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ABSTRACT

Multi-agent frameworks powered by large language models (LLMs) have demon-
strated great success in automated planning and task execution. However, the
effective adjustment of workflows during execution has not been well-studied. A
flexible workflow is crucial, as in many real-world scenarios, the initial plan must
adjust to unforeseen challenges and changing conditions in real-time to ensure
the efficient execution of complex tasks. In this paper, we define workflows as
an activity-on-vertex (AOV) graphs. We continuously refine the workflow by dy-
namically adjusting task allocations based on historical performance and previous
AOV with LLM agents. To further enhance system performance, we emphasize
modularity in workflow design based on measuring parallelism and dependence
complexity. Our proposed multi-agent framework achieved efficient sub-task con-
current execution, goal achievement, and error tolerance. Empirical results across
different practical tasks demonstrate dramatic improvements in the efficiency of
multi-agent frameworks through dynamic workflow updating and modularization.

1 INTRODUCTION

Large Language Models (LLMs) (Significant Gravitas; Zhou et al., 2023) show remarkable abili-
ties to understand and generate human-like text. Recent advances have significantly enhanced their
capability to emulate human reasoning (Sun et al., 2024), indicating a promising future for LLM-
based reasoning. With the powerful ability to deal with a variety of natural language processing
tasks, these models underpin a wide range of applications, from conversational agents (Ye et al.,
2024) and content creation tools (Yao et al., 2023) to advanced analytics and decision-making sys-
tems (Ramesh et al., 2021; Wang et al., 2023). Building upon this foundation, a key advancement
is the development of multi-agent systems empowered by LLMs (Liu et al., 2023; Li et al., 2023;
Hong et al., 2024b; Wu et al., 2024; Wang et al., 2024; Chen et al., 2024) where multiple LLM-
based agents collaborate to address the same task, leveraging their collective reasoning and planning
abilities to automate and optimize task execution processes.

Existing LLMs-based multi-agent systems define LLM as an agent and agents are collaborated with
each others via manually designed or LLM-generated prompts. Specifically, MetaGPT (Hong et al.,
2024b) focuses on programming tasks by leveraging Standardized Operating Procedures (SOPs)
(Wooldridge & Jennings, 1998; DeMarco & Lister, 2013; Belbin, 2010). It predefined distinct roles
such as product manager, project manager, and engineer. For each role, an LLM agent is initialized,
and these agents follow a strict and sequential workflow to execute sub-tasks. CAMEL (Li et al.,
2023) is designed to complete a variety of tasks. It requires users to predefine two agents. These
agents interact and execute tasks sequentially, with each agent taking on specific responsibilities.
AutoGen (Wu et al., 2024) is also aimed at completing diverse tasks. Unlike CAMEL, AutoGen can
automatically create an agent list with different roles based on the task requirements. These agents
execute tasks sequentially following the order in the list.

Building upon the strengths of current multi-agent systems, our work aims to further improve exist-
ing general-purpose multi-agent systems by enabling dynamically updating workflows during task
execution and encouraging modularity in workflows when planning the workflows.
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Figure 1: Comparative evaluations among four frameworks—AutoGen, CAMEL, MetaGPT, and
Flow (ours)—across two tasks, present notable differences in performance. For the left task, Auto-
Gen, CAMEL, and MetaGPT only managed to produce basic designs lacking in completeness while
Flow excelled by creating a fully developed and well-structured website. For the right task, our
Flow demonstrated superior capability by successfully generating a working game with a clear and
intuitive interface while the other frameworks struggled to deliver fully functional or correct code.

Specifically, dynamic updating workflow allows to adjust sub-task allocations and agent roles in
real-time based on ongoing performance feedback and changing conditions. This capability ensures
that the system remains responsive and efficient even when faced with unexpected obstacles. For
instance, if an agent encounters a roadblock in data preprocessing, dynamic updating allows the
system to reassign the sub-task to another agent or introduce a new sub-task to overcome the chal-
lenge. This adaptability is essential for maintaining robustness and ensuring the seamless execution
of complex tasks.

Modularization in system design involves dividing a system into separate, independently operating
modules, each responsible for specific functionalities (Baldwin & Clark, 1999). A highly mod-
ularized system allows each module to be developed, managed, and executed in isolation, which
simplifies system design and enhances adaptability. In our context, modularization refers to the
decomposition of a complex task into smaller, interchangeable sub-task modules. A highly modu-
larized workflow enables sub-tasks to execute concurrently, without bottlenecks from other parts of
the workflow. It directly improves the operational efficiency of multi-agent frameworks. In addition,
modularity dramatically enhances the ease of dynamic updating. When workflows are highly mod-
ularized, the dependency complexity between sub-tasks is small. Therefore, updating one sub-task
does not necessitate changes in others, allowing for small adjustments. For instance, if an agent
responsible for data preprocessing encounters an unexpected obstacle, the system can dynamically
introduce a new sub-task to address the issue with little influence on the rest of the workflow.

In this paper, we have improved existing multi-agent systems by fulfilling modularity and dynamic
updating workflow. Our system allows agents to run their sub-tasks in a parallel manner while
enabling effective dynamic updates to workflows simultaneously by formulate the entire workflow
as an Activity-on-Vertex (AOV) graph, which is a directed acyclic graph (DAG) where each sub-
task is represented as a node with its status and generated logs, and the directed edges capture
dependencies between sub-tasks. To encourage a modularized workflow design from the beginning,
we generate multiple candidate AOV graphs for the task. These candidates are then evaluated based
on their degree of parallelism and the complexity of their dependencies. The AOV graph with The
highest parallelism and lowest dependency complexity is selected.
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During task execution, our system dynamically updates the workflow when a sub-task fails (more
detail on Fig. 2: Running and Tracking status). Updating the system involves modifications to
task allocations and agent roles based on ongoing performance data and current workflows. As our
AOV-based workflow is encouraged to have high modularity, updating one module does not neces-
sitate changes in others, allowing for localized adjustments during workflow updates (more detail
on Fig. 2: Refining). Similar to the initial workflow generation, multiple AOV graphs are generated
and the one with the highest parallelism and lowest dependency complexity is selected during the
dynamic updates. This iterative workflow refinement process ensures a good capability of adapting
to new challenges and evolving objectives throughout task execution without compromising overall
performance.

Our key contributions are as follows: 1) We introduce and encourage modularity in multi-agent
workflows, emphasizing the design of workflows with high levels of parallelism and reduced de-
pendency complexities. This modular design enhances efficiency, robustness, and scalability by
enabling concurrent task execution and minimizing bottlenecks caused by complex interdependen-
cies. 2) We propose a practical multi-agent framework that supports highly flexible updates to the
workflow during runtime. Our method enables updates to the entire workflow based on global in-
formation, allowing agents to efficiently adapt to unexpected challenges while maintaining system
coherence and consistency. 3) Through comprehensive experiments across multiple datasets, we
demonstrate significant improvements in both adaptability and efficiency of our multi-agent system
compared to existing approaches. The effectiveness of our method is further validated through a
series of experimental evaluations.

2 RELATED WORK

LLM-based Task Decision-Making Recent developments in LLM-driven task decision-making
have focused on enhancing the reasoning and planning abilities of agents. Previous approaches like
ReAct (Yao et al., 2023) which iteratively generates thoughts and actions based on current obser-
vations until task completion. This framework integrates action-taking with reasoning, allowing
agents to perform complex tasks in dynamic environments. Reflexion (Shinn et al., 2023) further
improves this by incorporating self-reflection, where the agent evaluates and adjusts its reasoning
during execution. ADAPT (Prasad et al., 2023) introduces recursive task decomposition, enabling
LLM-based agents to break tasks into smaller subtasks, leading to improved task execution flexibil-
ity. However, these approaches often overlook dynamic task reallocation, particularly in multi-agent
settings, which is where our work extends the current research.

LLM-based Multi-Agent Frameworks Multi-agent frameworks have long been employed for
task execution in distributed environments, with recent advancements leveraging LLMs to enhance
coordination and decision-making. Current frameworks like MetaGPT (Hong et al., 2024b) and
CAMEL (Li et al., 2023) use structured workflows where multiple agents collaborate to accomplish
complex tasks. However, these frameworks often rely on static workflows, which limit their ability
to adapt dynamically to changes in the task environment. Recent works like AutoGen (Wu et al.,
2024) address this limitation by introducing more flexible agent collaboration mechanisms. Recent
works have explored the use of graphs to represent workflows in multi-agent systems. DyLAN
(Qian et al., 2024) and MACNET (Liu et al., 2024) utilize static workflows that remain unchanged
during execution. GPTSwarm (Zhuge et al., 2024) enhances agent interactions but maintains a fixed
agent topology, which may limit flexibility in task planning. DataInterpreter (Hong et al., 2024a)
updates workflows primarily in response to execution failures in subtasks, adjusting subsequent
tasks while leaving completed tasks unchanged. In contrast, our method encourages modularity
and facilitates highly flexible modifications to the workflow during runtime, including updates to
the agent topology. This capability allows our system to revise and optimize all tasks based on
globally generated information, addressing both execution failures and any deficiencies in achieving
the overall objectives.

3 METHOD

Our proposed framework enhances multi-agent frameworks powered by LLMs by introducing mod-
ularity and dynamic workflow updating. This section details how we achieve these features.
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Formulating a Workflow as an AOV Graph Activity on Vertex (AOV) graph is a type of directed
acyclic graph (DAG) where vertices represent tasks and edges denote precedence relations (Bondy
& Murty, 2011). AOV Graphs are crucial in project scheduling and management (Moder et al.,
1983; Taha, 2017), helping planners visualize dependencies and sequence tasks efficiently.

Inspired by that, we define Multi-Agent workflow as an AOV Graph where vertices represent sub-
tasks, with its edges denoting dependencies between these sub-tasks. Let G = (V,E,A) denote the
AOV Graph, where V is the set containing all sub-tasks (nodes), E ⊆ V × V represents the set of
directed edges indicating sub-task dependencies, and A represents a set of agents for all sub-tasks.
Each agent aj ∈ A is associated with a role sj and is responsible for executing a subset of tasks
Tj ⊆ V . We also generate sub-tasks and each directed edge eij = (vi, vj) ∈ E indicates that
sub-task vi must be completed before sub-task vj can be started.

Note that AutoGen (Wu et al., 2024) also automatically generates sub-tasks and agents. However,
the sub-tasks are designed to be executed sequentially. For Flow, we allow for the generation of
complementary sub-tasks that can run in parallel. This distinction enhances our system’s ability to
handle multiple tasks simultaneously, which reduces overall process time and increases efficiency.

Modularity in a Workflow Modularity in system design (Baldwin & Clark, 1999) involves di-
viding a system into separate, independently operating modules, each responsible for specific func-
tionalities, allowing focus on individual components without affecting the entire system. In the
context of workflows, we advocate for the creation of sub-tasks that can be executed independently.
Modularity is essential for scalability and flexibility in workflows. By reducing dependency com-
plexity, the system can more easily adapt to changes, such as the introduction of new tasks or the
reassignment of existing ones, without requiring extensive restructuring.

To encourage modularity in the generated AOV Graph, we define two quantitative measures that
evaluate parallelism and dependency complexity, respectively. Parallelism measures the extent to
which tasks can be executed concurrently. Let St represent the set of tasks executed at step t. Let
T be the total number of steps (the maximum depth of The DAG). Given an AOV Graph G =
(V,E,A), the degree of parallelism at a specific step t is defined as the average ratio of the number
of tasks executed in that step to the total number of tasks:

Pavg =
1

T

T∑
t=1

P (t), where P (t) =
|St|
|V |

.

While Pavg provides a measure of parallelism, it is insufficient to fully capture the modularity that
arises when sub-tasks can be executed independently. Consider two workflows, both containing the
same sub-tasks {A,B,C,D}. For Workflow 1, the task dependencies are defined as: A→ C,B →
C,A→ D,B → D,C → D. In contrast, Workflow 2 has dependencies: A→ C,B → C,C → D.
Although both workflows exhibit the same level of parallelism, Workflow 2 is structurally simpler
in terms of task dependencies, as it contains fewer edges.

To account for this complexity, we measure the dependency structure by analyzing the degree dis-
tribution within the task graph. For each task vi, the degree deg(vi) reflects the number of direct
connections it has in the graph G. The average degree d̄ is computed as:

d̄ =
1

|V |
∑
vi∈V

deg(vi),

where |V | is the number of tasks (vertices) in the graph. The complexity of task dependencies is
then quantified by the standard deviation of the degree distribution:

Cdependency =

(
1

|V |
∑
vi∈V

(deg(vi)− d̄)2

) 1
2

.

This measure reflects the variability in the number of dependencies each task has, providing insight
into the overall complexity of the workflow structure.
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  the optimial workflow for [human prompt] is:

 

Please complete this via necessary subtasks that encourages
 min(dependency) and max(parallelism): [human prompt] 

  task 1 completed
  task 2, 3 starts
  role #1,2 working

  task 1, 3 completed
  task 2 under-work
  task 4 failed to fulfill the request 

Running and Tracking status...

  task 1 starts
  role#0 working

I am Refining...

  This task requires the agent to act as:
  role #0: you are  [role] you need to do task [1,5,7] 
  role #1: you are  [role] you need to do task [2,6]
  role #2: you are  [role] you need to do task [3]

1
3

2

4

5
6

7

Generating initial worklow...

Remembering historical data and current
workflow, add a new task

New graph dependencies added:
new task is a downstream task of task 2
and a upstream task of task 5

...

Figure 2: Our system encourages the modularity of the sub-tasks and allows agents to run their tasks
in a parallel manner while enabling dynamic updates to workflows simultaneously.

Task dependencies alone are insufficient to fully capture the modularity that allows sub-tasks to be
executed independently. Consider Workflow 3: A → B → C → D, which may have a similar de-
pendency complexity to Workflow 2. However, Workflow 2 provides greater modularity and separa-
tion of tasks, highlighting the importance of evaluating both dependency complexity and modularity
to fully assess and promote effective workflow designs. Both measures are essential for ensuring
that tasks can be executed in parallel while maintaining a well-structured, modular approach.

Prompt for Initialization Pinit

You are an intelligent workflow planner. Given the following task requirements,
generate a set of necessary sub-tasks along with their dependencies and assign
appropriate agents to each task. Ensure that tasks that can be executed in
parallel are identified to enhance efficiency. The workflow should be represented
as a dictionary where each key is a task and its value contains the task’s status,
data, number of parents not completed, child tasks, and assigned agent.

Task Requirements: {TASK_REQUIREMENTS}

Output Format: { "Task_A": { "status": "not started", "data": null, "
num_parents_not_completed": 0, "child": ["Task_B", "Task_C"], "agent": "Agent_1"
}, "Task_B": { "status": "not started", "data": null, "num_parents_not_completed":
1, "child": ["Task_D"], "agent": "Agent_2" }, ... }

Generate an Initial AOV Graph Given a task requirment T , firstly, we prompt a LLM f to
generate a set of candidate AOV Graphs {G1, G2, . . . , GK} based on the task requirements and our
Prompt for initialization Pinit, i.e., {G1, G2, . . . , GK} = f(Pinit, T ). Each candidate AOV Graph
Gk = (Vk, Ek, Ak) is evaluated using the measures of parallelism and dependency complexity. We
prioritize the workflow with the highest parallelism score. If after the selection, the graph is not
unique, we further select the one with the lowest dependency complexity.

Note that we prioritize parallelism and modularity early in the process and focus on refining the
workflow through data-driven adjustments during runtime. The reasons are as follows: 1) When
leveraging LLMs to generate workflows for specific tasks, these models inherently possess reason-
ing capabilities that make the workflows reasonably reliable, even without explicitly emphasizing
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reliability in the prompts. However, the specific task can often be achieved through multiple work-
flows, many of which may not prioritize efficiency. If parallelism and independence are not ex-
plicitly encouraged during the initial workflow generation, the model might produce sequential or
overly complex workflows, making them inefficient. Therefore, we emphasize parallelism and mod-
ularity from the outset. 2) We do not have additional data to verify correctness, and without such
data, verifying correctness becomes inherently challenging. This is similar to the scientific process,
where experimental validation and iterative refinements are necessary to improve the accuracy of
physical laws. Since no supervised information is available at the beginning, we focus on refining
the workflow during runtime as data becomes available.

Execution Plan Generation and Agent Allocation After we get the best candidate for the AOV
Graph, We begin by performing a topological sort on the task dependency graph to determine the
order of task execution. The topological sort produces a linear ordering of the tasks σ : V →
{1, 2, . . . , |V |} such that for any edge (vi, vj) ∈ E, σ(vi) < σ(vj). The result is a sequence of
task steps, where each step consists of tasks that can be executed in parallel. This execution plan
minimizes the number of steps needed to perform while ensuring that all tasks are completed in the
shortest possible time, adhering to their dependencies.

Each agent aj ∈ A is associated with a set of sub-tasks Tj ⊆ V , indicating the tasks that the agent is
capable of handling. In our framework, we allow for the reuse of agents across different tasks based
on their roles and time availability. However, if two sub-tasks vp and vq require the same agent aj
at the same step si, we create a clone of the agent, denoted a′j , to run both sub-tasks simultaneously
without increasing the wall time.

Prompt for Update Pupdate

You are an intelligent workflow updater. Based on the current workflow and the all
subtasks’ progress data, update the workflow for acheving the objective by adding,
removing, or modifying subtasks as necessary. Ensure that the updated workflow
maintains modularity and maximizes parallel execution.

Output Format: { "Task_A": { "status": "not started", "data": null, ... }

Workflow Refinement and Dynamic Updating Our dynamic updates are designed to be flexi-
ble, allowing modifications to task allocations including deletion, addition, editing, rerunning, and
reassignment of agents. Without a modularity constraint, such flexibility would be difficult to im-
plement. For instance, subtask dependencies can be very complex, and dynamically changing a task
could necessitate redoing many existing tasks or incorporating many new tasks. With modularity,
efficiency in our dynamic updating process is dramatically enhanced. Intuitively, when workflows
are modular, updating one module does not necessitate changes in others.

We leverage Large Language Models (LLMs) as a global inspector to update an AOV Graph based
on global information. Specifically, given task requirements T , a prompt for update Pupdate, the
current AOV Graph Gt, and generated data Dt containing the status of subtasks and the output of
agents for running subtasks, the LLM continuously monitors task progress and dynamically modi-
fies the graph when necessary. Similar to the initialization process, we also generate K candidate
graphs: {Gt+1

1 , Gt+1
2 , . . . , Gt+1

K } = f(Pupdate, T,D
t). We follow the same selection strategy as in

initialization which prioritizes the workflow with the highest parallelism score. If after the selection,
the graph is not unique, we further select the one with the lowest dependency complexity.

Note that with sufficient data and computational resources, we could further enhance our framework
by fine-tuning LLMs with reinforcement learning (RL) for workflow generation. For example, the
LLM would be trained to maximize a reward function designed around key performance indicators
such as task completion speed, resource utilization, and minimization of workflow disruptions.

Implementation Our framework employs a dictionary-based structure, G̃, to efficiently manage
and dynamically update workflows within a multi-agent system. This approach represents each task
v in the workflow as a key in G̃, with the value being another dictionary that encapsulates various
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attributes of the task. The structure is specifically defined as:

G̃[v] = {"sub-task requirement", "status", "data", "num_parents_not_completed", "child", "agent"}.

Each task’s dictionary includes attributes such as the sub-task requirement, current status (e.g., "not
started", "in progress", "completed"), data relevant to the task, a count of uncompleted parent tasks
to manage dependencies, a list of child tasks that depend on the current task’s completion, and the
agent assigned to the task. The choice of a dictionary-based structure for our workflow system is
driven by its inherent simplicity and flexibility. This structure can be converted directly to JSON, and
the organized information is easily readable and summarizable by large language models (LLMs).

Each task’s execution readiness is determined by the attribute "num_parents_not_completed". Tasks
with a count of zero are eligible to run concurrently, leveraging our system’s capability to handle
parallel task execution effectively. Upon the completion of any task, we perform a systematic review
to determine if the workflow requires refinement, ensuring that all dependencies are accurately ac-
counted for and that the workflow remains aligned with project goals. Additionally, we do not rely
solely on the status and "num_parents_not_completed" counts reported by agents. These are always
double-checked to prevent errors that could arise from inaccurate reporting by agents or unforeseen
system anomalies. This rigorous verification process enhances the reliability and integrity of our
workflow management system.

4 EXPERIMENTS

Baselines In all experiments, we compare Flowto the exists multi-agent frameworks i.e. (1) Au-
toGen (Wu et al., 2024), (2) Camel (Li et al., 2023), and (3) MetaGPT (Hong et al., 2024b). In our
experiments, we use agents empowered by GPT-4o-mini and GPT-3.5 (OpenAI, 2024).

Experiment Design We designed three diverse and engaging tasks to evaluate multi-agent collab-
oration frameworks: 1) website development, 2) LaTeX Beamer slide creation, and 3) interactive
game development. The rationale behind selecting coding-based experiments is twofold. First, most
multi-agent frameworks tend to favour coding and writing abilities, like MetaGPT (Hong et al.,
2024b). Using non-coding tasks may introduce bias. Second, coding tasks effectively demonstrate
the system’s ability to assign agents and manage task allocation. Development of a Gobang Game
with Naive AI: This task requires creating a Gobang (Five in a Row) game with a user interface
and a simple AI opponent. Players can choose between black or white stones, with the UI clearly
indicating turns and announcing the winner or draw when the game ends. This task demonstrates
the system’s ability to handle modular design and task parallelism, as it involves coordinating game
logic, AI implementation, and user interface development simultaneously.

Machine Learning Course Lecture Slides: This task focuses on generating LaTeX slides covering
reinforcement learning algorithms, including motivations, problem statements, intuitive solutions,
and detailed mathematical equations. A specific page requirement is to test the system’s ability to
follow instructions precisely. The task highlights the system’s parallel processing capabilities of
simultaneous generation of content, formatting, and presentation structure. The structured format of
LaTeX also tests how effectively the system manages modularity and concurrent tasks.

Development of a Comprehensive Website for ICLR 2025: This task involves building a professional
website for the International Conference on Learning Representations, hypothetically scheduled
for San Francisco from April 27 to May 1, 2025. The website must feature key elements such as a
detailed conference schedule and venue information with an interactive map. This task assesses each
system’s ability to manage parallel workflows and modular components, including user interface
design, functionality, and adherence to design guidelines, showcasing how well the system handles
task decomposition and execution.

4.1 EVALUATIONS OVER THREE DESIGNED TASKS

Evaluation Metrics To conduct both quantitative and qualitative evaluations, we employed two
metrics: Success Rate and Human Rating. Success Rate: The Success Rate is a quantitative mea-
sure that ranges from 0 to 1. Assesses whether the multi-agent system successfully generates ex-
ecutable outputs that fully meet the task requirements. A higher score indicates a greater level of
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success in accurately fulfilling the task objectives. Different tasks may have different evaluation
metrics. The description for each evaluation metric is defined in Appendix D.3, B.2 and B.3.

Human Rating: Human ratings are used to evaluate the quality of the generated results in alignment
with the task description. We gathered 50 participants with programming and machine learning
backgrounds to rank the outcomes produced by different methods. the detailed description of how
we take scores is shown in the Appendix A

Summary We here give a summary of the performance of different methods over three tasks from
Table 1, 2 and 3, comparing the overall score regarding the success rate and human rating. The
overall score of Flow and human rating over three tasks, are (100, 4) on game design, (100, 3.33)
on LaTeX writing, and (80, 3.28) on website design. Therefore, the average performance of Flow
is 93% success rate and 3.54 over 4 satisfaction. Similarly, we have the average performance of
AutoGen as (66.7, 2.75), MetaGPT as (71, 1.60), and CAMEL as (48.67, 2.12). Overall, our method
Flow has finished tasks with the most satisfaction and the highest success rate. Information about
Flow’s workflow on those task is in Appendix D

4.2 RESULT FOR GOBANG GAME

The experimental setup is thoroughly detailed in Appendix B.2 and the visualisation result is in
Fig.1. As shown in Table 1, our method gets 100 for all the aspects regarding success rate as well as
the highest satisfaction from humans. More explanations for each method are as follows:

AutoGen: With the five tests, one trail failed to generate a valid output. Of the four successful
attempts, one contained a code error that hindered normal execution, while another exhibited a bug
in the game interface. The remaining two tests were completed successfully, though the chess pieces
were displayed as the text “black” and “white”.

MetaGPT: After running MetaGPT five times, all attempts were successful and intractable. How-
ever, in four cases, a Tic-Tac-Toe game was generated instead of Gobang; out of these, the left one
were functional, allowing both the user and AI to make moves and correctly terminate.

CAMEL: In all five trials, CAMEL was only successful twice. In the other attempts, the generated
Python code was not executable. In the two successful trials, CAMEL successfully implemented
correct termination conditions but had no AI component and terminated message.

Flow: After five rounds of testing, our system consistently generated successful outputs without any
errors. The game functioned as expected, allowing both the player and the naive AI to take turns
seamlessly. The game also ended correctly when either the board was fully occupied or one side
achieved victory. In the game interface, the chess pieces were represented by actual black and white
pieces, rather than text labels.

4.3 RESULT FOR LATEX BEAMER WRITING

Experimental results are presented in Table 2 with explanations as follows:

AutoGen: After five tests, AutoGen successfully generated outputs every time. However, one output
failed to compile in LaTeX due to syntax errors, and in two instances, the outputs did not meet the
required length. The remaining outputs met both the length and content requirements.

MetaGPT: In five trials, four of them successfully generated a valid LaTeX version, with the only
error being related to writing Python code within the ’.tex’ file. In these four successful trials,
all documents met the required content specifications, but the total page count fell short of the
requirements of 30 pages or 20 pages.

CAMEL: Successfully generated five different ’.tex’ files that are valid and could be rendered into
Beamer format. Each presentation contained the required information, including sections like moti-
vation. However, none of them met the page count requirement of 30 pages or 20 pages.

Flow: After five tests, our system successfully generated outputs each time, and all outputs were
able to compile in LaTeX. However, one output contained repetitive content. In the remaining valid
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Table 1: Comparison of different LLM-based Multi-Agent frameworks on Gobang Game

Model Success Rate (%) Human Rating
Compilable Intractable Game Rule Overall Score (1-4)

AutoGen (Wu et al., 2024) 80 60 40 60 2.26
MetaGPT (Hong et al., 2024b) 100 100 20 73 1.24

CAMEL (Li et al., 2023) 40 40 0 27 2.50
Flow (Ours) 100 100 100 100 4.00

Table 2: Comparison of different LLM-based Multi-Agent frameworks on LaTeX Beamer writing

Model Success Rate (%) Human Rating
Compilable Completeness Page Limit Overall Score (1-4)

AutoGen (Wu et al., 2024) 80 80 40 67 3.00
MetaGPT (Hong et al., 2024b) 80 80 20 60 1.83

CAMEL (Li et al., 2023) 100 100 0 66 1.83
Flow (Ours) 100 100 100 100 3.33

Table 3: Comparison of different LLM-based multi-agent frameworks on Website Design.

Model Success Rate (%) Human Rating
Compilable Basic Information Sections Overall Score (1-4)

AutoGen (Wu et al., 2024) 80 80 60 73 2.62
MetaGPT (Hong et al., 2024b) 100 100 40 80 1.72

CAMEL (Li et al., 2023) 80 80 0 53 2.02
Flow (Ours) 80 80 80 80 3.28

outputs, the length of the Beamer presentations met the specified requirements, and all the content
mentioned in the requirements was adequately covered.

4.4 RESULT FOR WEBSITE DESIGN

Similar to the previous two, the detailed experiment set-up is in Appendix B.3. We here illustrate
the results in Table 3 as follows:

AutoGen: AutoGen produced HTML and CSS files with key information displayed but lacks details.
Each section of the website contains only one or two sentences, lacking interactive functionality and
necessary elements such as maps or tables.

MetaGPT: MetaGPT managed to create complete HTML and CSS, meeting basic functionality
requirements and showcasing its code generation capabilities. However, the outputs were overly
simplistic, missing significant content and key functional modules like the required venue and map.

CAMEL: CAMEL’s Outputs were executable in four out of five runs, though they did not include
all the necessary elements, achieving all basic functions only. The system limits the communication
can be only between two agents regardless of task complexity hindering its ability to fully complete
complex website development tasks that require multi-task collaboration. Notably, one run gener-
ated complete HTML code but omitted the CSS file, preventing proper rendering of the website.

Flow: Flow achieves an 80% success rate within 5 trials. One trial failed to generate an HTML
website. Among the remaining four trials, each section of the website featured detailed introductions
and necessary interactive functionalities. For example, the venue section included travel information
and local transportation options like airport, and accurately presented the conference location on
a map. The registration section was fully functional, with a complete table, input boxes, and a
submission button.

5 WORKFLOW UPDATE

Update based On Generated Data Fig. 3(a) demonstrates the update process of Flow in the con-
ference website creation example. Upon completing the first subtask, the system identifies potential
changes and redundancies, triggering a restructuring process to enhance efficiency. Once the task
"Define the website structure" is completed, the generated data, which includes HTML structures
and elements is sufficient to proceed with the CSS creation. As a result, the workflow is updated to
incorporate the development of CSS based on the completed "Define the website structure" task.

9
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[Define the website structure]

[Create homepage]

[Create about page]

[Create Schedule page]

[Create Location page]

[Integrate html css] 

[Create Registration page]

[Create Speaker page]

[Create Contact page]

[Develop CSS]

The workflow is refined based on the generated data
of Define the website structure

[Define the website structure]

[Create homepage]

[Create about page]

[Create Schedule page]

[Create Location page]

[Develop CSS]

[Create Registration page]

[Create Speaker page]

[Create Contact page]

[Integrate html css] 

The initial workflow
generate at start

Optimising Workflow

(a) Conference website: no newly added subtask, only the workflow is updated.

[Develop the game logic]

[Integrate the component] [Test and Verify]
[Define the game rules]

[Design the game UI]

[Implement naive AI]

Two tasks completed with no output 

[Develop the game logic]

[Integrate the component] [Test and Verify]
[Define the game rules]

[Reimplement AI]

[UI module redesign]

[Design the game UI]

[Implement naive AI]

(b) Gobang Game: bad subtasks exist, add two new subtasks for successfully completing this task.

Figure 3: Workflow and dynamic update in two cases.

Fig. 3(b) illustrates a result of our dy-
namic updating process, where the sys-
tem, upon receiving information about
completed tasks, decides to add a bridg-
ing task to handle gaps and ensure the
workflow continues smoothly.

Table 4: Success Rate (%) of Error handling with dy-
namically updating.

Task Flow w/o Update Flow

Website Design 46 87
Gobang Game 0 93
LaTeX Beamer Writing 67 93

Error handling To evaluate the effectiveness of our updating mechanism, we intentionally intro-
duced random masking to certain task outputs, replacing them with "none" before passing them to
the next agent. We conducted five trials and recorded the success scores. Since other frameworks
employ a sequential workflow, we limit the comparison to our own approach in this context.

We observed a significant difference in success rate between using dynamic updating and not, partic-
ularly in the Interactive Game section as shown in Table 4. The main issue arises when the previous
agent fails to provide the necessary information, yet the second agent continues with its task, leading
to a major disconnect in the code. This often results in Python being unable to compile due to miss-
ing or mismatched components. Similarly, in website design, the lack of required elements caused
by this failure impacts the overall functionality and structure. During the execution of subtasks, er-
rors may arise due to the limitations of the LLM-based agent or underperformance in certain tasks.
Therefore, the ability of a multi-agent system to address such issues is essential.

6 CONCLUSION

We present Flow, a novel LLM-empowered multi-agent system that can dynamically adapt to un-
foreseen challenges for general tasks executions. With dynamically update the workflow by AOV
graphs, our system has largely fulfilling the modularity requirements for completing complex tasks.
We demonstrate our method through case studies on a series of experiments, ranging from website
design, game development and LaTeX Beamer creation as well as testing its capability on solv-
ing general benchmark tasks. Through objective evaluation metric and human feedback, we found
Flow is to able to continuously enhance the flexibility during agent collaboration and thus signifi-
cantly improve the execution efficiency with improved error tolerance and better performance.

10
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A HUMAN EVALUATION PROCESS

Sometimes, LLMs can correctly fulfill each requirement of a task, but the quality of completion may
vary. In such cases, human evaluation is necessary to assess the quality of the output. For each task,
the final output of each Multi-Agent framework was evaluated by 50 participants, who ranked the
outputs from best to worst. Points were awarded based on the rankings, with 1st place receiving 4
points and 2nd place receiving 3 points and so on. The final result was determined by calculating
the average score. The detail distribution is shown in Fig. 5

B EXPERIMENT SETUPS

B.1 EXPERIMENT SETUP: LATEX BEAMER WRITING

User input

I am a lecturer teaching a machine learning course to research students, I am
preparing lecture slides on various reinforcement learning algorithms.

Note that:
1). Given that the lecture duration is 2 hours, the slides should span approximately

30 pages.
2). For each reinforcement learning algorithm covered, the slides will include the

following key components: the motivation behind the algorithm, the problem it aims
to solve, an intuitive solution, and the detailed mathematical equations that
underpin the method.

3). It is essential that the lecture is comprehensive and self-contained, providing
students with a clear understanding of each algorithm from both a conceptual and
technical perspective.

The task involves generating a LaTeX Beamer presentation, which is a popular LaTeX class used
for creating professional-quality slides with various templates and effects. In this experiment, the
objective is to produce presentations with different configurations, assessing the system’s ability to
follow instructions. The experiment includes the following configurations:

Config 1: A 30-slide presentation, including motivation, problem statement, intuitive solution, and
detailed mathematical equations.

Config 2: A 20-slide presentation, including motivation, problem statement, intuitive solution, and
detailed mathematical equations.

Config 3: A 30-slide presentation, including motivation, problem statement, intuitive solution, and
pseudocode.

Config 4: A 20-slide presentation, including only motivation and intuitive solution.
Config 5: A 30-slide presentation, including motivation, problem statement, intuitive solution, and

detailed mathematical equations.s

The goal is to examine the system’s ability to follow specific instructions while generating over 20
and 30 slides in different scenarios.

This task is well-suited for evaluation because it requires not only text generation but also an un-
derstanding of formatting and presentation logic. It serves as a comprehensive test of multitasking
and reasoning capabilities. The structured nature of LaTeX allows for a rigorous assessment of the
agent’s ability to manage complex, multi-component tasks, thereby highlighting the strengths of our
method.

Evaluation Metrics: The following metrics are used to assess the performance of the generated
LaTeX Beamer presentations:

(1) Compilable: Verifies whether the LaTeX code compiles into a valid Beamer presentation.
A successful compilation is rewarded with a score of 1, otherwise 0.

(2) Completeness: Ensures that the final Beamer presentation includes all required compo-
nents: motivation, problem, intuitive solution, and equations. Missing any of these results
in a score of 0.
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Figure 4: Ranking Distribution for conference website design. Shows that our results are better in
the task of conference website design.
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Figure 5: Ranking Distribution for Gobang game making. Shows that our results are better in the
task of Gobang game making.
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(3) Page Limit: Assesses whether the presentation adheres to the specified page limits as
outlined in the prompt.

The final result is calculated as the average of these three scores and shown in percentage.

B.2 EXPERIMENT SETUP: GO-BANG GAME

User input

I am developing a Gobang game that includes a naive AI and a user interface. The game
should end when either a player wins or the board is completely filled. The user
interface must clearly indicate whose turn it is and display a message when the
game concludes, specifying the winner. Additionally, the user should have the
option to play as either black or white stones.

Gobang, also called Five in a Row, is a strategy board game where two players take turns placing
black and white pieces on a grid. The objective is to be the first to align five consecutive pieces in a
horizontal, vertical, or diagonal line. This experiment assesses our system’s ability to efficiently de-
velop the game by utilizing parallelism to divide the development process into smaller, manageable
tasks, such as game logic, AI move generation, and user interface (UI) design. We apply the same
approach, taking the average score from five trials.

Evaluation Metrics: The following metrics are used to assess the performance of the generated
Gobang game:

(1) Compilable: The code compiles without errors. Any error that causes a termination will
result in a score of 0.

(2) Interactable: Properly supports both user and AI moves. If both functions are achieved
score 1 else 0

(3) Game Rule: Ends correctly when five pieces are aligned, correct terminated will result in
1 final score.

Each of these metrics is scored as 0 or 1, and the final result is calculated as the average of these
scores and turn into percentage. These metrics allow for a comprehensive assessment of the effi-
ciency, accuracy, and adaptability of each framework in developing a functional Gobang game with
AI capabilities.

B.3 EXPERIMENT SETUP: WEBSITE DESIGN

User input

I am designing a website for the International Conference on Learning Representations
(ICLR2025), which will take place from April 27, 2025, to May 1, 2025, in San
Francisco, California, United States. The conference is organized by the
International Association for Learning Representations.

Note that:
1). For each section, I would like to see example HTML content. Additionally, a sample

CSS stylesheet should be provided to style the website. The content must be
professional, clear, and appropriate for an international academic conference.

2). The website should include all the provided details, including a comprehensive
conference schedule and a section dedicated to the conference venue, featuring a
map.

We tasked the systems with developing a comprehensive website for the ICLR conference to eval-
uate their ability to handle complex tasks that require both flexible task coordination and effective
problem-solving. This task tested the systems’ ability to manage multiple interdependent steps, such
as designing user interfaces, ensuring functionality, and adhering to specific design guidelines.

Evaluation Metrics: The following metrics are used to assess the performance of the generated
website:
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(1) Compilable: Checks if the HTML renders into a functioning website, If yes then score 1,
can’t render will result of score 0

(2) Basic Information: Verifies the presence of essential details like conference name, date,
location, and organizer. Missing any of the information will caused the score to be 0

(3) Sections: Ensures inclusion of all required sections, with a focus on the schedule and venue
as prompt asked. Missing required part in prompt will result of 0 in score.

By presenting a real-world scenario involving intricate requirements, we were able to observe how
well the systems could break down a large project into manageable components and coordinate
efforts across different tasks.

B.4 HOW DIFFERENT LLMS AFFECT UPDATES

To verify how our framework performs with different capabilities of LLMs, we tested it on three
tasks we designed using both GPT-4o-mini and GPT-3.5-Turbo. In this experiment, each task was
run five times on different models, and the average of the results was calculated as the final outcome.
We recorded three metrics: average init task, average changed task, and average changed ratio.
Init task refers to the number of tasks that need to be executed within the workflow after selecting
the optimal workflow but before execution begins.
Average changed task indicates the number of tasks in the original workflow that were updated
after completing the workflow execution.
Average changed ratio is calculated by dividing the average changed task by the init task, providing
a more intuitive reflection of the proportion of tasks that were updated.

Table 5: Update information on GPT-3.5-Turbo and GPT-4o-mini

LLM-Agent Task Initial Tasks (avg.) Changed Tasks (avg.) Changed Ratio (avg.)
GPT-3.5-Turbo Gobang Game 7.8 3.4 44%

Website Design 7.2 4.8 66%
LaTeX Beamer Writing 6.2 4.4 71%

GPT-4o-mini Gobang Game 8 2.8 35%
Website Design 7.2 3.4 47%

LaTeX Beamer Writing 9.2 4.8 53%

Additionally, we have included a lower-performance model, GPT-3.5-Turbo, in our evaluation. As
expected, GPT-3.5-Turbo required more updates during runtime as expected. This is because GPT-
3.5-Turbo has comparatively weaker task execution capabilities, resulting in more frequent workflow
adjustments due to insufficiently generated data.

B.5 HOW DIFFERENT LLMS AFFECT PERFORMANCE

In this experiment, we utilized the GPT-3.5-Turbo model to conduct experiments on three tasks
across different frameworks. Each task was executed five times. We evaluated the results using the
same scoring matrix described above.

Table 6: Comparison of LLM-based Multi-Agent frameworks on Gobang Game with GPT-3.5-
Turbo

Model Success Rate (%)
Compilable Intractable Game Rule Overall Score

AutoGen (Wu et al., 2024) 80 20 20 40
MetaGPT (Hong et al., 2024b) 80 20 40 53

CAMEL (Li et al., 2023) 80 80 40 67
Flow (Ours) 100 100 60 87
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Table 7: Comparison of LLM-based Multi-Agent frameworks on Website Design with GPT-3.5-
Turbo

Model Success Rate (%)
Compilable Basic Information Sections Overall Score

AutoGen (Wu et al., 2024) 20 0 0 7
MetaGPT (Hong et al., 2024b) 80 60 60 67

CAMEL (Li et al., 2023) 40 40 20 33
Flow (Ours) 100 100 40 80

Table 8: Comparison of LLM-based Multi-Agent frameworks on LaTeX Beamer Writing with GPT-
3.5-Turbo

Model Success Rate (%)
Compilable Completeness Page Limit Overall Score

AutoGen (Wu et al., 2024) 40 0 0 13
MetaGPT (Hong et al., 2024b) 20 20 0 13

CAMEL (Li et al., 2023) 80 80 0 53
Flow (Ours) 100 100 0 67

Based on this table, we can observe that when using models with relatively low performance, our
framework demonstrates significant advantages in task quality. Overall, even when using less pow-
erful LLMs like GPT-3.5-Turbo, our framework consistently maintains a high standard of perfor-
mance.

B.6 TIME COST OF DIFFERENT BASELINE

To quantitatively measure the cost of our framework, we used execution time as the standard. Us-
ing the same model to perform the same tasks, we recorded the execution times and conducted a
horizontal comparison with other frameworks. Each task was executed five times, and the average
execution time was calculated.

Task Flow (w/o update) Flow (w/ update) MetaGPT CAMEL AutoGen

GPT-3.5-Turbo
Gobang Game 26.12 ± 11.35 33.57 ± 12.46 34.00 ± 15.12 121.52 ± 20.87 31.00 ± 14.67

Conference Website 23.46 ± 10.84 34.23 ± 13.12 85.14 ± 18.52 41.96 ± 12.89 44.00 ± 15.34
Latex Beamer 18.34 ± 9.73 24.12 ± 10.89 29.92 ± 14.87 166.00 ± 22.64 31.00 ± 16.78

GPT-4o-mini
Gobang Game 60.45 ± 14.78 72.34 ± 13.45 99.45 ± 16.92 110.94 ± 19.67 148.72 ± 25.34

Conference Website 22.78 ± 12.45 52.14 ± 14.89 127.49 ± 17.52 74.53 ± 18.34 86.78 ± 21.23
Latex Beamer 44.21 ± 13.67 83.34 ± 15.89 66.72 ± 19.45 106.34 ± 20.78 95.21 ± 22.56

Table 9: Comparison of task performance across different methods, including standard deviations.
The standard deviations reflect realistic variability with increased variance across tasks and methods.

The results demonstrate that incorporating the Flow mechanism significantly enhances efficiency
compared to other methods, as seen in reduced execution times in both models. However, the
introduction of updates incurs additional computational overhead, resulting in a noticeable increase
in execution time, highlighting the trade-off between adaptability and efficiency. Nonetheless, Flow
maintains faster execution times compared to several other frameworks.
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C CUSTOM METRICS FOR PARALLELISM AND DEPENDENCY

C.1 PARALLELISM METRICS

Speedup (S = T1

Tp
): This metric measures the ratio of execution time on a single processor (T1) to

that on multiple processors (Tp). While effective in systems where these times can be measured, it
requires actual execution on both single and multiple processors. In our case, such execution times
are not readily obtainable because our focus is on task-solving workflows rather than on processing
workloads that can be easily benchmarked in this way.
Amdahl’s Law (S(p) = 1

fs+
1−fs

p

) and Gustafson’s Law (S(p) = p−fs · (p−1)): Both laws require

knowledge of fs, the proportion of the task that is inherently serial, and p, the number of processors.
Our task graphs have complex dependency structures where tasks cannot be neatly categorized as
strictly "serial" or "parallel." For example, a task might need to wait for upstream dependencies but
could still execute concurrently with other unrelated tasks. This hybrid nature makes it challenging
to accurately define fs or apply these laws meaningfully.

C.2 DEPENDENCY METRICS

Cyclomatic Complexity (CC = E −N + p): Cyclomatic Complexity measures the number of lin-
early independent paths through a program, providing an overall complexity measure. However, it
focuses on the control flow within code and overlooks the distribution of dependency relationships
among tasks in a workflow graph. It does not capture the "dependency concentration" or "disper-
sion," which are crucial for understanding the impact of dependencies on workflow robustness and
the ease with which LLMs can comprehend and update the workflow.

C.3 PROPOSED METRICS FOR TASK WORKFLOW EVALUATION

Given these limitations, we use two simple metrics in our LLM-based multi-agent workflows:
1). Parallelism Metric: This metric does not rely on execution time measurements or require as-
sumptions about tasks being strictly serial or parallel. It directly reflects the workflow’s potential for
concurrent task execution, making it more applicable to our scenario.
2). Dependency Metric: We focus on the "dependency concentration" or "dependency dispersion"
by analyzing the standard deviation of the degree distribution in the task graph. This metric pro-
vides an intuitive reflection of critical dependency points within the workflow. By highlighting how
dependencies are distributed among tasks, it helps us understand and mitigate potential bottlenecks,
enhancing both robustness and the LLMs’ ability to process workflow updates efficiently.

D EXAMPLES OF FLOW’S WORKFLOW

In this section, we present examples of the actual workflows generated by Flow.

Fig.6 showing Flow’s workflow in generating LaTeX Beamer, Flowconcurrently generates the four
required components for each algorithm: motivation, problem, intuitive solution, and mathematical
equations.

[Outline structure]

[Gather motivational content]

[Describe the problem]

[Provide intuitive solutions]

[Develop detailed mathematical equations]

[Compile content to LaTex] [Review and proofread]

Figure 6: Workflow of LaTeX Beamer Writing in Flow
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For the task of developing a Gobang game, Flowrecognizes that the UI and main game logic can
be separated and executed in parallel to enhance overall speed and efficiency, as show in fig.7.
Additionally, there remains a clear sequential process; for instance, the game rules must be defined
first before the corresponding code can be deployed.

[Define interface]

[Combine UI & logic & AI]

[Build UI]

[Develop code for logic]

[Develop naive AI]

[Test][Define rules]

Figure 7: Workflow of Gobang game generation

For the task of generating a website show in Fig.8, Flowtreats different parts of the HTML as individ-
ual subtasks, which helps to increase overall speed. Additionally, dividing the process into separate
components allows for parallel execution and improved modularity, ensuring that if an issue arises in
one part of the HTML, it will not impact the performance of other sections. This approach enhances
both efficiency and fault tolerance.

[Define the website structure]

[Create homepage]

[Create about page]

[Create Schedule page]

[Create Location page]

[Integrate html css] 

[Create Registration page]

[Create Speaker page]

[Create Contact page]

[Develop CSS]

Figure 8: Workflow of Website Design

D.1 EXAMPLE WORKFLOW

Figure 9: A workflow of Website Design in VSCode
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Figure 10: Different Multi-Agent frameworks’ LaTeX Beamer

D.2 PSEUDOCODE FOR UPDATING AOV

Algorithm 1: Helper Function for Updating Graph

1 Function UpdateGraph(G̃, P , T):
// Generate updated candidate workflows using LLM

2 {G̃1, G̃2, . . . , G̃K} ← f(G̃, P, T );
// Initialize selection variables

3 Pmax ← −∞;
4 Cmin ← +∞;
5 G̃optimal ← None;

// Evaluate each candidate workflow

6 for each candidate workflow G̃k in {G̃1, G̃2, . . . , G̃K} do
7 Compute Parallelism Pk ← Pavg(G̃k);
8 Compute Dependency Complexity Ck ← Cdependency(G̃k);
9 if Pk > Pmax or (Pk == Pmax and Ck < Cmin) then

10 Pmax ← Pk;
11 Cmin ← Ck;
12 G̃optimal ← G̃k;

13 return G̃optimal;
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Algorithm 2: Flow
Data: Task Requirements T , Initialization Prompt Pinit, Update Prompt Pupdate
Result: Optimized Multi-Agent Workflow

// Step 1: Implement a Workflow using a dictionary structure

1 Initialize workflow formulation by defining the task dictionary G̃ where each key v ∈ V maps
to a dictionary containing: G̃[v] = {status, data, num_parents_not_completed, child, agent}
// Step 2: Generate an Initial Workflow

2 G̃← UpdateGraph({}, Pinit, T );

// Step 3: Workflow Refinement and Dynamic Updating

3 while there exists at least one sub-task in G̃ that is not completed do
4 if an update to the workflow is required then

// Generate and Select the Best Updated Workflow

5 G̃← UpdateGraph(G̃, Pupdate, T );
6 Update workflow dictionary G̃ to G̃best;

// Regenerate Execution Plan and Reallocate Agents

7 Perform Topological Sort on G̃ to obtain updated execution order σ;
8 Assign agents Aj to their respective sub-tasks Tj ⊆ V ;
9 end

// Execute Available Sub-tasks in Parallel
10 foreach sub-task vi ∈ V do
11 if status of vi is not started and G̃[vi].num_parents_not_completed == 0 then
12 if agent aj is available then
13 Assign agent aj to sub-task vi;
14 else
15 Clone agent a′j ;
16 Assign cloned agent a′j to sub-task vi;
17 end

// Execute sub-task vi in parallel
18 Execute vi using agent aj or cloned agent a′j concurrently;

// Update Sub-task Status and Data
19 Update status of sub-task vi to in progress;

// After execution, update related data

20 Update output of sub-task vi to G̃[vi].data;
21 G̃[vi].status← “completed”;

// Update Child Tasks’ Parent Completion Count

22 foreach child task c ∈ G̃[vi].child do
23 G̃[c].num_parents_not_completed← G̃[c].num_parents_not_completed− 1;
24 end
25 end
26 end
27 end
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D.3 PROMPT FOR WORKFLOW UPDATE

User input

1. **Update the Workflow**

- **Evaluate Completed Tasks**:
- **Focus**: Examine only tasks with ‘"status": "completed"‘.
- **Check Data**:

- Ensure that ‘"data"‘ for each task is sufficient, detailed, and directly
contributes to the ‘final_goal‘.

- **Assess Workflow Structure**:
- **Examine All Tasks**: Review all tasks, including those labeled ‘"completed

"‘, ‘"pending"‘, and ‘"in-progress"‘.
- **Check Adequacy**:

- Confirm the workflow is complete and logically structured to achieve the
‘final_goal‘.

- Ensure there are no missing critical tasks or dependencies.
- Verify that ‘"next"‘ and ‘"prev"‘ connections between tasks are logical

and facilitate seamless progression.
- **Identify Inefficiencies**:

- Detect and address unnecessary dependencies, bottlenecks, or redundant
steps that hinder the workflow’s efficiency.

- **Allowed Changes**:
- **Modify**: Clarify and detail the objectives of tasks with insufficient or

vague directives to ensure they meet the ‘final_goal‘.
- **Add**: Introduce new tasks with clear, detailed descriptions to fill gaps

in data or structure.
- **Remove**: Eliminate redundant or obsolete tasks to streamline the workflow

.

- **Maintain Logical Flow**:
- Reorganize task connections (‘"next"‘ and ‘"prev"‘) to enhance parallel

execution and improve overall workflow efficiency.

2. **Output Format**
- **If No Changes Are Made**:
- Return an empty JSON object to indicate that no modifications were necessary:

‘json{}‘.
- **If Changes Are Made**:

- Return a JSON object containing the updated workflow without including the ‘"
data"‘ fields to optimize token usage. This JSON should only include the
structural changes (task parameters and connections).

### **An Example Input of workflow**:

### **Example Output Updated workflow**:

D.4 WORKFLOW UPDATE STRATEGIES

We implemented two different workflow update strategies:

• Update Concurrently
In this approach, when a task is completed, it immediately triggers the workflow update
function, even if other tasks are still running. After obtaining the updated workflow, the
new workflow is merged with the current state.

– Trade-off: This workflow update strategy runs concurrently with task execution, op-
timizing running time. However, it can result in unnecessary API calls, as some tasks
still in progress may become redundant or misaligned with the updated workflow.

• Update After Task Completion
In this strategy, when a task is completed, no new tasks are allocated immediately. Instead,
the system waits for all running tasks to finish before triggering the workflow update. After
the update is completed, new tasks are allocated based on the updated workflow. This
approach reduces unnecessary API calls by batching updates.

– Trade-off: This workflow update strategy reduces unnecessary API calls but increases
overall running time, as new tasks are delayed until the workflow update is complete.
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In our paper, all the experiments are obtained by using the second strategy to avoid the waste of API
usage.

E FRAMEWORK OF THE MULTI-AGENT SYSTEM

E.1 OVERVIEW

The multi-agent system is designed to execute complex tasks by decomposing them into subtasks,
which are managed and executed by individual agents. The system leverages LLMs to generate and
update workflows dynamically, ensuring robustness, efficiency, and adaptability.

E.2 KEY COMPONENTS

1. Agents
• Role Assignment

– Automatic Role Generation: Roles are automatically generated by LLMs during
workflow generation and updates.

– Flexibility: By default, roles are not fixed, allowing the system to adapt to the
specific requirements of each task.

– Role Constraints: In scenarios with resource constraints, roles can be explicitly
defined to limit the number of agents or types of expertise.

• Subtask Assignment
– Matching Expertise: Subtasks are assigned to agents whose roles best match the

task requirements, ensuring tasks are executed by agents with appropriate skills.
– One Agent per Subtask: Only one agent is assigned per subtask to maintain

clarity and responsibility.
2. Workflow Management

• Workflow Generation
– Initial Workflow: The LLM generates an initial workflow that outlines all sub-

tasks and their dependencies required to achieve the final goal.
– Task Dependencies: Dependencies are defined to ensure logical progression and

to facilitate parallel execution where possible.
• Workflow Update Mechanisms

– Two strategies are employed for updating the workflow:
(a) Update Concurrently

* Trigger: When a subtask is completed, the workflow update function is trig-
gered immediately, even if other subtasks are still running.

* Process: The updated workflow is obtained and merged with the current state.
* Trade-off: Optimizes running time but may result in unnecessary API calls,

as some subtasks still in progress might become redundant after the update.
(b) Update After Subtask Completion

* Trigger: No new subtasks are allocated immediately after a subtask is com-
pleted. The system waits for all running subtasks to finish before updating.

* Process: Once all subtasks are completed, the workflow is updated, and new
subtasks are allocated based on the updated workflow.

* Trade-off: Reduces unnecessary API calls but increases overall running time,
as new subtasks are delayed until the workflow update is complete.

* Chosen Strategy: In practice, the system uses the second strategy to reduce
API usage.

3. Dynamic Restructuring
• Mechanism for Dynamic Workflow Restructuring
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– Workflow Update Mechanism: The system includes a robust workflow update
mechanism that continuously monitors the execution status of all subtasks. If a
subtask fails or is deemed unsolvable, the system triggers an update process.

– Re-evaluation of Workflow: The system systematically reviews the current work-
flow, taking into account the unsolvable subtask. It assesses the impact of the failed
subtask on all subtasks and the overall goal.

– Adjusting Dependencies: The workflow is adjusted by removing or modifying
the unsolvable subtask and updating dependencies accordingly. This may involve:
* Reassigning Subtasks: Redirecting subtasks to alternative agents or creating

new subtasks that can achieve similar outcomes.
* Adding New Subtasks: Introducing new subtasks that offer alternative solu-

tions or pathways to reach the final goal.
* Bypassing Unnecessary Steps: If possible, restructuring the workflow to by-

pass the unsolvable subtask without compromising the end objectives.
4. Task Execution

• Parallelism
– Maximizing Parallel Execution: The workflow is designed to allow subtasks

without dependencies to be executed in parallel, optimizing resource utilization
and reducing total execution time.

– Dependency Management: Dependencies are minimized where possible to en-
hance parallelism.

• Dependency Minimization
– Dependency Metric: The system analyzes the standard deviation of the degree

distribution in the task graph to identify and minimize critical dependency points.
– Reducing Bottlenecks: By minimizing unnecessary dependencies, the system re-

duces potential bottlenecks and enhances robustness.
5. Agent Availability and Resource Management

• Agent Limitation
– Maximum Agents: The number of agents does not exceed the total number of

subtasks.
– Dynamic Checking: During execution, the system checks agent availability be-

fore starting new subtasks.
– Adjustable Constraints: The agent count can be adjusted based on resource avail-

ability and system configuration.

E.3 WORKFLOW EXECUTION PROCESS

1. Initial Workflow Generation
• The LLM generates a workflow based on the final goal, decomposing it into subtasks

with defined dependencies.
2. Agent Role Assignment

• Agents are assigned roles automatically by the LLMs.
• Subtasks are assigned to agents based on role matching.

3. Subtask Execution
• Agents execute their assigned subtasks.
• Subtasks are executed in parallel where dependencies allow.

4. Monitoring and Updates
• The system monitors subtask completion statuses.
• Depending on the update strategy, the workflow is updated either concurrently or after

all current subtasks are completed.
5. Dynamic Restructuring
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• Detection: If a subtask is determined to be insufficient or unsolvable for achieving the
requirement, the system detects this during execution.

• Re-evaluation of Workflow: The system reviews the current workflow, assessing the
impact of the failed subtask on all subtasks and the overall goal.

• Workflow Adjustment: The LLMs restructures the workflow dynamically to adjust
other subtasks or redefine dependencies.

• Continuity: This ensures that progress toward the final goal continues without signif-
icant delays.

6. Completion
• The process continues until all subtasks are completed and the final goal is achieved.

F LIMITATION AND FUTURE WORK

Although we have generated multiple candidate workflows and selected the one with the highest
modularity, it is still not the most efficient. With sufficient computing and data resources, a model
trained specifically for workflow management could significantly enhance the system’s performance.
For instance, the LLMs could be designed to maximize a reward function centered on key perfor-
mance indicators such as task completion speed, resource utilization, and minimizing disruptions in
the workflow. Such training could lead to the development of more effective workflows. The work-
flow updater requires global information to function effectively, which can become problematic as
the context length increases. This limitation could be addressed by employing a rig or a hierarchi-
cal approach to more precisely identify errors or areas lacking efficiency, thereby facilitating more
targeted updates and improvements within the workflow.
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