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ABSTRACT

Post-training pruning has gained increasing attention with the rapid growth of
large language models (LLMs). However, significant variations in weight dis-
tributions across different LLMs make a fixed pruning strategy inadequate for
multiple models. In this paper, we propose an efficient evolutionary optimiza-
tion framework, MECON, for adaptive LLM pruning. In particular, we design
an effective search space built on our Meta pruning metric to mitigate diverse
weight distributions among LLMs. We then introduce model-wise reconstruction
error, a lightweight search evaluation to speed up the evaluation of each search
trial. We finally leverage Non-dominated Sorting Genetic Algorithm III (NSGA-
III) as our search algorithm, handling both the single-objective problem of prun-
ing metric search and the multi-objective problem of layerwise sparsity ratio
search in discovering the optimal pruning strategy. We extensively evaluate our
framework on LLaMA-1/2/3 and Mistral models across multiple benchmarks.
Our results demonstrate that our adaptive pruning metrics consistently outper-
form existing ones, and the layerwise sparsity ratios improve the effectiveness
of other pruning metrics. Furthermore, we validate the cross-task and cross-
model generalizability of our pruning metrics, offering a cost-effective solution to
streamline the search process. We release our code in the anonymous repository:
https://anonymous.4open.science/r/Mecon-5819.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Touvron et al., 2023a; Le Scao et al., 2023)
have recently shown remarkable performance in a range of complex language benchmarks in the field
of language understanding and generation (Bubeck et al., 2023; Wei et al., 2022a;b). Despite their
impressive performance, their extensive model size causes significant computational demands, making
LLM inference and deployment a big challenge. One notable advancement in model compression
has centered on model pruning (LeCun et al., 1989; Hassibi et al., 1993; Han et al., 2015), which
shrinks model sizes by removing specific weights from the model – essentially setting them to zero.
Traditional model pruning methods, typically involve retraining (Liu et al., 2018; Blalock et al.,
2020) or iterative training to recover performance (Frankle & Carbin, 2018; Renda et al., 2019),
which are less feasible when scaling to large LLMs with billions of parameters. Recently, there has
been a growing effort in post-training pruning (PTP) due to its minimal resource demands. PTP
methods develop pruning metrics to evaluate the importance of weights, thus the weights with lower
importance can be removed. (Frantar & Alistarh, 2023; Sun et al., 2023; Zhang et al.).

However, as shown in Figure 1, we observe a significant performance drop when applying recent well-
established pruning metrics (Frantar & Alistarh, 2023; Sun et al., 2023; Zhang et al.) to the LLaMA-3
(Meta, 2024) model. To analyze the reason for the performance drop, we demonstrate the distributions
of input activation norms and weight magnitudes, two main components considered by recent pruning
metrics. Despite the past success of SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun et al., 2023),
and RIA (Zhang et al.) on LLaMA-1 (Touvron et al., 2023a) and LLaMA-2 (Touvron et al., 2023b)
models, the distinct weight distribution of LLaMA-3 (Meta, 2024) underscores the limitations of
using a fixed pruning metric across LLMs with varying weight distributions.

In this paper, we study the essential adaption of pruning strategy across different LLMs, and propose
an efficient evolutionary optimization framework, named MECON, to automatically search for the
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Figure 1: Performance of existing pruning metrics on different LLMs. Existing pruning metrics
show significant performance drops on the LLaMA-3 model (bar charts in the upper part), influenced
by its distinct weight distribution compared to LLaMA-1/2 and Mistral models (the lower part).

adaptive pruning strategy for different LLMs, including optimization of both the pruning metric and
the layerwise sparsity ratios. In particular, we design an effective search space built on our Meta
pruning metric. Unlike prior pruning metrics (Frantar & Alistarh, 2023; Sun et al., 2023; Zhang et al.)
that consider weights and activations rely on fixed heuristics, our meta pruning metric dynamically
balances the relationship between weights and activations, to mitigate diverse weight distributions
among different LLMs. Moreover, we also consider a better way for post-training pruning evaluations
of each search trial. We show that prior evaluations based on perplexity (Dong et al., 2024) are more
time-consuming and establish limited generalizability across different downstream tasks. Instead, we
propose a lightweight search evaluation, model-wise reconstruction error, to speed up the evaluation
in each search trial. Finally, we apply Non-dominated Sorting Genetic Algorithm III (NSGA-III)
(Deb & Jain, 2013; Jain & Deb, 2013) as our search algorithm, handling both the single-objective
problem of pruning metric search and the multi-objective problem of layerwise sparsity ratio search
in a unified framework.

We empirically evaluate MECON on the widely adopted LLaMA-1 (Touvron et al., 2023a), LLaMA-2
(Touvron et al., 2023b), LLaMA-3 (Meta, 2024) and Mistral (Jiang et al., 2023) models across multiple
benchmarks. Our results demonstrate that, without any retraining or weight update, our MECON-
derived pruning metrics consistently outperform all established pruning metrics. Additionally, our
MECON-derived layerwise sparsity ratios could also boost the effectiveness of other pruning metrics
that consider both weight and activation, such as Wanda (Sun et al., 2023) and RIA (Zhang et al.).
Furthermore, we verify the generalizability of our MECON-derived pruning metrics through cross-
task and cross-model evaluations, showing that metrics developed for complex arithmetic reasoning
tasks also perform well on simpler tasks like commonsense reasoning and language modeling, and
remain effective when applied to models of different configurations. Thus we provide a cost-effective
alternative to streamline the adaptive search process.

2 RELATED WORK

Emergent Large Features of LLMs Emergent large magnitude and massive activation features have
been observed in Transformer-based large language models (Kovaleva et al., 2021; Puccetti et al.,
2022; Wei et al., 2022c; Dettmers et al., 2022; Sun et al., 2024). The occurrence of these hidden state
features and input activations with large magnitudes is relatively rare, indicating the outlier patterns
within model internal representations. However, these outlier features are shown to have essential
importance in representing information, as zeroing out these outlier features during inference leads
to a significant degradation in model performance (Dettmers et al., 2022; Sun et al., 2024). Recent
development of quantization schemes (Lin et al., 2023; Dettmers et al., 2023; Xiao et al., 2023)
and model pruning methods (Sun et al., 2023; Zhang et al.) for LLMs have been influenced by
the presence of these outlier features. Our research expands on this insight by demonstrating that
the relationship between these weights and input activation outlier features should also act as key
indicators for selecting which weights to prune in LLMs.

Post-Training Pruning Post training pruning (PTP) has emerged as a popular technique for reducing
the size and computational complexity of models without the need for extensive retraining (Hubara
et al., 2021; Kwon et al., 2022; Frantar & Alistarh, 2023). Recent PTP methods for LLMs aim to
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Phase 1: Pruning Metric Search
    1:Initialize meta pruning metric
	 𝑆 = 𝜶𝑭𝟏(|𝑊|) * 𝜷𝑭𝟐(| 𝑋 |#)
      2: Evaluate 𝑆 on 𝑊
    3: Optimize 𝑆 using evolutionary search
    4: Select optimal metric 𝑆∗
 
Phase 2: Layerwise Sparsity Ratio Search
    1: Rank 𝑊 in layers using 𝑆∗
    2: Initialize Layerwise Sparsity Ratio    
           𝑅 = {𝒓𝒍}
      3: Prune 𝑊 by 𝑅

4: Evaluate performance of 𝑅 
    5: Optimize 𝑅 using evolutionary search
    6: Select optimal sparsity ratio 𝑅∗

𝜶,𝜷 ∈ {F norm, …, relative sum} 

𝑭𝟏, 𝑭𝟐 ∈ {sqrt, square, …, exp, log} 

𝒓𝒍 ∈ {0.45, 0.5, 0.55} 

𝑆∗ =	F_norm (|𝑊|)𝟐2 to_sum (| 𝑋 |%)𝟏/𝟐 

𝑅∗ = {0.55, 0.45, 0.45, 0.45, …, 0.55, 0.5} 

Metric Search Space

Sparsity Ratio Search Space

Metric Evaluation

Sparsity Ratio Evaluation

Final Layer Reconstruction Norm

Overall Sparsity Alignment

Final Layer Reconstruction Norm
+

Searched Pruning Metric

Searched Layerwise Sparsity Ratio

Figure 2: Illustration of our proposed MECON method. MECON consists of two phases: searching
for the optimal pruning metric and the optimal layerwise sparsity ratios. We present the distribution
of metric scores for the optimal metric searched in the LLaMA2-7B model, along with the sparsity
ratio for each layer in the right column.

evaluate the importance of weights using specific pruning metrics and remove less important weights
by setting them to zero. Magnitude pruning (Han et al., 2015) directly removes weights based on
their magnitude, offering simplicity but often resulting in unsatisfied performance for LLMs. To
improve accuracy, SparseGPT (Frantar & Alistarh, 2023) solves layer-wise reconstruction problem,
which significantly boosts performance but adds computational costs due to weight updates. Wanda
(Sun et al., 2023) simplifies SparseGPT by considering only the product of weight magnitude and the
norm of input activations. Building on Wanda, RIA (Zhang et al.) introduces a relative importance
coefficient to enhance weight importance evaluation. These one-shot pruning metrics now stand out
as strong baseline approaches for LLM pruning.

3 MECON: ADAPTIVE PRUNING STRATEGY SEARCH

3.1 METHOD OVERVIEW

MECON focuses on the essential adaption of pruning strategy across different LLMs. As shown
in Figure2, MECON automatically searches for the adaptive pruning strategy through evolutionary
optimization, optimizing both the pruning metric and layerwise sparsity ratios. In each phase of the
search, MECON iteratively samples pruning metrics or layerwise sparsity ratios from a predefined
search space. Each sample is then evaluated, producing a numerical measure of its quality. The
evaluation results are fed back into the search algorithm to improve future samplings. The details of
these two phases are as follows:

• Pruning Metric Search - involves identifying the most effective metric for scoring the importance
of model weights. Similar to Wanda (Sun et al., 2023), we compare the weights on a per-output
basis, where weight importance is assessed locally within each output neuron.

• Layerwise Sparsity Ratio Search - determines the optimal non-uniform sparsity ratios for different
layers in the model. After assigning importance scores to the weights using the pruning metric, we
prune the weights with lower scores according to the specified sparsity ratio for each layer.

In Section 3.2, we outline the Search Space for each phase of MECON, covering the range of pruning
metrics and sparsity ratios that can be explored. Section 3.3 describes the Evaluation Measurement,
detailing how we efficiently assess the sampled pruning metrics and layerwise sparsity ratios. Lastly,
in Section 3.4, we describe the search algorithm, highlighting how we leverage an evolutionary
approach to identify the optimal pruning metric and layerwise sparsity ratios.

3.2 SEARCH SPACE

Meta Pruning Metric. Inspired by the discovery of emergent large weight magnitude (Puccetti
et al., 2022; Wei et al., 2022c; Dettmers et al., 2022) and massive input activation (Sun et al., 2024)
features in LLMs, recent pruning metrics (Sun et al., 2023; Zhang et al.) find that augmenting the
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standard weight magnitude pruning metric with the input activations shows great effectiveness in
evaluating the weight importance.

Building upon these concepts, we introduce a meta pruning metric to dynamically balance the
relationship between weights and activations for LLMs with varying weight distributions. As shown
in Equation 1, we score each weight Wij by applying a weighted transformation to the element-wise
product between the weight magnitude |Wij | and the norm of input activations ∥Xj∥2. The weighted
transformation is conducted by specific coefficients (α, β) and operations (F1, F2).

Sij = αF1(|Wij |) · βF2(∥Xj∥2). (1)

Here, we use the absolute value of weights |Wij | to calculate weight magnitudes and ∥Xj∥2 to
measure the norm of input activations, which computes the l2 norm of the jth features aggregated
across different tokens. The predefined coefficients and operation candidates are listed in Table 1,
with further details and calculation equations provided in Appendix A.5.

Notably, our meta pruning metric is able to encompasses and extends beyond existing pruning metrics
like Wanda and RIA. For instance, the Wanda metric (Sun et al., 2023), expressed as

Sij = |Wij | · ∥Xj∥2, (2)

does not set coefficients and operations, providing a uniform weighting between weight magnitude
and norm of input activations. Building on this, the RIA metric (Zhang et al.), denoted as

Sij = RI(|Wij|) · ∥Xj∥1/22 , (3)

modifies the coefficient of the weight magnitude as relative sum RI, and sets the operation of the
input activation norm as a square function.

Table 1: Predefined coefficient and operation candidates for Meta Pruning Metric.

coefficient candidates for α, β no coe, F norm, to sum, to mean, row sum, column sum, relative sum
operation candidates for F1, F2 no op, sqrt, square, sigmoid, softmax, exp, log

Layerwise Sparsity Ratios. Within Transformer architectures, neurons across different layers
are observed to capture distinct types of information (Wang & Tu, 2020; Zhang et al., 2021), thus
exhibiting different priorities in maintaining original performance. To leverage this insight, we
prune LLMs in a non-uniform layerwise sparsity, for layers with more important neurons, we set a
lower pruning ratio, while layers with less important neurons are assigned a higher pruning ratio.
Specifically, we identify the optimal sparsity ratio for each layer by selecting from a predefined
sparsity ratio set, including target sparsity - sparsity step, target sparsity
and target sparsity + sparsity step. Here, target sparsity is the pre-defined sparsity
ratio for pruning the overall model. The sparsity step allows for adjustments to achieve slightly higher
or lower sparsity ratios, facilitating non-uniform sparsity across different layers. We empirically find
that for LLMs with more than 32 layers, using a discrete set of three sparsity ratios outperforms larger
sets when searching within a limited number of trials.

3.3 SEARCH EVALUATION

Search Evaluation measures each sampling from the search space, thus guiding the evolutionary
process toward finding the optimal pruning strategy (Bäck & Schwefel, 1993). The primary goal of
model pruning is to remove a subset of network weights while aiming to preserve performance (LeCun
et al., 1989; Han et al., 2015). Following this goal, MECON leverages model-wise reconstruction
error to evaluate each sampled pruning metric. Furthermore, we introduce a secondary measurement
to assess the overall sparsity ratio of the pruned model to evaluate sampled layerwise sparsity ratios.

Model-wise Reconstruction Error. We propose a lightweight search evaluation, model-wise
reconstruction error, for the sampled pruning strategy. Existing automatic framework, like Pruner-
Zero (Dong et al., 2024), use perplexity as the evaluation measure. However, we demonstrate
that using perplexity requires more evaluation time and tends to generalize poorly across different
downstream tasks. Toward that end, the proposed model-wise reconstruction error admits a faster
evaluation of each search trial while preserving generalizability.
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Mathematically, the model-wise reconstruction error, denoted as frec, measures the discrepancy
norm in the final layer outputs between the dense model θ and the pruned model θ∗. Specifically, we
denote the input activations for the final layer l as Xl, and weight with r output channels and c input
channels as Wl ∈ Rr×c. A layerwise sparsity mask Mi ∈ 0, 1r×c, i ∈ {0, ..., l} removes a certain
degree of model weights with lower importance scores, which are measured by the sampled pruning
metric. Therefore, the model-wise reconstruction error can be formally expressed as:

frec(θ, θ
∗) = ∥WlXl − (Ml ⊙Wl) ·Xl∥Frob, (4)

where || · ||Frob is the Frobenius norm (Golub & Van Loan, 1996), ensuring the final output of pruned
model θ∗ closely matches that of dense model θ.

Sparsity Ratio Discrepancy. Layerwise sparsity search assigns each layer a sampled sparsity ratio
which is slightly higher or lower than the pre-defined sparsity ratio. As a result, the overall sparsity
of the pruned model may deviate from the pre-defined ratio to prune the dense model. Thus, we
introduce a secondary measurement, sparsity ratio discrepancy, to evaluate the numerical difference
between the sparsity ratio of the pruned model and the pre-defined sparsity ratio. The sparsity ratio
discrepancy fratio is mathematically defined as:

fratio(θ, θ
∗) = |Rd −

parameters(θ)− parameters(θ∗|R)
parameters(θ)

|. (5)

Here, Rd denotes the pre-defined sparsity ratio for pruning the dense model, andR is the layerwise
sparsity ratios applied to the pruned model θ∗. The function parameters(·) measures the total number
of parameters in the model. Therefore, the sparsity ratio of the pruned model is thus calculated by
comparing the number of removed parameters to the total number of parameters in the dense model.

3.4 SEARCH ALGORITHM

Algorithm 1 NSGA-III for Searching Adap-
tive Pruning Strategy

1: Initialize population P0 of size N
2: for t = 1 to T do
3: Qt ← CreateOffspring(Pt)
4: Rt ← Pt ∪Qt

5: F ← NonDominatedSort(Rt)
6: Pt+1 ← SelectPopulation(F , N)
7: end for
8: return PT

We employ the Non-dominated Sorting Genetic Algo-
rithm III (NSGA-III) Deb & Jain (2013) as our search
algorithm. NSGA-III is capable of handling both single
and multi-objective optimization problems, making it
suitable for addressing both pruning metric search and
layerwise sparsity ratio search scenarios within a uni-
fied framework. Let S = {s1, s2, ..., sn} be the search
space, where si represents a candidate pruning strategy.
We define the objective function as f(s) : S → R,
where f(s) is to be minimized. For the single-objective
problem of pruning metric search, we aim to find:

s∗ = argmin
s∈S

f(s) (6)

For the multi-objective problem of layerwise sparsity ratio search, we define a vector of objective
functions F(s) = (f1(s), f2(s), ..., fk(s)). The goal is to find the Pareto optimal set:

S∗ = {s ∈ S | ∄s′ ∈ S : F(s′) ≺ F(s)} (7)

where ≺ denotes Pareto dominance. The dominance relation is defined as: A solution x1 dominates
x2 (x1 ≺ x2) if and only if:

∀i ∈ {1, ..., k} : fi(x1) ≤ fi(x2) ∧ ∃j ∈ {1, ..., k} : fj(x1) < fj(x2) (8)

Specifically, MECON follows a two-phase search process. In the first phase, we minimize the model-
wise reconstruction error frec (Eq. 4) to find the optimal pruning metrics. During the next phase,
we aim to find the optimal layerwise sparsity ratios by minimizing both frec and the sparsity ratio
discrepancy fratio (Eq. 5).

The detailed process of NSGA-III for pruning strategy search is provided in Algorithm 1. The
algorithm starts with an initial population P0 and iterates for a fixed number of generations. In
each generation, it combines the parent Pt and offspring populations Qt, performs non-dominated
sorting to rank solutions, and selects the best solutions to form the next generation Pt+1. The niching
procedure ensures diversity by favoring solutions close to under-represented reference points.

5
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Table 2: Mean zero-shot accuracies(%) on the LM Harness and WikiText perplexity of pruned
LLaMA-1/2/3 and Mistral models.

Method Weight
Update Sparsity LLaMA-1 LLaMA-2 LLaMA-3 Mistral

7B 13B 7B 13B 8B 8B-Inst 7B 7B-Inst
LM Harness

Dense - 0% 59.70 62.58 59.72 63.03 64.21 64.15 60.06 66.69
Magnitude ✗ 50% 46.89 47.34 52.40 52.90 44.87 45.31 57.24 63.34
SparseGPT ✓ 50% 54.86 58.54 55.90 60.70 53.87 55.89 57.49 62.46
Wanda ✗ 50% 54.08 59.18 55.89 60.88 49.66 51.34 54.20 61.04
RIA ✗ 50% 55.10 59.45 55.67 61.03 50.76 50.64 54.39 60.48
Pruner-Zero ✗ 50% 52.31 57.08 53.81 58.18 52.48 55.60 55.57 61.41
MECON ✗ 50% 55.10 59.73 57.47 61.42 55.50 55.94 59.33 63.51

WikiText Perplexity
Dense - 0% 5.37 4.80 5.04 4.56 5.80 7.91 5.23 4.90
Magnitude ✗ 50% 13.27 13.55 11.96 6.16 73.93 5.5E2 7.14 6.59
SparseGPT ✓ 50% 6.92 5.87 6.59 5.72 10.89 13.27 6.42 7.02
Wanda ✗ 50% 6.90 5.82 6.47 5.64 10.57 16.37 7.24 7.22
RIA ✗ 50% 6.81 5.83 6.43 5.63 12.56 15.57 7.27 7.21
Pruner-Zero ✗ 50% 7.13 6.02 6.86 5.88 12.68 15.45 7.84 7.50
MECON ✗ 50% 6.78 5.74 6.35 5.51 9.23 11.37 6.22 6.55

4 EXPERIMENTS

4.1 SETUP

Models and Evaluations. To demonstrate the effectiveness of MECON, we adopt four prominent
open-sourcing large language models as our foundation model, including LLaMA-1 (Touvron et al.,
2023a) and LLaMA-2 (Touvron et al., 2023b) with sizes ranging from 7B to 70B, LLaMA-3 8B
(Meta, 2024) and Mistral 7B (Jiang et al., 2023) with the base models and their instruction-tuned
variants. Following previous works (Sun et al., 2023; Xia et al., 2023), we first evaluate on seven
tasks from the EleutherAI LM Harness (Gao et al., 2023)1, and the language modeling task based on
the held-out WikiText (Merity et al., 2016) validation set. Furthermore, we also evaluate two more
challenging tasks, namely arithmetic reasoning on GSM8K (Cobbe et al., 2021) and the language
understanding benchmark MMLU (Hendrycks et al., 2020). For the comparison group settings, we
follow Wanda (Sun et al., 2023) to compare and remove weights on a per-output basis, where weight
importance scores are compared locally within each output neuron. We evaluate three sparsity types
as defined in previous research (Sun et al., 2023; Zhang et al.): unstructured sparsity, semi-structured
4:8 and 2:4 sparsity. We set the number of trails in the search process as 350, further details on
hyperparameter analysis are provided in Appendix A.4.
Baselines. We compare MECON with five existing outstanding baselines. Magnitude pruning
(Han et al., 2015) is a straightforward but effective solution which discards weights based on their
magnitudes. SparseGPT (Frantar & Alistarh, 2023) solves the layer-wise reconstruction problem
to identify redundant weights and prune them accordingly. Wanda (Sun et al., 2023) utilizes large-
magnitude features and input activation to induce sparsity. RIA (Zhang et al.) further improves
Wanda pruning by introducing the relative importance and channel permutation. Pruner-Zero (Dong
et al., 2024) automatically searches for the optimal pruning metric based on weights and gradients,
using perplexity on WikiText as the evaluation measure.
Calibration Data. Calibration data is used to estimate input statistics from a small set of samples.
For a fair comparison, we use the exact same calibration data as Wanda and SparseGPT when
evaluating on LM Harness and WikiText, which includes 128 sequences sampled from the C4 training
set (Raffel et al., 2020). For evaluations on GSM8K and MMLU, we randomly select 10 samples
from the training dataset, each truncated to a sequence length of 512, as our calibration samples.

4.2 MAIN RESULTS

LM Harness & Language Modeling Table 2 presents the performance of LM Harness and the
WikiText perplexity on the language modeling task. We refer the reader to Appendix A.7 for task-wise

1Referred as LM Harness in remaining parts.
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Table 3: WikiText perplexity and mean zero-shot accuracies(%) on the LM Harness of 50% unstruc-
tured pruned LLaMA-1 30B and LLaMA-2 70B models.

Model Method WikiText BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Average

LLaMA
30B

Dense 4.77 82.69 66.79 63.35 75.69 80.30 52.82 36.00 65.38
Magnitude 7.55 64.34 50.18 50.59 66.54 72.39 43.77 29.00 53.83
SparseGPT 5.32 82.32 62.45 59.15 75.22 78.96 48.56 35.00 63.09
Wanda 5.98 81.90 65.34 60.93 73.48 79.29 49.66 34.60 63.60
RIA 5.16 83.36 67.15 60.01 72.85 78.70 48.29 33.60 63.42
MECON 5.10 83.36 67.51 60.93 72.61 78.91 49.74 34.20 63.89

LLaMA2
70B

Dense 3.12 83.40 67.87 66.10 78.06 82.55 54.44 37.20 67.08
Magnitude 4.98 70.55 60.65 61.50 73.48 75.70 49.23 35.40 60.93
SparseGPT 3.98 83.55 70.40 63.80 78.85 82.40 53.75 38.20 67.28
Wanda 3.99 82.50 73.65 64.10 78.14 80.80 52.65 37.40 67.03
RIA 3.91 83.25 71.49 64.05 77.74 81.20 53.16 36.60 66.77
MECON 3.86 83.25 73.21 64.00 78.48 81.25 53.07 38.40 67.38

performance. The results indicate that our method consistently outperforms all established baselines
across the board. More intriguingly, a notable performance gap between SparseGPT and the other
two baselines, i.e. Wanda and RIA, is observed on the LLaMA-3 and Mistral models, while the
performance remains comparable on the LLaMA-1 and LLaMA-2 models. This observation is also
aligned with the results in previous work (Sun et al., 2023). However, our MECON framework further
significantly improves the state-of-the-art performance on all types of models. We think this is
attributed to the different weight distributions of LLaMA-1/2 models with the LLaMA-3 model, as
depicted in Figure 1, highlighting the importance of adaptive pruning on different models.

We also explore the effectiveness of MECON when appied to larger models, such as LLaMA-30B and
LLaMA2-70B. As shown in Table 3, MECON consistently achieves the best performance on both the
WikiText perplexity and LM Harness benchmarks. Besides, for the particularly larger models like
LLaMA2-70B, MECON can even outperform the dense model without the need for weight updating.

Table 4: GSM8K and MMLU accuracies(%) of pruned LLaMA-1/2/3 and Mistral models.

Method Weight
Update Sparsity LLaMA-1 LLaMA-2 LLaMA-3 Mistral

7B 13B 7B 13B 8B 8B-Inst 7B 7B-Inst
GSM8K

Dense - 0% 11.07 17.82 14.59 19.86 52.39 74.45 40.11 47.76
Magnitude ✗ 50% 1.52 5.99 2.05 6.22 1.97 1.29 15.53 27.37
SparseGPT ✓ 50% 8.19 15.60 8.11 13.42 21.46 49.20 25.40 33.97
Wanda ✗ 50% 7.96 11.52 7.43 9.10 10.16 32.68 22.74 33.59
RIA ✗ 50% 8.04 11.14 7.96 9.25 15.85 52.39 24.18 32.15
Pruner-Zero ✗ 50% 6.41 9.22 7.32 8.58 17.25 43.63 21.16 32.24
MECON ✗ 50% 8.14 15.37 8.13 13.79 41.17 52.39 25.31 35.25

w/ eval. ✗ 50% 8.22 15.62 8.47 15.03 43.07 52.15 25.78 35.14
MMLU

Dense - 0% 35.28 46.98 41.97 51.47 65.23 66.35 58.92 62.54
Magnitude ✗ 50% 26.24 30.12 26.04 43.83 4.36 12.03 50.83 49.52
SparseGPT ✓ 50% 29.48 38.29 33.03 47.14 49.50 52.27 50.95 52.04
Wanda ✗ 50% 29.81 37.84 32.09 48.06 49.05 53.15 53.05 53.62
RIA ✗ 50% 30.37 37.79 31.46 47.39 48.99 54.02 52.67 53.14
Pruner-Zero ✗ 50% 28.57 35.51 30.26 45.24 41.39 46.32 51.75 53.15
MECON ✗ 50% 30.93 38.80 32.24 48.15 50.65 55.11 53.10 53.77

w/ eval. ✗ 50% 31.05 39.76 33.06 48.38 51.22 55.60 53.87 54.36

Arithmetic & Knowledge Reasoning In Table 4, we report the performance of pruned LLaMA-
1/2/3 and Mistral models on the GSM8K and MMLU dataset. We can see that MECON consistently
outperforms all baselines on the reasoning tasks. We highlight that we make remarkable improvements
on the GSM8K dataset. For instance, on the LLaMA-3 8B model, MECON achieves an accuracy
of 41.17, significantly better than the previous best performance of 21.46. This result also suggests
that existing pruning methods are sensitive to the models. Additionally, since the optimal pruning
strategies differ across the tasks but MECON is task-agnostic, we also attempt to align the search
process of MECON with the target task objective. We implement it by introducing the evaluation
accuracy on the validation set as an additional search objective. We find that with the aid of evaluation
accuracy, further improvements are achieved over the standard MECON.
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Table 5: Evaluations of semi-structured N:M sparsity on WikiText and GSM8K datasets.

Method Weight
Update Sparsity LLaMA-1 LLaMA-2 LLaMA-3 Mistral

7B 13B 7B 13B 8B 8B-Inst 7B 7B-Inst
WiKiText Perplexity

Magnitude ✗ 4:8 17.48 16.80 16.10 7.23 2.5E2 5.6E2 8.78 8.67
SparseGPT ✓ 4:8 8.16 7.05 7.89 6.54 15.57 16.62 7.71 8.15
Wanda ✗ 4:8 8.19 6.95 8.01 6.60 16.82 21.52 8.95 8.42
RIA ✗ 4:8 8.18 6.97 8.04 6.62 17.28 21.15 8.91 8.51
MECON ✗ 4:8 7.93 6.65 7.72 6.34 17.24 21.15 7.57 7.66
Magnitude ✗ 2:4 49.06 19.33 38.50 9.04 5.3E3 5.3E3 13.18 11.83
SparseGPT ✓ 2:4 10.58 8.53 10.38 8.26 23.43 26.68 10.17 9.84
Wanda ✗ 2:4 11.04 9.06 11.31 8.46 31.89 59.12 13.54 11.08
RIA ✗ 2:4 11.10 9.24 11.40 8.57 31.79 38.00 13.61 11.21
MECON ✗ 2:4 10.54 8.21 10.34 7.97 31.71 37.98 10.13 9.23

GSM8K
Magnitude ✗ 4:8 1.53 3.48 1.59 4.70 4.16 7.81 9.60 14.15
SparseGPT ✓ 4:8 3.54 8.78 4.84 8.20 9.23 18.35 21.46 29.82
Wanda ✗ 4:8 2.65 7.40 3.10 8.13 6.60 10.84 12.87 20.92
RIA ✗ 4:8 3.17 8.74 2.93 7.75 8.12 17.59 17.36 27.18
MECON ✗ 4:8 3.71 9.29 4.95 8.53 8.38 17.59 21.80 30.39
Magnitude ✗ 2:4 0.74 2.29 0.98 3.60 0.24 3.12 3.80 9.26
SparseGPT ✓ 2:4 3.28 6.27 3.10 6.53 1.71 8.21 7.52 19.45
Wanda ✗ 2:4 2.75 6.12 2.75 6.48 2.27 3.51 4.93 10.79
RIA ✗ 2:4 2.56 4.73 2.79 5.65 1.98 6.74 6.49 17.22
MECON ✗ 2:4 3.34 6.27 3.41 6.72 2.52 6.74 7.91 20.33

Comparison to Pruner-Zero Pruner-Zero (Dong et al., 2024) is also an adaptation-based pruning
method, which searches symbolic pruning metrics using genetic programming. Notably, MECON
differs from Pruner-Zero in two key aspects: 1) Search Space: Pruner-Zero’s search space involves
weights, activations, and gradients, while MECON deliberately omits gradient computations. Despite
this omission, as shown in Tables 2 and 4, Pruner-Zero even underperforms when compared to
the baseline methods like Wanda and RIA, which rely on static metrics derived from weights and
activations. Moreover, the calculation of gradients also introduces additional computational overhead.
2) Search Evaluation: Pruner-Zero uses perplexity on WikiText as search evaluation, whereas MECON
relies on model-wise reconstruction error, thus substantially decreasing the evaluation duration. For
instance, pruning LLaMA2-7B takes less than 10 seconds per trial with MECON, compared to over
70 seconds with Pruner-Zero.
N:M Semi-Structured Pruning While MECON is designed for unstructured sparsity, it can be
easily extended to semi-structured N:M sparsity (Mishra et al., 2021), which can leverage NVIDIA’s
sparse tensor cores to accelerate matrix multiplication in practice. In Table 5, we report the perfor-
mance of 4:8 and 2:4 sparsity constraints on the WikiText and GMS8K datasets. We find that MECON
consistently achieves superior performance than baselines, except LLaMA-3 models. We think this is
because the LLaMA-3 model, trained on a larger amount of data, exhibits higher knowledge density
(Meta, 2024). Thus, pruning a continuous block of parameters in semi-structured pruning leads to a
significant performance drop, necessitating weight updates in SparseGPT for recovery.

Table 6: Pruning speed for pruning LLaMA-2/3
and Mistral models to 50% sparsity.

Method L2-7B L2-13B L3-8B M-7B
SparseGPT 370.03 464.77 457.71 450.76
MECON 56.16 107.11 60.11 59.80

Table 7: Inference speedup of different sparsity
patterns for LLaMA-2/3 and Mistral models.

Sparsity L2-7B L2-13B L3-8B M-7B
4:8 1.11× 1.04× 1.15× 1.17×
2:4 1.35× 1.14× 1.15× 1.16×

4.3 SPEEDUP

The theoretical computational complexity of SparseGPT is O(d3hidden), while our meta pruning
metric has a lower complexity of O(d2hidden). We compare their empirical pruning speed on NVIDIA
RTX A6000 GPUs by measuring the total time required to prune the model to 50% sparsity using
each metric. Calibration data from the C4 training dataset is used to estimate activation magnitudes
for the language modeling task. As shown in Table 6, our meta pruning metric results in negligible
time overhead compared to SparseGPT. We further evaluate the inference speedup for semi-structured
4:8 and 2:4 sparsity on NVIDIA RTX A6000 GPUs. Our simulations utilize the high-performance

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

GEMM kernel from the NVIDIA CUTLASS library. According to the results presented in Table 7,
when compared with dense models, we observe an average speedup of 1.20× in end-to-end latency.

5 IN-DEPTH ANALYSIS

5.1 GENERALIZABILITY OF THE SEARCHED PRUNING METRICS

A potential limitation of MECON might be the relatively high cost of the search process, which is
conventionally necessitated for every model across all datasets. To alleviate this problem, we explore
the generalizability of our searched pruning metrics. We also outline the search costs for finding
optimal metrics and layerwise sparsity ratios for LLaMA-1/2/3 and Mistral models in Appendix A.3.
Cross-task Generalization. We evaluate the generalizability of the pruning metrics identified from
the complex arithmetic reasoning task (e.g. GSM8K) to the easier tasks, such as language modeling
(e.g. WikiText) and zero-shot reasoning (e.g. LM Harness). This evaluation is partially inspired
by the work (Fu et al., 2022) of multi-step reasoning which finds that complex demonstrations
provide more valuable information. For instance, on the evaluation of LLaMA-1 7B on WikiText, we
directly leverage the metrics searched with LLaMA-1 7B on GSM8K. As shown in Table 8, GSM8K
metric, derived from the arithmetic reasoning task, consistently achieves the better performance than
SparseGPT and comparable scores against the task-specific pruning metrics across LLaMA-1/2/3
and Mistral models on the WikiText and LM Harness benchmarks. We also conduct the counter
experiment – performing the metrics derived from WikiText on the harder tasks, like LM Harness and
GSM8K. We regrettably observe consistent performance declines on the target tasks. These findings
suggest that the generalization works from the complex tasks to those easier.
Cross-model Generalization. For cross-model evaluation, we select models notable for their
superior performance on arithmetic reasoning, specifically the LLaMA-2 7B and LLaMA-3 8B
models. Metrics derived from these models, termed the LLaMA-2 and LLaMA-3 metrics, are applied
across different model families to assess their effectiveness. The LLaMA-3 metric is tested on
Mistral models, while the LLaMA-2 metric is evaluated with the LLaMA-1 models. We also tried
the cross-model evaluations of transferring the metrics of LLaMA-3 to LLaMA-1/2 models. But we
found the results are insignificant and we think the reason is that their weight distributions largely
differ. As shown in Table 8, we find that the metrics from the superior model can consistently surpass
the established baselines across the board. More excitingly, it even exceeds the original MECON.
Further details of the optimal metrics found for each LLM, using both C4 and GSM8K calibration
data, are provided in Appendix A.5.

Table 8: WikiText perplexity and zero-shot reasoning accuracy (%) with different pruning metrics.

Method WiKiText LM Harness
L1-7B L2-7B L3-8B M-7B L1-7B L2-7B L3-8B M-7B

SparseGPT 6.92 6.59 10.89 6.42 54.86 55.90 53.87 57.49
MECON 6.78 6.35 9.23 6.22 55.10 57.47 55.50 59.33

GSM8K Metric 6.78 6.39 12.78 6.23 55.15 56.05 55.59 57.66
LLaMA-2 Metric 6.76 - - - 55.24 - - -
LLaMA-3 Metric - - - 6.16 - - - 58.30

Therefore, although we still claim the necessity of adaptive pruning for different models, we also
provide a cost-effective alternative to mitigate the search process, which is adopting the pruning
metric identified on the challenging task with the strongest model in your candidate pool. This
metric has demonstrated a capacity for generalization, proving transferrable and reusable across less
complex tasks or the less-performing models.

5.2 EFFECTIVENESS OF THE SEARCHED LAYERWISE SPARSITY RATIOS

Motivated by the distinct importance of parameters across different layers (Wang & Tu, 2020;
Zhang et al., 2021), another component of MECON involves setting specific pruning ratios for each
layer while maintaining an overall 50% reduction in parameters. Table 9 demonstrates that these
layer-specific sparsity ratios, optimized through our pruning metric, not only enhance our model’s
performance but also significantly improve other baseline metrics, such as Wanda and RIA. Notably,
these searched sparsity ratios lead to an average relative improvement of 4.68% in perplexity reduction
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on the WikiText set. Furthermore, in LLaMA-3 models, these ratios enhance the performance of
Wanda and RIA by an impressive score of 13.68%. Details of the layerwise sparsity ratios for each
LLM are provided in Appendix A.5, and the results generally show that the upper layers tend to have
more redundant parameters than the lower layers, aligning with findings from previous studies.

Table 9: Our searched layerwise sparsity ratios are effective for both Wanda and RIA metrics. The
number (%) in (·) denotes the relative improvement (RI). For instance, Wanda RI = (Wanda w/ Ratio
- Wanda) / Wanda.

Method Uniform LLaMA-1 LLaMA-2 LLaMA-3 Mistral
7B 13B 7B 13B 8B 8B-Inst 7B 7B-Inst

Wanda ✓ 6.90 5.82 6.47 5.64 10.57 16.37 7.24 7.22

Wanda w/ Ratio ✗
6.72 5.64 6.28 5.52 9.45 13.67 6.97 6.98

(+2.61) (+3.09) (+2.94) (+2.13) (+10.60) (+16.49) (+3.73) (+3.32)
RIA ✓ 6.81 5.83 6.43 5.63 12.56 15.57 7.27 7.21

RIA w/ Ratio ✗
6.65 5.67 6.26 5.54 10.98 13.23 6.89 6.96

(+2.35) (+2.74) (+2.64) (+1.60) (+12.58) +(15.03) (+5.23) (+3.47)
MECON wo/ Ratio ✓ 6.75 5.75 6.32 5.52 9.23 11.37 6.22 6.55

MECON ✗
6.61 5.60 6.19 5.44 8.95 10.73 6.08 6.39

(+2.07) (+2.61) (+2.06) (+1.45) (+3.03) (+5.63) (+2.25) (+2.62)

5.3 SPARSITY

In Figure 3(a), we investigate the impact of different sparsity ratios, which range from 0.1 to 0.6, on
the performance of the LLaMA-2 13B model. The perplexity curve demonstrates that MECON (red
curve) consistently surpasses SparseGPT, Wanda, and RIA across all tested sparsity levels. Especially
at the sparsity ratio of 60%, MECON outperforms the baselines by a large margin, achieving a 10.52%
relative improvement compared to RIA.

Figure 3: Sensitivity evaluation on sparsity, number of calibration samples (samples), and the
reasoning steps in calibration samples for arithmetic reasoning.

5.4 ROBUSTNESS TO CALIBRATION SAMPLES.

We first vary the number of calibration samples for Wikitext evaluation on the LLaMA2-7B model.
As illustrated in Figure 3(b), we see a clear difference in trend as the number of calibration samples
ranging from 2 to 128. SparseGPT appears to rely on a larger number of calibration samples, while
Wanda, RIA, and MECON are much more robust when there are few calibration samples. Notably,
MECON consistently outperforms the other methods in all cases. We then vary the difficulty of
calibration samples in arithmetic reasoning by selecting samples with reasoning steps ranging from 2
to 10. The results, summarized in Figure 3(c), clearly indicate that increasing the number of reasoning
steps in calibration samples could improve the accuracy. MECON also consistently surpasses all
baselines. Further ablation study, including an in-depth comparison and robustness analysis of the
search algorithms and exploration of various search spaces, are provided in Appendix A.1 and A.2.

6 CONCLUSION

In this work, we introduce MECON, an adaptive pruning framework that automatically determines
optimal pruning metrics and layerwise ratios for LLMs with diverse weight distributions. Inspired
by the discovery of significant weight and activation features in LLMs, we create a meta pruning
metric to balance these magnitudes. MECON identifies effective sparse networks in pretrained LLMs
without retraining. Our evaluation shows that the metric from the best model for arithmetic reasoning
also excels in simpler tasks with similar weight distributions.
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Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. 2023.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. In International Conference on Learning Representations, 2018.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Meta. Introducing meta llama 3: The most capable openly available llm to date, 2024. URL
https://ai.meta.com/blog/meta-llama-3/.

12

https://zenodo.org/records/10256836
https://ai.meta.com/blog/meta-llama-3/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Yoshihiko Ozaki, Yuki Tanigaki, Shuhei Watanabe, Masahiro Nomura, and Masaki Onishi. Multiob-
jective tree-structured parzen estimator. Journal of Artificial Intelligence Research, 73:1209–1250,
2022.

Giovanni Puccetti, Anna Rogers, Aleksandr Drozd, and Felice Dell’Orletta. Outliers dimensions that
disrupt transformers are driven by frequency. arXiv preprint arXiv:2205.11380, 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. In International Conference on Learning Representations, 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
2023.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355, 2018.

Wenxuan Wang and Zhaopeng Tu. Rethinking the value of transformer components. In Proceedings
of the 28th International Conference on Computational Linguistics, pp. 6019–6029, 2020.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei
Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language
models. Advances in Neural Information Processing Systems, 35:17402–17414, 2022c.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. In The Twelfth International Conference on Learning
Representations, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, 2019.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
and-play: An efficient post-training pruning method for large language models. In The Twelfth
International Conference on Learning Representations.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Moefication:
Transformer feed-forward layers are mixtures of experts. arXiv preprint arXiv:2110.01786, 2021.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 ABLATION STUDY ON SEARCH ALGORITHMS AND ROBUSTNESS ANALYSIS

We conduct a robustness analysis using five search algorithms, including random search (Bergstra
& Bengio, 2012), which randomly samples hyperparameter values from a predefined search space
and does not take into account any information about the performance of previous trials, the Tree-
structured Parzen Estimator (TPE) (Bergstra et al., 2011; 2013; Ozaki et al., 2022), a Bayesian
optimization algorithm that uses a tree structure to model the relationship between hyperparameters
and the objective function, and Quasi-Monte Carlo (QMC) (Bergstra & Bengio, 2012) sampler,
which generates a sequence of points that cover the search space more evenly compared to random
sampling, for more efficient exploration. Additionally, we utilize the state-of-the-art multi-objective
optimization algorithms Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002)
and NSGA-III (Deb & Jain, 2013; Jain & Deb, 2013), which are based on genetic algorithms and
optimize multiple conflicting objectives simultaneously. NSGA-II uses a non-dominated sorting
approach to rank solutions based on their dominance relationship, while NSGA-III extends NSGA-II
by incorporating reference points to guide the search toward the Pareto front.

Table 10: Statistical results of different search algorithms on LLaMA-2 7B model. We report the
mean and standard deviation under 3 search process runs.

Dataset Random TPE QMC NSGA-II NSGA-III
WikiText 6.89 ( ± 0.0671) 6.33 ( ± 0.0714) 6.39 ( ± 0.0700) 6.44 ( ± 0.0632) 6.35 ( ± 0.0640)
GSM8K 7.96 ( ± 0.2406) 8.33 ( ± 0.2498) 8.08 ( ± 0.2220) 8.47 ( ± 0.2479) 8.49 ( ± 0.2646)
MMLU 31.11 ( ± 0.3962) 31.06 ( ± 0.4017) 31.80 ( ± 0.4400) 32.43 ( ± 0.4701) 33.06 ( ± 0.4687)
LM-harness 55.32 ( ± 0.5300) 55.74 ( ± 0.5367) 56.19 ( ± 0.5234) 56.59 ( ± 0.5689) 57.47 ( ± 0.5718)

Table 10 presents the statistical analysis, specifically the mean and standard deviation, of the perfor-
mance of pruned LLaMA-2 7B models across four distinct benchmarks. To validate the robustness
and reliability of our results, each model was evaluated using three different search processes, each
initialized with different random seeds. We report the performance outcomes of the NSGA-III search
method in the main paper, as it generally outperforms other algorithms.

A.2 ABLATION STUDY ON SEARCH SPACE

In Table 11, we construct the sub-search spaces by randomly selecting 2-6 coefficients/operations
from our candidate pool. We test three different subspaces using random seeds 0, 42, and 100. The
evaluations are conducted on WikiText, and the perplexity scores are reported below. We can see that
the search performed on the full set consistently yields the best results. An interesting observation
is that using a very small subspace may lead to extremely poor outcomes. This occurs because the
candidate coefficients/operations in the subspace are all unsuitable for the target model.

Table 11: WikiText perplexity for random subspaces of the search space on LLaMA2-7B model in
searching for optimal pruning metric.

Seed 2 Ops & 2 Coes 3 Ops & 3 Coes 4 Ops & 4 Coes 5 Ops & 5 Coes 6 Ops & 6 Coes Full Search Space
0 870.16 753.32 6.43 6.51 6.57 6.35
42 6.47 6.39 6.39 6.39 6.35 6.35
100 6.43 6.43 6.43 6.58 6.58 6.35

A.3 SEARCH COST

In Table 12, we provide the detailed search time consumed on a single Nvidia RTX A6000 GPU. We
report the total time of 350 search trials, as we empirically found that the optimal value is generally
obtained within these rounds, as illustrated in Figure 4(c). As shown in the table, the time of an
optimal search is within 2.5 GPU hours. With multiple GPUs, the search process can generally be
finished within 1 hour. Therefore, we believe that the search cost of our method is moderate and
acceptable.
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Table 12: Cost of searching for optimal pruning metric and layerwise sparsity ratios on LLaMA-1/2/3
and Mistral models.

Search L1-7B L1-13B L2-7B L2-13B L3-8B L3-8B-it M-7B M-7B-it
Metric 1h10m28s 2h13m6s 1h6m14s 2h11m55s 1h30m47s 1h31m51s 1h14m22s 1h15m54s
Ratio 1h13m44s 2h19m28s 1h9m34s 2h22m45s 1h31m59s 1h32m51s 1h17m8s 1h18m12s

A.4 HYPERPARAMETER ANALYSIS

We evaluate the impact of various hyperparameters applied in the layerwise sparsity ratios search
procession the performance of WikiText perplexity. We use the LLaMA-2 7B model and prune to
unstructured 50% sparsity.

Sparsity step. In layerwise sparsity ratio search, we identify the optimal sparsity ratio for each layer
by selecting from a predefined sparsity ratio set: [target sparsity - sparsity step,
target sparsity, target sparsity + sparsity step]. Here, target sparsity is the
pre-defined sparsity ratio for pruning the overall model. The sparsity step allows for adjustments to
achieve slightly higher or lower sparsity ratios.

In Figure 4(a), we vary the sparsity step ranging between 3% and 10%. We empirically find that a
5% sparsity step usually performs better than other sparsity steps, such as lower 3% or higher 8%
and 10%. This is possibly because smaller steps might not significantly reduce redundancy, while
larger steps might overly simplify the layers, leading to a loss of important features and a decrease on
overall model performance.

Figure 4: Sensitivity evaluation on sparsity step, number of sparsity ratios, and the number of trials in
layerwise sparsity ratio search.

Number of sparsity ratios. In Figure 4(b), we fix the sparsity step as 5% and vary the num-
ber of sparsity ratios in the predefined sparsity ratio set, which ranges from 3 to 9. Specifically,
one sparsity ratio in the sparsity ratio set corresponds to uniform pruning across layers. For ex-
ample, a predefined sparsity ratio set with 5 sparsity ratios is defined as [target sparsity
- 2*sparsity step, target sparsity - sparsity step, target sparsity,
target sparsity + sparsity step, target sparsity + 2*sparsity step].

We empirically find that, for LLaMA2-7B model that contains 32 layers, a discrete sparsity set
of 3 sparsity ratios is able to search for better results than larger sets of sparsity ratios. This
possibly because a larger number of sparsity ratios significantly expands the search space, making it
challenging to find the optimal solution within a limited number of search trials.

Number of search trials. In Figure 4(c), we investigate the influence of varying the number of
trials on the performance of the NSGA-III search algorithm. The trials evaluated range from an initial
count of 0 up to a maximum of 500. The results reveals that the perplexity stabilizes and reaches an
optimal value at the point where the number of search trials is set to 350. Based on this empirical
evidence, we select this specific number of trials for the NSGA-III algorithm in our experiments
discussed in the main paper.
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A.5 OPTIMAL PRUNING METRIC AND LAYERWISE SPARSITY RATIOS

Our meta pruning metric adjusts the relationship between weight and activation magnitudes by
applying specific coefficients and operations to both weight and activation magnitudes. The operation
sets include (1) no op, which leaves the matrix unchanged, (2) sqrt, which computes the square
root of each matrix element, and (3) square, which raises each element to the power of two. The
coefficient sets include (1) no coe, which leaves the scaling of the matrix elements unchanged, (2) F
norm, using the reciprocal of the Frobenius norm of the matrix, (3) to sum, and (4) to mean, setting
the coefficients as the reciprocal of the total sum and the average of the matrix elements, respectively.
(5) row sum and (6) column sum, using the reciprocal of the sums of specific rows or columns,
respectively. Finally, (7) relative sum calculates coefficients as the sum of the row sums and column
sums for each matrix element. The detailed calculation equations are illustrated in Table 13, using
matrix A = Aij with m rows and n columns as input for demonstration.

The detailed calculations for the coefficient sets utilized in our pruning metric are comprehensively
illustrated in Table 13. For these calculations, we use a matrix A = Aij that consists of m rows and
n columns as input demonstration.

Table 13: Detailed calculations for the coefficient sets in meta pruning metric.

coefficient Equation coefficient Equation

no coe α = β = 1 F norm α = β = 1/
√∑m

i=1

∑n
j=1 A

2
ij

to sum α = β = 1/
∑m

i=1

∑n
j=1 Aij to mean α = β = mn/

∑m
i=1

∑n
j=1 Aij

row sum α = β = 1/
∑n

j=1 Aij column sum α = β = 1/
∑m

i=1 Aij

relative sum α = β = row sum (Aij)+ column sum (Aij)

Optimal pruning metrics. In Table 14, we present the optimal coefficients and operations for
pruning metrics using samples from the C4 dataset as calibration data. Table 15 displays the optimal
coefficients and operations for pruning metrics using samples from the GSM8K dataset as calibration
data. Compared to the results based on the C4 dataset, the metrics derived from the GSM8K dataset
show a greater divergence from RIA metric (Zhang et al.). Notably, most of these metrics do not
incorporate the relative sum as a weight coefficient.

Table 14: Optimal coefficients and operations for pruning metrics on C4 calibration data.

Metric LLaMA-1 LLaMA-2 LLaMA-3 Mistral
7B 13B 7B 13B 8B 8B-Inst 7B 7B-Inst

α relative sum relative sum relative sum relative sum relative sum no coe relative sum F norm
β to mean to mean to mean no coe F norm F norm to mean to mean
τ1 no op square no op square no op no op square sqrt
τ2 sqrt no op sqrt sqrt no op no op no op sqrt

Table 15: Optimal coefficients and operations for pruning metrics on GSM8K calibration data.

Metric LLaMA-1 LLaMA-2 LLaMA-3 Mistral
7B 13B 7B 13B 8B 8B-Inst 7B 7B-Inst

α row sum to mean F norm column sum to mean relative sum row sum relative sum
β relative sum F norm to sum relative sum to sum no coe no coe to mean
τ1 no op no op no op square square no op square square
τ2 sqrt sqrt sqrt sqrt sqrt no op no op no op

Optimal layerwise pruning ratio. In Figure 5, we report the optimal layerwise sparsity ratios for
LLaMA-1/2/3 and Mistral models. The results generally indicate that the upper layers contain more
redundant parameters compared to the lower layers, as higher sparsity ratios are more common in the
top layers, while lower sparsity ratios are more frequent in the lower layers.
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Figure 5: Searched layerwise sparsity ratios for LLaMA-1/2/3 and Mistral models.

A.6 RELATIONSHIP BETWEEN TRANSFORMED WIGHTS AND ACTIVATIONS

In our analysis of the optimal searched pruning metrics, We find that the differences between trans-
formed weights and transformed activations may affect the effectiveness of different pruning metrics.
Specifically, we analyze each pruning metric, such as Wanda, RIA, and Mecon, by decomposing
them into two distinct components: the transformed weights and the transformed activations, each
defined by specific coefficients or operations. As the SparseGPT metric combines weights and the
Hessian matrix, and the Wanda metric serves as a simpler approximation of the SparseGPT metric.
Due to this relationship, we omit the weight and activation analysis for SparseGPT.

We measure the difference between transformed weights and activations as the layer-wise absolute
difference, which is calculated by summing the average absolute differences across all linear sub-
modules in each layer. We report the average layer-wise differences between the operated weights
and the operated activations across the Wanda, RIA, and Mecon pruning metrics in Table 16, with
detailed layer-wise difference curves available in Figures 6, 7, 8, 9.

Table 16: Average absolute difference between operated weights and operated activations for Wanda,
RIA and Mecon on C4 Calibration Data.

Method LLaMA-2 7B LLaMA-2 13B LLaMA-3 8B Mistral 7B

Wanda 82.66 78.30 79.31 392.13
RIA 22.34 21.91 21.15 44.77
Mecon 1.09 0.0001 0.1263 0.0304

Table 16 shows that the RIA pruning metric reduces the absolute difference compared to Wanda,
while the Mecon searched metric further minimizes this difference, bringing it close to zero. The
weighted transformation operation in the Mecon pruning metric effectively scales both weights and
activations into a similar numerical range, facilitating a balanced evaluation of each weight relative to
its corresponding activation.

Coupled with the performance results of each pruning metric presented in Table 2, the difference
analysis in Table 1 suggests that pruning metrics with smaller absolute differences between trans-
formed weights and activations are more likely to achieve effective pruning. Thus, the performance of
Wanda and other methods may be influenced by how well they account for these differences regarding
different models with different weight magnitudes and distributions.
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Figure 6: Layerwise absolute distance between transformed weights and transformed activations for
Wanda, RIA, and Mecon metrics on LLaMA-2 7B models.

Figure 7: Layerwise absolute distance between transformed weights and transformed activations for
Wanda, RIA, and Mecon metrics on LLaMA-2 13B models.

Figure 8: Layerwise absolute distance between transformed weights and transformed activations for
Wanda, RIA, and Mecon metrics on LLaMA-3 8B models.

Figure 9: Layerwise absolute distance between transformed weights and transformed activations for
Wanda, RIA, and Mecon metrics on Mistral 7B models.

A.7 TASK-WISE RESULTS ON LM HARNESS

For LM-harness results, the 7 evaluated zero-shot tasks are: BoolQ (Clark et al., 2019), RTE (Wang
et al., 2018), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC Easy and
Challenge (Clark et al., 2018), and OpenbookQA (Mihaylov et al., 2018). For reproducibility, we
used v0.4.0 release. All tasks were evaluated on task version 0 except for BoolQ on task version
1. We show the task-wise performance of mean zero-shot accuracies of pruned LLaMA-1/2/3 and
Mistral models in Tables 17, 18, 19, 20, 21, 22, 23, 24.
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Table 17: Accuracies (%) of LLaMA-1 7B model for 7 zero-shot tasks with unstructured 50% sparsity.

Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Dense 75.06 66.23 56.93 69.54 74.82 41.02 34.30 59.70
Magnitude 55.10 54.51 45.49 59.10 58.65 32.97 22.40 46.89
SparseGPT 72.03 54.15 51.43 67.87 71.39 37.54 29.60 54.86
Wanda 71.04 54.51 51.93 65.90 69.40 36.95 28.80 54.08
RIA 72.84 57.76 51.93 66.85 70.50 36.43 29.40 55.10
Pruner-Zero 70.28 56.68 47.27 64.96 66.92 33.25 26.80 52.31
Our Metric 72.87 57.40 51.91 67.25 70.33 36.35 29.60 55.10
GSM8K Metric 71.04 58.48 52.39 67.17 69.91 37.46 30.20 55.24
LLaMA2 Metric 70.73 57.63 53.24 67.01 70.24 37.97 30.20 55.15

Table 18: Accuracies (%) of LLaMA-1 13B model for 7 zero-shot tasks with unstructured 50%
sparsity.

Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Dense 78.03 70.51 59.63 72.89 77.28 46.55 33.20 62.58
Magnitude 55.19 52.23 43.65 63.36 57.82 32.53 26.60 47.34
SparseGPT 76.89 60.95 54.99 71.46 72.15 42.17 31.20 58.54
Wanda 75.73 62.48 55.70 71.68 72.91 43.45 32.20 59.18
RIA 76.44 62.34 56.13 72.73 72.42 43.87 32.20 59.45
Pruner-Zero 73.91 62.36 52.65 69.41 70.83 41.62 28.80 57.08
Our Metric 76.67 62.45 56.11 73.63 73.25 43.62 32.40 59.73
GSM8K Metric 76.62 62.89 55.48 72.79 72.58 43.78 32.00 59.45
LLaMA2 Metric 76.51 62.32 56.43 71.82 73.39 43.84 32.40 59.53

Table 19: Accuracies (%) of LLaMA-2 7B model for 7 zero-shot tasks with unstructured 50% sparsity.

Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Dense 77.74 62.82 57.14 69.14 76.35 43.43 31.40 59.72
Magnitude 62.57 52.35 52.99 65.35 67.97 37.20 28.40 52.40
SparseGPT 75.78 57.75 52.90 69.14 71.34 37.97 26.60 55.90
Wanda 75.35 53.43 52.63 67.25 72.35 39.42 30.80 55.89
RIA 75.66 53.79 52.25 67.25 72.05 37.71 31.00 55.67
Pruner-Zero 73.48 53.29 49.18 65.83 69.92 38.36 26.60 53.81
Our Metric 74.62 62.82 57.14 68.03 71.00 38.91 29.80 57.47
GSM8K Metric 75.11 53.79 53.55 67.25 72.31 39.93 30.40 56.05
LLaMA2 Metric 75.11 53.79 53.55 67.25 72.31 39.93 30.40 56.05

Table 20: Accuracies (%) of LLaMA-2 13B model for 7 zero-shot tasks with unstructured 50%
sparsity.

Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Dense 80.52 65.34 60.33 71.95 79.38 48.47 35.20 63.03
Magnitude 57.62 55.87 54.53 65.85 70.47 38.13 27.80 52.90
SparseGPT 81.42 65.26 55.83 72.64 74.91 42.23 32.60 60.70
Wanda 81.86 64.08 56.92 71.37 76.12 43.81 32.00 60.88
RIA 81.93 64.02 57.73 71.89 76.24 43.46 32.00 61.03
Pruner-Zero 77.86 61.22 56.89 67.90 74.16 39.81 29.40 58.18
Our Metric 80.97 66.17 59.68 72.35 76.29 43.68 30.80 61.42
GSM8K Metric 81.56 64.06 58.41 72.23 76.98 43.73 32.00 61.28
LLaMA2 Metric 80.25 66.14 59.73 71.57 77.36 43.85 32.00 61.56
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Table 21: Accuracies (%) of LLaMA-3 8B model for 7 zero-shot tasks with unstructured 50% sparsity.

Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Dense 81.44 69.68 60.17 72.85 80.09 50.43 34.80 64.21
Magnitude 49.14 53.43 38.55 55.09 60.69 32.42 24.80 44.87
SparseGPT 74.80 54.15 49.90 68.35 67.05 36.43 26.40 53.87
Wanda 73.43 52.71 41.80 63.22 64.86 29.78 21.80 49.66
RIA 75.20 53.12 43.00 64.56 65.87 30.55 23.00 50.76
Pruner-Zero 72.32 54.51 45.78 65.19 70.58 35.41 23.60 52.48
Our Metric 79.54 53.07 43.24 70.24 72.05 41.13 29.20 55.50
GSM8K Metric 73.88 63.90 49.68 68.90 70.37 37.80 24.60 55.59
LLaMA3 Metric 73.88 63.90 49.68 68.90 70.37 37.80 24.60 55.59

Table 22: Accuracies (%) of Instruction-tuned LLaMA-3 8B model for 7 zero-shot tasks with
unstructured 50% sparsity.

Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Dense 83.06 67.51 57.68 71.98 81.61 52.99 34.20 64.15
Magnitude 68.84 60.65 36.31 53.75 49.83 26.19 21.80 45.31
SparseGPT 77.00 60.65 49.61 66.46 70.92 40.19 26.40 55.89
Wanda 76.57 54.51 41.18 63.61 67.63 33.70 22.20 51.34
RIA 78.17 54.51 42.29 64.25 68.35 34.13 22.80 50.64
Pruner-Zero 76.88 54.51 45.32 65.67 69.44 36.95 25.00 55.60
Our Metric 81.56 54.15 42.32 68.11 74.28 41.55 29.60 55.94
GSM8K Metric 78.17 54.51 42.29 64.25 68.35 34.13 22.80 50.64
LLaMA3 Metric 76.82 62.45 48.18 66.30 71.34 39.59 26.80 55.93

Table 23: Accuracies (%) of Mistral 7B model for 7 zero-shot tasks with unstructured 50% sparsity.

Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Dense 81.44 69.68 60.17 72.85 80.09 50.43 34.80 64.21
Magnitude 75.87 55.60 56.74 68.35 74.20 42.15 27.80 57.24
SparseGPT 76.73 61.01 54.52 67.72 74.24 41.64 26.60 57.49
Wanda 76.12 55.60 48.95 65.59 72.69 37.46 23.00 54.20
RIA 76.48 56.68 49.05 66.30 72.47 37.12 22.60 54.39
Pruner-Zero 77.46 60.65 50.25 68.90 71.84 37.46 22.40 55.57
Our Metric 82.35 56.68 55.77 70.88 76.18 45.22 28.22 59.33
GSM8K Metric 81.53 55.60 54.43 69.38 74.16 42.15 26.40 57.66
LLaMA3 Metric 80.52 56.32 55.94 69.53 75.00 42.41 28.40 58.30

Table 24: Accuracies (%) of Instruction-tuned Mistral 7B model for 7 zero-shot tasks with unstruc-
tured 50% sparsity.

Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Dense 83.06 67.51 57.68 71.98 81.61 52.99 34.20 64.15
Magnitude 79.09 65.06 59.31 67.43 77.96 49.77 31.80 62.34
SparseGPT 81.56 72.92 58.77 70.01 76.85 48.72 28.40 62.46
Wanda 83.73 66.79 55.68 67.48 77.06 48.12 28.40 61.04
RIA 83.88 66.79 55.61 67.32 77.78 47.95 27.60 60.48
Pruner-Zero 83.18 68.95 56.17 68.27 76.43 47.44 29.40 61.41
Our Metric 84.40 66.79 58.75 70.24 80.13 51.45 32.80 63.51
GSM8K Metric 84.59 67.87 58.97 68.90 78.11 51.11 31.80 63.05
LLaMA3 Metric 84.13 66.06 59.87 69.14 78.79 51.37 32.00 63.05
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