Preference Adaptive and Sequential Text-to-Image Generation

Ofir Nabati! Guy Tennenholtz! ChihWei Hsu' Moonkyung Ryu' Deepak Ramachandran? Yinlam Chow >
Xiang Li! Craig Boutilier !

Abstract

We address the problem of interactive text-to-
image (T2I) generation, designing a reinforce-
ment learning (RL) agent which iteratively im-
proves a set of generated images for a user through
a sequence of prompt expansions. Using human
raters, we create a novel dataset of sequential pref-
erences, which we leverage, together with large-
scale open-source (non-sequential) datasets. We
construct user-preference and user-choice mod-
els using an EM strategy and identify varying
user preference types. We then leverage a large
multimodal language model (LMM) and a value-
based RL approach to suggest an adaptive and
diverse slate of prompt expansions to the user.
Our Preference Adaptive and Sequential Text-to-
image Agent (PASTA) extends T2I models with
adaptive multi-turn capabilities, fostering collabo-
rative co-creation and addressing uncertainty or
underspecification in a user’s intent. We evaluate
PASTA using human raters, showing significant
improvement compared to baseline methods. We
also open-source our sequential rater dataset and
simulated user-rater interactions to support future
research in user-centric multi-turn T2I systems.

1. Introduction

Advances in text-to-image (T2I) generation, fueled by pow-
erful diffusion models (Croitoru et al., 2023; Gu et al., 2023;
Rombach et al., 2022; Saharia et al., 2022; Yang et al., 2023;
Yu et al., 2022; Zhang et al., 2023; Liang et al., 2024), have
unlocked unprecedented possibilities for image generation,
as users can readily translate textual descriptions into stun-
ning visuals. That said, capturing precise user intent remains
a major challenge (Wu et al., 2023; Liang et al., 2024). As
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such, single-turn T2I generation may fail to encapsulate
a user’s nuanced and evolving image conception. This is
especially true for complex or abstract concepts, where a
user’s initial prompt may not suffice in achieving a desired
visual representation.

Addressing this challenge requires moving beyond the
paradigm of one-shot T2I generation towards a more it-
erative and interactive process (von Riitte et al., 2023; Wang,
2024; Liu et al., 2024), e.g., a collaborative setting where an
assistive agent interacts with a user, guiding them through
a series of refinements of their initial prompt. This inter-
active setup could allow for a more nuanced elicitation of
the user’s intent, gradually shaping the generated images
towards a desired outcome.

To this end, we introduce a Preference Adaptive and
Sequential Text-to-image Agent (PASTA), which learns
from user preference feedback to guide the user through
a sequence of prompt expansions, iteratively refining the
generated image. This sequential approach (see Figure 1)
allows users to articulate their vision more completely by
gradually reducing uncertainty or underspecification in their
original prompt. Our framework leverages the power of
large multimodal language models (LMMs) (Gemini-Team,
2024; Achiam et al., 2023) and reinforcement learning (RL)
(Sutton, 2018; Fan et al., 2023) to facilitate user-adaptive
co-creation.

Our approach for PASTA involves a multi-stage data collec-
tion and training process. We first collect multi-turn interac-
tion data from human raters with a baseline LMM. Using
this sequential data, as well as large-scale, open source
(single-turn) preference data, we train a user simulator. Par-
ticularly, we employ an EM-strategy to train user prefer-
ence and choice models, which capture implicit user prefer-
ence types in the data. We then construct a new large-scale
dataset, which consists of interactions between a simulated
user and the LMM.!. Finally, we leverage this augmented
data, encompassing both human and simulated interactions,
to train PASTA — our value-based RL agent, which presents
a sequence of diverse slates of images to a user. PASTA

'Both human and simulation data is open-sourced to sup-
port research on multi-turn T2I generation. Link to the dataset:
https://www.kaggle.com/datasets/googleai/pasta-data.
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Figure 1: An illustration of an agent-user interaction with L = 4 prompt expansions at each step, and M = 1 images per prompt
expansion. The user selection is outlined in blue. The agent presents prompt expansions based on the user’s previous responses to
maximizes the expected cumulative user satisfaction (i.e., value). See Appendix G for additional examples using M = 4 images for

L = 4 prompt expansions.

interacts with the user and sequentially refines its generated
images to better suit their underlying preferences.

Our contributions are as follows. (1) We formulate the prob-
lem of iterative prompt expansion using LMMs and T2I
models. (2) We collect a new, large-scale user-agent inter-
action dataset for the multi-turn prompt expansion setup.
Our dataset consists of almost 40,000 interaction rollouts.
(3) We train user utility and user-choice models with this
dataset, creating a simulator that is used to generate addi-
tional simulated data. (4) Finally, we utilize our datasets
to train PASTA, our value-based RL agent, demonstrating
its effectiveness through comprehensive human evaluations,
with significant improvements in user satisfaction compared
to a baseline LMM.

2. Background and Problem Setup

We begin with a short background on diffusion models,
LMMs, and RL. We then formulate our problem setup.

2.1. Background

Diffusion models (Ho et al., 2020; Ho & Salimans, 2022;
Croitoru et al., 2023; Gu et al., 2023; Rombach et al., 2022;
Saharia et al., 2022; Yang et al., 2023; Yu et al., 2022; Zhang
et al., 2023; Liang et al., 2024) have become a prominent
approach for T2I generation. These models add Gaussian
noise to an image until it becomes pure noise, and are then
trained to reverse this process, iteratively removing noise to
reconstruct the image. This denoising process is guided by a
prompt, enabling the generation of images that semantically
align with the textual description.

Large Multimodal Models (LMMs) (Gemini-Team, 2024;
Achiam et al., 2023) use Transformer models (Vaswani,
2017), and are trained to predict the next token in a se-
quence, where tokens can represent textual or visual infor-
mation. These models learn joint representations of text and
images, making them useful for prompt engineering in in-
teractive T2I systems, as they allow us to modify generated
outputs based on previously generated responses.
Reinforcement Learning (RL) (Sutton, 2018; Fan et al.,
2023) frameworks train agents to make a sequence of de-
cisions in an environment to maximize cumulative reward.
Value-based RL methods learn a value function that esti-
mates the expected cumulative reward for taking a particular
action in a given state. In our work, an RL agent learns to
select actions (prompt expansions) that lead to higher user
satisfaction.

2.2. Problem Formulation

We consider an interactive, sequential T2I decision problem
in which a user engages with an agent, visualized in Figure 1.
At time ¢ = 0, the user issues an initial prompt (e.g., “A
white cat”) intended to capture a target image. At each turn
t > 1 the agent proposes L prompt expansions, which are
fed to a T2 model. The T2I model then generates M images
for each prompt. The user sees the slate of M x L images
and selects the set of M images (corresponding to one of
the prompt expansions) that best reflects their preferences.
The process repeats for up to H turns.

Formally, the problem 1is given by a tuple
Uu,rP,7,G,C,R,H,1py), where U is a set of user
types, reflecting different preferences; P is a set of feasible
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text prompts; Z is a set of feasible images; G : P — Az
is a T2I generative model?; C : U x P x TML A[L] is
a user choice function®; R : U x P x IML — Ajgqjisa
user utility function; H is the horizon; and vy — Ayxp
is a distribution of users and initial prompts. At time
t = 0, a user-prompt pair u,py € U X P is sam-
pled from the initial distribution 5. At each time
1 < t < H the agent selects a slate of L prompt ex-
pansions P, = {p;; € P}eL:1 and feeds them to the T2I
model G, which generates M images for each prompt,

{{Im,e,t ~ G(pf,t)}nl\le}j 1

The user observes the
slate of M x L images, and selects a set of M images
corresponding to one prompt, and according to the choice
function C, ie., ¢; ~ C(u,po,l1,1,¢,---,Im,0.t). We
assume a (latent) reward 7y ~ R(u,po, 1,6, t,- - Ir.0,.t)
reflecting user u’s satisfaction with the selected images.

2.3. RL Formulation

Our problem can be formulated as a latent contextual MDP
(Hallak et al., 2015; Kwon et al., 2021), where I/ is the latent
context space. The state space consists of the user-agent
interaction history, with the state (history) h; at time ¢ given

by:
L LM
ht = { Do 5 {pé,l}gzl 7{Im,€,1}g:17m:1acla
~—~ —_————

initial prompt agent action A

time step 1

transition

time step ¢

L LM
{pi,t}g:1 ) {Im,f,t}e:Lm:p Ct }a
———

agent action A,

transition

the action space is any selection of L prompts, transitions are
induced by the user choice model C and the T2I model G,
and reward is given by a user utility function R. See Ap-
pendix A for a full description of this latent MDP.

A stochastic policy = H +— Apr maps in-
teraction histories to a distribution over slates of L
prompts. The value of a policy 7 is its expected cu-
mulative sum of rewards over users and initial prompts,

s

e, v = EUNVO[Zil T ‘u,ﬂ] An optimal pol-

icy ™" € argmax, v" maximizes the value. The state-
action value function for any h € H and P € PL is

g7 (h, P) = Eqr, [fo:t ro | uhy =h, P, =P ).

*More generally, G' can be a function of user v or interaction
history. Here we assume G is a non-adaptive T2I model.

*More generally a user choice function can also depend on
prompt expansions. In our work we assume users only view the
generated images and the initial prompt.

3. PASTA: Preference Adaptive and
Sequential Text-to-image Agent

We solve the sequential prompt expansion problem using
RL. Our Personalized And Sequential Text-to-image Agent
(PASTA) engages with a user to adapt the prompt to their
preferences, and maximize (latent) user utility. The user’s
type u € U is unknown to the agent and must be inferred
during the interaction. This framework is related to meta-
RL (Wang et al., 2016; Duan et al., 2016; Finn et al., 2017;
Zintgraf et al., 2020), where each episode (or meta-episode)
samples a latent MDP from a predefined problem distribu-
tion. In our setting, the agent must adapt within H steps
to the unknown MDP, and optimize the reward accordingly.
This requires balancing exploration and exploitation: the
agent must take actions that, on the one hand, provide im-
ages that reflect (its estimate of) the user’s preferences, and
on the other, improving its estimate of those preferences by
exploring other types of expansions/images. This can be
viewed as an implicit form of preference elicitation (Keeney,
1993; Salo & Hamalainen, 2001; Chajewska et al., 2000;
Boutilier, 2002; Meshi et al., 2023).

3.1. Candidate Action Generator And Selector

The state space of user interaction histories serves as suffi-
cient statistic (i.e., belief over users’ types (Aberdeen et al.,
2007)). To solve our problem effectively, each interaction
with a user should provide the agent sufficient information
about the user (e.g., through value of information (Boutilier
et al., 2003)). This requires the action space be rich and
diverse enough to enable information gain.

A straightforward approach to action space design uses an
LMM to construct action candidates (in our case, prompt
expansion candidates). Specifically, we use an LMM to
process the current interaction history and generate a broad
set of Lo > L candidate prompts from which a slate of
L prompts can be chosen. Generating a large set of can-
didates has been shown to introduce diversity and induce
exploration (Tennenholtz et al., 2024). Instead of relying on
a given LMM to directly output L prompts, we encourage
diversity by generating L~ prompts, and then selecting the
L-subset our agent deems optimal. This, in turn, expands
the effective action space our agent can leverage during
training.

Formally, we structure our policy class using a candidate
generator policy t¢ : H — Apr. and a candidate selector
policy wg : PL¢ s Apr. We first sample a set of L can-
didates {pi7t}ffl ~ m¢(he) and then select L prompts from
those candidates, i.e., P, = {piﬁt}le ~ Tg <{p1t}lL:Cl> .
We assume ¢ to be a fixed, capable LMM, and focus here
on training the candidate selector 7g.
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Figure 2: Top. PASTA policy framework: The LMM is used as a
candidate generator of a candidate set, from which the candidate
selector policy is used to select a slate. Bottom. Each prompt in
the slate is evaluated individually using a prompt-value model, and
the overall slate value is calculated as the average of the individual
prompt values.

3.2. Value-Based Candidate Selector

We use a state-action value function to define our selector
policy, ws. Given candidates {p; fzcl and a state-action
value model ¢4 (h, P) parameterized by ¢, we define the

selector policy by

max

ms,4(h) € arg
PePL({p}iS)

Qd>(h7p)7 (D

where Pr(X) = {P € X : |P| = L} is the set of all pos-
sible slates of size L. Enumerating Py, ({pz}fjl)> is, of

course, computationally expensive when L is large (a detri-
ment to both training time and inference efficiency). In-
spired by Ie et al. (2019), we decompose the value function
into a (weighted) average of prompt-values fg : HxP — R.
Specifically, we compute the value of each prompt, and esti-
mate the value of a slate by:

W P) =7 3 folhp)

peP

This approximation reduces the exponential complexity of
finding the best slate to O(L¢ log L¢) (i.e., by sorting the
prompt values over the candidate set). See Figure 2 for a
schematic of the PASTA policy and value function. PASTA
first prompts an LMM 7 (i.e., candidate generator) to
generate Lo candidates {p&fj1 ~ wc(h). Tt then uses
its candidate selector mg to select a slate P of prompts
according to Equation (1).

We train PASTA using implicit Q-Learning (IQL) (Kostrikov
et al., 2021), which estimates the TD error with the Bellman
optimality operator. IQL employs a soft estimate with a
value function trained to approximate the high expectile

without assessing state-actions outside the dataset distri-
bution, and has proven effective in offline RL with LLMs
(Snell et al.; Zhou et al., 2024). The IQL loss is:

£(¢7 1/’) = ]Eht,Pf,-,Tf,,hf,+1~D |:(q¢7(ht7 Pt) — T
ﬂmeoV+La%muawﬂwmm]

where L§ (z) = | — 1{z<o}| #% a € [0.5,1] and vy, is the
a-expectile value estimate. Most notably, the IQL loss does
not require searching for the best slate (which is oftentimes
out of the distribution of the training data), making it very
efficient for training (see Appendix E.1 for further details).

4. PASTA Dataset

Training PASTA relies on the availability of sequential
user-agent interaction data. While single-turn T2I prefer-
ence data is readily available (Wu et al., 2023; Kirstain
et al., 2023; Pressman et al., 2022; Liang et al., 2024),
sequential datasets are not. Hence, we collect human-
rater data for our sequential setup, and further enrich it
with simulated data. Below, we describe our data cre-
ation process. All of our datasets are open-sourced here:
https://www.kaggle.com/datasets/googleai/pasta-data.

4.1. Human Rater Sequential Data

‘We use human raters to gather sequential user preferences
data for preference-adaptive T2I generation.* Participants
are tasked with interacting with an LMM agent for five
turns. Throughout our rater study we use a Gemini 1.5 Flash
Model (Gemini-Team, 2024) as our base LMM, which acts
as an agent. At each turn, the system presents 16 images, ar-
ranged in four columns (L = 4, M = 4), each representing
a different prompt expansion derived from the user’s initial
prompt and prior interactions. Raters are shown only the
generated images, not the prompt expansions themselves.

At session start, raters are instructed to provide an initial
prompt of at most 12 words, encapsulating a specific vi-
sual concept. They are encouraged to provide descriptive
prompts that avoid generic terms (e.g., “an ancient Egyptian
temple with hieroglyphs”instead of “a temple”). At each
turn, raters then select the column of images preferred most
(see the Ul used in Appendix B); they are instructed to se-
lect a column based on the quality of the best image in that
column w.r.t. their original intent. Raters may optionally
provide a free-text critique (up to 12 words) to guide sub-
sequent prompt expansions, though most raters did not use
this facility.

“Raters were paid contractors. They received their standard
contracted wage, which is above the living wage in their country
of employment.


https://www.kaggle.com/datasets/googleai/pasta-data
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After five turns, raters enter an evaluation phase where
they answer questions about each turn, including: (1) re-
confirmation of their preferred columns; (2) quantifying
whether the image slate in the current turn is better than the
previous; and (3) a free-text explanation for their selection.
This process yields a dataset comprising sequential interac-
tion trajectories with user preference feedback and provides
valuable insight into the dynamics of multi-turn, preference-
adaptive T2I generation. Our human rater dataset includes
over 7,000 five-step sequences (more than 500,000 images
total), annotated by about 100 human raters using a random
candidate selector. See Appendix B for a comprehensive
description of the rater study.

4.2. Simulated Sequential Data

Simulated data can drastically improve performance of RL
agents (Kaiser et al., 2019; Yu et al., 2021; Liu et al., 2023;
Hafner et al., 2020; Micheli et al., 2022). For this reason,
we enrich the rater data above with additional simulated
agent-user interaction data. To do so, we develop a user
model that encodes distinct user fypes that reflect a range
of preferences. This model has two components: (1) A
user choice model which predicts the image column a user
selects; and (2) a user utility model which predicts a user’s
satisfaction with an image slate. We outline details of the
user model in Section 5.

We begin by sampling a user and initial prompt from a joint
prior. We use a randomized exploration policy for the agent,
encouraging diverse interactions to distinguish preferences
across user types. At each turn in a simulated trajectory, the
agent proposes a slate of prompt expansions, and the user
(via the choice model) selects their preferred prompt. The
user utility model is then used to assign a satisfaction score
for the images generated using the selected prompt. This
process is repeated for five turns (see Appendix C for further
details and analysis of our data generation process). The
simulated user data includes over 30,000 rollouts (exceeding
2.5 million images). Augmenting our human-rater data
with this simulated data allows for more robust training of
PASTA, as we show later in Section 6.

5. User Model

The data generation process described in Section 4.2 re-
quires a user simulator consisting of both user choice and
utility models. We leverage our sequential human-rater data
(Section 4.1), together with large-scale open-source single-
turn T2I preference data (Wu et al., 2023; Kirstain et al.,
2023; Pressman et al., 2022), to build these models.

We first propose a user preference model based on funda-
mental choice theory (Pennock et al., 2000) that mimics
user’s preference behaviors in an interactive recommenda-

tion system. Specifically, this model takes as input a user
type v € U, an initial prompt p € P, and a slate of im-
ages Py, = {Im’l,t}fgl]xm:l and estimates the probability

that u prefers image column {1, ¢~ ;} %:1 over the others

(It} s 10

P({Tne- by = Ut} s liop). @)

In the typical single-turn setup (Wallace et al., 2024), by
setting M = 2, L = 1, and not assuming any user types,
Equation (2) reduces to a probabilistic model that estimates
the “global” (non-user specific) pair-wise preference be-
tween two images, i.e.,

EuNVo[P(Il - 12) | u,p].

By contrast, our model is able to capture user-specific pref-
erences over a generic sets of multiple images.

Our user choice model C' exploits the preference model in
Equation (2), making the usual assumption that users select
images based on their inherent preferences; i.e.,

Assumption 5.1 (Choice-Preference Equivalence). Assume
C = P, where P is the preference model in Equation (2).

While, in general, user choice may also be be biased by
other factors (e.g., previous interactions, position bias, etc.),
this idealized model proves very useful in our experiments.

To further model user utility, motivated by the axioms of ex-
pected utility theory (Von Neumann & Morgenstern, 2007),
we model user utility R : U x P x ZML — R, leverag-
ing the preference model in Equation (2) to ensure a user’s
utility is consistent with their preferences. Specifically, we
assume that a user prefers one set of images to another if
the utility of the former images is higher, as formalized by
the following assumption.

Assumption 5.2 (Utility Consistency). For any u, p, Equa-
tion (2) is satisfied for £* € {1,..., L} iff for all £ # ¢*

R({Ié*ﬂn,t}%:l |u7 p) > R({Iﬁ,m,t}%zl ‘ua p) .

Assumptions 5.1 and 5.2 ensure a tight coupling of our
user utility and choice models, which we leverage in model
training.

5.1. A Parametric User Model

To train our user utility and choice models, we employ a
parameterized score model sg : U x T x P — [0, 1] to serve
as the backbone of our user simulator. We assume a discrete
set of K (unknown) user types, i.e.,U = {1,2,..., K}.

Exploiting Assumptions 5.1 and 5.2, we define the utility of

a user type k over an arbitrary image slate {I,,,, g’t}i\le that
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Figure 3: Score function architecture. The image and prompt are
fed into CLIP encoders followed by user encoders to generate K
user embeddings. The score for each user type is the inner product
between the corresponding user image embedding and user text
embedding.

associates to a prompt p using the following model:

REY = Ry ({Ln byl = k.p)
= Agg(SO(k7p> Il,f,t)7 ey 59(k7p7 IM,f,t))a (3)

where Agg is an aggregator (e.g., average, max, Softmax
sampler) operator. User choice probabilities are given by

C«‘)(k7pa {I7r1,,1,t}%=1a ey {IHL,L,t}%zl)
— k.0 k.0
= Softmax(TgRLt e 7T9RL7t)7 “4)

where 79 = hg (R’ff ey Rii) is a parameterized tem-
perature constant which depends on the scores of different
image columns. Such a temperature parameterization en-
sures our user choice model satisfies Assumption 5.2, while
allowing for greater flexibility in modeling.

To balance model capacity and computational efficiency,
our score function adopts pre-trained CLIP (Radford et al.,
2021) text and image encoders, followed by user encoders (a
head for each user type). The user encoder transforms CLIP
embeddings into a user-type-specific representation that cap-
tures individual preferences for images and prompts. The
final score of an image-prompt pair is the inner product of
the (user-type-specific) image embedding and correspond-
ing text embedding, multiplied by a learned temperature
parameter (see a schematic of our architecture in Figure 3).

We employ an Expectation-Maximization (EM) framework
to learn a user model capable of capturing diverse pref-

erences. This model leverages the score function sy that
assesses the compatibility between image-prompt pairs and
different user types. The EM algorithm iteratively refines
the model parameters € and a user type prior distribution
7 to maximize the likelihood of observed user feedback.
Training proceeds in two phases: a main training phase on
large-scale datasets with frozen CLIP parameters, followed
by a fine-tuning phase on human-rated data where all param-
eters are trained. We detail the training procedure, specific
loss functions tailored to different data types (single-turn
preferences, relevance scores, and sequential multi-turn),
the model architecture, and hyperparameter settings in Ap-
pendix D.1.

6. Experiments

To assess the effectiveness of our approach, we conduct
two empirical evaluations. First, we evaluate the quality of
our user model and the simulated data it generated. This
involves analyzing the model’s ability to accurately capture
user preferences and generate realistic interaction data. Sec-
ond, we study the performance of PASTA, our multi-turn
T2I agent, trained using our rater and simulated datasets.
We perform a comprehensive analysis at each stage to assess
the quality of the user model, the accuracy of the simulated
data, and the overall performance of the T2I agent.

6.1. Setup

The slate size, number of images per prompt, and problem
horizon are fixed L = 4, M = 4 and H = 5 in all experi-
ments. We use Stable Diffusion XL (Podell et al., 2023) as
our T2I model and multimodal Gemini 1.5 Flash (Gemini-
Team, 2024) as our (prompt) candidate generator LMM,
with Lo = 25. Our learned value function is fine-tuned
from Gemma 2B (Gemma-Team, 2024). Our experiments
use a sparse reward, with rewards provided only in the final
round, as our primary interest lies in the end result of inter-
active refinement process. We use softmax sampling for the
user model’s aggregation function in Equation (3), as raters
were instructed to select a column based on the best image
from that column.

To further encourage diversity in the generation of prompt
candidates, we require the LMM prompt generator to parti-
tion the candidate set into five categories, with each category
focusing on a different aspect of the prompt expansion. Cat-
egories include both generic forms (e.g., rephrasing, adding
more details) as well as prompt-specific approaches (e.g.,
different types of dogs, cloud shapes, etc.). Moreover, we
restrict the candidate selector to select at most one prompt
from each category. This simple technique induces signifi-
cant diversity (hence implicit exploration), and is used for
data generation, policy training, and at inference time.
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Figure 4: The graphs present the performance of a trained user
model as a function of the number of user types considered. The
top row displays the model’s accuracy on the Pick-a-Pic test set
(left) and its Spearman’s rank correlation on the HPS test set
(right). The bottom row shows the model’s choice accuracy (left)
and cross-turn preference accuracy (right), both evaluated on our
human-rated test set.

6.2. User Model Evaluation

We evaluate the quality of our user model by assessing
its ability to capture user preferences and generate realis-
tic interaction data. We train the model using large-scale
single-turn datasets (HPS V2 (Wu et al., 2023), Pick-a-Pic
(Kirstain et al., 2023), and Simulacra Aesthetic Captions
(Pressman et al., 2022)) and fine-tune it with our human-
rater sequential data. During training, CLIP model weights
are initially frozen, focusing on learning user image and
text encoder parameters. See Appendix D for full training
details, including loss functions and architectures.

We analyze model performance in two stages. First, we
assess prediction accuracy of the and Pick-a-Pic testset
(Kirstain et al., 2023) and ranking using Spearman’s rank
correlation (Spearman, 1961) on the HPS dataset (Wu et al.,
2023). Second, we evaluate prompt choice prediction accu-
racy and cross-turn preference accuracy on our human-rated
data. Results in Figure 4 indicate that increasing the number
of user types significantly improves performance, plateauing
around 16 types. This highlights the importance of model-
ing diverse user preferences. Notably, even with a moderate
number of user types, our model achieves approximately
70% accuracy on the human-rated dataset metrics. A further
notable observation is the emergence of visually distinct
domain preferences for different user types; this tends to be-
come more prominent as the number of user types increases.
An illustration for the 32-type model is shown in Figure 5.

6.3. PASTA Results

Using our user model, we generate more than 30,000 simu-
lated user-agent trajectories. We also generate reward labels
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Figure 5: Emergence of user-specific preferences: Each row
displays the top five images—scored by the user model, prior to
fine-tuning—from the HPS test set for one of five specific user
types. We highlight user types where differences across the top
five images were especially salient. The category labels (Animals,
Food, etc.) are simply meant to be evocative on the style or content
of the most preferred images.

for our human-rater data using the user model, and train our
state-action value function in three different settings: using
only human rater data, using only simulated data, and using
both data sources. The T2I agents trained by these algo-
rithms are evaluated with human raters, for which the raters
judge whether the current turn’s chosen image was better,
worse, or equally preferred to that in the previous turn. To
make PASTA more efficient for human-rater studies, we dis-
till the T2I agent into a single, fine-tuned Gemini 1.5 Flash
(Gemini-Team, 2024) LMM, and serve that in real-time to
generate the proposed image slates directly (without explicit
prompt expansions). We also conduct an experiment with
simulated users, using our user model, whose results are
described in Appendix F together with other experiments
for both PASTA and the user model.

We compare our agents (each using a different state-action
value function) with an untrained multi-modal Gemini 1.5
Flash model. The results of human-rater evaluations are
shown in Figure 6. These results demonstrate that training
on real human data enhances our agents’ performance over
the pre-trained LMM baseline (i.e., over the off-the shelf
Gemini 1.5 Flash), whereas training with synthetic data
alone leads to a slight decline in performance. Unsurpris-
ingly, training on both real and synthetic datasets offers the
best performance. This suggests that, while our user simula-
tion may not fully reflect the real-world distribution of user
behaviors (partially due to its simplified assumptions), the
additional data generated by our user model does capture
some key dynamics of real user interactions, yielding more
accurate user choice predictions and sequentially generated
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Figure 6: PASTA Evaluation. We ask raters to determine, for each interaction turn, whether the shown images are an improvement over
the previous turn. The raters can choose one of three options: Better, Worse, or Same. Results show percentage of raters who chose each
option. Experiments compare the base Gemini Flash model (without fine-tuning) to PASTA (also using Gemini Flash) varied by training
on different datasets: (1) only simulated user data, (2) only real rater data, and (3) the combination of both datasets. Plots show 99%

confidence intervals.

User Score
=@= Base
5 Only Synthetic
=@®= Only Rater
4 Synthetic + Rater

O
o— L ®
.\ ./.
3 4 5

2 —
1 @
/ v
0 /
0 1 2
Rounds

Figure 7: PASTA Evaluation with the Score Model. We use
our trained user model to evaluate the rollouts of real users with
different baselines.

images that are tailored to user preferences. Moreover, a
high rank correlation between real user preferences and the
predictions from our learned model over a vast number of
user types further supports this conclusion. We also present
the user model score for each step averaged over all rollouts
in Figure 7. The user type was chosen as the one that maxi-
mizes the posterior over the user’s data. The results show
that PASTA monotonically improves the user score along
the rollouts and are consistent with the real users’ results in
Figure 6. This evaluation further validates the correlation
between our user model and real users.

Finally, we conduct new human rater evaluations over the
final turn of PASTA. Particularly, we conduct a rater study
where we explicitly show raters the final turn images (for a
given prompt) of PASTA compared to the baseline Gemini
1.5 Flash model and ask them to compare the generated
last turn images. We find that PASTA receives an 85%
relative improvement over the baseline model when directly
comparing the last turn. We believe that directly comparing
the last turn emphasizes the strength of our approach and
the significance of our results in terms of the outcome of
using our model.

6.4. Generalization: Flux T2I model

We use Flux.1 > together with our PASTA agent and com-
pare it to the baseline Gemini 1.5 Flash. Particularly, we
do not retrain PASTA over new Flux.1 data, but rather test
PASTA’s capability to generalize from the SDXL T2I model
to the Flux.1 T2I model. We present the raters the final
images constructed by PASTA against the final images gen-
erated with the Gemini baseline. Indeed, our results show
that PASTA achieves a 20% relative improvement over the
baseline without any further training over Flux data. This
highlights PASTA’s ability to adapt to different T2I models.

6.5. Abstract Prompts with Simulated Users

To visualize the differences in user preferences and PASTA’s
ability to adapt to them, we use PASTA with various user
types using broad, abstract prompts such as "an image of
happiness". Figure 8 shows an example of different rollouts
of three distinct user types. We observe a clear preference
emerging, favoring specific styles or content. All users starts
with the same prompt and initial images. We present only
the images and their corresponding prompt-expansion at the
last 5-th step. Each color represent a different user type. For
more examples, see Appendix F.2.

7. Related Work

Our work is related to recent advances in interactive and
preference-adaptive image generation. Existing methods ex-
plore iterative refinement using visual feedback (von Riitte
et al., 2023; Wang, 2024) or leverage LLMs for prompt
engineering (Liu et al., 2024; Brade et al., 2023; Hao et al.,
2024), often focusing on optimization of perceptual qual-
ity or user satisfaction in a single interaction (Fan et al.,
2023; Chidambaram et al., 2024; Wallace et al., 2024; Wu
etal., 2023). Our PASTA framework extends this by framing
multi-turn image generation as a sequential decision-making

>https:/flux1.ai/
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"An image of love"

User Type A

Rollout 1

"Tender embrace in soft golden light, detailed textures, warm
tones, intimate moment"

"Soft lighting illuminates a mother's tender touch on her child's
face, enhancing the emotional depth"

Rollout 3

"Two elderly lovers sharing a quiet moment on a beach at dusk,
soft light, detailed wrinkles"

"An image of love"

User Type B

Rollout 1

"A visual exploration of love's intensity, abstract forms, dynamic
composition"

"A tapestry of textures, rough and smooth interwoven, portraying
the strengths and vulnerabilities within a loving family"

Rollout 3

"Intertwined geometric forms representing love, Cubist style, soft
pastel palette, balanced composition"

Figure 8: An illustration of three different rollouts of PASTA with two different user types for the abstract initial prompt: “An image of
love". Rollouts show the final images in the rollout (i.e., at step ¢ = 5).

problem, where an RL agent learns to extend and person-
alize a prompt through a series of expansions guided by
user feedback. This enables iterative refinement towards
a desired visual outcome, capturing nuances in user pref-
erences across diverse user types. Notably, while many
existing methods focus on modifying internal aspects of
text-to-image (T2I) models (e.g., diffusion noise (Tang et al.,
2023), attention maps (von Riitte et al., 2023) or prompt
embeddings (Salehi et al., 2025)), PASTA operates by di-
rectly adapting the input prompt, offering a model-agnostic
approach to adaptive preference learning in T2I generation.

PASTA draws upon a rich history of preference elicita-
tion (PE) research (Boutilier, 2002; Chajewska et al., 2000;
Keeney, 1993; Salo & Hamalainen, 2001), especially that in
content-based recommender systems (Boutilier et al., 2003;
Spearman, 1961; Rashid et al., 2002; Meshi et al., 2023),
and addresses the challenge of optimizing PE for diverse
downstream tasks. Existing research highlights the impor-
tance of diversity in recommendations (Sidana et al., 2018)
and explores diversity in elicitation strategies (Parapar &
Radlinski, 2021). PASTA tackles this by training an agent
that considers both immediate user feedback and long-term
goals to generate preference-aligned images. Our novel data
collection and simulation methodology further support the
training of robust user simulators, which we show to greatly
improve policy learning.

8. Conclusion

This work introduced PASTA, a novel RL agent for
preference-adaptive and sequential T2I generation. We for-
mulated the problem of iterative prompt expansions with
LMMs and T2I models as a sequential decision-making
problem that drives a collaborative, multi-turn image gener-
ation with the user. Critically, we have produced a new
dataset that captures sequential interactions between an
agent and a user, which we release to support further inves-
tigation of new T2I techniques in the research community.
We developed user utility and choice models, learned from
this dataset, which we used to create a user simulator that
enabled generation of additional synthetic data (which we
release as well). Finally, we used our sequential data to
train PASTA, and demonstrated its effectiveness through
comprehensive human evaluations, showing significant im-
provements in user satisfaction.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Latent Markov Decision Process (LMDP)

We begin with defining Latent Markov Decision Process introduced in (Hallak et al., 2015; Kwon et al., 2021).

Definition A.1. Suppose that a set of MDPs M with a joint state space S and joint action space A in finite horizon
setting with horizon H. let K = |[M|, S = |S| and A = |A|. Each MDP M, € M it a tuple (S, A, Ty, R, k)
where Ty, : § x A — Ag is a transition probability that maps a state-action pair into a distribution over the next state,
Ry : & x A+ Ajp,1) a probability measure for rewards that maps a state-action pair into a distribution over rewards and
initial state distribution vy. Let 1,72, . . ., Nx be the mixing weights of LMDPs such that at the start of every episode, one
MDP M, € M is randomly chosen with probability 7.

The goal of the problem is to find a policy 7 within a policy class IT that maximizes the expected return:
K H
* o ,Eﬂ—

where ET[-] is expectation taken over the k-th MDP with policy 7. The policy m : # x S — A 4 maps the current state
and history into distribution over actions. Generally, the history is all experience seen so far H = (S, A, [0, 1])*. When the
model parameters are known, history is a sufficient statistics and can be summarized into belief states:

77ka(81)
bi(k) = =2l
1) >k Mk (1)
bt+1(k) = bt(k)Tk(St+1|5t’at)Rk(Tt|St,at)

B Zk bt(k)Tk(3t+1 ‘St, at)Rk(rt‘Sh at) .

We formulate our reinforcement learning problem as a latent MDP, where each user from a discrete set induces distinct
transition and reward kernels. Specifically, in our sequential text-to-image decision problem the state space is a prompt and
image slate S = P x ZML and the action space is the prompt slate A = PL. The transition kernel for the k-th user type is
composed of the T2I model and user choice model, i.e. the next state is the tuple composed of slate of images generated
from the chosen slate (the action) and chosen prompt:

L
M
St+1 = ({{Im,f,t}ml}llapa)v

where I, o1 ~ G(pe) and ¢, ~ C(k,po, I11t,---,Im,1,1). The reward kernel corresponds to the user’s utility function:

Ty ~ R(k7p07ll,ft,t7 LR >IM,ét,t)-

Similar to standard LMDPs, the posterior update during user model training in ?? mirrors the belief state computation,
driven by observed samples collected from diverse human raters.
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B. Human Rater Dataset

To gather data for training and evaluating PASTA, we conducted a human rater study. We recruited paid contractors as
raters, and utilized a web-based interface where raters interacted with a Gemini 1.5 Flash Model acting as the agent in our
multi-turn image generation process.

An ancient Egyptian temple with hieroglyphs. Turn 4

Column 1 Column 2 Column 3 Caolumn 4

Column
selection

(Optional) Enter a critique for the images above B>

~ N

submit button (move to next turn)

An optional critique (e.g., add more color)

Figure 9: A screenshot of the interface raters used in the interaction phase. Raters were not shown the prompt expansions.
They were instructed to choose a preferred column (based on the best image of each column). Raters could optionally also
add an up to 12 word critique.

B.1. Rater Instructions: Interaction Phase

Each rater participated in a five-turn interaction session. At the beginning of the session, raters were presented with the
task’s instructions. They were then asked to provide an initial text prompt, with a maximum length of 12 words, representing
a specific visual concept they wanted to see realized as an image. The guidelines stressed that prompts should encapsulate
meaningful intent (thinking about a specific image they wished to see) and avoid generic prompts (e.g., “a temple”).
Instead, they were encouraged to use descriptive prompts within the 12-word limit (e.g., “An ancient Egyptian temple with
hieroglyphs”). They were assured that they need not worry about fitting all of their thoughts into the 12-word limit, as the
interaction process with the agent would help them refine their concept.
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Column 1 Column 2 Column 3 Column 4
Image 1A Image 2A Image 3A Image 4A
@
A
Image 1B Image 2B Image 3B Image 4B

Image 1C Image 3C Image 4C
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— 3000
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Image 4D

r~

T

Best image

Image 2A

Figure 10: Illustration shown to raters on how to select a column. Columns should be compared based on the best image of
each column.

In each of the subsequent five turns, the LMM agent presented the rater with 16 images, arranged in four columns (L=4,
M=4). Each column represented a different prompt expansion derived from the rater’s initial prompt and their choices in
previous turns. Figure 9 illustrates this setup. Critically, the raters were only shown the generated images, not the expanded
prompts themselves. This ensured their feedback was based purely on visual perception and alignment with their initial
intent, rather than on their interpretation of the textual modifications made by the agent.

The core task for the rater in each turn was to select the column of images they preferred most. The instructions, visually
depicted in Figure 10, emphasized that this selection should be based on the best image within each column, judged in terms
of general quality and its correspondence with the rater’s original prompt intent. For example, if Image 2A was the best
overall image of the 16, then Column 2 should be selected. This selection strategy was used to help reduce burden on raters.
It also benefited our choice model training procedure, which used this as inductive bias for training our model.

Optionally, raters could provide a free-text critique of the presented images, limited to 12 words (Figure 9). This critique
could address any aspect of the images, such as style, composition, color, or content, but raters were explicitly instructed not
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171 DataCompute Click on "End task" afterr answering questionsif@'r‘ Turn 5
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comparing columns, compare the quality of the best
image in each column w.r. your original prompt's intd
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Ignore Turn 6
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Figure 11: Screenshot of the evaluation phase for raters. This second phase (after the interaction phase) included questions
about every turn. See more details in Appendix B.2.

to use the critique field to change their original intent. For example, "Add more color" is a valid critique. The purpose of the
critique was to provide additional signals to the agent for refinement within the scope of the original visual concept, not to
redirect the generation process towards a different image altogether. Overall, approximately 20% of the collected data have
one or more critiques.

B.2. Rater Instructions: Evaluation Phase

After completing five interaction turns, raters were prompted to click the "Enter rater mode" button. The system then
transitioned to the evaluation phase. For each of the five turns, raters answered a set of questions designed to capture detailed
feedback on their experience and the agent’s performance. Figure 11 demonstrates the interface used during this stage. For
each turn, raters were asked the following questions, with their chosen column highlighted for reference:

1. Column Preference: Raters were asked to re-confirm their preferred column for each turn, ensuring consistency in their
choices (See Figure 11).

2. Absolute Column Satisfaction: For each of the four columns in each turn, raters provided an absolute satisfaction score
on a 5-point scale (1: very dissatisfied, 5: very satisfied). This score reflected their satisfaction with the best image in
the column, relative to their original prompt intent. This absolute scoring allowed for a finer-grained assessment of the
individual prompt expansions, capturing nuances beyond the simple relative ranking implied by column selection.

3. Selection Rationale: For their selected column in each turn, raters were asked to provide a free-text explanation of their
choice.

4. Turn-over-Turn Improvement: For turns 2-5, raters assessed whether the set of images in the current turn was better,
worse, or about the same as the set of images in the previous turn. This comparison, again focused on the quality of the
selected columns in each turn relative to the original prompt intent, provided a measure of the agent’s progress and its
ability to refine the generated images over time.

5. Overall Turn Satisfaction: Raters provided an overall absolute satisfaction score (1-5 scale) for all of the images
presented in each turn. This average score across columns gave a holistic impression of the agent’s performance in that

turn, complementing the column-specific feedback.
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Raters were finally instructed to press the "End Task" button (as shown in Figure 11) to complete their session, which
submitted their responses for all five turns.

B.3. Limitations of Rater Study

A recognized limitation of the rater study conducted in this work is the potential bias between groups of raters. In Figure 6
we compare PASTA trained on different datasets with the pre-trained Gemini Flash model. We could not concurrently run
different experiment arms because of a lack of A/B testing infrastructure which shows different agents to raters at random.
Consequently, the timing of experiment arms and rater availability could have introduced bias. Furthermore, the rater pool
might not be fully representative of all potential user demographics for PASTA, and the initial prompts provided to raters
might not have sufficient diversity.

Human errors and system issues, such as connection timeouts, were observed during the study. We did not implement
any formal mechanisms for raters to report errors during specific sessions although raters can somehow “correct” their
mistakes during the evaluation phase. Raters could prematurely abandon sessions without recording data from problematic
sessions. Raters could provide a critique of the presented images but subsequent generations might not be aligned with these
critiques. Although raters were explicitly instructed not to evaluate based on critique alignment, it might still cause worse
rater experience for those who provided critiques.

B.4. Generating Rewards for Human Rater Data with User Model

To leverage human rater data for value model training, we utilize our learned user utility function to generate rewards
for each interaction step. For each trajectory, we first compute the posterior distribution over user types using the model
described in Appendix D.3. We then employ the utility function of the most likely user type to generate rewards for each
timestep in the trajectory.
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C. Offline Simulated Sequential Data

This section describes the generation of an offline dataset for training PASTA. We detail the process of creating interaction
trajectories with simulated users, based on our trained user model and a random prompt selection policy. We also address
the challenge of MDP ambiguity inherent in offline learning, specifically in the context of diverse user types, and present
conditions for ensuring identifiability of the offline dataset.

C.1. Offline Dataset Creation

Leveraging our trained user model and user type prior, we generated a dataset comprising over 30,000 simulated user
interaction trajectories. We assume independence between the initial prompt distribution and the user type distribution, i.e.,
v(po,u) = v(po)no(u). Therefore, at the beginning of each trajectory, we approximate the true user prior with the learned
prior from user model training (9 ~ 1) and sample initial prompts uniformly from the available datasets, while limiting the
initial prompts to be with no more than 10 words in order to avoid very large prompt at the end of the rollout.

To ensure diverse and representative data for training, the data generation policy needs to produce coherent prompts that
encourage exploration and sufficiently cover the state-action space, thereby mitigating potential MDP ambiguity (discussed
further in the next subsection). We achieve this by using the candidate generator detailed in Appendix E.2 coupled with
a random selection policy, denoted as mang. This policy is constrained to select a maximum of one prompt per category,
promoting exploration across different prompt categories.

At each interaction step, the candidate generator produces a categorized set of Lo prompts. The random policy 7yang
then samples a slate of L prompts, for which the text-to-image model generates M images each. A prompt ¢; is selected
according to the user choice model, and the corresponding user satisfaction level (reward) is recorded based on the utility
function defined in Section 2.2.

C.2. Identifiable Offline Dataset

After constructing the user choice model and utility function, we use a user simulator to generate an offline dataset for
PASTA training. The offline reinforcement learning framework is chosen due to its computational efficiency during training.
However, offline LMDP introduces the challenge of Markov Decision Process (MDP) ambiguity (Dorfman et al., 2021), and
in our context, user type ambiguity:

Definition C.1. User type ambiguity (Dorfman et al., 2021). Consider data generated from a set of K user types
U =11,2,..., K], each corresponding to a user choice model and utility function {C}, Ri}fiy The data is collected by

sampling a subset of N user types {uz}i\le C U, and applying their respective behavior policies {w? }7]\’:1 This results in
N data distributions {p, s }f\il over image slates, initial prompt and rewards, with p : P x ZML x [0,1] — [0, 1]. We
define the collected data arls%ambiguous if there exists a user type v* € U and two policies 7, 7’ such that Puy 7P = Purx
and Pujn? = Pur for some i # j. Otherwise, the data is considered identifiable. o

In essence, the data is ambiguous if a user type under different policies results in same data distributions of two different user
types and their corresponding behavioral policies, regardless of how much data is collected. By introducing the concepts of
identifying state-action pairs and overlapping state-actions, we can define a sufficient condition for identifiability.

Definition C.2. Identifying Slate of Images.For a pair of user types i,j € U, we define (po, {Imj}n]\f’:l/l 4—1) as

an identifying slate of images if R(’Z;,po,{.[m_’g}%;LLZ:l) # R(j,po{Imyg}%’:Luzl) or C(i,po,{Im,g}ff’:LM:l) #
) M,L

C(japOa{Im,Z}mng:l)-

Definition C.3. Overlapping Slate of Images. Given data collected as described in Definition C.1. a slate of images
(po, {Im’g}%’:ﬁ’ ¢+—1) s said to overlap for a pair of user types 4, j € U if it has a positive slate-probability under both user

. M,L M,L
types, i.e., [ (po, {Im>f}m:1,lzl) > (0 and Pjx? (po, {Im7[}m:1’£:1) > 0.

A sufficient condition for identifiability is as follows:

Proposition C.4. (Dorfman et al., 2021). Consider a data collected according to the settings in Definition C.1. The data is
identifiable if, for every pair of distinct user types i # j, there exists an identifying slate of images that overlaps.

Given that in our scenario user types vary not only in their utility functions but also in their choice models, the candidate
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generator combined with the random sampler 4,4 is likely to satisfy the conditions in Proposition C.4. This approach
introduces sufficient randomness to explore a wide range of states, allowing us to reach identifying slates of images for all
user types, while still maintaining a coherent policy capable of generating high-quality prompts. In the rare case where two
user types generate identical data distributions under 74,4, we consider them the same user type and merge them.

D. User Model

We employ an Expectation-Maximization (EM) framework to learn a user model capable of capturing diverse preferences.
This model leverages a score function sy that assesses the compatibility between image-prompt pairs and different user
types. The EM algorithm iteratively refines the model parameters 6 and a user type prior distribution 7 to maximize the
likelihood of observed user feedback. Training proceeds in two phases: a main training phase on large-scale datasets with
frozen CLIP parameters, followed by a fine-tuning phase on human-rated data where all parameters are trained. We detail
the training procedure, specific loss functions tailored to different data types (single-turn preferences, relevance scores, and
novel sequential multi-turn data), the model architecture, and hyperparameter settings in the following subsections.

D.1. Training

The user model, which always incorporates the score function sy, is adapted to suit different datasets and label types.
Specific model formulations and loss functions are detailed in subsequent subsections. D and estimate the log-likelihood
loss as follows:

1. Mini-Batch Sampling: A mini-batch B is sampled from the dataset, and the posterior is estimated solely for samples
within 5 using a target network to prevent overestimation.
2. Prior Update: An exponential moving average of the mini-batch posteriors is used to update the prior.

3. Gradient Descent: Instead of fully optimizing the model parameters, a single gradient descent step is taken with
respect to the loss function:

L(0) = —EiBk~y [log og (x4, yi, k)]

The user model is always composed of the score function sy and may vary for different types of datasets and labels, and
need to be adjusted accordingly. We provide detailed models and loss function at the following sub-sections. Algorithm 1
provides a complete description of the mini-batch training procedure. Training proceeds in two phases:

1. Main Training: The model is trained on a combination of large-scale datasets: HPS V2 (Wu et al., 2023), Pick-a-Pic
(Kirstain et al., 2023), and Simulacra Aesthetic Captions (SAC) (Pressman et al., 2022). The CLIP model parameters
are frozen during this phase.

2. Fine-tuning with Sequential Data: A shorter fine-tuning phase follows, utilizing human-rated data. Here, the entire
model, including the CLIP model, is trained.
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Algorithm 1 Mini-Batch Expectation-Maximization User Model Optimization

1: Dataset D, number of user types K, parameter o,,;o,-, learning rate 3.

2: Initialize n = (1/K,...,1/K), target network 6 = 6,

3: fortin {0,...,7T} do

4:  Sample a mini-batch B ~ D.

5:  E-step. Calculate posterior ; ;, for each example (z;,y;) € B and user class k € [K]:

M
e [ 121 05(2i5,vi,5, k)

— — N .

D=1 e Hj:l 05(Ti g, Yij, L)

i (k)

6:  M-step. Update parameters 6, n:
n < ApriorT] + (1 - aprior)EiNB['yi]
Oir1 =0, — BV L(y)
Every n steps: Update target network 6+ 6,

end for
9: Return: model weights 6.

®

D.2. Losses and Models - Single Step

The EM framework is a general method applicable to various dataset and model types. In this work, we utilize two common
single turn dataset types:

Preference Model (HPS, Pick-a-Pic): This model utilizes data samples consisting of two images generated by the same
prompt, x; = (1%, I}, p*), where the annotator indicates their preference, y; = (v = yi). To connect the model to the
score function, we employ the Bradley-Terry (BT) model (Bradley & Terry, 1952), adapted from the RLHF reward learning
framework to accommodate different user types. The user-specific BT model defines the probability that a user type k
prefers the first image over the other as:

exp{so(I{,p", k)}

pref
( oxp (50 (11, ', k) + explsa(T5, 7', B))

Oy

In this case, the user loss function simplifies to:
Epref (9) = _EiNBJfNW [0(89 (Iivpi’ k) — So (I;,pi, k))]
where o represents the Sigmoid function.

Relevance model (SAC): This model provides a direct rating for an image-prompt pair, i.e., z; = (1%, p*), with the label
being the integer rating level provided by the annotator, y; = s; € [S]. We employ a simple user-conditional Gaussian
model, where the score function acts as the mean estimator:

(6)

202

(so(I',p", k) — s:)° }

o4 (@i, yi = 50, k) o exp{—

where v is a predefined standard deviation. The user loss for the relevance model is:

1 o
ETE[(G) = ﬁEin,kN%‘, [(59 (Izvpzv k) - si)z] :
When using relevance datasets, the rating levels are typically normalized to the range [0, 1].

To maximize the number of training samples for the user model, a mixture of data types can be used. In the case of a batch
from each type, B = (BP"¢/ B"¢!), a mixture loss function can be employed to balance between the two terms:

R1
202

where k1 controls the balance between the two terms.

‘C(e) EiNB"'el,kN’yi [(89 (Iiapiv k) - 875)2} - EiNBP"Ef,kN’y, [0(80 (I{’pz’ k) — So (I;,pi, k))] )
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D.3. Losses and Models - Sequential

In this work, we introduce a novel multi-turn dataset. This dataset, generated by querying users across H steps following
the setting described in Section 2.2, consists of trajectories of user-agent interactions. Each sample z; = {x; ;}/1 | has

it = {po, {Im.e} 2" ,_,} at each timestep ¢, with corresponding labels:

1. The chosen prompt index at each turn: yf* = ¢; ; € [L].

2. In-turn preferences between the best images for each prompt: yf’;_pref = {(yzt = yz,t)} ¢,0c0, where Q represents
the set of all unordered pairs of size |Q| = (é ).
3. Cross-turn preferences between chosen images at consecutive turns: ;"> ™" ref = (yz’t - yé}t_l), resulting in H — 1

cross-turn preferences per sample.

Preferences within a sample are modeled by applying the BT model (Equation 5) to both in-turn and cross-turn preferences.
User choices are modeled using our user choice model (Equation 4):

06" (Tit, Vit = Cip, k) = Softmax(r.gsﬁt)

Ci,t*

This leads to the following cross-entropy loss for the score function and choice model parameters:

L(0) = Eitpk~ny, [— log(Softmax(rest, ), , )]

In addition, we add a regularization term to stabilize the CLIP model finetuning by adding ¢ norm between the the original
CLIP embeddings and the finetuned CLIP marked as £7¢9().

The total multi-turn loss is then given by:

E(@) — £cm(9) + K2£in—pref(9) + K3£CTOSS_pTef(9) + K4£reg(0)7
where k9, k3 and k4 are balancing coefficients.

D.4. Architecture

Our score function utilizes pre-trained CLIP-ViT-L-14 (Radford et al., 2021) text and image encoders, augmented with
user-specific encoders (one per user type). These user encoders transform CLIP embeddings into user-type-specific
representations, capturing individual preferences for images and prompts. The final score for an image-prompt pair is
calculated as the inner product of the user-specific image and text embeddings, scaled by a learned temperature parameter
(see a schematic of our arch. in Figure 3).

We modified the CLIP encoders by removing the output 12-normalization. User preferences are modeled by a four-layer
fully connected network with ReLLU activation, structured as doprp — dopip X 2 —deprp X 4 — deorprp X K, where
dcrrp = 768 denotes the output dimension of the CLIP encoders. The final layer is partitioned into K vectors, each of
dimension d¢ 11 p, representing the different user types. These vectors act as residual offsets to the original CLIP output,
individually added to it before a final /5-normalization ensures each user score falls within the range [0, 1]. Each user score
is multiplied by a learned temperature parameter. This architecture is illustrated in Figure 12. As for the temperature model,
we use a two-layer fully connected network with ReLU activation, followed by a scaled Sigmoid function to bound the
output in the range [0, 7,42 . The network receives the utility score for each prompt candidate and produces the choice
temperature scalar at the output.
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CLIP Encoder

Figure 12: A diagram of our user encoder. The same framework is applied to both the text and image encoding process.
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Table 1: Main training hyperparameters

Learning rate

Cosine annealing scheduler (Ir=3e-4, T=10e3) (Loshchilov & Hutter, 2016)

Training steps 50e3
Batch size 2048
Update target network phase 256
Optimizer AdamW (Loshchilov & Hutter, 2019) (weight decay = le-4)
K1 1
Qprior 0.999

Table 2: Fine-tuning hyperparameters

Learning rate

Cosine annealing scheduler (Ir=3e-7, T=10e3) (Loshchilov & Hutter, 2016)

Training steps 50e3
Batch size 8
Gradient norm clipping 0.5
Update target network phase 256
Optimizer AdamW (Loshchilov & Hutter, 2019) (weight decay = 1e-2)
K2 0.01
K3 1
KR4 0.1
Qprior 0.999
Tmax 3
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E. PASTA Details

We employ PASTA, a novel framework designed for prompt selection in interactive image generation scenarios. PASTA
utilizes Implicit Q-Learning (IQL) to train the candidate selector policy that selects optimal prompt expansions based on
user interaction history. This section details the training process, including the IQL objective and adaptations for token-level
training; the architecture and functionality of the candidate generator and selector components, which employ large language
models (LLMs); and the hyperparameters used for training.

E.1. Training

Generally, we would like to optimize the Q-Learning objective:

2
£(¢) = Ehtﬁpt,rt,htJthZHND <q¢(ht’ Pt) S PGPI??I)’E‘”) ng(h’ P)> ’

where gZ; is the target network and P} = {pf}ZL:C1 is the candidate set at time ¢. Decomposing the slate value function into an
average of prompt value function we get

1
L(¢)=E r 1 ra fo(he,p) — 16 — max qg(h, P)
P Pesrehap, PL~D | p;,, pep,(PiHY) ¢

Although the value function is trained on the value of entire utterances, we enhance its robustness by also optimizing it on
sub-prompts, focusing on tokens within the prompts that share the same target:

T,
1 j /
L(¢)=E 1 — — fo(hy,p**) —ri—  max  q;(h,P ,
( ) hi,P,re,hieg1,Pr D L p;t Tp t/Z:l ¢( t t PePL(P£+1) QB( )

where T}, is the (token) length of prompt p. Offline Reinforcement Learning struggles with overestimation of values for
unseen state-action pairs when using the Bellman optimality operator for TD targets. implicit Q-Learning (IQL) (Kostrikov
et al., 2021) addresses this by learning an a-expectile value, vy, which avoids the explicit maximization over the Q-function.
The IQL objective is as follows:

£(¢7 1/}) = Eht-,Pr,,T‘t,hHlND {(%ﬁ(htv Pt) - Tt = vw(ht-l-l))z + Lg (qqg(htv Pt) - Uw(ht))] ;

where L (z) = |04 - 1{$<0}| 22, a € [0.5, 1]. Plugging in the decomposition of the value function and token-level training
we get:

2

T,
1 1 & o 1
£<¢7¢) = ]Eht7Pt,T‘t,ht+1ND E Z ? Z f(i)(hfnpl.t ) — Ty — ’Uw(ht+1) + L% Z Z ch)(hhp) - U’Ll)(ht)
pepP;, P =1 peEP;

E.2. Candidate Generator

We utilize a multimodal Large Language Model (LLM) based on Gemini 1.5 Flash [Team, 2024] as our candidate generator
policy. This LLM takes the user’s current interaction history as input and generates a set of Lo prompt expansion candidates,
categorized into distinct groups. To avoid overly long prompts, especially in later interaction steps, we impose a length
constraint of N, words on the prompt at each step ¢ = 1, ..., H. This constraint is dynamically adjusted according to the
formula:

Ntfl (Nmaw _ Ntfl)
Nt _ w w w
v H

t,
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where N7 represents the maximum permissible word count at the final step (NI < N%%) and N is the initial prompt’s
word count. Candidate generation employs nucleus sampling (Holtzman et al., 2019) with p = 0.8. The structure of the
candidate generator prompts is illustrated in Figure 13.

Candidate Generator Prompt Structure (example for t=3)

You are an agent interacting with a user. The user wants to generate an image using an off-the-shelf diffusion model.
The user starts by providing a prompt for the diffusion model.

At every interaction step you (the agent) must decide on twenty-five (25) possible new prompts that would satisfy the user,
based on your understanding of their preferences given your interaction history with them.

Your prompts should be diverse enough to help you quickly capture the user preferences.

A new prompt could be a change of the prompt itself, or an expansion of the prompt.

Any new prompt should remain consistent with the original prompt.

At every interaction slate four (4) of the prompt candidates will be used to generate slates of four (4) images each,
for a total of sixteen (16) images presented to the user at every turn.

The user will then select exactly one of the four (4) slates of images (i.e., corresponding to one of the new prompts).
After five (5) interaction steps with the user, the user will choose one of the final image slates.

Your objective is to find an optimal slate of images for the user in the final interaction, based on their selections.

Output your slate in the following format. You should decide on five (5) categories, each listing exactly five (5) possible prompt candidates.
The format should look like so:

* <category_1>

- new_prompt_candidate_1

- new_prompt_candidate_2

- new_prompt_candidate_5
* <category_5>

- new_prompt_candidate_1
- new_prompt_candidate_2

- new_prompt_candidate_5

Below is the current interaction history with the user:

Initial_prompt: "{{ initial_prompt }}"

Initial_image_output: << image_samples >>

AGENT: Agent shows four prompts (with corresponding slates of images) to the user:

1. Prompt: "{{ prompt_expansion 1}}", Samples: << image samples >>

2. Prompt: "{{ prompt_expansion 2}}", Samples: << image samples >>

3. Prompt: "{{ prompt_expansion 3}}", Samples: << image samples >>

4. Prompt: "{{ prompt_expansion 4}}", Samples: << image samples >>

USER: User selects prompt number {{ image_number }} corresponding to the prompt: "{{ prompt_expansion }}"
AGENT: Agent shows four prompts (with corresponding slates of images) to the user:

1. Prompt: "{{ prompt_expansion 1}}", Samples: << image samples >>

2. Prompt: "{{ prompt_expansion 2}}", Samples: << image samples >>

3. Prompt: "{{ prompt_expansion 3}}", Samples: << image samples >>

4. Prompt: "{{ prompt_expansion 4}}", Samples: << image samples >>

USER: User selects prompt number {{ image_number }} corresponding to the prompt: "{{ prompt_expansion }}"

Based on the interaction history above, please provide twenty-five (25) prompt candidates to the final selected prompt.

Output should be divided into five (5) categories, each listing five (5) possible candidates, with the format described above.

The prompt candidates should be prompts that can be used as input in a diffusion model. The category titles won't be used as input.
One of the categories should be new prompts that are very different than the previous chosen prompt (for example rephrasing).
Any prompt candidate should be at most {{ num_words }} words long.

-

J

Figure 13: Template for the multimodal candidate generator prompt at step t = 3, with slate size L = 4, Lo = 25 candidates
across five categories (colors for visual distinction).

E.3. Candidate Selector

The candidate selector policy leverages the prompt-value function:

ms,¢(h) € argmax ¢u(h,P)=  argmax Z fo(h,p).
PEPL ({pi}ichl) PEPy, ({pi}ffl) peEP

This policy is initialized with a pre-trained Gemma 2B model (Gemma-Team, 2024) for prompt-value estimation. In order
to encourage diversity and exploration, we constraint the candidate selector to pick only up to one prompt from every
category. Given an input (h, p), represented as a token sequence of length 7" + T, the transformer produces an output of
the same length, with vocabulary-sized logits for each token. We designate a specific logit, /4, as the "q logit." The value for
a history-prompt pair is then defined as the value of this q logit at the final position in the output sequence, corresponding to
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the last input token:
f¢(hap) = {LLM([hvpL d))}fqa

where [-, -] denotes concatenation. We also employ the same model for the a-expectile value estimator v, (setting ¢ = ¢):

vg(h) = {LLM(h; ¢)},,,

where £, represents the a-expectile value logit. Empirically, we observed optimal performance when ¢, and ¢, are identical.
We prioritize efficiency and a small footprint for our prompt value function model, making Gemma 2B a suitable choice.
Since Gemma 2B is a text-only model, we represent the history as text, encompassing the initial prompt, selected slates, and
user-chosen prompts. When evaluating a history-prompt pair, the candidate prompt is also included in the input. The prompt
template is detailed in Figure 14.

History-Prompt Value Function Input Structure (example for t=3)

<<INITIAL_PROMPT>>{{ initial prompt }}<<SELECTED_SLATE>>{{prompt_13}}||{{prompt_23}}||{{prompt_3}}||
{{prompt_4}}<<USER_CHOSEN_PROMPT>>{{ chosen_prompt }}<<SELECTED_SLATE>>{{prompt_1}}||{{prompt_23}}|[{{prompt_33}}||
{{prompt_43}}<<USER_CHOSEN_PROMPT>>{{ chosen_prompt }}<<PROMPT_CANDIDATE>>{{ prompt_candidate }}

N\ J

History Value Function Input Structure (example for t=3)

<<INITIAL_PROMPT>>{{ initial prompt }}<<SELECTED_SLATE>>{{prompt_13}}||{{prompt_23}}||{{prompt_3}}||
{{prompt_43}}<<USER_CHOSEN_PROMPT>>{{ chosen_prompt }}<<SELECTED_SLATE>>{{prompt_1}}||{{prompt_23}}||[{{prompt_33}}||
{{prompt_4}}<<USER_CHOSEN_PROMPT>>{{ chosen_prompt }}

N\ J

Figure 14: Text-only input templates for the value functions at step ¢ = 3 with a slate size of L = 4. The top template
corresponds to the history-prompt value function, while the bottom template corresponds to the prompt value function.

E.4. Hyperparameters
Table 3: PASTA hyperparameters
Learning rate le-5
Training steps le4
Batch size 128
Optimizer Adafactor (Shazeer & Stern, 2018) (weight decay = le-2)
Gradient norm clipping 1
Update target network phase 256
Expectile parameter o 0.7
I 651
4y 651
L 4
M 4
L¢ 25
Number of categories 5
H 5
N 62
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F. Additional Experiments

This section presents additional experiments conducted to further validate the effectiveness of our proposed framework. We
first evaluate the performance of PASTA with simulated users under different training data regimes and reward settings.
Subsequently, we showcase PASTA’s ability to adapt to diverse user preferences by visualizing interactions with various
user types on abstract image generation prompts.

F.1. Simulated Users Experiment

We performed an experiment with simulated users, leveraging our trained user model. Specifically, we evaluated our trained
value models across three configurations: (1) trained using only human rater data, (2) trained using only simulated data, and
(3) trained with a mixture of both. These models were compared to a random sampling policy to isolate the effect of the
trained value models. All approaches employed the same candidate generator, which is based on the multimodal Gemini 1.5
Flash (Gemini-Team, 2024). The experiment was conducted in two reward settings: (1) dense reward, where the utility
function provided rewards at every step, and (2) sparse reward, where rewards were given only at the final step, focusing
on scenarios where only the final outcome matters. We evaluated all methods over 1000 trajectories, each generated as
described in Section 2.2. The results are summarized in the table below:

Random Human Simulated Mixed

Sparse  7.38 £1.13 8.7+£0.11 9.26 +0.07  8.81 £0.06
Dense 38.57+5.81 43.49+0.54 46.354+0.38 44.03 £0.32

The results demonstrate that all value-based methods outperform the random sampling policy. Notably, the value model
trained exclusively on simulated data achieves the best performance. This outcome aligns with expectations, as the simulated
data matches the dynamics of the simulated user model precisely. While human data offers some improvement in isolation,
its divergence from the simulated dynamics reduces the effectiveness when combined with simulated training data.

26



Preference Adaptive and Sequential Text-to-Image Generation

F.2. Abstract Prompts with Simulated Users

To visualize the differences in user preferences and PASTA’s ability to adapt to them, we ran PASTA with various user
types using broad, abstract prompts such as "an image of happiness." These prompts imposed minimal constraints on the
user model, allowing each user type to express its unique preferences freely. For some user types, we observed a distinct
preference emerging, favoring specific styles or content. All users starts with the same prompt and initial images. We present
only the images and their corresponding prompt-expansion at the last 5-th step. Each color represent a different user type.
The results are as follow:

""An image of happiness'':

"An image of happiness"

User Type A

Rollout 3

Rollout 1

"Abstract garden scene with birds, composed of geometric shapes
and vibrant colors"

"Abstract happy faces, Art Deco inspired geometric shapes, muted
jewel-toned background"

User Type B

Rollout 1 Rollout 3

"Watercolor painting of diverse happy children playing, soft colors,

"Avibrant, expressive piece of art representing the overwhelming
delicate brushstrokes, serene mood"

feeling of happiness”

User Type C

Rollout 1 Rollout 3

"Golden hour meadow, wildflowers bathed in warm sunlight,
peaceful atmosphere, photorealistic"

"Afield of luminous flowers, iridescent insects, and fantastical
creatures bathed in the soft light of a double rainbow" and intricate details, photorealistic"
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'"An image of love'':

User Type A

Rollout 1 Rollout 3

¥

"Tender embrace in soft golden light, detailed textures, warm "Soft lighting illuminates a mother's tender touch on her child's "Two elderly lovers sharing a quiet moment on a beach at dusk,
tones, intimate moment" face, enhancing the emotional depth" soft light, detailed wrinkles"

"An image of love"

User Type B

Rollout 1 Rollout 3

"A tapestry of textures, rough and smooth interwoven, portraying "Intertwined geometric forms representing love, Cubist style, soft
composition" the strengths and vulnerabilities within a loving family" pastel palette, balanced composition"

"An image of love"

User Type C

Rollout 1 Rollout 3

"An impressionistic portrayal of a family birthday celebration, "Family dinner depicted from an unusual angle; unexpected "Intertwined geometric forms representing love, Cubist style, soft
emphasizing light, color, and movement." perspective adds intrigue; focus on togetherness” pastel palette, balanced composition”
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'"An image of hope'':

"An image of hope"

User Type A

Rollout 1 Rollout 3
Rollout 2

"Art Deco style illustration of a spring sunrise, geometric patterns, "A surreal depiction of a fresh start, a blossoming flower at dawn, "A powerful representation of inner peace, represented by a scene
pastel colors, cherry blossoms on a lake" representing new love" with gentle colors and forms"

"An image of hope"

User Type B

Rollout 1 Rollout 3

Rollout 2

~ A /& ) =7 I \
" A phoenix rising from ashes, surrounded by vibrant colors and "Playful, colorful light particles dance across a canvas, forming tion of hope, bright, radiant, and optimistic,
dynamic energy" celestial patterns, symbolizing hope and limitless possibilities” colorful swirls"

"An image of hope"

User Type C

Rollout 1 Rollout 3

Rollout 2

"Minimalist image of a gentle wave lapping the shore, representing "The moon casts a soft glow on a beach covered in seashells, the "Close-up photorealistic shot of a family's feet walking on a beach
peace and hop" ocean's gentle waves lapping at the shore" during sunset, warm sand"
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G. PASTA Examples

We illustrate a complete 5-turn interaction between our user model and the PASTA agent with examples. Each example
begins with the initial prompt and images. Each turn shows the agent’s 25 generated candidate prompts (organized into 5
categories) on the left. Four of these prompts (highlighted in red) are offered to the user, selected by a sampling policy based
on a value function. The four generated images corresponding to each proposed prompt are displayed below. The prompt
ultimately chosen by the user is highlighted in blue and shown above the image set.

Example #1:

Initial prompt:
"Atrain is going down the train tracks"

Agent User
Category: Variations in Lighting and Time of Day: User selects prompt number 16:
1. Atrain at sunset, on tracks. "Railroad journey, scenic view."

2. Atrain in the morning mist.

3. Atrain under a stormy sky.

4. Atrain at night, glowing lights.

5. Atrain in bright sunlight.

Category: Variations in Train Type and Composition:
6. Along freight train on tracks.

7. A sleek modern passenger train.

8. An old steam train on tracks.

9. A colorful toy train on tracks.

10. A double-decker train on tracks.

Category: iati in i and Setting:
11. Train on a mountain track.

12. Train in a desert landscape.

13. Train crossing a bridge.

14. Train passing through a forest.

15. Train in a snowy landscape.

Category: Completely Different Prompts (Rephrasing):
16. Railroad journey, scenic view.

17. Metal beast on steel rails.

18. Locomotive speeding onward.

19. Tracks vanishing in distance.

20. Steel wheels on iron rails.

Category: Adding Artistic Styles and Effects:

21. Train on tracks, impressionist style.

22. Train, hyperrealistic rendering.

23. Train on tracks, painted by Monet.

24. Train, detailed pencil sketch.

25. Train on tracks, vibrant colors.

Agent User
Category: Expanding the Scene: User selects prompt number 15:

1. Railroad tracks winding through a lush green valley, sunlit. "Train in a vibrant, surreal d
2. Train disappearing into a mountain tunnel, dramatic lighting. [

3. Avintage steam train crossing a high bridge over a river.

4. Railroad tracks stretching to the horizon, sunset over fields.

5. Train passing a quaint countryside village, wildflowers.
Category: Focusing on the Train:

6. Majestic steam locomotive pulling luxurious passenger cars.

7. Modern high-speed train speeding through a vibrant landscape.
8. Freight train carrying colorful containers, scenic backdrop.

9. Close-up of a train's wheels turning on the tracks, detailed.

10. A weathered, vintage train car in a beautiful setting.

reamscape setting”

Category: Artistic Styles:

11. Railroad landscape, painted in the style of Van Gogh.

12. Impressionist painting of a train journey through fields.

13. Photorealistic train passing through a stunning canyon.

14. A whimsical, cartoon-style train in a fantasy landscape.

15. T a vibrant, surreal dreamscape setting.

Category: ferent Perspectives:

16. Aerial view of a train snaking through a winding valley.

17. View from inside a train car, looking out at the scenery.

18. Along exposure shot of a train moving at night, light trails.

19. Close-up of the train's engine, steam billowing dramatically.
20. View from the train's cab, looking down the tracks.

Category: ing_and Variati

21. Scenic railroad journey through diverse landscapes.

22. Picturesque train ride, breathtaking views from the window.
23. Railroad adventure, panoramic scenery.

24. Journey by rail, spectacular countryside.

25. Train on rails, beautiful and idyllic nature.
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Agent User
Category: Surreal Landscapes & Trains: User selects prompt number 5:
1. A steam train chugging through a field of giant, iridescent flowers under a swirling galaxy. "A surreal train station nestled within a giant, glowing

2. Awhimsical train journey through a candy-colored forest, lollipop trees, and marshmallow clouds. mushroom forest"
3. Afuturistic train gliding over a rainbow bridge in a city made of crystals and floating islands. =

4. An antique train winding through a valley of vibrant, bioluminescent plants at twilight.

5. A surreal train station nestled within a giant, glowing mushroom forest.

Category: Emphasis on Vibrancy & Color:

6. A vibrant, hyperre: ic train speeding through a landscape of impossibly bright colors.

7. A psychedelic train ride through a kaleidoscope of swirling patterns and neon lights.

8. Atrain made of stained glass, traversing a landscape of equally colorful stained glass.

9. A cartoonish train with exaggerated features, traveling through a bright, playful world.

10. A majestic train, with golden carriages, passing through a field of glowing sunflowers.

Category: Focus on D

11. Alone train disappearing into a hazy, dreamlike fog, leaving a trail of shimmering stardust.

12. A train floating effortlessly above a sea of clouds, bathed in soft, ethereal light.

13. Avintage train gliding silently through a landscape painted in watercolor washes.

14. A dreamlike train station, where clocks melt and platforms float, bathed in moonlight.

15. Atrain composed of shifting, morphing shapes, moving through a constantly changing landscape.
Category: Different Interpretations of the Prompt:

16. Atrain journey through an impossible landscape, defying gravity and perspective.

17. The feeling of riding a train in a vibrant dream, expressing freedom and wonder.

18. A dream sequence, a train traveling through a bizarre, otherworldly environment.

19. A surreal, dreamlike depiction of a train journey, full of vibrant colors and unusual imagery.

20. A train's passage through a vnbrant izing the contrast reality and fantasy.

21. Atrain in a vibrant surreal dreamscape in the style of a 1950s cartoon.

22. A vibrant surreal dreamscape with a train, painted in the style of Salvador Dali.

23. Avibrant surreal dreamscape featuring a train, rendered in the style of Alphonse Mucha.

24. Atrain traveling through a vibrant surreal dreamscape, with a focus on Art Nouveau style.

25. Avibrant surreal dreamscape with a train, using bold, expressive brushstrokes in an Impressionistic style.

== Turn 4 -+

Agent User
Vibrant Mushroom Forests & Trains: User selects prompt number 13:
. ical train station nestled amongst bioluminescent mushrooms, with a steampunk aesthetic. "A train composed of melting clocks and surreal
2. Avibrant, colorful train speeding through a fantastical forest of giant glowing mushrooms. objects in a Dali-esque landscape™

3. A surreal train journey through a mushroom forest, with playful, cartoonish mushrooms.

4. A detailed illustration of a train emerging from a glowing mushroom cavern, magical atmosphere.
5. Atrain puffing steam, passing through a dense forest of giant, otherworldly mushrooms.
Category:

6. Atrain gliding across a rainbow bridge in a surreal, dreamlike landscape.

7. Atrain traversing a landscape of floating islands, vibrant colors, and impossible architecture.

8. A surreal train journey through a landscape painted in the style of Van Gogh, vibrant colors.

9. A hyperrealistic train in a fantastical landscape, filled with impossible flora and fauna.

10. Atrain dlsappearmg |nto a swirling vortex of colors in a surreal, dreamlike landscape.
Category: Dali

11. Amelting clock traln in a Dali-esque landscape, with distorted perspective and melting forms.
12. Atrain with elongated limbs and surreal features in a Dali-inspired dreamscape.

13. A train composed of melting clocks and surreal objects in a Dali-esque landscape.

14. Atrain traversing a desert landscape with melting rocks and distorted space in Dali's style.

15. A surreal train scene with distorted perspective and soft, flowing lines in the style of Dali.
Category: Ethereal & Dreamlike Trains:

16. A train floating through a starry night sky, with ethereal lights and glowing constellations.
17. Allone train moving through a field of luminous flowers in a soft, ethereal light.

18. A dreamy train scene with pastel colors, soft clouds, and a peaceful, tranquil atmosphere.

19. Atrain gently gliding through a soft, misty landscape, with a serene and peaceful atmosphere.
20. Atrain traveling !hrough a sea of clouds, bathed in soﬂ golden light, peaceful and serene.

21. Ade!alled photograph of a modern high-speed train passing through a rural area.
22. A realistic depiction of a vintage steam train chugging along a mountain pass.
28. A classic black and white photo of a train passing through a bustling city.

24. An image of a freight train transporting goods along a long railway line.

25. A simple drawing of a train on tracks in a straightforward, realistic style.

Agent User
Category: Dali iati User selects prompt number 22:
1. A surreal train speeding through a landscape of melting clocks and distorted figures, in the style of Salvador Dali. "An ethereal underwater scene depicting a queen,
2. Atrain composed entirely of melting clocks, surreal objects, and impossible architecture, a Dali-esque dreamscape her crown formed by bioluminescent sea creatures,
3. A Dali-esque train journey through a desert with and distorted persp: radiating an enchanting glow."

4. Atrain with elongated limbs and melting forms, traversing a bizarre, dreamlike landscape, in 1he style of Salvador Dali.
5. A surreal train station, with distorted architecture and melting clocks, in the style of Salvador Dali, hyperrealistic.
Category: Enhanced Surrealism:

6. A train made of liquid metal, flowing through a landscape of shifting colors and impossible geometries.
7. Atrain gliding through a vibrant, surreal dreamscape filled with fantastical creatures and impossible structures.
8. Atrain passing through a swirling vortex of colors and shapes, a surreal and psychedelic journey.

9. Atrain emerging from a giant, melting clock, surrounded by distorted figures and impossible ob]ects

10. A train journey through a hyperrealistic, surreal landscape, with ur elements and jt 1S,
Category: Focus on the Train:

11. Detailed close-up of a surreal train engine, with melting clocks and intricate details.

12. A surreal train's interior, filled with melting furniture, distorted mirrors, and bizarre passengers.

13. The perspective of someone sitting inside a Dali-esque train, witnessing the surreal landscape.

14. A highly detailed rendering of a surreal train, emphasizing textures and materials.

15. A surreal tram focusmg on its unusual design and mechanics.

Category:

16. Atrain in a surreal landscape, painted in the style of René Magritte, with a focus on unexpected juxtapositions.
17. Atrain journey through a surreal landscape, rendered in the style of a woodcut print, with bold lines and textures.
18. A surreal train scene in the style of Max Ernst, featuring collage-like and ur 1S.
19. A surreal train depicted i in a vibrant, pop art slyle wnh bold colors and graphic elements.

20. A surreal train in a cul forms and multiple perspectives.
Category: Rephrasin, Q_LS_p_Qa_O_llf ion.

21. Abizarre, dreamlike train in a surreal landscape.

22. A surreal train, simple prompt.

23. Amelting clock train in a Dali-esque world.

24. Surreal train in a distorted landscape.

25. A dreamlike train journey through a strange land.
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Example #2:

Initial prompt:
"A princess wearing an animal skull mask with a ribcage skeleton and
cybernetic jellyfish features"
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- Agent User
Category: Enhanced Detail & Lighting User selects prompt number 5:
1. Close-up portrait, princess, animal skull mask, cybernetic jellyfish, intricate details, dramatic lighting. "Close-up, pri , animal skull bio-
2. Princess, skull mask, jellyfish cybernetics, ethereal glow, hyperrealistic, close-up. mechanical jellyfish, cinematic lighting"”

3. Macro portrait, princess, bone mask, bioluminescent jellyfish, sharp focus, rich colors.

4. Detailed portrait, princess, ornate skull mask, glowing cybernetic jellyfish, dark background.

5. Close-up, princess, animal skull 5 bi ical jellyfish, ci ic lighting.
Category: Alternative Mask & Cybernetics:

6. Princess portrait, elegant bird skull mask, subtle cybernetic enhancements, soft lighting.

7. Close-up, princess, futuristic insect mask, integrated cybernetic jellyfish, vibrant colors.

8. Macro portrait, princess, ornate dragon skull mask, glowing cybernetic implants, blurred background.
9. Princess, skeletal mask, sleek cybernetic arms, ethereal background, detailed texture.

10. Portrait, princess, geometric skull mask, minimalist cybernetic features, sharp focus.

11. Princess, skull mask, cybernetic jellyfish, underwater scene, shimmering bubbles.

12. Portrait, princess, bone mask, cybernetic enhancements, mystical forest background.

13. Close-up, princess, animal skull mask, jellyfish cybernetics, futuristic cityscape backdrop.

14. Princess, skull mask, bioluminescent jellyfish, otherworldly nebula background.

15. Macro portrait, princess, ornate mask, cybernetic elements, enchanted garden setting.

Category: Different Arti Styles:

16. Princess, skull mask, cybernetic jellyfish, art nouveau style, elegant and flowing lines.

17. Portrait, princess, bone mask, cybernetic enhancements, dark fantasy art style.

18. Close-up, princess, animal skull mask, jellyfish cybernetics, photorealistic style.

19. Princess, skull mask, bioluminescent jellyfish, gothic art style, dramatic lighting.

20. Macro portrait, princess, ornate mask, cybernetic elements, digital painting style.

Category: Completely Different Concept (Rephrasing):

21. Aregal woman, adorned with intricate bone jewelry and glowing bioluminescent accents.

22. A mysterious figure, partially obscured by a fantastical mask, with subtle technological elements.
23. A powerful queen, with cybernetic ent its blending with organic bone structures.
24. A captivating portrait of a woman, combining elegance with futuristic bio-mechanical elements.

25. An ethereal being, blending organic and synthetic elements in a harmonious composition.

Agent User
Category: Refined Details & Lighting: User selects prompt number 9:
1. Close-up portrait: princess, intricate skull headdress, bioluminescent jellyfish, dramatic lighting, 8k resolution. "ClI p: pril skull bi
2. Princess in ornate skull mask, bio-mechanical jellyfish crown, deep shadows, sharp focus, cinematic lighting. jellyfish, neon lighting, underwater effect”
3. Close-up, princess, detailed animal skull mask, glowing jellyfish, volumetric lighting, dark background.
4. Macro portrait: princess, skull with jellyfish, chi lighting, ethereal atmosphere,

hyperrealistic.

5. Close-up, princess, skull mask, bio-mechanical jellyfish, cinematic lighting, rich textures.

Category: Variati on the ish:

6. Princess, ornate skull mask, bioluminescent jellyfish tendrils, dark background, cinematic lighting. 4
7. Close-up portrait, princess, skull headdress, iridescent jellyfish, dark moody ambiance, sharp details. {w, u\“
8. Princess, skeletal mask, cybernetic jellyfish swarm, deep ocean setting, cinematic lighting. / ,
9. Close-up: princess, skull headdress, bio-mechanical jellyfish, neon lighting, underwater effect. = =

10. Princess, skull mask, pulsating jellyfish, dark background, dramatic lighting, 8k resolution. P 1 ' f an f
Category: Emphasis on the Skull:

11. Close-up portrait, princess, intricately carved skull mask, jellyfish accents, cinematic lighting.

12. Princess, detailed animal skull mask, bio-mechanical jellyfish, dark fantasy art, dramatic lighting.

13. Close-up: princess, ornate skull headdress, bio-mechanical jellyfish, dark fantasy art, sharp focus.

14. Princess, realistic skull mask, cybernetic jellyfish, dark background, cinematic lighting, detailed texture.
15. Macro shot: princess, ying skull mask, bit ical jellyfish, ic lighting,

ethereal feel.

Category: Completely Different Style:

16. Elegant princess, futuristic crown, subtle technological details, soft lighting, pastel colors.

17. Portrait of a regal woman, ethereal crown, flowing gown, soft light, serene expression.

18. A powerful queen, majestic pose, ornate jewelry, warm lighting, rich colors.

19. Young woman, delicate flower crown, flowing dress, soft light, gentle expression.

20. Beautiful woman, simple headband, natural light, soft focus, dreamy atmosphere.

Category: Exploring Backgrounds & Settings:

21. Close-up, princess, skull headdress, bio-mechanical jellyfish, foggy forest background.

22. Princess, skull mask, jellyfish crown, cinematic lighting, ancient ruins background.

23. Close-up portrait, princess, skull headdress, bio-mechanical jellyfish, underwater scene.

24. Princess, skull mask, jellyfish, cinematic lighting, gothic architecture background.

25. Close-up: princess, skull headdress, bio-mechanical jellyfish, starry night sky background.
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Agent User
Category: Neon Dreamscapes: User selects prompt number 23:
1. Princess, skull jellyfish crown, neon coral reef, vibrant underwater city. "Princess, skull jellyfish crown, highly detailed
2. Underwater princess, glowing jellyfish headdress, neon lights, art deco style. textures, neon lighting, underwater cave™

3. Cyberpunk princess, skull mask with neon jellyfish, futuristic underwater city.

4. Princess in neon-lit underwater cave, skull headdress, bioluminescent jellyfish.

5. Electric princess, skull and jellyfish crown, neon ocean, 80s synthwave aesthetic.

Category: Subtle Shifts in Lighting and Background:

6. Close-up portrait: princess, skull headdress, bioluminescent jellyfish, soft neon glow, dark background.
7. Princess, skull jellyfish crown, underwater scene, subtle neon accents, calm atmosphere.

8. Underwater princess, skull headdress, bio-mechanical jellyfish, pastel neon, serene background.

9. Princess, skull and jellyfish crown, deep ocean, cool neon hues, mysterious ambiance.

10. Close-up, princess, skull headdress, jellyfish, dim neon lighting, smoky underwater cave.
Category: Variations on the

11. Princess, skull headdress, glowing jellyfish tentacles, neon lights, dark ocean.

12. Princess, skull crown, iridescent jellyfish, neon underwater landscape, detailed textures.

13. Underwater princess, skull headdress, bioluminescent jellyfish swarm, neon glow.

14. Close-up: princess, skull mask, intricate jellyfish headdress, neon coral, deep ocean.

15. Princess, skull headdress, bio-mechanical jellyfish, neon kelp forest, flowing fabric.

Category: Completely. /le:

16. Portrait of a regal woman, ornate mask, intricate jewelry, rich textures, dramatic lighting.

17. Elegant woman, mysterious headdress, flowing gown, detailed portrait, studio lighting.

18. Awoman with a ivating gaze, , rich colors, painterly style.

19. Close-up portrait, strong female figure, enigmatic expression, rich textures, studio setting.

20. Fashion portrait, stylish woman, unique headpiece, luxurious fabrics, sophisticated look.
Category: Emphasizing Texture and Detail:

21. Hyperrealistic portrait: princess, detailed skull headdress, bio-mechanical jellyfish, neon lighting, underwater
scene.

22. Close-up, princess, skull headdress, intricate jellyfish details, neon lights, underwater world.

23. Princess, skull jellyfish crown, highly detailed textures, neon lighting, underwater cave.

24. Macro portrait: princess, textured skull mask, bio-mechanical jellyfish, neon glow, underwater rocks.
25. Detailed portrait: princess, skull headdress, realistic jellyfish, neon accents, ocean floor.

* Turn 4
Agent User
Category: Neon Ui Pri User selects prompt number 12:
1. A princess adorned with a bi i jellyfish crown, swi ing in a vibrant neon coral reef, intricate details, 8k resolution. "Close-up, princess with a jellyfish crown,
2. Princess in an underwater palace, wearing a jellyfish headdress that glows with neon light, surrounded by glowing flora and fauna. featurmg highly detailed tentacles and
3. Portrait of a princess, her face partially obscured by a neon jellyfish crown, underwater scene, hyperrealistic details. i patterns, scene, 8k
4. An ethereal princess with flowing hair, a jellyfish headdress emitting neon light, swimming gracefully amidst glowing jellyfish. resolution™

5. Close-up of a princess wearing a skull-shaped jellyfish crown, vibrant neon lighting, underwater cave setting, detailed textures.
Category: Dark Fantasy Princesses:
6. A princess in a dark underwater grotto, wearing a crown of glowing jellyfish and skeletal elements, mysterious and ethereal.
7. Dark fantasy portrait: a princess with a jellyfish crown made of bone and neon lights, surrounded by deep sea creatures.
8. A gothic princess, wearing a headdress crafted from decaying jellyfish and skulls, bathed in neon underwater light, dramatic pose.
9. A mysterious underwater princess, her face veiled by a jellyfish headdress with glowing neon accents, dark and moody atmosphere.
10. Portrait of a princess in a dark, underwater cavern, wearing a crown of bioluminescent jellyfish, surrounded by shadows and glowing accents.
Category: Detailed Jellyfish Headwear:
11. Extremely detailed portrait of a princess wearing an intricate jellyfish , neon lighting, underwater setting, realistic textures.
12. Close-up, princess with a jellyfish crown, featuring highly detailed tentacles and bioluminescent patterns, underwater scene, 8k resolution.
13. Macro shot: princess, ornate jellyfish headdress with intricate skeletal details, neon lighting, underwater environment, sharp focus.
14. Princess portrait: elaborate jellyfish crown with glowing neon accents, detailed textures, underwater background, cinematic lighting.
15. Highly detailed image of a princess wearing a jellyfish crown, showcasing the intricate textures and neon glow, underwater environment.
Category: Alternative Interpretations:
16. A regal figure, partially obscured by a mask of intricately woven light and shadow, with
bioluminescent accents, underwater, 8k resolution.
17. A captivating woman, her face partially hidden by a fantastical headpiece reminiscent of deep-
sea life, bathed in ethereal light.
18. A mysterious and elegant woman with a i ining natural and tect i lements,
emitting a soft, otherworldly glow.
19. An enigmatic figure in an underwater setting, adorned with a crown of ethereal light and intricate, bioluminescent patterns.
20. A vision of elegance and mystery: a woman with a unique headpiece inspired by marine life, emitting a gentle, glowing light.
Vs S:

21. Art Deco style portrait: a princess wearing a geometric jellyfish crown, vibrant neon colors,

underwater setting, elegant composition.

22. Surrealist portrait: a princess with a melting jellyfish crown, neon lighting, dreamlike underwater scene, unexpected elements.

23. Impressionistic underwater portrait: a princess with a jellyfish crown, soft focus, pastel neon colors, flowing lines and shapes.

24. A princess with a jellyfish headdress in the style of Alphonse Mucha, elegant lines, soft neon lighting, underwater background.
25. A princess wearing a jellyfish crown, painted in the style of Gustav Klimt, with gold and vibrant neon accents, underwater scene.

Agent User
Category: Refined Details & Lighting: User selects prompt number 22:
1. Close-up portrait of a princess wearing a bioluminescent jellyfish crown, intricate details on tentacles, soft underwater lighting, 8k resolution, hyperrealistic. "An ethereal underwater scene depicting a queen,
2. Princess with a jellyfish crown, detailed tentacles with iridescent scales, soft blue and pink lighting, underwater scene, serene expression. her crown formed by bioluminescent sea creatures,
3. Underwater portrait: princess, jellyfish crown with glowing accents, subtle shimmering particles, cinematic lighting, highly detailed textures. radiating an enchanllng glow.”

4. Close-up, princess, jellyfish crown, vibrant coral reef background, realistic rendering, sharp focus, detailed textures, soft lighting.

5. Princess, jellyfish crown, realistic jellyfish anatomy, submerged in crystal clear water, natural lighting, ethereal atmosphere.
Category: Stylistic Variations:

6. Art Nouveau princess with a jellyfish crown, flowing lines, pastel colors, underwater setting, elegant composition.

7. Princess, jellyfish crown, Art Deco style, geometric patterns, neon lighting, underwater Art Deco architecture.

8. Surrealist portrait: princess, melting jellyfish crown, dreamlike underwater environment, vibrantcolors, distorted perspective.

9. Impressionist princess, jellyfish crown, soft brushstrokes, underwater scene, blurred background,pastel hues.

10. Princess, jellyfish crown, in the style of Gustav Klimt, gold leaf accents, underwater scene,shimmering effect.

Category: Environmental Changes:

11. Princess, jellyfish crown, deep ocean trench, bioluminescent creatures, dark mysterious background, 8k resolution.

12. Princess, jellyfish crown, glowing coral reef, diverse marine life, vibrant colors, shallow water, sunlight filtering through.

13. Princess, jellyfish crown, ancient sunken city, ruins, mystical underwater atmosphere, detailed textures, cinematic lighting.

14. Princess, jellyfish crown, mysterious underwater cave, glowing crystals, ethereal light, sense of wonder, 8k resolution.

15. Underwater princess, jellyfish crown, surrounded by schools of luminous fish, vibrant coral, crystal-clear water, cinematic lighting.
Category: Alternative Inter

16. Close-up portrait of a princess with a headdress made of intricately woven sea anemones and Jellyflsh underwater, ethereal lighting.
17. Princess, ornate headdress inspired by jellyfish, intricate details, flowing fabric, / lighting, 8k resoluti
18. Portrait of a princess with a crown sculpted from ili jellyfish, ui ruins d, i atmosphere.

19. Princess with a headdress resembling a blooming jellyfish, vibrant colors, detailed textures, underwater, soft lighting.

20. Close-up of a princess wearing a delicate headdress crafted from translucent jellyfish, ethereal glow, underwater scene, serene expression.
Category: Completely Different Prompts (Rephrasing):

21. Abreathtaking underwater portrait of a regal woman, adorned with a Iumlnous organic headpiece, evoking a sense o' otherworldly beauty.

22. An ethereal underwater scene depicting a queen, her crown formed by sea g an glow.

23. A captivating image of a majestic figure submerged in an ocean, wearing a radiant headpiece reminiscent ofjellyﬂsh in a hyperrealistic style.

24. Amesmerizing underwater portrait, featuring a serene woman with a crown made of glowing jellyfish, showcasing intricate details and vibrant colors.
25. An elegant woman, her head crowned with a dazzling display of bioluminescent jellyfish, creating a stunning underwater spectacle.
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