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Abstract

Circuit discovery with edge-level ablation has
become a foundational framework for mecha-
nism interpretability of language models. How-
ever, its focus on individual edges often over-
looks the sequential, path-level causal relation-
ships that underpin complex behaviors, thus
potentially leading to misleading or incomplete
circuit discoveries. To address this issue, we
propose a novel path-level circuit discovery
framework capturing how behaviors emerge
through interconnected linear chain and build
towards complex behaviors. Our framework
is constructed upon a fully-disentangled lin-
ear combinations of “memory circuits” decom-
posed from the original model. To discover
functional circuit paths, we leverage a 2-step
pruning strategy by first reducing the computa-
tional graph to a faithful and minimal subgraph
and then applying causal mediation to identify
common paths of a specific skill, termed as skill
paths. In contrast to circuit graph from exist-
ing works, we focus on the complete paths of a
generic skill rather than on the fine-grained re-
sponses to individual components of the input.
To demonstrate this, we explore three generic
language skills, namely Previous Token Skill,
Induction Skill and In-Context Learning Skill
using our framework and provide more com-
pelling evidence to substantiate stratification
and inclusiveness of these skills. Our codes
are available at: https://anonymous. 4open.
science/r/language_skill.

1 Introduction

Mechanism interpretability (Elhage et al., 2021;
Conmy et al., 2023) is becoming crucial for un-
derstanding how language models work. Current
methods (Conmy et al., 2023; Yao et al., 2024;
Syed et al., 2023; Bhaskar et al., 2024) involve the
use of activation patching to perform counterfactual
mediation for each edge, estimating its contribu-
tion to the outcome. Edges that exhibit significant
causal effects are ultimately retained in the circuit

graph, reflecting a certain mechanism by which the
language model processes the input.

However, focusing solely on individual edges to
ablate certain behaviors can result in many causal
relationships in high-level structures being over-
looked (e.g., chain structure A — B — (' and
multiple causes A — C' < B), which leads to po-
tential pitfalls of counterfactual mediation (Mueller,
2024)!. Naturally, the causal mediation in higher-
level structures like path-level circuit discovery,
would bypass these pitfalls. Connected paths in
the computational graph offer more complete inter-
pretability and provide insights into how founda-
tional skills are assembled into more sophisticated
capabilities.

Extending existing framework to circuit path
discovery poses two challenges. Firstly, circuit
graphs are usually composed of nodes of distinct
functionalities, such as attention-related transfor-
mations and multi-layer perceptron (MLP). This
heterogeneity makes it difficult to maintain a con-
sistent framework for analyzing and comparing
paths, as paths may span nodes performing fun-
damentally different operations. Secondly, com-
pared with edge-level intervention, the computa-
tional cost of ablating paths—which are chains
of connected edges—increases exponentially with
path length, making the process significantly time
consuming.

To address the above challenges, we propose a
novel framework consisting of three steps, namely
Decomposition, Pruning, and Post-hoc Causal
Mediation, to achieve path-level circuit discovery.
Specifically, we introduce the concept of memory
circuits that are linearly composed into a compu-
tation graph. These memory circuits serve as the
minimal units/nodes for manipulating the memory
reading from models. As such, each path is formed

'"Two typical examples of these pitfalls are non-

transitivity and preemption, proposed by Mueller (2024),
elaborated in Appendix A.
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by these functionally equivalent memory circuits
(Decomposition), thereby alleviating the first chal-
lenge. Built upon the memory circuits, we further
propose to decouple pruning from causal media-
tion which are entangled in existing works (Conmy
et al., 2023; Yao et al., 2024; Syed et al., 2023;
Bhaskar et al., 2024), thereby mitigating the second
challenge. Concretely, we apply a coarse pruning
technique in the first stage to eliminate edges, re-
sulting in a subgraph that serves as a “prototype”
of the circuit graph (Pruning). In the second stage,
we perform counterfactual operations and causal in-
terventions on a large number of “prototypes” over
samples to identify common paths corresponding
to a specific skill (Post-hoc Causal Mediation).

Compared to existing methods, we do not per-
form circuit discovery on a single sample. Instead,
we utilize a large number of samples containing
the same skill to identify generic skill paths. These
paths serve as “inherent and input-agnostic skills of
the model” rather than “reflections of the model in
response to a specific input”. To show the potential
capability of skill paths, We select three generic
and progressively complex skills which have been
introduced in (cro, 2024; Ren et al., 2024; Edelman
et al., 2024; Olsson et al., 2022): a) Previous Token
skill which is responsible for receiving information
from the previous token; b) Induction Skill which
duplicates tokens with the same prefix; and ¢) ICL
Skill which perform inference based on similar pat-
terns appeared in demonstrations. Utilizing our 3-
step framework, we unveil the complete skill paths
of these skills. These skill paths have better inter-
pretability in skill interaction, providing stronger
evidence to confirm 2 conjectures that have long
remained unverified: Stratification: Simple lan-
guage skills reside in shallow layers, whereas com-
plex language skills are found in deeper layers. In-
clusiveness: Complex language skills are formed
on top of simpler language skills.

In summary, our contributions are 3-fold:

* We introduce memory circuit, which can de-
scribe all key components of a language
model using a unified memory-reading func-
tionality. Combined with compensation cir-
cuits, it enables the decomposition of the com-
putational graph into a fully linear and lossless
combination, thereby providing a theoretical
foundation for path-level circuit discovery.

* We propose a novel 3-step framework for path-
level circuit discovery that allows for the iden-

tification of input-agnostic circuit, including
complete paths of a generic skill.

* Our analysis and experiments verify 2 prop-
erties among the Previous Token Skill, Induc-
tion Skill, and ICL Skill, which include strati-
fication and inclusiveness.

2 Related Work

Existing work primarily focuses on discovering
circuits responsible for processing specific inputs.
Specifically, they provide counterfactual text with
slight perturbations to the input as patches (Wang
et al., 2023), use interchange ablation methods to
assess the causal effect of each edge on the out-
put (Yao et al., 2024), and apply various pruning
strategies (Conmy et al., 2023; Syed et al., 2023;
Bhaskar et al., 2024) to identify circuits formed by
salient edges. For the resulting circuit graph, fur-
ther fine-grained exploration (e.g., noising and de-
noising (Heimersheim and Nanda, 2024)) is often
performed to confirm the mechanisms responsible
for different parts of the input text.

Existing work has identified circuits as fine-
grained behaviors that respond to specific inputs.
In contrast, the circuits we identify encompass
the complete global skill. For example, in the
IOI (Wang et al., 2023) samples, existing work
has identified induction heads. Induction heads
may serve as instantiations of the induction skill,
but they represent only a partial mechanism de-
rived from specific input samples. Different input
samples can lead to the identification of distinct in-
duction heads, highlighting their limited generality.
In contrast, our work focuses on uncovering the
complete circuits underlying the induction skill by
identifying the comprehensive skill paths, offering
a more holistic understanding of the mechanism.

3 Method

In this paper, we propose a novel 3-step framework
to extract the target language skills.

* Step 1 (Section 3.1): We decouple the archi-
tecture of transformer language models into
“memory circuits” with completely linear com-
ponents. This results in a Complete Circuit
Graph, G.

* Step 2 (Section 3.2): We adopt greedy search
to remove redundant edges in G, retaining
only those paths necessary for predicting the
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Table 1: Specific circuit index and corresponding implementation in each layer of GPT2-small.

W and b

represent weight and bias parameters, atv represents the activation of MLP. [n(-) is the layernorm function.
A = softmaz(XWoWEXT + boWEXT + XWqbk + bobk). Memory Circuits are C =25,

original output token and resulting in an [rre-
ducible Circuit Graph, Gx.

* Step 3 (Section 3.3): We select those paths
rendering the most significant causal effect in
G+ as the skill paths. The final graph formed
by the skill paths is named as Skill Circuit
Graph, denoted as G S,

3.1 Memory Circuit

Building on the foundation of the Transformer Cir-
cuit (Elhage et al., 2021), we propose a complete
decomposition of the transformer model including
the MLP layers. Using tensor products (&), we can
represent any layer of the transformer model:

output =(Id+ Y A" @ Wl + Id® Wypp
heH
+ Z AP & WMLPWSV) - X
heH

(1
where X represents the input representation in
each layer and H represents the number of atten-
tion heads. Matrix A is given by the attention
mechanism A = softmaz((XWgo)(XWk)T),
and Wy p involves the MLP operation with ac-
tivation given by atv(XWy)Wae. Woy =
Wo Wy refers to an “output-value” matrix which
computes how each token affects the output if
attended to, while Wg, Wy, Wy, are parameter
matrices for query, key and value. W), and
Whase are weight parameters in two linear lay-
ers. This equation simplifies both the attention
and MLP modules into linear matrix mappings,
describing how the paths from input to output
for each layer are decoupled into four indepen-
dent circuits: 1) C*¢f = Id - X; 2) Cn =
Y oheH AWl - X;3)C™P = [deWyp-X;
4) Cattn-‘rmlp — ZheH Ah ® WMLPW(];V - X.
Moreover, C¢tn C™ip Cattntmip can be further

factorized as:
cottn/mip/attntmlp — (X)W (2)

We use f to represent a function that can be
considered equivalent to an activation function,
for instance, C**" = %, . fﬁ}gﬁ( (X) - Wov,
f%g} (X) represents the softmax-normalization
of the input X through a weighted accumula-
tion performed by QK values, i.e., f{}[ﬁg;( (X) =
softmaz((XWo)(XWgk)T)X.

The function f(X) possesses the ability for
non-linear transformations, while W is an input-
agnostic parameter, which can be understood as
a memory learned through training (Geva et al.,
2021). Therefore, these three circuits represent the
minimum and complete unit for manipulating how
much memory to read (i.e., memory-reading oper-
ation), and are independent of each other, which
we refer to as “Memory Circuits” (We elaborate
memory circuit in detail in Appendix B.)

In this paper, we select GPT2-small as the target
language model, containing 12 layers (L = 12)
and 12 attention heads (H = 12). To provide a
complete dissection of the the model at each layer
which can precisely recover the original output,
we introduce Bias Circuits and Compensation Cir-
cuits (Compensation circuits represent the synergy
of the sum of linear terms passing the non-linear
function, please refer to Appendix B.4 for more
details), apart from Memory Circuits, to compen-
sate for the remaining information not covered by
the memory circuits. Table 1 shows the specific
circuits and their implementation for each layer.
Notably, our circuit dissection leads to a lossless
decomposition of the original LM layer into fully
linear combinations: LM;(X) = Z?io ‘

We treat Memory Circuits as the smallest units
and build a Complete Circuit Graph, G = {C, £},
where C stands for the set of 29 circuits (C°~28



shown in Table 1, where Attention and Atten-
tion+MLP has 12 circuits due to 12 heads given)
and & represents the edge between any two circuits
in successive layers. Any memory circuit C*(0 <
i < 25) in any layer [(0 < [ < 11), denoted as
C4', would receive information streams from all
circuits in previous layers, ie., & = {(C!* —
Cl29)}0 < I3 < Iy < 11,0 < i,§ < 25). No-
tably, the lossless decomposition ensures that the
insights gained from our circuit network accurately
reflect the behavior of the original language model.

3.2 Pruning with Greedy Search

We use a greedy search to prune unnecessary edges
between Memory Circuits while ensuring that the
output of the model does not change significantly.
In existing work, various ablation methods and dif-
ferent metrics have been compared (Heimersheim
and Nanda, 2024). Ablation and metrics are used
to justify whether the edge should be pruned. Abla-
tion means setting an edge’s activation value when
it is hypothesized to be pruned. Common strate-
gies include zero ablation, noise ablation, mean
ablation, and interchange ablation. (Interchange
ablation, also named corrupted prompt, is mani-
fested in the background effect in the Section 3.3.)
Metrics indicate which metric is used to assess the
causal effect change caused by pruning an edge,
with common including rank of token (default in
ours), logits difference, and KL divergence. In
Figure 3, we compare the differences between dif-
ferent ablation methods and metrics in the resulting
skill paths. We find that zero ablation and rank of
token are the most suitable approaches in our new
framework.

Therefore, we adopt zero ablation and make
sure that top n’ candidates remain unchanged af-
ter pruning (details of implementation shown in
Appendix D.2). Given that a depth-first search is
more likely to remove shallow edges, we employ a
breadth-first search. Different search strategies and
constraints are compared in Appendix C. As shown
in Algorithm 1: We denote G+ as the Irreducible
Circuit Graph after pruning, and £x as a subset of
& which only includes those paths encapsulating
the information stream necessary for the last to-
ken prediction. Briefly, G represents the nearly
smallest but functionally complete subgraph for
outputting original tokens. Therefore, the observed
skill circuit graph may be regarded as a subset of

>We set n = 1 in our experiments because the token with
the highest probability is the most meaningful.

Algorithm 1 Greedy Search for Gx
Require: Complete Circuit Graph G = {C, £}, pre-
diction zy = Model(G, X ), number of Layers L
and Circuit Index [0, 28]. Ensure: Irreducible Cir-
cuit Graph Gx = {C, Ex}
Gx=G,G' = Gx
for each Memory Circuit C** € C(0 < | <
L,1<i<25) do
for each Memory Circuit C**' € C(0 < I <
1,1 <i <25)do
pP=I[7]1,1],¢ =G =Ex—P

if Model(G', X) == z then

end for
end for
return Gx

G+. To obtain this subset, we need to conduct more
detailed causal mediation analysis in Section 3.3.

3.3 Post-hoc Causal Analysis

It is widely recognized that most texts require more
than one language skill for inference (Arora and
Goyal, 2023). Therefore, determining which paths
are associated with the observed behavior can be
challenging. For this reason and motivated by en-
deavors in causal effect analysis (Wang et al., 2023;
Vig et al., 2020), we divide the effects of any text
on the output token into 3 components: skill ef-
fects, background effects, and self effects for the
last token (abbreviated as self effects).

Skill effects refer to the impact of the observed
skill on the output which is the focus of this paper.
Self effects denote the impact of only using the last
token to predict, which functions like a “bi-gram
model” (a model associating one input token with
its output token). Background effects propose a
counterfactual scenario, i.e., what would the effect
be if this skill does not occur?.

We use the typical example of the “Induction’
skill for illustration, which works with an input in
the form of “... A B ... A”, where A, B refers to dif-
ferent tokens. Here the language model is expected
to repeat the pattern (“A B”) it has seen in the con-

>

3In existing work, background text is typically referred
to as interchange ablation or activation patching, and it is
conducted in conjunction with pruning.
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Figure 1: A case text about causal effects.

text and predict token “B” as the output token. Fig-
ure 1 illustrates that the model outputs “question”
when given the input “Generate a question with a”.
However, the vocabulary distribution in the output
given by the language model does not merely result
from the induction skill, but is also confounded by
other effects such as the background effect and the
self effect. To compute the target effect for a spe-
cific circuit path, let Path® be any directed paths in
Gx (e.g., OB — 21 — 065 5.t circuit edges
(CH19, 0214y and (C%14, C65) are in G*). Path’
then symbolizes the flow of information across lay-
ers amongst the circuits it encompasses. We use the
occurrence rate of Path’ in all samples to compute
the effect:

NPathé*
i Pathé*:l
Eff(Pathg,) = ———— 3)
Nair
Path
g+ -
Path;, =1 represents the number of samples en

compassing Path’ while N, represents the num-
ber of all samples. Each path contributes differently
to the three effects. Hence, we aim to find those
paths that contribute to the skill effect rather than
the other two effects.

Specifically, for each input text as a sample s,
we perturb it to create a background text sy, and
a self text sg;¢ (The process for generating back-
ground text and self text for all types of skills is
described in Appendix D). Eventually, any sample
is augmented with two more perturbed versions,
rendering three types of inputs (i.e., original text,
background text, and self text), each of which is
subjected to the greedy search as discussed in Sec-
tion 3.2. The greedy search produces three distinct
Irreducible Circuit Graphs: Go,;* (from original in-
put text), Gpgg* (from background text), and G f*
(from self text). Therefore, the skill effect (e.g., In-

duction Skill) of Path' can be defined as:

Ef fsriu(Path') =

?\fPathi
Path’,  _=1,Path? =0,Path? =0 (4)
Sori* gBkg* gSelf*

Nau

Finally, we get the Skill Circuit Graph G° =
{C,&5}. With § as the threshold parameter: £% =
{Path|Ef fsri(Path') > &} (we provided de-
tailed analysis about ¢ in Appendix D.5).

4 Experimental Design

This paper focuses on 3 language skills, spanning
from basic to advanced levels:

* Previous Token Skill: Receive information
from the previous token.

* Induction Skill: Identify patterns in prefix
matching and replicate recurring token se-
quences.

* ICL Skill: Recognize and replicate the
demonstration context, thereby producing out-
puts based on similar patterns.

Extensive research has shown that these three
skills build on one another in a sequentially en-
compassing manner (cro, 2024; Olsson et al., 2022;
Ren et al., 2024; Edelman et al., 2024). The Induc-
tion Skill inherently includes the Previous Token
Skill. In simple terms, for induction to occur in
the sequence “A B ... A”, the token B must retrieve
information from the preceding token A. Likewise,
In-Context Learning must be capable of identifying
similar patterns across different demonstrations to
generate analogous outputs.

We select over 10k samples encompassing one
of the three above-mentioned skills from large cor-
pora and popular datasets such as WIKIQA (Yang
et al., 2015), SST-2 (Socher et al., 2013), BIG-
BENCH (Srivastava et al., 2023), OpenOrca (Lian
et al., 2023), and OpenHermes (Teknium, 2023).
For each instance, we create a background pertur-
bation and a self perturbation (discussed in Sec-
tion 3.3). For simplicity, PVT represents the sam-
ple set involving the Previous Token Skill and
IDT represents the sample set related to Induc-
tion Skill. ICL1 represents the ICL sample set
from SST-2 datasets; ICL2 represents the ICL
sample set from object_counting task; ICL3 and
ICL4 represents those from gawikidata and rea-
soning_about_colored_objects task. The details of
data preparation and implementation are elaborated
in Appendix D.



Sample Circuit Graph
G —R50 —R500 7gS,PVT 7gS,IDT 7gS,ICL1 7gS,ICL2 7gS,ICL3 7gS,ICL4
PVT 1.00 0.46 0.23 0.01 0.00 0.00 0.01 0.00 0.00
IDT 1.00 0.58 0.29 0.08 0.00 0.00 0.00 0.01 0.00
ICL1 1.00 0.61 0.23 0.01 0.00 0.00 0.00 0.00 0.00
ICL2 1.00 0.51 0.18 0.00 0.00 0.01 0.00 0.01 0.01
ICL3 1.00 0.54 0.21 0.00 0.00 0.00 0.00 0.00 0.00
ICL4 1.00  0.62 0.30 0.07 0.03 0.01 0.02 0.00 0.00
Table 2: Accuracy of output to original label within different Circuit Graph
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Figure 2: T-sne visualization of 6 types of samples on top 5 vocabulary candidates. Red denotes the original output

model (G), while blue signifies the output once a corresponding skill path is removed (G —
background text (Gpyy) and self text (Gg;¢) are indicated in

5 Validation

5.1 When SKkill Paths are Removed

To understand whether the skill paths are respon-
sible for corresponding language skills, we design
an intervention experiment by removing different
sets of paths and observe the output of the LM.
Table 2 displays the accuracy under different
configurations of the Circuit Graphs when treating
the original output as the ground-truth. For each
language skill .S, we randomly select 500 samples
from its corresponding dataset. As a result, 9 dif-
ferent configurations of Circuit Graphs are tested:
G+ which represents the original output; —R50
which signifies the removal of 50 paths at random
from Gx; —R500 after the deletion of 500 paths
randomly from G*, which approximately equals
the number of skill paths*. The remaining 6 con-
figurations encompass the removal of paths from
G+ that correspond to the skill of Previous Token,
Induction, ICL1, ICL2, ICL3, and ICLA4, respec-
tively (For additional supplementary data for this
validation test, please refer to Appendix D.4.).
The results indicate that almost all samples were
unable to produce the original token when these
skill paths were excluded (as indicated in the last
6 columns), yet random removal of paths does not
lead to such significant impact. Additionally, Fig-

*The exact number of removed paths is: G= V7 —
GSIDT _ 466, GSICLL _ 589 GS1CL2 _ oo gSIOL3 _
603, G571 — 537

G%). The outputs for the

and , respectively.

ure 2 visualizes the t-SNE representation of the
top 5 candidate outputs associated with different
Circuit Graphs. It is clear that when a skill path is
removed, the output (blue) shifts from red towards
green (or yellow), indicating a transition from a text
output distribution that includes skills to a distinct
space resulted from the removal of these skills.

5.2 How SKkill Effects Are Confounded

Another question is whether the background effect
and self effect, mentioned in Section 3.3, poten-
tially exist as confounders or share the skill paths.
To answer this question, we conduct two exper-
iments, with the results shown in Appendix E.
Initially, Table 4 checks the overlap between the
paths with E f f > 0.5 in the background/self text
and the skill paths, illustrating that a small portion
(approximately 10%-20%) of those paths does not
belong to any observed skill. This corresponds
to the confounding originating from other latent
skills that we envisioned. Secondly, Figure 7 vi-
sualizes the bivariate probability density function
with the original input and background/self text of
these paths under different effects. One intriguing
discovery is that the confounding skills are more
likely to present in the background text than in the
self text, and the more complex the skill, the subtler
the confounding effect introduced by the self text.



Skill

Receivers receiving more than 10 paths ([#layer, #circuit])

PVT

[1,8],[1, 18], [1, 19], [1, 20], [1, 211, [2, 1], [2, 7], [2, 14], [2, 18], [2, 20], [2, 22], [2, 24], [11, 1], [11, 14]

IDT  [2, 14], [2, 18], [2, 20], [3, 141, [3, 17] [4, 5], [4, 12], [5, 111, [6, 51, [11, 1], [11, 14]

fcLt (10, 10], [11, 8], [11, 9], [11, 10], [11, 11]

[2, 14], [2, 20], [2, 22], [2, 241, [3, 3], [3, 4], [3, 5], [3, 111, [3, 14], [3, 171, [4, 3], [4, 5], [5, 11], [8, 51,

ICL2 [10, 11], [11, 1], [11, 5]

[1,19], [2, 14], [2, 201, [2, 241, [3, 51, [3, 111, [3, 14], [4, 51, [4, 71, [4, 9], [5, 10], [6, 51,[10, 9], [10, 10],

ICL3

[1,8],[1, 18], [1, 19], [1, 201, [1, 211, [2, 14], [2, 20], [2, 24], [3,1], [3, 14], [4, 3], [4, 5], [5, 1], [5, 10],

[5, 111, [8, 11, [8, 9], [10, 5], [10, 10], [10, 12], [11, 1], [11, 8]

ICL4 [11, 2], [11, 3], [11, 4], [11, 6], [11, 15]

[1, 16], [1, 20], [2, 201, [4, 3], [4, 5], [5, 3], [6, 41, [6, 51, [8, 91, [9, 41, [9, 51, [10, 2], [10, 10], [10, 12],

Table 3: Key Receivers in Skill Circuit Graphs, blue circuits are presented in the lower skill.

6 Discovery of Language Skills

For a long time, two conjectures about language
skills have been increasingly recognized. They are:

1. Stratification: Simple language skills reside
in shallow layers, whereas complex language
skills are found in deeper layers.

2. Inclusiveness: Complex language skills are
formed on top of simpler language skills.

For Stratification, many works have already dis-
covered its traces. For instance, mechanism inter-
pretability studies (Yun et al., 2021; Geva et al.,
2021) have found that circuits for simple skills
(such as syntax) and complex skills (such as seman-
tics) are almost spread across all layers, but there
is a clear concentration: syntax are more concen-
trated in shallow layers while semantics are more
concentrated in deep layers. As for Inclusiveness,
most existing work has found some components
with simple skill features in complex skills, such
as the salient induction heads found in ICL tasks,
hence conjecturing that the ICL skill includes the
Induction skill.

However, so far, there has been no quantitative
experimental evidence to prove these 2 conjectures.
For instance, which specific layers do simple skills
reside in? Which specific paths in simple skills
are encompassed by complex skills? Our work
further confirms these hypotheses via quantitative
discoveries.

6.1 Quantitative Results

Table 3 displays the nodes (receivers) receiving
more than 10 paths in the skill graphs. We use [/, 7]
to denote the I-th layer and i-th circuit (C**). The
complete Skill Circuit Graph can be found in Ap-
pendix 1. From Table 3, we provide quantification
results for Stratification and Inclusiveness.

Quantification of Stratification: The Previous
Token Skill (PVT) is one of the simplest language
skills, and thus it is located across layers 0-2. The
Induction Skill (IDT) is slightly more complex and
thus spreads across layers 0-6. Meanwhile, ICL is
the most complex skill and has key receivers across
nearly all layers. Additionally, all skills share the
11-th layer (final layer).

Quantification of Inclusiveness: Circuits such
as [2, 14], [2, 18] and [2, 20] (presented in PVT)
can be found in the IDT, indicating that the Previ-
ous Token Skill is an integral part of the Induction
Skill. Similarly, the ICL skill encapsulates the Pre-
vious Token Skill and Induction Skill as necessary
sub-skills, which is why circuits that are evident in
the Previous Token Skill (such as [2, 14], [2, 20],
[2, 24]) and those identified in the Induction Skill
(such as [3, 14], [4, 5]) can be found in the ICL
Skill Graph. Furthermore, we list all multi-step
paths with inclusive sub-path in Appendix F.

6.2 Comparisons with Other Methods

In this section, we investigate the performance of
different methods and strategies in validating the 2
conjectures. We investigate relevant existing work
(ACDC, OPT-prun, EAP) and examine the per-
formance of our method under different ablations:
noise ablation (Ours-noise), mean ablation (Ours-
mean), zero ablation (Ours) and different metrics:
logit difference (Ours-logits), KL divergence (Ours-
KL), rank of token (Ours). We introduce these
methods in detail in Appendix H.

Each method uses its own circuit discovery strat-
egy to search for corresponding circuit graphs for
the three skills we focus on: PVT, IDT, and ICL1.
Then, we investigate the distribution of receiver
nodes in these circuit graphs and display the nor-
malized results in Figure 3.

It is clear from other methods that PVT is more
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Figure 3: Visualization of receivers distributed in layer1-10 in 3 increasingly-complex skills (PVT, IDT, and ICL1).

Method  ovip(IDT,PVT) ovlp(ICL1, PVT) ovip(ICL1,IDT) ovlp(GT,PVT) ovlp(GT,IDT) ovlp(GT,ICL1)
ACDC 0.19 0.06 0.17 0.11 0.05 0.11
OPT-prun  0.05 0.14 0.17 0.18 0.10 0.05
EAP 0.14 0.05 0.18 0.09 0.15 0.12
Ours 0.74 0.81 0.63 0.68 0.13 0.11

Table 4: Overlaps between different skill circuit graphs

prominent in the shallow layers, IDT in the shallow-
to-mid layers, and ICL1 tends to cluster in the deep
layers. Yet, the circuit graph discovered by our
method (see “Ours”) provides a more distinct dif-
ferentiation: PVT circuits only appear in layers 1
and 2, and IDT circuits only appear in layers 1-6.

Furthermore, in the cross-comparison of the
three types of ablations (noise ablation: Ours-noise,
mean ablation: Ours-mean, zero ablation: Ours),
there was no significant difference observed in strat-
ification results. This indicates that all three abla-
tions can provide similar subgraphs for the post-hoc
causal mediation. However, among the three met-
rics (logit differences: Ours-logit, KL divergence:
Ours-KL, rank of token: Ours), the discrete metric
(i.e., rank of token) notably offers clearer stratifica-
tion results compared to the other two continuous
metrics. We posit that this difference arises because
discrete metrics can directly reflect the faithfulness
of outputs when isolated from causal mediation,
thereby accurately removing non-influential edges.

Additionally, to observe the interpretability of
these methods on Inclusiveness, we investigate
their overlap on the three skill circuits: PVT, IDT,
and ICL1. In addition, we have added a new skill:
greater than (GT), with input samples drawn from
the greater than dataset (Hanna et al., 2024), to
assess the ability of the language model in judging
numerical relations. Clearly, the three skills PVT,
IDT, and ICL are progressively inclusive, that is,
IDT includes PVT, while ICL includes both IDT
and PVT. However, GT only includes PVT and has
no relation to IDT and ICL. The corresponding cir-

cuit graphs are still derived from the circuit discov-
ery strategies proposed by each method, searching
in the corpora corresponding to the skills. We use
ovlp(A, B) to indicate the ratio of paths in circuit
A that also exist in B. A value of 0 means no paths
are shared, and 1 means all paths are shared. The
specific calculation method for ovip(A, B) can be
found in Appendix H.

Table 4 demonstrates that the overlap of circuit
graphs discovered by existing methods is rather
weak. For instance, ovip(ICL1,IDT) is only
0.17 in ACDC. In contrast, our approach provides
clear empirical evidence for the conjecture of inclu-
siveness: for instance, ovlp(IDT, PVT) = 0.74
indicates that 74% of the paths in the Induction
skill exist in the previous token skill. Additionally,
from the experimental results related to GT, it can
be seen that for skills without inclusiveness, our
circuit graph can also reflect significant differences.

Advantages: These comparisons highlight some
advantages of our method: the advantage of overlap
comes from our ability to effectively identify paths
rather than just edges. As can be seen from the
paths shown in Appendix F, almost all paths have
transitivity® with edges. The advantage of stratifi-
cation may come from the mixture of our novel set-
tings, enabling the model to find potentially more
unbiased circuits. Additionally, we present more
detailed findings in Appendix G, including some
specific components with clear functions and an
analysis of why the model fails to execute skills.

5 Additionally, the preemption is avoided as shown in the
backup head in IOI task in Appendix G.



7 Limitation

We identify 3 limitations that need to be addressed
in the future: 1) the time complexity of the greedy
search; 2) scalability; 3) the lack of further exami-
nation on the representational study.

Assuming the time for one inference using LLM
as O(1), the time complexity of a single greedy
search would then be O(L?N?), i.e., the square of
the number of layers times the number of circuits.
If we can overlook this time-consuming process,
G+ for each input would effectively facilitate train-
ing. In other words, Gx* could directly instruct LLM
which paths are essential and which are not, thus
streamlining the training process. Despite the time
complexity, we recall our contribution on the anal-
ysis of LMs which is usually more challenging and
does not require large-scale inference.

We also recognize the limitations of testing on
a single model and specific skills. Although many
studies have validated the GPT-2 series to have
public trustworthiness for research in mechanistic
interpretability, making us confident in its capacity
to support our contribution—the pioneering work
in discovering the theoretical foundation and exper-
imental design of language skills—there remains
ample scope for scalability across a variety of mod-
els and skills for future work.

Finally, the lack of research at the representa-
tional level hinders our progress in answering more
complex questions such as why certain samples fail
to trigger a skill. Recognized that this is a rather
challenging topic, we leave it as a promising future
work.
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A Details about Non-Transitivity and
Preeption

Initially, we would like to recall the description of
causal dependency verification using counterfactu-
als: “If A occurs, then B occurs; and if A does not
occur, then B does not occur” (Lewis, 2013). Build-
ing upon this, there are two common pitfalls in
existing counterfactual operations (Mueller, 2024):
non-transitivity, which leads to the overlooking of
local patterns, and preemption, where redundant
causes are disregarded. Since instantiating these
concepts at the neural level would introduce signifi-
cant complexity, we instead provide examples from
the perspective of events to illustrate these pitfalls.

Non-transitivity: Consider the following se-
quence of events (adapted from Mueller (2024)):

A: A hiker is walking up a mountain, and a large
boulder begins rolling down the mountain toward
the hiker.

B: The hiker, noticing the rolling boulder, ducks
out of the way.

C: The hiker survives.

In this sequence, C depends on B, and B depends
on A. For instance, the dependency of C on B can
be framed as: "If the hiker ducks, they survive; if
the hiker does not duck, they do not survive." How-
ever, counterfactuals cannot directly verify that C
depends on A. This is because A and C are embed-
ded within a more complex causal structure where
the mediation between A and C involves more than
just B. The same reasoning holds at the neural level:
counterfactual mediation can verify the existence of
causal relationships such as A — B and B — C,
but it cannot directly verify A — C. In this paper,
we address this issue by utilizing path-level circuits:
if we can simultaneously verify A -+ B, B — C,
and A — B — (), then we can confirm A — C.

Preemption: Consider the following example:

Al: Suzy throws a rock at a glass bottle.

A2: Simultaneously, Billy throws a rock at the
same bottle.

B: The rocks shatter the bottle.

In this case, verifying A1 — B first would pre-
vent the verification of A2 — B (since the bottle
is already shattered), and vice versa. Similarly, in
neural networks, a given neuron may be influenced
by multiple causes. Performing counterfactual me-
diation for a single cause may obscure the causal
effects of other causes. To resolve this, we apply
counterfactual mediation to all paths simultane-
ously in the third step of our framework, ensuring
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that this issue is avoided.

B Analysis about Memory Circuits

B.1 Full Equations of All Memory Circuits

Three of memory circuits can be further factorized
as:

attn attn
CH = Z Fivgw (X) - Wov

heH
where fﬁg;{ (X) = softmaz((XWo)(XWx))X
m ml
o = = fiyo (X) - War
where fmlp (X) = atv(XWyn)
attn+ml attn+ml
¢ "= Z f QK,Wé)V,W]Wl(X) - Whro
heH
attn+ml
where fWQK W§V7WA11(X)
= atv(fiye, (X)WovWan)

We use f to represent a function that can be
considered equivalent to an activation function,
for instance, f“tg” (X) represents the softmax-
normalization of the input X through a weighted
accumulation performed by Q) K values. In conclu-
sion, these three types of circuits can be expressed
using a common paradigm:

cettn/mip/attnmlp _ £(x) .y 5

B.2 Why A ® X is not the circuit with
complete function?

We use X"" to denote the hidden state represen-
tation corresponding to the n-th token at the /-th
layer, and U represents the unembedding matrix.
Therefore, for any representation X Ln we can ob-
tain its vocabulary distribution, i.e., the logits for
each token candidate, using X""U. We adopt a
sample text, “Beats Music is owned by", as the
input. Table 5 shows the logits corresponding to
the words “ the" and “ Apple” when these tokens
are converted to vocabulary embeddings.

Our expected correct output is such that after the
last layer’s representation is unembedded, the logits
for “ Apple" reach their peak. However, as shown
in Table 5, after conducting an A ® X operation
on the 1st layer’s representation, the logit range for
“Apple"is [80.49, 86.44], where 80.49 corresponds
to the attention weight of “ Music” to “ by" being
1, and 86.44 represents the attention weight of “ Be”

o “by" being 1.

This situation exposes a significant drawback.

In the representations of all previous tokens, the
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logits for “ the" are always higher than those for
Apple". Hence, no matter how many effects A ® X
operations performed, it remains impossible for the
logits of “ Apple" to surpass those of “ the". There-
fore, although A ® X incorporates an activation
function such as so ftmazx, it can only be consid-
ered as semi-activated (Elhage et al., 2021). We
refer to this as a “deep constraint”, that is, A ® X
cannot allow the representation of the destination
token to exceed the upper and lower boundaries of
the previous token’s representation. This is why
we assert that A ® X lacks full functions, that is, it
does not possess memory capability.

B.3 How to explain Memory Circuits?

Let’s likewise map all the Memory Circuits into
the vocabulary space:

V=C-U=fX)W-U=f(z)- WU (6)
Simply put, we assume X € RMP, f(X) ¢
RNM W e RMDP and U € RPE, where N
represents the number of tokens, D denotes the
dimensions in the residual stream, M refers to the
dimensions in the circuit (such as the dimensions
in QKV or MLP), and F signifies the length of the
vocabulary list. Naturally, WU € RM:F which
could be seen as a collection of M vocabulary dis-
tributions. These vocabulary distributions are unaf-
fected by the input tokens and thus can be consid-
ered as the acquired memory from training.

The function f(X) € RVM acts like a weight
which specifies how much each vocabulary distri-
bution contributes to the output. This confirms why
MLP is generally regarded as a memory storage, as
its dimensions are usually significantly larger than
those of QKV. Simultaneously, it also explains the
advantage of MoE: providing a wider range of op-
tions for vocabulary distribution.

In the final analysis, the inference process of
a language model can be seen as constituting 3
key components: “memory”’, “movement”, and
“ensemble”. “Memory'' pertains to acquiring a
new distribution from memory distribution, while
“movement” involves transferring token informa-
tion to subsequent tokens. Finally, ‘“ensemble”
refers to the process of combining representations
from multiple circuits to produce the final repre-
sentation. Within this process, Memory Circuits
serve as the smallest units responsible for “mem-
ory” and also encompass independent operations
of “movement” (C'~12 and C'*~2%). Further-



Logits Tokens

“Be” “ats” “Music” “is”  “owned” “by”
“the” 9545 8943 91.20 99.32 94.21 101.52
“Apple” 8644 82.13 80.49 82.31 82.57 83.41

Table 5: Logits of “the” and “ Apple” when the representation in 1-st layer products unembedding matrix, with

input “Beats Music is owned by"

more, they form individual elements of the “ensem-
ble”. Therefore, we examine the interrelationships
(necessary paths) between Memory Circuits to un-
derstand the language skills of language models.

B.4 Derivation of Compensation Circuits

The input of the MLP consists of two parts: the
residual stream and the output of the attention. Due
to the presence of nonlinear activation functions,
the residual stream and attention are coupled in
the input, making it impossible to isolate their im-
pact on the MLP, thereby affecting the verification
of pruning. To address this, we introduce a com-
pensation circuit, decomposing the MLP into four
parts:

atv((X + Z Attn" YW )Ware =
heH
(atv(XWhn) + Z atv(AttnhWMl]))WMz
heH
+ Cps! + Cps?

where :

Cps' = (atv((X + Z AttnY W)
heH
—atv(XWy) — atv(z AttnhWMl))WMg
heH
Cps® = (atv(z Attn" W)
heH

— Z CLt'U(AttnhWMl))WMQ
heH

(N
where MLP operation with activation given by
atv(X + X ey Attn"YWar)Wara (W and
Whase are weight parameters in two linear lay-
ers and atv represents the activation function), X
represents the input representation in each layer
and H represents the number of attention heads,
Attn/ represents the output of h-th attention head,
Cps' and Cps? are compensation circuit, repre-
senting the synergy effect of the residual stream
(X 4+ hen Attn™) and the sum of attention head
Y oheH Attn™ respectively.
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The compensation circuit calculates the synergy
between the output when linear terms are summed
before passing through a non-linear function, and
the output passing through a non-linear function
before summing. Therefore, the compensation cir-
cuit is dynamic and related to the input. From the
perspective of the MLP, if we want the compensa-
tion circuit to be 0, then the input to the MLP must
be reduced to only one or zero linear terms. This is
an unlikely occurrence in practical pruning, so we
assume that all edges of the compensation circuit
always exist.

C Search Strategies

We conducted extensive comparisons w.r.t. two
elements: breadth-first search and top1 candidate
consistency. 1000 samples, each less than 30 to-
kens in length, were randomly selected from the
WIKIQA dataset (Yang et al., 2015) and applied to
different search strategies:

e Breadth-1: Breadth-first search was con-
ducted on C%* where [ varies from 0 to 11,
and ¢ from 1 to 25.

e Breadth-2: The same breadth-first search was
done on C"*, but with  running from 0 to 11
and 7 from 25 to 1.

* Breadth-3: [ spanned from 11 to 0 and ¢ from
25 to 1 while conducting breadth-first search
on Ch7.

o Breadth-4: The breadth-first search on C*
was performed randomly.

* Depth: The depth-first search on C** was un-
dertaken with [ ranging from O to 11 and ¢
from 1 to 25 (i.e., treating C*' as the sender
rather than the receiver).

» Top-2: Altered constraint to ensure top 2 can-
didates’ token consistency.

* Top-5: Altered constraint to ensure top 5 can-
didates’ token consistency.



* Top-10: Changed constraint to ensure top 10
candidates’ token consistency.

* Loss-1: The constraint was modified to ensure
that = v’s loss does not exceed the original loss
by more than +5.

* Loss-2: The constraint was changed to ensure
the loss of )y does not exceed +£100% of the
original loss.

We measured two metrics: Deleted Path, which
is the total number of deleted paths divided by
the total number of paths and times 100%, and
Hamming, which is the Hamming distance between
G+ obtained from each strategy and G'* obtained
from Breadth-1.

Table 6 presents the results of these methods.
Notably, different search sequences of breadth-
first search do not lead to significant discrepancies.
Depth-first search methods, however, are not as
effective as breadth-first searches in deleting a suf-
ficient number of paths. Compared to the top 1
constraint, it is challenging for other constraints to
delete an adequate quantity of paths. We posit that
this is because GPT2-small is a simple model and
does not possess the capability to randomly select
candidates from the top N for output.

D Data Preparation and Implementations

D.1 Data Preparation
D.1.1 Previous Token SKkill

We randomly selected 40k text samples comprising
two tokens - “token0 tokenl" - from the WIKIQA,
OpenOrca, and OpenHermes corpora. In 20k of
these samples, the two tokens made up one word,
while in the remaining 20k, “foken0” and “fokenl”
belonged to two separate words. For the back-
ground text, we chose “token0”, and for the self
text, we selected “ tokenl”. A complete sample is
as follows:

{text: “ that most", backgound_text: “ that",
self text: “ most”, GPT2-small_output: “ of '}

D.1.2 Induction Skill

The samples for the Induction Skill also come from
WIKIQA, OpenOrca, and OpenHermes. We ran-
domly selected 14k samples with the template “...
Al B ... A2", where the destination token “ A2” is
the same as the preceding token “ Al”, and the
total token length of the sample does not exceed
30. For the background text, we removed “ A2”
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and had GPT2-small produce a new but different
token to replace “ A2”, resulting in “... Al B ...
C". Since “ C” is semantically supplemented by
the preceding text and differs from “ A2”, it pre-
serves semantics as much as possible without the
Induction Skill. The self text is still token “ A2”.
A complete sample is as follows:

{text: “chinese lesson 1.2: chinese", back-
gound_text: “chinese lesson 1.2: The", self _text: “
chinese”, GPT2-small_output: “ lesson”}

D.1.3 ICL Skill

The 4 types of ICL skill samples come from SST-
2 dataset and the object_counting, qawikidata,
reasoning_about_colored_objects datasets in BIG-
BENCH. These samples have been named by us
as icl_sst2, icl_oc, icl_qa, icl_raco, with quantities
of 1000, 284, 1000, and 135 respectively. Each
sample is required to contain two different labelled
demonstrations and should be answerable correctly
by GPT2-small. Here are examples of the four
types of samples:

icl_sst2:

{text: *, nor why he keeps being cast in action
films when none of them are ever any good Senti-
ment: negative\nfunny , even punny 6 Sentiment:
positive\nis that secret ballot is a comedy , both
gentle and biting . Sentiment:", backgound_text:
“is that secret ballot is a comedy , both gentle and bit-
ing . Sentiment:", self _text: *“ Sentiment:”, GPT2-
small_output: “ positive” )

icl_oc:

{text: “I have a piano, a trombone, a violin,
and a flute. How many musical instruments do [
have ?A: four\nl have a banana, a plum, a straw-
berry, a nectarine, an apple, a raspberry, an or-
ange, a peach, a grape, and a blackberry. How
many fruits do I have?A: ten\nl have a head of
broccoli, a cauliflower, a stalk of celery, a cab-
bage, a potato, an onion, a yam, a garlic, a lettuce
head, and a carrot. How many vegetables do 1
have?A:", backgound_text: “I have a head of broc-
coli, a cauliflower, a stalk of celery, a cabbage, a
potato, an onion, a yam, a garlic, a lettuce head,
and a carrot. How many vegetables do I have?A:",
self text: “ A:”, GPT2-small_output: “ ten”}

icl_qa:

{text: “The country of University of Tsukuba
is A: Japan\nThe sport played by Judit Polgdr is
A: chess\nThe country of citizenship of Théophile
Gautier is A:", backgound_text: “The country of
citizenship of Théophile Gautier is A:", self _text: “



Metrics

Breadth-1 Breadth-2 Breadth-3 Breadth-4 Depth Top-2 Top-5 Top-10 Loss-1 Loss-2

Deleted Path(%)
Hamming

69%
0

63%
14

68%
21

70%
27

Strategies
9% 32% 14% 2% 25% 34%
26457 12947 21639 44712 21773 16721

Table 6: Logits of “the” and “ Apple” when the representation in 1-st layer products unembedding matrix, with

input “Beats Music is owned by"

A:”, GPT2-small_output: “ France”}

icl_raco:

{text: “On the nightstand, you see the following
objects arranged in a row: a black bracelet, a pink
booklet, a blue cup, and a silver cat toy. What is
the color of the object directly to the left of the pink
object? A: black\nOn the floor, you see a bunch
of objects arranged in a row: a red cup, a gold
bracelet, a fuchsia puzzle, a purple stress ball, and
a burgundy fidget spinner. What is the color of the
object directly to the right of the cup? A: gold\nOn
the table, you see a set of things arranged in a
row: a black keychain, a purple mug, a blue dog
leash, and a teal sheet of paper. What is the color
of the left-most thing? A:", backgound_text: “On
the table, you see a set of things arranged in a
row: a black keychain, a purple mug, a blue dog
leash, and a teal sheet of paper. What is the color
of the left-most thing? A:", self _text: “ A:”, GPT2-
small_output: “ black”}

D.2 Implementation

In the pruning process, we employed metrics such
as zero ablation and token rank. Specifically, zero
ablation involves setting the activation value of an
edge to 0 when determining whether it should be
pruned. Meanwhile, preserving the top 1 token, as
illustrated in Algorithm 1, ensures that an edge will
only be deleted if it does not alter the final output
token.

Following the 3-step process from Section 3, we
obtained the skill circuit graph, G°. We found that
the skill effect values in G S for the Previous Token
Skill and the Induction Skill were not high, with
the highest F f fsx;;; being only 0.54 and 0.61, re-
spectively. However, the highest F f fgp;; for the
ICL Skill reached 0.98. We speculated that because
the Previous Token Skill and the Induction Skill
are overly simple, there were a significant number
of samples that happened to output the correct an-
swers without triggering the corresponding skill
paths. For instance, in the text “In China [main-
land]", it’s challenging to confidently determine
whether “mainland” was influenced by the bi-gram
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model of “China" or if “China"” received informa-
tion from “In". As such, we attempted to perform
bisection clustering for each sample in the Previous
Token Skill and Induction Skill, based on the paths
with top 10% Ef fskin.

Figure 4 shows the results of our clustering on
the G° for the 3 skills. The x-axis sequentially
arranges the top 10% of paths on E f fgx; from
shallow to deep, and the y-axis indicates the mean
E f fsrq of these paths. It’s striking that two clus-
ters in the Previous Skill and Induction Skill: one
consistently showing a high E f fsy;;, and the other
showing little to no E f fgr;. This suggests that
these low E f fgi;;; samples hardly share common
paths or trigger common language skills. Mean-
while, the ICL skill does not showcase discrim-
inable clustering, further corroborating our specu-
lation.

Going a step further, we would like to ascertain
whether the Previous Token Skill and Induction
Skill, after undergoing multiple rounds of “purifi-
cation" through clustering, could still be divided
into two clusters. Therefore, we recursively per-
formed bisection clustering on the higher F f fow
cluster each time. Figure 5 and 6 presents the re-
sults after each round of clustering. Notably, the
Previous Token could not be divided after 2 rounds
of clustering, while the Induction Token hit the di-
viding limit after just 1 round. Considering that the
number of clustering rounds for ICL Skill was O,
we believe this supports our hypothesis: the more
complicated the skill, the fewer instances of coinci-
dental samples.

Lastly, we verified that bisection clustering sig-
nificantly outperformed trisection, quad-section,
and quintisection clustering. As illustrated in Fig-
ure 7, out of all the clusterings, only bisection clus-
tering was able to distinctly segregate two mutu-
ally exclusive clusters categorized by high and low

Ef fskiu-
D.3 Sensitivity about Background Text

To compare the sensitivity brought about by differ-
ent background texts, we designed four different
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background text formats on the induction skill and
compared the changes between the irreducible cir-
cuit graph (G*) of these background texts and the
final skill graph (G®). These formats are as follows:

Bkg1: For the induction text “......Al B......A2",
we replace A2 with the output of the large model for
“...AI B......". For example, if the induction text is
“Chinese lesson 1.2: Chinese", the background text
is “Chinese lesson 1.2: The".

Bkg2: For the induction text “......Al B......A2",
we directly delete A2. For example, if the induction
text is “Chinese lesson 1.2: Chinese", the back-
ground text is “Chinese lesson 1.2: ".

Bkg3: For the induction text “......Al B......A2",
we directly delete A/. For example, if the induction
text is “Chinese lesson 1.2: Chinese", the back-
ground text is ““ lesson 1.2: Chinese".

Bkg4: For the induction text “......A/ B......A2",
we replace B with the output of the large model
for “......AI". For example, if the induction text is
“Chinese lesson 1.2: Chinese", the background text
is “Chinese people 1.2: Chinese".

To intuitively feel these changes, we in-
troduced a metric of percentage Hamming
distance, HP, specifically HP(Gp,G2)
hammingdistance(G1,G2)/ (3 q, E+>q, E)*
100%, i.e., when HP=0%, it means that the two
graphs G and G2 completely overlap, and when
HP=100%, it means that the two graphs do not over-
lap at all. We show the HP between GF;,. , and the

HP between G° under any two background texts in
Tables 7.

D.4 Supplementary Data for Validation

To enhance the transparency and validity of the
validation experiment, we have supplemented it
with some additional data.

Firstly, Table 2 only provides the accuracy of ran-
domly deleting 50 and 500 edges, however, the dy-
namics of accuracy as the number of deleted edges
changes is not disclosed. Therefore, we demon-
strate the dynamics of accuracy in Figure 8 when
the number of randomly deleted edges ranges from
50 to 1000. Notably, even with 1000 edges ran-
domly deleted, the accuracy still remains above
0.1 (the total number of edges being considered
is 6875). However, deleting the skill graph leads
directly to an accuracy close to 0, even if the skill
graph only contains around 500 edges. This further
illustrates that the skill graph contains more edges
that significantly determine the final output.
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Secondly, in Table 2, we only showed the sit-
uation where low-level skill graphs remove those
paths contained in high-level skill graphs. To re-
inforce the validation, we additionally provide in
Table 8 the scenario where samples of low-level
skills are only deleted from those edges that exist
in the high-level skill graph but not in the low-level
skills.

Herein, —(QS’P VT _g *) represents the deletion
of paths in the previous token skill graph that do not
exist in the target graph for the target sample, while
—(GHIPT _ Gx) represents the deletion of paths
in the Induction skill graph that do not exist in the
target graph. _(gS,ICLl _ g*)’ _(gS,ICLQ _ g*)’
_(gS,ICL?) - g*)’ and _(gS,ICL4 o g*) respec-
tively represent the deletion of paths in the ICL1,
ICL2, ICL3, and ICLA4 skill graphs that do not exist
in the target graph for the target sample.

To reiterate, a portion of the paths in the high-
level skill graph is identical to a portion of the paths
in the low-level skill graph. Table 8 clearly demon-
strates that when target samples delete those paths
that exist in other skills but not in their own, the
accuracy is not significantly affected. For instance,
—(QS’IDT - QSJDVT) deletes 129 paths, but only
reduces the sample accuracy of the previous token
skill to 0.88, while the accuracy corresponding to
randomly deleting 100 edges is only 0.42 (see Fig-
ure 8). In conjunction with Table 2, it explains
that only the overlapping part of the Induction skill
graph with the previous token skill graph affects the
previous token skill. Additionally, when the ICL
series skills output paths that exist in other ICLs
but not in themselves, their accuracy is somewhat
higher (over 0.9). This is due to the ICL series skill
graphs being more similar to each other, resulting
in fewer paths in the complement.

D.5 Threshold and Faithfulness

While we maintain faithfulness on Gx, it is diffi-
cult to maintain it on G°. In other words, the bias
introduced by counterfactuals and interventions is
indeed hard to completely avoid, while the faithful-
ness of pruning is avoidable. Therefore, a circuit
graph that clearly reflects the final result will cer-
tainly discard some edges of unclear significance.
This is usually accomplished through a threshold.
We show in Figure 9 the change in accuracy when
the threshold § mentioned in Section 3.3 ranges
from O to 0.9 (there are almost no circuits left when
0 > 0.9, so we ignore this part). It can be clearly
seen that faithfulness can only be fully guaranteed



(a) HP on G, (b) HP on G°
Bkgl Bkg2 Bkg3 Bkg4 Bkgl Bkg2 Bkg3 Bkg4
Bkgl 0% 12.54% 9.33% 11.42% Bkgl 0% 437% 5.75% 4.62%
Bkg2 | 12.54% 0% 6.42%  9.52% Bkg2 | 4.37% 0% 351% 4.03%
Bkg3 | 933% 6.42% 0% 12.91% Bke3 | 5.75% 3.51% 0% 3.72%
Bkgd | 11.42% 9.52% 12.91% 0% Bked | 4.62% 4.03% 3.72% 0%

Table 7: HP between different background text. For example, the value in the second row and third column of
Figure a is 6.42%, which means HP(Gpy, 9. Gprys) = 6.42% (G 0 and Gy, 5 has 6.42% edges different).

numther of randomly removed edges

Figure 8: Accuracy with the number of removed edges increasing.
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Sample

Circuit Graph

g* 7(gS,PVT _ g*) 7(gS,[DT _ g*) 7(gS,ICL1 _ g*) 7(gS,ICL2 _ g*) 7(gS,ICL3 _ g*) 7(gS,ICL4 _ g*)
PVT 1.00 1.00 0.88 0.89 0.89 0.83 0.89
IDT 1.00 0.93 1.00 0.81 0.82 0.85 0.81
ICL1 1.00 0.95 0.81 1.00 0.95 0.93 0.97
ICL2 1.00 0.93 0.84 1.00 0.92 0.95 0.92
ICL3 1.00 0.94 0.86 1.00 0.93 0.91 0.94
ICL4 1.00 0.96 0.83 1.00 0.93 0.94 0.96

Table 8: Accuracy of output to original label within different Circuit Graph

when § = 0. However, such edges are not sparse
enough to reflect some specific interpretable func-
tions. When § > 0.7, it is almost impossible to
recover to the original input, but the obtained skill
graph can correspond well with previous methods.
Additionally, in this paper, we default the § for
each skill to be PVT: 0.6, IDT: 0.7, ICL1-4: 0.8.
Additionally, we have demonstrated in Figures 10
and 11 the changes in the number of edges and
the continuous KL divergence metric with varying
thresholds d. Specifically, Figure 10 presents the
total number of edges in the circuit graph (exclud-
ing compensation circuit and bias circuit) under
different thresholds, while Figure 11 shows the
KL divergence between G° and Gx (solid lines)
and mathcalG® and G (dash lines) obtained at
different thresholds. Figure 10 clearly indicates
that the edges with high causal effects from the
previous token skill are the fewest, and the most
are from the series of ICL skill, which corrobo-
rates the conclusion drawn from the clustering in
Appendix D.2. Moreover, the changes in KL diver-
gence (Figure 11) can be roughly divided into four
phases (steady, burst, steady, burst). In conjunc-
tion with Figure 10, the two bursts are due to the
rapid decrease in edges and the number of edges
being too few, approaching zero. The default § we
selected (PVT 0.6, IDT 0.7, ICL1-4 0.8) are each
in the second steady phase. Combining Figures 10
andl11, it suggests that when a large number of
edges are deleted, the circuit graph enters a phase
of minimal change, which we believe best achieves
the “balance between faithfulness and sparsity".

Additionally, we can observe that the KL di-
vergence between Gx and G is approximately 10
(as can be seen from the solid and dashed lines
corresponding to § = 0), and generally, the KL
divergence between G° and G (KL(G® ,G)) is
greater than the KL divergence between G S and G
(KL(G®,Gx)). Interestingly, as § increases, the
values between KL(QS,Q) and KL(QS,Q) get
closer and are almost the same at the default thresh-
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old.

E Details about Validations for Causal
Effects

Another question is whether the background effect
and self effect, mentioned in Section 3.3, poten-
tially exist as confounders or share the circuits
with observed skills? To answer this question,
we examine the paths in background/self text with
Eff > 0.5. Table 9 categorizes these paths into
7 types and displays their ratios. Here, Q;EVT sig-
nifies the ratio of those paths found in the Previ-
ous Token Skill graph, G ISDT refers to the ratio of
those located in the Induction skill graph, simi-
larly, G }gc 110G fC 1.4 Tepresents the ratio of paths
in corresponding ICL skill graphs, and “Others’
represents the ratio of paths that do not exist in
either skill graphs. Notably, a small fraction of
high-effect paths does not belong to any observed
skill (approximately 0.1-0.2 in “Others"); these are
the confounding paths we mentioned before. Addi-
tionally, we demonstrated the bivariate probability
density function (PDF) in Figure 12. Bivariate
PDF constructed from the origin text as one vari-
able, and background text or self text as another
one variable. Evidently, across all skills, the paths
that have a high effect (Fff > 0.5) in the origin
text include a part of paths with a relatively high
effect (E'ff > 0.5) in the background text. How-
ever, there are nearly ignorable high-effect paths
in the self text in ICL skills. We guess that within
the ICL skill, the background text and the origin
text possess a significantly higher number of to-
kens compared to the self text, thereby leading to
an insignificant effect of the self text.
Additionally, Table 9 also shows that a part of
high-effect paths in the background/self text is com-
mon with the corresponding skill graph. Fortu-
nately, we need not worry that removing these
paths would render the final Skill Graph (paths)
incomplete. Appendix F provides evidence that
these removed but common paths can always be

>
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Figure 10: number of edges ranging from the §
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Figure 11: KL divergence ranging from the 4, the solid lines represents KL between G and G, and the dash lines
represents KL between mathcal G® and G.

Skills gBkg* ngf*

Govr Gipr Gion Gicre Gicrs Giora Others GPur GPor Giop Giors Gicns Giops  Others
Induction 0.76 - - - - - 0.24 0.84 - - - - - 0.16
ICL1 0.43 0.38  0.29 0.19 0.25 0.23 0.18 0.51 033 024 0.16 0.18 0.15 0.15
ICL2 0.46 0.37 0.25 0.16 0.19 0.21 0.17 0.61 0.24 0.25 0.14 0.19 0.18 0.15
ICL3 0.45 0.35 0.23 0.21 0.15 0.19 0.20 0.60 0.28 0.25 0.16 0.18 0.19 0.11
ICL4 0.49 036  0.25 0.19 0.26 0.14 0.16 0.61 0.25 0.23 0.19 0.16 0.13 0.13

Table 9: Ratio of high E'f f path (£ f f > 0.5) in Gpyg* and Gge ¢+ (The sum of ratios > 1 due to overlaps in each
item).
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Figure 12: Bivariate probability density function (PDF) of path effects on Previous Token,Induction, ICL1 ICL2,
ICL3, and ICL4 Skills. The x-axis represents the first variable, the path effect in the origin text (Go,;*) while the
y-axis represents the second variable, the path effect in the background/self text (Gpyg * /Gsel #*). Orange, red,
green, and blue respectively represent the distribution of paths with Ef f > 0.2,0.3,0.4, 0.5 in the origin text.

restored through multi-step paths (We explain this
phenomenon as ‘Inclusiveness’ in Section 6.).

We have supplemented the bivariate distribution
figures for Previous Token, ICL2, ICL3, and ICLA4,
as depicted in Figure 12.

F Inclusive Path

we have listed the whole paths for Previous Token
Skills, all multi-step paths for the Induction and
ICL1 Skills in following, with index of the send
circuit, the first receive circuit, the second receive
circuit.... The blue represents the paths involving
inclusive paths.

Previous Token Skill

layer O circuit 13, layer I circuit 6, with effect
0.71
layer O circuit 14, layer 1 circuit 7, with effect 0.82
layer O circuit 16, layer 1 circuit 7, with effect 0.7
layer O circuit 20, layer 1 circuit 7, with effect 0.86
layer O circuit 14, layer 1 circuit 8, with effect 0.79
layer O circuit 16, layer 1 circuit 8, with effect 0.78
layer O circuit 17, layer 1 circuit 8, with effect 0.81
layer O circuit 19, layer I circuit 8, with effect 0.72
layer O circuit 20, layer 1 circuit 8, with effect 0.88
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layer O circuit 22, layer I circuit 8, with effect 0.81
layer O circuit 23, layer 1 circuit 8, with effect 0.87
layer O circuit 24, layer 1 circuit 8, with effect 0.75
layer O circuit 13, layer 1 circuit 18, with effect
0.79

layer O circuit 13, layer I circuit 19,
0.89

layer O circuit 14, layer 1 circuit 19,
0.83

layer O circuit 15, layer I circuit 19,
0.74

layer O circuit 16, layer I circuit 19,
0.81

layer O circuit 20, layer 1 circuit 19,
0.82

layer O circuit 24, layer 1 circuit 19,
0.84

layer O circuit 13, layer 1 circuit 20,
0.84

layer O circuit 14, layer I circuit 20,
0.81

layer O circuit 20, layer I circuit 20, with effect 0.8
layer O circuit 13, layer 1 circuit 21, with effect
0.78

with effect
with effect
with effect
with effect
with effect
with effect
with effect

with effect



layer O circuit 14,
0.83
layer O circuit 16,
0.79
layer O circuit 17,
0.75
layer O circuit 20,
0.87
layer O circuit 22,
0.77
layer O circuit 23,

layer 1 circuit 21,
layer 1 circuit 21,
layer I circuit 21,
layer 1 circuit 21,
layer 1 circuit 21,

layer 1 circuit 21,

with effect
with effect
with effect
with effect
with effect

with effect

0.77

layer O circuit 24, layer I circuit 21, with effect
0.75

layer O circuit 23, layer 2 circuit 1, with effect 0.8
layer O circuit 24, layer 2 circuit 1, with effect 0.81
layer I circuit 13, layer 2 circuit 1, with effect 0.76
layer I circuit 15, layer 2 circuit 1, with effect 0.79
layer I circuit 16, layer 2 circuit 1, with effect 0.75
layer 1 circuit 17, layer 2 circuit 1, with effect 0.75
layer 1 circuit 20, layer 2 circuit 1, with effect 0.82
layer O circuit 13, layer 1 circuit 20, layer 2 circuit
1, with effect 0.74

layer 1 circuit 21, layer 2 circuit 1, with effect 0.8
layer O circuit 20, layer 1 circuit 21, layer 2 circuit
1, with effect 0.77

layer I circuit 22, layer 2 circuit 1, with effect 0.76
layer I circuit 23, layer 2 circuit 1, with effect 0.79
layer I circuit 24, layer 2 circuit 1, with effect 0.8
layer O circuit 20, layer 2 circuit 14, with effect
0.74

layer O circuit 21, layer 2 circuit 14, with effect
0.75

layer O circuit 22, layer 2 circuit 14, with effect
0.77

layer O circuit 23, layer 2 circuit 14, with effect
0.72

layer O circuit 24, layer 2 circuit 14, with effect
0.84

layer 1 circuit 13, layer 2 circuit 14, with effect
0.72

layer I circuit 15, layer 2 circuit 14, with effect 0.8
layer I circuit 16, layer 2 circuit 14, with effect
0.72

layer I circuit 17, layer 2 circuit 14, with effect 0.8
layer 1 circuit 18, layer 2 circuit 14, with effect
0.74

layer 1 circuit 20, layer 2 circuit 14, with effect
0.79

layer 1 circuit 21, layer 2 circuit 14, with effect
0.79

layer O circuit 14, layer 1 circuit 21, layer 2 circuit

14, with effect 0.71

layer O circuit 20, layer 1 circuit 21, layer 2 circuit
14, with effect 0.77

layer 1 circuit 22, layer 2 circuit 14, with effect
0.81

layer 1 circuit 23, layer 2 circuit 14, with effect
0.76

layer 1 circuit 24, layer 2 circuit 14, with effect
0.86

layer O circuit 13, layer 2 circuit 18, with effect
0.82

layer 1 circuit 13, layer 2 circuit 18, with effect
0.88

layer O circuit 19, layer 2 circuit 20, with effect
0.72

layer O circuit 20, layer 2 circuit 20, with effect
0.79

layer O circuit 21, layer 2 circuit 20, with effect
0.72

layer O circuit 22, layer 2 circuit 20, with effect
0.77

layer 1 circuit 19, layer 2 circuit 20, with effect
0.75

layer 1 circuit 20, layer 2 circuit 20, with effect
0.76

layer 1 circuit 21, layer 2 circuit 20, with effect 0.7
layer 1 circuit 22, layer 2 circuit 20, with effect
0.76

layer 1 circuit 23, layer 11 circuit 1, with effect
0.74

layer 1 circuit 24, layer 11 circuit 1, with effect
0.75

layer 2 circuit 24, layer 11 circuit 1, with effect
0.73

layer 4 circuit 23, layer 11 circuit 1, with effect
0.74

layer O circuit 24, layer 11 circuit 14, with effect
0.77

layer 1 circuit 13, layer 11 circuit 14, with effect
0.74

layer 1 circuit 16, layer 11 circuit 14, with effect
0.74

layer 1 circuit 24, layer 11 circuit 14, with effect
0.82

layer 2 circuit 13, layer 11 circuit 14, with effect
0.75

layer 2 circuit 16, layer 11 circuit 14, with effect
0.76

layer 2 circuit 24, layer 11 circuit 14, with effect
0.81

layer 3 circuit 13, layer 11 circuit 14, with effect
0.75



layer 3 circuit 16, layer 11 circuit 14, with effect
0.75
layer 3 circuit 24, layer 11 circuit 14, with effect
0.81
layer 4 circuit 13, layer 11 circuit 14, with effect
0.76
layer 4 circuit 24, layer 11 circuit 14, with effect
0.81
layer 5 circuit 24, layer 11 circuit 14, with effect
0.82
layer 6 circuit 16, layer 11 circuit 14, with effect
0.76
layer 6 circuit 24, layer 11 circuit 14, with effect
0.79
layer 7 circuit 24, layer 11 circuit 14, with effect
0.77
layer 8 circuit 24, layer 11 circuit 14, with effect
0.78
layer 9 circuit 24, layer 11 circuit 14, with effect
0.77
layer 10 circuit 24, layer 11 circuit 14, with effect
0.77

Multi-Step Paths in Induction Skill

layer O circuit 20, layer 2 circuit 14, layer 5
circuit 11, with effect 0.6
layer O circuit 21, layer 2 circuit 14, layer 5 circuit
11, with effect 0.6
layer I circuit 16, layer 2 circuit 14, layer 5 circuit
11, with effect 0.6
layer I circuit 18, layer 2 circuit 14, layer 5 circuit
11, with effect 0.6
layer I circuit 20, layer 2 circuit 14, layer 5 circuit
11, with effect 0.6
layer I circuit 21, layer 2 circuit 14, layer 5 circuit
11, with effect 0.6
layer I circuit 22, layer 2 circuit 14, layer 5 circuit
11, with effect 0.61
layer O circuit 13, layer 2 circuit 20, layer 5 circuit
11, with effect 0.6
layer O circuit 20, layer 2 circuit 14, layer 11 circuit
1, with effect 0.61
layer O circuit 21, layer 2 circuit 14, layer 11 circuit
1, with effect 0.63
layer I circuit 18, layer 2 circuit 14, layer 11 circuit
1, with effect 0.61
layer I circuit 20, layer 2 circuit 14, layer 11 circuit
1, with effect 0.61
layer I circuit 21, layer 2 circuit 14, layer 11 circuit
1, with effect 0.61
layer I circuit 22, layer 2 circuit 14, layer 11 circuit

1, with effect 0.63
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Multi-Step Paths in ICL1 SKkill

layer O circuit 13, layer 1 circuit 19, layer 3
circuit 11, with effect 0.81
layer O circuit 14, layer 1 circuit 19, layer 3 circuit
11, with effect 0.85
layer O circuit 15, layer 1 circuit 19, layer 3 circuit
11, with effect 0.84
layer O circuit 16, layer 1 circuit 19, layer 3 circuit
11, with effect 0.85
layer O circuit 21, layer 1 circuit 19, layer 3 circuit
11, with effect 0.82
layer O circuit 22, layer 1 circuit 19, layer 3 circuit
11, with effect 0.85
layer O circuit 23, layer I circuit 19, layer 3 circuit
11, with effect 0.84
layer O circuit 24, layer I circuit 19, layer 3 circuit
11, with effect 0.85
layer O circuit 13, layer 2 circuit 14, layer 3 circuit
11, with effect 0.81
layer O circuit 20, layer 2 circuit 14, layer 3 circuit
11, with effect 0.81
layer O circuit 21, layer 2 circuit 14, layer 3 circuit
11, with effect 0.83
layer O circuit 22, layer 2 circuit 14, layer 3 circuit
11, with effect 0.83
layer 1 circuit 20, layer 2 circuit 14, layer 3 circuit
11, with effect 0.81
layer 1 circuit 21, layer 2 circuit 14, layer 3 circuit
11, with effect 0.82
layer I circuit 22, layer 2 circuit 14, layer 3 circuit
11, with effect 0.83
layer I circuit 23, layer 2 circuit 14, layer 3 circuit
11, with effect 0.8
layer O circuit 13, layer 2 circuit 20, layer 3 circuit
11, with effect 0.86
layer O circuit 14, layer 2 circuit 20, layer 3 circuit
11, with effect 0.85
layer O circuit 15, layer 2 circuit 20, layer 3 circuit
11, with effect 0.81
layer O circuit 16, layer 2 circuit 20, layer 3 circuit
11, with effect 0.85
layer O circuit 17, layer 2 circuit 20, layer 3 circuit
11, with effect 0.85
layer O circuit 18, layer 2 circuit 20, layer 3 circuit
11, with effect 0.81
layer O circuit 19, layer 2 circuit 20, layer 3 circuit
11, with effect 0.582
layer O circuit 20, layer 2 circuit 20, layer 3 circuit
11, with effect 0.85
layer O circuit 21, layer 2 circuit 20, layer 3 circuit
11, with effect 0.83
layer O circuit 22, layer 2 circuit 20, layer 3 circuit



11, with effect 0.86

layer O circuit 24, layer 2 circuit 20, layer 3 circuit
11, with effect 0.81

layer I circuit 13, layer 2 circuit 20, layer 3 circuit
11, with effect 0.86

layer I circuit 14, layer 2 circuit 20, layer 3 circuit
11, with effect 0.84

layer I circuit 15, layer 2 circuit 20, layer 3 circuit
11, with effect 0.82

layer I circuit 16, layer 2 circuit 20, layer 3 circuit
11, with effect 0.85

layer I circuit 17, layer 2 circuit 20, layer 3 circuit
11, with effect 0.85

layer I circuit 18, layer 2 circuit 20, layer 3 circuit
11, with effect 0.85

layer I circuit 19, layer 2 circuit 20, layer 3 circuit
11, with effect 0.85

layer O circuit 14, layer 1 circuit 19, layer 2 circuit
20, layer 3 circuit 11, with effect 0.83

layer O circuit 15, layer 1 circuit 19, layer 2 circuit
20, layer 3 circuit 11, with effect 0.83

layer O circuit 16, layer 1 circuit 19, layer 2 circuit
20, layer 3 circuit 11, with effect 0.83

layer O circuit 22, layer 1 circuit 19, layer 2 circuit
20, layer 3 circuit 11, with effect 0.83

layer O circuit 23, layer 1 circuit 19, layer 2 circuit
20, layer 3 circuit 11, with effect 0.82

layer O circuit 24, layer 1 circuit 19, layer 2 circuit
20, layer 3 circuit 11, with effect 0.84

layer I circuit 20, layer 2 circuit 20, layer 3 circuit
11, with effect 0.85

layer I circuit 21, layer 2 circuit 20, layer 3 circuit
11, with effect 0.84

layer I circuit 22, layer 2 circuit 20, layer 3 circuit
11, with effect 0.86

layer I circuit 23, layer 2 circuit 20, layer 3 circuit
11, with effect 0.82

layer I circuit 24, layer 2 circuit 20, layer 3 circuit
11, with effect 0.81

layer O circuit 21, layer 2 circuit 14, layer 3 circuit
14, with effect 0.8

layer O circuit 22, layer 2 circuit 14, layer 3 circuit
14, with effect 0.81

layer I circuit 21, layer 2 circuit 14, layer 3 circuit
14, with effect 0.81

layer I circuit 22, layer 2 circuit 14, layer 3 circuit
14, with effect 0.81

layer O circuit 13, layer 1 circuit 16, layer 10 circuit
9, with effect 0.84

layer O circuit 14, layer 1 circuit 16, layer 10 circuit
9, with effect 0.81

layer O circuit 15, layer 1 circuit 16, layer 10 circuit
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9, with effect 0.8

layer O circuit 22, layer 1 circuit 16, layer 10 circuit
9, with effect 0.81

layer O circuit 14, layer I circuit 20, layer 10 circuit
9, with effect 0.83

layer O circuit 24, layer 1 circuit 20, layer 10 circuit
9, with effect 0.81

layer 0 circuit 13, layer 2 circuit 20, layer 10 circuit
9, with effect 0.92

layer 0 circuit 14, layer 2 circuit 20, layer 10 circuit
9, with effect 0.9

layer O circuit 15, layer 2 circuit 20, layer 10 circuit
9, with effect 0.85

layer O circuit 16, layer 2 circuit 20, layer 10 circuit
9, with effect 0.91

layer O circuit 17, layer 2 circuit 20, layer 10 circuit
9, with effect 0.89

layer O circuit 18, layer 2 circuit 20, layer 10 circuit
9, with effect 0.86

layer O circuit 19, layer 2 circuit 20, layer 10 circuit
9, with effect 0.86

layer O circuit 20, layer 2 circuit 20, layer 10 circuit
9, with effect 0.9

layer O circuit 21, layer 2 circuit 20, layer 10 circuit
9, with effect 0.87

layer O circuit 22, layer 2 circuit 20, layer 10 circuit
9, with effect 0.92

layer O circuit 23, layer 2 circuit 20, layer 10 circuit
9, with effect 0.85

layer 0 circuit 24, layer 2 circuit 20, layer 10 circuit
9, with effect 0.86

layer I circuit 13, layer 2 circuit 20, layer 10 circuit
9, with effect 0.92

layer I circuit 14, layer 2 circuit 20, layer 10 circuit
9, with effect 0.89

layer I circuit 15, layer 2 circuit 20, layer 10 circuit
9, with effect 0.85

layer I circuit 16, layer 2 circuit 20, layer 10 circuit
9, with effect 0.9

layer O circuit 13, layer I circuit 16, layer 2 circuit
20, layer 10 circuit 9, with effect 0.83

layer I circuit 17, layer 2 circuit 20, layer 10 circuit
9, with effect 0.9

layer I circuit 18, layer 2 circuit 20, layer 10 circuit
9, with effect 0.91

layer O circuit 14, layer 1 circuit 18, layer 2 circuit
20, layer 10 circuit 9, with effect 0.81

layer O circuit 23, layer 1 circuit 18, layer 2 circuit
20, layer 10 circuit 9, with effect 0.83

layer I circuit 19, layer 2 circuit 20, layer 10 circuit
9, with effect 0.9

layer O circuit 13, layer 1 circuit 19, layer 2 circuit



20, layer 10 circuit 9, with effect 0.83

layer O circuit 14, layer 1 circuit 19, layer 2 circuit
20, layer 10 circuit 9, with effect 0.87

layer O circuit 15, layer 1 circuit 19, layer 2 circuit
20, layer 10 circuit 9, with effect 0.86

layer O circuit 16, layer 1 circuit 19, layer 2 circuit
20, layer 10 circuit 9, with effect 0.87

layer O circuit 20, layer 1 circuit 19, layer 2 circuit
20, layer 10 circuit 9, with effect 0.82

layer O circuit 21, layer 1 circuit 19, layer 2 circuit
20, layer 10 circuit 9, with effect 0.82

layer O circuit 22, layer 1 circuit 19, layer 2 circuit
20, layer 10 circuit 9, with effect 0.87

layer O circuit 23, layer 1 circuit 19, layer 2 circuit
20, layer 10 circuit 9, with effect 0.86

layer O circuit 24, layer 1 circuit 19, layer 2 circuit
20, layer 10 circuit 9, with effect 0.88

layer I circuit 20, layer 2 circuit 20, layer 10 circuit
9, with effect 0.9

layer O circuit 14, layer 1 circuit 20, layer 2 circuit
20, layer 10 circuit 9, with effect 0.81

layer I circuit 21, layer 2 circuit 20, layer 10 circuit
9, with effect 0.89

layer I circuit 22, layer 2 circuit 20, layer 10 circuit
9, with effect 0.92

layer I circuit 23, layer 2 circuit 20, layer 10 circuit
9, with effect 0.86

layer O circuit 14, layer 1 circuit 19, layer 10 circuit
10, with effect 0.81

layer O circuit 16, layer I circuit 19, layer 10 circuit
10, with effect 0.81

layer O circuit 22, layer I circuit 19, layer 10 circuit
10, with effect 0.81

layer O circuit 23, layer 1 circuit 19, layer 10 circuit
10, with effect 0.81

layer O circuit 24, layer I circuit 19, layer 10 circuit
10, with effect 0.82

layer O circuit 14, layer I circuit 19, layer 11 circuit
5, with effect 0.81

layer O circuit 16, layer I circuit 19, layer 11 circuit
5, with effect 0.8

layer O circuit 22, layer I circuit 19, layer 11 circuit
5, with effect 0.81

layer O circuit 24, layer I circuit 19, layer 11 circuit
5, with effect 0.81

layer O circuit 13, layer 2 circuit 14, layer 11 circuit
5, with effect 0.87

layer O circuit 14, layer 2 circuit 14, layer 11 circuit
5, with effect 0.81

layer O circuit 20, layer 2 circuit 14, layer 11 circuit
5, with effect 0.86

layer O circuit 21, layer 2 circuit 14, layer 11 circuit
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5, with effect 0.89

layer O circuit 22, layer 2 circuit 14, layer 11 circuit
5, with effect 0.89

layer O circuit 23, layer 2 circuit 14, layer 11 circuit
5, with effect 0.86

layer O circuit 24, layer 2 circuit 14, layer 11 circuit
5, with effect 0.84

layer I circuit 13, layer 2 circuit 14, layer 11 circuit
5, with effect 0.85

layer I circuit 14, layer 2 circuit 14, layer 11 circuit
5, with effect 0.86

layer I circuit 15, layer 2 circuit 14, layer 11 circuit
5, with effect 0.85

layer I circuit 16, layer 2 circuit 14, layer 11 circuit
5, with effect 0.84

layer I circuit 17, layer 2 circuit 14, layer 11 circuit
5, with effect 0.85

layer I circuit 18, layer 2 circuit 14, layer 11 circuit
5, with effect 0.86

layer I circuit 19, layer 2 circuit 14, layer 11 circuit
5, with effect 0.8

layer I circuit 20, layer 2 circuit 14, layer 11 circuit
5, with effect 0.87

layer I circuit 21, layer 2 circuit 14, layer 11 circuit
5, with effect 0.89

layer I circuit 22, layer 2 circuit 14, layer 11 circuit
5, with effect 0.89

layer I circuit 23, layer 2 circuit 14, layer 11 circuit
5, with effect 0.86

layer I circuit 24, layer 2 circuit 14, layer 11 circuit
5, with effect 0.81

layer O circuit 13, layer 2 circuit 24, layer 11 circuit
5, with effect 0.84

layer O circuit 14, layer 2 circuit 24, layer 11 circuit
5, with effect 0.82

layer O circuit 15, layer 2 circuit 24, layer 11 circuit
5, with effect 0.85

layer O circuit 16, layer 2 circuit 24, layer 11 circuit
5, with effect 0.85

layer O circuit 17, layer 2 circuit 24, layer 11 circuit
5, with effect 0.85

layer O circuit 22, layer 2 circuit 24, layer 11 circuit
5, with effect 0.85

layer O circuit 23, layer 2 circuit 24, layer 11 circuit
5, with effect 0.85

layer O circuit 24, layer 2 circuit 24, layer 11 circuit
5, with effect 0.82

layer I circuit 13, layer 2 circuit 24, layer 11 circuit
5, with effect 0.83

layer I circuit 14, layer 2 circuit 24, layer 11 circuit
5, with effect 0.81

layer I circuit 15, layer 2 circuit 24, layer 11 circuit



5, with effect 0.82
layer I circuit 16, layer 2 circuit 24, layer 11 circuit
5, with effect 0.81
layer I circuit 17, layer 2 circuit 24, layer 11 circuit
5, with effect 0.81
layer I circuit 22, layer 2 circuit 24, layer 11 circuit
5, with effect 0.85
layer I circuit 23, layer 2 circuit 24, layer 11 circuit
5, with effect 0.82
layer I circuit 24, layer 2 circuit 24, layer 11 circuit
5, with effect 0.81
layer O circuit 13, layer 3 circuit 14, layer 11 circuit
5, with effect 0.81
layer O circuit 23, layer 3 circuit 14, layer 11 circuit
5, with effect 0.85
layer I circuit 23, layer 3 circuit 14, layer 11 circuit
5, with effect 0.81
layer 2 circuit 23, layer 3 circuit 14, layer 11 circuit
5, with effect 0.8

Almost all 3-step paths are composed of paths
from lower-level skills. For instance, in the ICL
skill, the sequence “layer O circuit 20, layer 2 cir-
cuit 14, layer 5 circuit 11" encompasses the path
“layer O circuit 20, layer 2 circuit 14" from the previ-
ous token skill. Furthermore, it is apparent that the
more complex a skill, the more multi-step paths it
encompasses.

G More detailed findings

G.1 Function Components in IOI Task

Building on the results from Table 3, we continue
to explore the skills required for IOI, which in-
clude duplicate token (DLT), previous token (PVT),
induction (IDT), S-inhibition (SIB), name mover
(NMYV), and back-up head (Wang et al., 2023). For
DLT, we found another distinct cluster within the
circuit samples of the induction skill. For SIB,
we obtained it by replacing “S2” with “IO” as the
background text. For NMV, we obtained it by us-
ing a random name as a substitute for “IO” and “S”
in the background text. Interestingly, our method
was unable to detect the presence of a back-up
head. A reasonable conjecture is that the back-up
head acts more like a preemption mechanism, effec-
tively circumvented in path-level causal analysis.
Additionally, we present the key nodes of other
skills in Table 10. It is evident that the skill paths
we demonstrate possess strong inclusivity. For in-
stance, the S-inhibition skill encompasses crucial
nodes of the duplicate token, previous token, and
induction skills, while the name mover almost in-
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cludes nodes from all previous skills. Beyond this,
we also discovered a long-position mapping (LPM)
skill, obtained through a large number of long sen-
tence samples and background text with deleted
commas. It represents another advanced skill that
extends PVT.

Moreover, based on the paths, attention weights,
and cosine similarities of the representations, we
have identified several circuits with distinct char-
acteristics (We demonstrate the performances of
other circuit discovery methods in validating these
conclusions in Appendix 6.2.):

Preceding Token Circuit: Circuit [4, 12] per-
forms a unique function, namely, when any token
serves as a query token to attend other tokens, this
circuit is shown to consistently carry significant
information from its preceding token to the query
token.

Key Token Circuit: Circuit [3, 14] exhibits
a significantly different function from the others.
This circuit consistently focuses on certain key to-
kens in the preceding text — such as the beginning,
ending, and label prompts — and transmits this infor-
mation to subsequent query tokens. Additionally,
other key circuits in layers 3 and 4 partially under-
take these functionalities.

Opposite Circuit: When using the last token
of each input to produce the embedding for a spe-
cific circuit, we notice that the cosine similarity
between Circuit [11, 14] and other key circuits
is usually less than 0, especially with Circuit [11,
1], where the cosine similarity reaches to —0.92.
Previous work (Wang et al., 2023) has mentioned
this phenomenon, hypothesizing the reason to be
controlling the variance of the loss function.

We have observed some differences in the re-
ceivers of different ICL tasks. Combined with
the insights provided by Bayazit et al. (2023)
and Bricken et al. (2023), we suspect that these
differences arise from distinct circuits required to
process domain-specific knowledge across differ-
ent tasks.

G.2 Exploration - Why Wrong Outputs?

In this section, we present a new direction for ex-
plaining and exploring common erroneous answers
using Skill Circuit Graphs. Specifically, by con-
trasting the Skill Graphs of “incorrect” outputs with
those of correct outputs, we can further diagnose
what leads to the failure in skill execution. Ta-
ble 11 illustrates the key circuits exhibiting the



Skill  Receivers with receiving more than 10 paths ([#layer, #circuit])

DLT [0, 2], [0, 13], [0, 14], [0, 16], [0, 201, [1, 8], [1, 9], [1, 18], [1, 19], [11, 1], [11, 14]

PVT [1,8],[1,18],[1, 19], [1, 201, [1, 211, [2, 11, [2, 7], [2, 14], [2, 18], [2, 20], [2, 22], [2, 24], [11, 1], [11, 14]
IDT [2, 14], [2, 18], [2, 201, [3, 14], [3, 17] [4, 5], [4, 121, [5, 111, [6, 5], [11, 1], [11, 14]

SIB [0, 201, [1, 8], [1, 18], [2, 141, [3, 141, [5, 111, [5, 14], [7, 9], [7, 20}, [7, 211, [8, 71, [8, 18], [11, 1], [11, 14]
NMV [0, 2],[1,8],[1,20], [3, 14], [3, 201, [5, 111, [8, 71, [9, 141, [9, 18], [9, 20], [10, 1], [10, 14], [10, 22], [11, 14]
LPM [1,8],[2, 18], [2, 201, [3, 111, [4, 141, [6, 7], [8, 41, [8, 171, [8, 241, [9, 9]

Table 10: Key Receivers in subgraphs of IOl task, blue circuits are presented in the lower skill

Type Top-5 circuits with absence rate

F_IDT [2, 18] (10.37), [2, 14] (10.32), [11, 1] (40.28), [2, 20] ({0.26), [2, 24] (J0.26)
F1_ICL [2,24](0.45),[2,20] ({ 0.42),[2, 22] ({ 0.41), [1, 20] (40.39), [2, 14] (J 0.32)
F2_ICL [3, 14] (40.29), [4, 5] (40.28), [10, 10] (J0.28), [8, 9]1({0.24), [4, 12] ({0.22)

Table 11: Top 5 Receiver circuits appearing most frequently in skill paths presented in correct output samples but

not incorrect samples.

highest absent rate® between 3 “incorrect” and cor-
rect output types. Specifically, we investigate one
erroneous type of output from an induction skill
sample (F_IDT), and two types from ICL skill sam-
ples (F1_ICL, F2_ICL).

F_IDT refers to those samples wherein the input
possesses an Induction pattern (“A B ... A”), but
ultimately does not output B. F1_ICL denotes those
samples wherein the output includes a word outside
of the label options from the demonstrations, for
example, a case where the input text “[reviewl ], la-
bel: positive, [review2], label: negative, [review3],
label:” unexpectedly produces “the”. Such an error
indicates that the language model did not capture
the ICL template pattern in this case. F2_ICL in-
volves samples that capture the template pattern yet
still produce incorrect outputs, for example, cases
where the correct output should be “positive”, but
the prediction is “negative”. We compare the cir-
cuit graphs of these “incorrect” samples with the
correct samples and identify the top 5 circuits with
the highest absence rate.

Table 11 exhibits several interesting phenomena
where the largest discrepancies between correct and
incorrect samples in both F_IDT and F1_ICL occur
on key circuits at layer 2. These circuits originate
from the previous token skill, which handles the
skill of receiving information from the previous to-
ken, such as the “A — B” in the induction template

“AB... A", as well as patterns such as “label — pos-
itive” in ICL. The loss of this skill—failure during
the execution of the previous token skill—means

6 + -
Let Ncw' and Ncu

C" in correct and incorrect samples. The absence rate for

each circuit is calculated as (Ngl,j = Ngu )/Nél,j € [0, 1].

be the number of paths received by
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that both the Induction skill and ICL skill cannot
pass the duplicated prefix information to the next
token, leading to template-based errors.

To further understand why these samples do not
successfully execute the previous token skill, we
perform a bi-clustering operation on the Previous
Token Skill (experiment details are shown in Ap-
pendix D.2), yielding a cluster with Ef f < 0.2
across most of all paths. We compared this cluster
(termed the low-effect cluster) with another clus-
ter (named high-effect cluster), with some samples
as follows (All samples are from the original text
of the Previous Token Skill, tokenized into two
tokens):

o«

Low-effect cluster: “About to”, “ all these
ama’, “ and win”, “ and select”, “ care over”,
“In Singapore”, “ in the”, “ is a”, “ it was”,
than they”, “The language”, “The country”, “ the
movie”

High-effect cluster: “ 2002”7, “Adriano”, “Aji-
nomoto”, “ becomes”, “Could you”, “ don’t”, “
ended up

» o«
)

“«

7, “Ifthe”, “ iPhone”, *“ Knowledge”, “
stressful”, “Windows”, “ Youtube’s”

It becomes obvious that in the context of an ex-
perimental setting lacking enough context, the pre-
vious token skill is performed only when there is
a strong semantic relationship between the two
tokens. For pairs of tokens where the semantic re-
lation is not strong, there tends to be a reliance on
the bi-gram model decision from the destination
token.

Furthermore, for F2_ICL, the absence rate is
relatively lower, suggesting that the source of the
error might not be due to a single explicit cause.
These circuits generally reside in the middle or



even deeper layers, incorporating functions such
as induction and summarization. However, to fur-
ther analyze this, we would need to delve into the
representational level, which for the moment goes
beyond the scope of this paper.

H Details of Comparisons with Other
Methods Validating Conjectures

H.1 Details about Baselines

ACDC (Conmy et al., 2023), Automatic Circuit
DisCovery, which calculates the importance score
of each edge and performs a greedy search based
on the score.

Opt prun (Bhaskar et al., 2024), which converts
the importance score into an optimization function
and assigns a learnable parameter to each edge to
indicate whether an edge needs to be deleted.

EAP (Syed et al., 2023), or Edge Attribution
Patching, which makes a linear approximation of
activation patching to assign an importance score
to each edge, and retains the top-k edges.

Ours-noise: When deleting an edge, we replace
the original edge value with a noise (N(0, 0.81)).

Ours-mean: When deleting an edge, we replace
the original edge value with the mean value of all
edges received by this component.

Ours-logits: We replace the top n candi-
dates with the difference in the final layer logits
(|logit(G'/e) — logit(G')|), where G’ represents
the pruned subgraph from the previous step. Edges
with a difference of less than 0.04 will be deleted.

Ours-KL: We replace the top n candidates with
the KL divergence of the final output probability
distribution (| K L(G'/e) — KL(G')|). Edges with
a difference of less than 0.005 will be deleted.

H.2 Definition of ovip(A, B)

The rule for calculating overlap is as follows: let
ovlp(A, B) represent what the rate of edges in
skill graph A also existing in skill graph B is.
For any edge ¢’ in skill graph A, we set an over-
lap flag fa p(e?). If €' in A also exists in skill
circuit graphs B, then fa p(e') = 1, otherwise
fap(e’) = 0. For a circuit graph A with Ny
edges, its set of edges is £4. Our overlap is calcu-

lated as ovlp(A, B) = = Sth . fan(e).
I Skill Circuit Graphs

Due to large size constraints, we have only dis-
played the circuit graph for the Previous Token
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Skill. For additional skill graphs, please refer to
our repository.
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Figure 13: Skill Circuit Graph of Previous Token Skill, all paths with E'f f > 0.7 are labeled.
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