+1,K+L]

βesk(x)/τ∑K+L
j=1 esj(x)/τ ).

It stems from an intuition: samples visually similar to the dreamed class should have lower scores,
thus making it easier to distinguish between the ID and OOD score distribution.

As for the latter, when the number of dreamed outlier class labels L is large, the dreamed outlier
class, merely being in the denominator, already significantly influences the overall score distribution.
If we set β = 1, this may lead to the dreamed outlier class overly influencing the score distribution,
potentially causing a decline in performance. Therefore, it is reasonable to adaptively adjust β based
on the size of L. We thus design β = K

K+L , ensuring a balanced influence of the dreamed outlier
class.

B DIFFERENT VLM BACKBONES

Table. 5 shows the performance of ImageNet-1K(ID) on ViT-B/16 and ALIGN. Compared with
ViT-B/16, DOS yields an enhancement of 2.16% and 0.64% in FPR95 and AUROC based on ViT-
L/14, respectively. Moreover, DOC achieves the best OOD detection performance compared to
both zero-shot methods and fine-tuning methods in terms of FPR95. It should be noted that CLIPN
achieves worse performance when using the VIT-L/14 as the backbone than when using VIT-B/16.
Instead, our DOS is more generalizable to different backbones and produces clearly better OOD
performance than CLIPN when using VIT-L/14 as the backbone. When using the ALIGN backbone,
our DOS (28.73%) improves the FPR95 by 29.90% compared to the baseline MCM (58.63%).

Table 5: Zero-shot far OOD detection results for ImageNet-1K as ID dataset. The black bold
indicates the best performance based on CLIP (ViT-L/14), and the blue bold signifies the best
performance using ALIGN. The gray indicates that the comparative methods require training or an
additional massive auxiliary dataset.Energy (FT) requires fine-tuning, while Energy is post-hoc.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MOS (BiT) 9.28 98.15 40.63 92.01 49.54 89.06 60.43 81.23 39.97 90.11
Fort (ViT-L/14) 15.74 96.51 52.34 87.32 55.14 86.48 51.38 85.54 43.65 88.96
Energy (ViT-L/14) 10.62 97.52 30.46 93.83 32.25 93.01 44.35 89.64 29.42 93.50
MSP (ViT-L/14) 34.54 92.62 61.18 83.68 59.86 84.10 59.27 82.31 53.71 85.68
CLIPN (ViT-L/14) 25.09 94.59 24.76 94.93 30.89 93.14 48.97 87.01 32.43 92.42
Energy (ViT-L/14) 78.84 85.87 78.87 83.51 70.30 86.44 93.90 63.74 80.48 79.89
MaxLogit (ViT-L/14) 58.91 90.13 63.91 87.75 56.98 89.05 88.85 69.37 67.16 84.08
MCM (ViT-L/14) 28.38 94.95 29.00 94.14 35.42 92.00 59.88 84.88 38.17 91.49
Ours (ViT-L/14) 6.54 98.45 14.52 97.10 22.28 94.94 67.89 81.51 27.81 93.01
Energy (ALIGN) 92.21 83.62 74.16 86.29 70.50 84.65 68.60 81.77 76.37 84.08
MaxLogit (ALIGN) 83.46 84.95 68.46 86.63 67.10 84.78 65.32 81.90 71.08 84.56
MCM (ALIGN) 60.63 89.39 53.20 89.17 61.05 85.58 59.63 83.94 58.63 87.02
Ours (ALIGN) 9.54 98.07 15.38 96.77 25.24 93.89 64.75 81.57 28.73 92.57

C OTHER OOD DETECTION BENCHMARKS

We conduct experiments on the CIFAR-10/CIFAR-100 (SVHN, LSUN, Texture, Places) datasets,
and the results are shown in Table. 6. Clearly, DOS achieves superior results on this standard OOD
detection benchmark.

D ABLATION STUDY

D.1 SCORE FUNCTION

14



Under review as a conference paper at ICLR 2024

Table 6: Zero-shot OOD detection results in cifar10 and cifar100 benchmarks. The bold indicates the
best performance on each dataset. The gray indicates that the comparative methods require training
or an additional massive auxiliary dataset.

ID Dataset Method
OOD Dataset AverageSVHN LSUN Texture Places

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

cifar10

CLIPN 53.28 74.20 27.89 92.72 3.58 98.93 9.82 96.98 23.64 90.63
Energy 18.97 96.67 60.60 88.81 16.13 96.59 17.48 95.42 28.29 94.37

MaxLogit 6.50 98.27 36.54 94.20 11.37 97.61 16.67 95.56 17.77 96.41
MCM 3.98 99.03 5.12 98.72 16.35 96.44 36.55 90.79 15.50 96.25
Ours 4.48 98.51 3.24 98.88 6.91 98.32 15.24 95.57 7.47 97.82

cifar100

CLIPN 71.72 68.20 84.42 80.90 37.74 90.92 51.06 87.25 61.24 81.82
Energy 72.54 88.20 93.64 73.08 65.55 80.43 59.86 83.47 72.90 81.30

MaxLogit 59.05 91.01 82.48 83.06 62.82 82.08 65.58 80.88 67.48 84.26
MCM 64.45 89.96 47.26 91.69 90.30 73.61 98.42 61.37 75.11 79.16
Ours 75.64 87.00 39.04 92.87 62.00 83.54 70.60 80.43 61.82 85.95

Average

CLIPN 62.50 71.20 56.16 86.81 20.66 94.93 30.44 92.12 42.44 86.23
Energy 45.76 92.44 77.12 80.95 40.84 88.51 38.67 89.45 50.60 87.84

MaxLogit 32.78 94.64 59.51 88.63 37.10 89.85 41.13 88.22 42.63 90.34
MCM 34.22 94.50 26.19 95.21 53.33 85.03 67.49 76.08 45.31 87.71
Ours 40.06 92.76 21.14 95.88 34.46 90.93 42.92 88.00 34.65 91.88

Here, we present the specific form of the score function designed in the ablation study:

SMAX(x;Yid,Ydood, T , I) =

{
1
K maxi∈[1,K] si < maxj∈[K+1,L] sj

maxi∈[1,K]
esi(x)/τ∑K

j=1 esj(x)/τ maxi∈[1,K] si ≥ maxj∈[K+1,L] sj
, (5)

SMSP(x;Yid,Ydood, T , I) = max
i∈[1,K]

esi(x)/τ∑K+L
j=1 esj(x)/τ

, (6)

SEnergy(x;Yid,Ydood, T , I) = −T

log

K∑
i=1

efi(x)/T − log

L∑
j=K+1

efj(x)/T

 , (7)

SMaxLogit(x;Yid,Ydood, T , I) = max
i∈[1,K]

si(x)− max
j∈[K+1,K+L]

sj(x). (8)

SMAX indicates that if the sj of an input sample is greater than the si, this sample is recognized
to be an OOD sample. Otherwise, the input sample is calculated according to maximum softmax
probabilities (MSP). sj and si represent the label-wise matching scores as defined in Eq. 2. SMSP is
an adaptation of MSP, integrating outlier classes into its denominator. Similarly, SEnergy and SMaxLogit
are modifications of the Energy and MaxLogit metrics, respectively, incorporating outlier classes into
their secondary components.

D.2 LLM PROMPTS

We provide specific examples of ‘dissimilar’ and ‘irrelevant’ LLM prompts in Figure. 12 and
Figure. 9, respectively. The LLM chosen is GPT-3.5-turbo-16k, accessed on September 20, 2023.

E SPECIFIC EXAMPLE OF LLM PROMPTS

To obtain the outlier class labels automatically generated by the LLM, we provide a question and
answer template for LLM and append ‘-’ to the end of the answer to produce a bullet-point list
output. It is worth noting that the provided template does not contain any ID class content. Below,
we present specific examples for three LLM prompts. The LLM prompt for far OOD detection is
depicted in Figure. 10. The LLM prompts for near OOD detection and fine-grained OOD detection
are showcased in Figure. 11 and Figure. 13, respectively. We employed the GPT-3.5-turbo-16k LLM,
accessed on September 20, 2023.
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Q: Given the image category [water jug], please suggest categories that are not directly
related or belong to the same primary group as [water jug].
A: There are three classes from broader and different domains than [water jug]:
- trumpets
- helmets
- rucksacks

Q: Given the image category [horse], please suggest categories that are not directly
related or belong to the same primary group as [horse].
A: There are three classes from broader and different domains than [horse]:

- pineapple
- laptop
- sunglasses

ID class label: horse

Figure 9: Instance of ‘irrelevant’ LLM prompt for OOD detection, ID class label: horse. Note that,
the gray is the LLM prompt for near OOD detection, and the green is the LLM actually returns.

Q: I have gathered images of 4 distinct categories: [’Husky dog’, ’Garfield cat’,
’churches’, ’truck’]. Summarize what broad categories these categories might fall into
based on visual features. Now, I am looking to identify 5 categories that visually re-
semble these broad categories but have no direct relation to these broad categories.
Please list these 5 items for me.
A: These 5 items are:
- black stone
- mountain
- Ginkgo Tree
- river
- Rapeseed

Q: I have gathered images of 100 distinct categories: [’Apple pie’, ’Baby back ribs’,
’Baklava’, ’Beef carpaccio’, ’Beef tartare’, ’Beet salad’, ’Beignets’, ’Bibimbap’, ’Bread
pudding’, ’Breakfast burrito’, ’Bruschetta’, ’Caesar salad’, ’Cannoli’, ’Caprese salad’,
’Carrot cake’, ’Ceviche’, ’Cheesecake’, ’Cheese plate’, ’Chicken curry’, ’Chicken que-
sadilla’, ’Chicken wings’, ’Chocolate cake’, ’Chocolate mousse’, ’Churros’, ’Clam
chowder’, ’Club sandwich’, ’Crab cakes’, ’Creme brulee’, ’Croque madame’, ’Cup
cakes’, ’Deviled eggs’, ’Donuts’, ’Dumplings’, ’Edamame’, ’Eggs benedict’, ’Escargots’,
’Falafel’, ’Filet mignon’, ’Fish and chips’, ’Foie gras’, ’French fries’, ’French onion
soup’, ’French toast’, ’Fried calamari’, ’Fried rice’, ’Frozen yogurt’, ’Garlic bread’,
’Gnocchi’, ’Greek salad’, ’Grilled cheese sandwich’, ’Grilled salmon’, ’Guacamole’, ’Gy-
oza’, ’Hamburger’, ’Hot and sour soup’, ’Hot dog’, ’Huevos rancheros’, ’Hummus’, ’Ice
cream’, ’Lasagna’, ’Lobster bisque’, ’Lobster roll sandwich’, ’Macaroni and cheese’,
’Macarons’, ’Miso soup’, ’Mussels’, ’Nachos’, ’Omelette’, ’Onion rings’, ’Oysters’,
’Pad thai’, ’Paella’, ’Pancakes’, ’Panna cotta’, ’Peking duck’, ’Pho’, ’Pizza’, ’Pork
chop’, ’Poutine’, ’Prime rib’, ’Pulled pork sandwich’, ’Ramen’, ’Ravioli’, ’Red velvet
cake’, ’Risotto’, ’Samosa’, ’Sashimi’, ’Scallops’, ’Seaweed salad’, ’Shrimp and grits’,
’Spaghetti bolognese’, ’Spaghetti carbonara’, ’Spring rolls’, ’Steak’, ’Strawberry short-
cake’, ’Sushi’, ’Tacos’, ’Takoyaki’, ’Tiramisu’, ’Tuna tartare’, ’Waffles’]. Summarize
what broad categories these categories might fall into based on visual features. Now,
I am looking to identify 50 classes that visually resemble these broad categories but
have no direct relation to these broad categories. Please list these 50 items for me.
A: These 50 items are:

- Orchid
- Watermelon
- Sunflower
- ...
- Neon graffiti

ID dataset: Food-101

Figure 10: Instance of LLM prompt for far OOD detection, ID dataset: Food-101. Note that, the gray
is the LLM prompt for far OOD detection, and the green is the LLM actually returns.
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Q: Given the image category [water jug], please suggest visually similar categories that
are not directly related or belong to the same primary group as [water jug]. Provide
suggestions that share visual characteristics but are from broader and different domains
than [water jug].
A: There are three classes similar to [water jug], and they are from broader and differ-
ent domains than [water jug]:
- trumpets
- helmets
- rucksacks

Q: Given the image category [horse], please suggest visually similar categories that are
not directly related or belong to the same primary group as [horse]. Provide sugges-
tions that share visual characteristics but are from broader and different domains than
[horse].
A: There are three classes similar to [horse], and they are from broader and different
domains than [horse]:

- zebra
- giraffe
- deer

ID class label: horse

Figure 11: Instance of LLM prompt for near OOD detection, ID class label: horse. Note that, the
gray is the LLM prompt for near OOD detection, and the green is the LLM actually returns.

Q: Given the image category [water jug], please suggest visually dissimilar categories
that are not directly related or belong to the same primary group as [water jug]. Pro-
vide suggestions that do not share visual characteristics but are from broader and dif-
ferent domains than [water jug].
A: There are three classes dissimilar to [water jug], and they are from broader and dif-
ferent domains than [water jug]:
- trumpets
- helmets
- rucksacks

Q: Given the image category [horse], please suggest visually dissimilar categories that
are not directly related or belong to the same primary group as [horse]. Provide sug-
gestions that do not share visual characteristics but are from broader and different do-
mains than [horse].
A: There are three classes dissimilar to [horse], and they are from broader and different
domains than [horse]:

- pineapple
- laptop
- mountain

ID class label: horse

Figure 12: Instance of ‘dissimilar’ LLM prompt for OOD detection, ID class label: horse. Note that,
the gray is the LLM prompt for near OOD detection, and the green is the LLM actually returns.

17



Under review as a conference paper at ICLR 2024

Q: I have a dataset containing 10 unique species of dogs. I need a list of 10 distinct
dog species that are NOT present in my dataset, and ensure there are no repetitions in
the list you provide. For context, the species in my dataset are: [’husky dog’, ’alaskan
Malamute’, ’cossack sled dog’, ’golden retriever’, ’German Shepherd’, ’Beagle’, ’Bull-
dog’, ’Poodle’, ’Dachshund’, ’Doberman Pinscher’]
A: The other 10 dog species not in the dataset are:
- Labrador Retriever
- Rottweiler
- Boxer
- Border Collie
- Shih Tzu
- Akita
- Saint Bernard
- Australian Shepherd
- Great Dane
- Boston Terrier

Q: Q: I have a dataset containing 50 different species of food. I need a list of 50
distinct food species that are NOT present in my dataset, and ensure there are
no repetitions in the list you provide. For context, the species in my dataset are:
[’Prime Rib’, ’Dumplings’, ’Strawberry Shortcake’, ’Frozen Yogurt’, ’Seaweed Salad’,
’Tiramisu’, ’Red Velvet Cake’, ’Omelette’, ’Beef Carpaccio’, ’Lasagna’, ’Donuts’,
’Sushi’, ’Beignets’, ’Chicken Wings’, ’Carrot Cake’, ’Gnocchi’, ’Lobster Bisque’,
’Spaghetti Bolognese’, ’Greek Salad’, ’Oysters’, ’Caprese Salad’, ’Panna Cotta’,
’Shrimp And Grits’, ’Baby Back Ribs’, ’Creme Brulee’, ’Gyoza’, ’Escargots’, ’Chur-
ros’, ’Grilled Cheese Sandwich’, ’Scallops’, ’Breakfast Burrito’, ’Cheesecake’, ’Huevos
Rancheros’, ’Cheese Plate’, ’Steak’, ’Apple Pie’, ’Mussels’, ’Crab Cakes’, ’Pancakes’,
’Pulled Pork Sandwich’, ’Bruschetta’, ’Hot Dog’, ’Risotto’, ’Chicken Curry’, ’Paella’,
’Cannoli’, ’Eggs Benedict’, ’Fried Calamari’, ’French Fries’, ’Lobster Roll Sandwich’]
A: The other 50 food species not in the dataset are:

- Lychee
- chicken tacos
- Durian
- ...
- affogato
- pizza

ID dataset: Food50

Figure 13: Instance of LLM prompt for fine-grained OOD detection, ID dataset: Food-50. Note
that, the gray is the LLM prompt for fine-grained OOD detection, and the green is the LLM actually
returns.
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