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ABSTRACT

Recent years have witnessed an emerging trend in neuromorphic computing that
centers around the use of brain connectomics as a blueprint for artificial neural net-
works. Connectomics-based neuromorphic computing has primarily focused on
embedding human brain large-scale structural connectomes (SCs), as estimated
from diffusion Magnetic Resonance Imaging (dMRI) modality, to echo-state net-
works (ESNs). A critical step in ESN embedding requires pre-determined read-
in and read-out layers constructed by the induced subgraphs (e.g., a priori set
of functional sub-circuits/networks) of the embedded reservoir (e.g., SCs). As
a priori set of functional sub-circuits are derived from functional MRI (fMRI)
modality, it is unknown, till this point, whether the embedding of fMRI-induced
sub-circuits/networks onto SCs is well justified from i) the neuro-physiological
perspective and ii) ESN performance across a variety of tasks. In this paper,
we proposed a pipeline to implement and evaluate ESNs with various embedded
topology and processing/memorization tasks. To this end, we showed that dif-
ferent performance optimums are highly dependent on the neuro-physiological
characteristics of these pre-determined fMRI-induced sub-circuits. In general,
fMRI-induced sub-circuit-embedded ESN outperforms simple bipartite and var-
ious null models with feed-forward properties commonly seen in MLP for dif-
ferent tasks and reservoir criticality conditions. Noticeably, we found that the
reservoir model performance is heavily dependent on the functional sub-circuits
neuro-physiological properties with respect to different cognitive tasks and their
corresponding computation-memorization balances. Specifically, we showed that
default mode network’s superior performance across the majority of tasks is re-
lated to its functional dichotomy property. Finally, we provided a thorough analy-
sis of the topological properties of pre-determined fMRI-induced sub-circuits and
highlighted their graph-theoretical properties that play significant roles in deter-
mining the ESN performance.

1 INTRODUCTION

One of the prominent directions in building high-performance or general intelligence artificial sys-
tems is implementing biologically plausible models, particularly using human brain connectomes
as the underlying graph of neural networks (Damicelli et al. (2022); Suarez et al. (2020); McDaniel
et al. (2022); Suarez et al. (2023)). Most state-of-the-art biologically inspired artificial connectomes
are realized as reservoir networks with structural human brain data. However, structural connec-
tomes (SC) derived from diffusion Magnetic Resonance Imaging (MRI) are generally rigid in both
topology and scale compared to functional connectomes (FC) from functional MRI data. Thus, in
this work, we explore the prospect of applying functional connectomes to reservoir Echo-state Net-
works (ESNs) under various conditions to comprehensively evaluate model performance, as well as
build a consistent framework for implementations of connectomic data in artificial networks.

Motivated by the fact that the topology of a neural network has a tangible impact on its performance,
and that complex network topology sometimes improves the performance of the model, we system-
atically explore more complex and biologically inspired topology in reservoir neural networks. A
critical step in ESN embedding requires pre-determined read-in and read-out layers with inputs
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sampled from the induced subgraphs of the embedded reservoir. Typically, a priori set of functional
networks (FNs), such as Yeo’s FNs (Yeo et al. (2011)), is used as pre-determined subgraphs for read-
in and read-out input selections. Since a priori set of FNs are derived from functional MRIs, yet,
these pre-determined sub-circuits are mapped onto SC, it is unknown whether FN-to-SC embedding
is well justified from i) neuro-physiological perspective and ii) ESN performance.

In this paper, our contributions are as follows: i) We proposed a pipeline to implement and evaluate
echo-state reservoir networks with various embedded topology on various processing and memo-
rization tasks. To this end, we tested various topological embedding and evaluated their respective
performance on diverse tasks, showing different performance optimums are highly dependent on the
embedded neuro-physiological architecture of a priori functional networks and the corresponding
task configurations; ii) we show that, in general, complex topology perform better than simple bi-
partite models or null models with feed-forward properties commonly seen in MLP for certain tasks
and reservoir criticality conditions. As such, we also found that, contrary to earlier literature, the
performance of the reservoir model is not strictly defined by the reservoir’s echo-state property de-
fined by the spectral radius of the connectivity matrix; iii) we found that there exists a differentiated
performance of functional networks induced from the human structural connectome with respect to
different cognitive tasks and their corresponding computation-memorization balances. We analyzed
the topological properties of a priori functional networks and highlighted their graph-theoretical
properties that play significant roles in determining the final performance of the echo-state model.

2 BACKGROUND AND RELATED WORKS

2.1 TOPOLOGICALLY-EMBEDDED ARTIFICIAL NEURAL NETWORK AND
ECHO-STATE-NETWORKS (ESN)

Echo-state networks are a variant of the classical reservoir computing (RC) paradigms, where the
reservoir is a recurrent layer of the classical recurrent neural network (Verstraeten et al. (2007)).
RCs are typically proposed in place of regular RNN variants as a lightweight model, where the
hidden states are high dimensions while only the readout layer weights of the model must be updated
during training. The frozen nature of the reservoir layer allows any topology and unit dynamics to
be embedded. As a result, RCs have been implemented as predictors of chaotic dynamics in physics
simulators, or used as a time-series prediction model in general (Chattopadhyay et al. (2020); Shahi
et al. (2022); Bompas et al. (2020); Huhn & Magri (2022); Platt et al. (2022)). ESNs model time as
discrete steps, making them suitable for discrete-time sampling data seen in real-world time-series
datasets (Cucchi et al. (2022)).

In the current literature, the relationship between the topological structure of an NN and its per-
formance is still unclear. While complex networks may yield higher predictive performance or
parameter efficiency (Kaviani & Sohn (2021)), it is difficult to generalize randomly wired models
outside the investigated context. Under the constraint of MLP-random interpolation, several random
network models rewired similarly to the small-world regimes perform well on several real-life prob-
lems (Erkaymaz et al. (2017); Erkaymaz & Ozer (2016)). Different topology perform well in limited
tasks on small network sizes enabled by the learning matrix sequential algorithm for training directed
acyclic graphs (DAGs). Random graph topology are also shown to perform well as image classifiers
on the ImageNet dataset, especially the Watts-Strogatz (WS) model of small-world networks (Xie
et al. (2019)). Boccato et al. (2024) echoes the statement on the performance of small-world models
in the case of synthetic data, albeit the difference between WS and other complex graph families
is less pronounced, possibly owing to the sufficient degree of topological complexity for function
representation.

2.2 BRAIN CONNECTOMICS AND HUMAN BRAIN FUNCTIONAL SUB-CIRCUITS

Human Brain connectomics studies how the human brain is structurally connected and how a
heterogeneous repertoire of resting-state or task-related functional circuits emerge on top of it.
There are two types of mesoscopic structures in large-scale brain networks: localized and non-
localized. In this paper, we focus on investigating localized mesoscopic structures which are sub-
systems learned from local/quasi-local network properties such as brain regions of interest (ROIs)
or functional edges, or correlations among neighboring nodes (Duong-Tran et al. (2024)). In brain
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connectomics, these sub-structures are induced from a wide array of techniques, including but not
limited to clustering (Yeo et al. (2011); Power et al. (2011)) or low-dimensional approximation of
high-dimensional dynamics (Shine et al. (2016); Shine & Poldrack (2017); Shine et al. (2019)). The
most commonly known localized mesoscopic structures in brain networks are often referred to as
functional sub-circuits or functional networks (FNs) (Yeo et al. (2011); Sporns & Betzel (2016);
Duong-Tran et al. (2019; 2024)). From here on, we will use the two terms functional sub-circuits
and FNs interchangeably.

2.3 HUMAN-BRAIN-CONNECTOMICS ESNS

In the context of modeling the human brain connectome, ESNs are implemented as prototype models
of the structural brain topology. Suarez et al. (2020) shows that human brain connectivity captured
through diffusion imaging performs better than random null network models in the critical regime,
while also demonstrating computationally relevant properties of resting-state functional brain net-
work parcellation. Given a minimum level of randomness and connection diversity from the original
structural connectome, biologically inspired reservoir networks’ performance matches that of any
classical random network model (Damicelli et al. (2022)). The authors of d’Andrea et al. (2022)
conclude that the modular structure of reservoirs significantly impacts prediction error among mul-
tiple other features. While the connections are modeled in a recurrent network rather than strictly an
RC, Achterberg et al. (2023) shows that training an RNN constrained by reservoir features such as
spatial wiring cost and neuron communicability leads to the emergence of structural and functional
features commonly found in primate cerebral cortices.

3 ANALYZING CONNECTOME-BASED RESERVOIR MODEL

x1
x2

xn

y

sub
ctx

DA

Read-in ReadoutReservoir layer

Memory capacity

Perceptual decision making

Output time-series

x# subnetworks x# subnetworks

Figure 1: Overview of the pipeline. Memory, processing, or mixed datasets are fed into the model
through a static input layer, which is then projected into higher dimensions with the reservoir layer,
and readout using a ridge regression output layer. Structural, functional, and null model connec-
tomes are embedded in the reservoir layer.

3.1 PRELIMINARY: ECHO-STATE IMPLEMENTATION

To examine different topologies as computational graphs, we utilized the implementation of the
classical ESN (Jaeger (2001)) from the conn2res package (Suarez et al. (2023)) which has the
following form:

x[t] = tanh
(
WRx[t− 1] + WIu[t]

)
(1)

z[t] = WOx[t] (2)

The reservoir state x[t], data input u[t], and reservoir readout output xout[t] are, respectively, real
value vectors of Nr, Ni, and No dimensions. Matrices WR, WI , and WO are the recurrent reservoir
internal weight matrix, the reservoir input weight matrix, and the readout weight matrix, respec-
tively. Through experimentation, we chose the tangent function tanh as the nonlinearity for the
entire reservoir. The reservoir is initialized in the origin, i.e., x[0] = 0. We initialize input matrix
WI ∈ Rn×m (n is the number of input nodes, m is the input feature length):

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

WI
ij =

{
C, if i = j mod n

0, otherwise,
(3)

where C is a predetermined input factoring constant, identical for all input features and read-in
nodes.

We train the ESN by optimizing the readout matrix WO, solving the linear regression problem
y[t] = WOx[t] using the training data {u[t], y[t]}t=1,...,T . The matrix WO is optimized using ridge
regression through the formula:

WO = YX⊤(XX⊤ + λI)−1, (4)

where X ∈ RNp×T is the matrix containing temporal reservoir states x[t] of a certain Np nodes
(Np < Nr) of the reservoir computed from the previous states and the input u[t] for t = 1, ..., T ,
Y ∈ RNo×T is the ground-truth matrix containing y[t], I ∈ RNp×Np is the identity matrix, and λ is
the regularization parameter. Additionally, we keep track of the spectral radius α of the reservoir’s
adjacency matrix to examine the reservoir’s adherence to the echo-state property (ESP), a condition
quantifying the reservoir’s unique stable input-driven dynamics (Jaeger (2001)).

3.2 PIPELINE AND STRUCTURAL CONTROL MODEL

Reservoir initialization There are two components in the original structural connectome dataset:
topology (wiring between regions of the brain regardless of connection strength) and weights (pre-
cise connection strengths between mesoscale regions). The adjacency matrix A of each connectome
contains both components, where A is symmetric by constraint of the original imaging method and
the ESN model (Figure 1). The connectome connectivity and edge weights are embedded in the
reservoir as an undirected graph, where WR is constructed from A by min-max scaling A to range
[0, 1] and normalizing A by the spectral radius constraint α:

WR = α
A0

ρ(A0)
(5)

where A0 is the scaled weighted connectivity matrix, and ρ(A0) is the spectral radius of A0.

Read-in and read-out functional networks The reservoir network is generally partitioned using
intrinsic functional networks, a connectivity-based partition of brain network into functionally sim-
ilar groups of areas (Wig (2017)). The reservoir input weight matrix WI ∈ Rn×m route the input
signals to only certain m nodes in the reservoir (Figure 1, 2). The input nodes are chosen as an
entire functional network to examine message propagation on the reservoir computational graph; in
this paper, we chose subcortical regions as input nodes, owning to the plausibility of these regions
serving as relay stations for incoming sensory signals. Each of the other seven cortical regions is
chosen as the read-out node-set, where the readout weight matrix WO connects the Np nodes of the
functional network to the readout module.

Figure 2: Human brain functional networks (sub-
circuits) as parcellated by Yeo and colleagues Yeo
et al. (2011).

Structural control We embed the structural hu-
man brain connectome into the reservoir as the de-
fault topology map. Consensus adjacency matri-
ces are constructed from the original connectomes
with bootstrap resampling to provide a reliable es-
timate of the model performance. The structural
connectome is grouped into seven intrinsic func-
tional networks and one subcortical region accord-
ing to the Yeo functional mapping and parcellation
(Thomas Yeo et al. (2011)). These structures are
known as sub-circuits or FNs, previously defined in
Section 2.2.
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3.3 VARIANTS: COMPLEX GRAPH NULL MODELS

In general, the models described in this section aim to represent various aspects of the biological
mesoscale complex networks and examine the different components of structural brain connectomes,
mainly through null models that ablate one or multiple properties of the original connectomes.

Subgraph To examine the message diffusion in the reservoir, we constructed an induced subgraph
partitioning of the original graph and extracted only the subcortical input and current cortical output
regions for the reservoir model. The graph in the reservoir is thus an vertex-induced subgraph of
only the input-output networks of the original graph; for example, if the current output network is
VIS, then the reservoir adjacency matrix is constructed from the original graph G by G[V (subctx)∪
V (VIS)].

Maslov-Sneppen (MS) rewire We preserve the original degree-sequence of the structural connec-
tome and rewired each edge in the connectome exactly once using the Maslov-Sneppen algorithm
(Maslov & Sneppen (2002)). From the rewiring procedure, we obtained a reference null connectome
with the original constraint still moderately enforced.

Uniform weights We preserved the underlying topology of the connectome while randomizing
the connection weights between nodes of the network. The connecting edges between all nodes are
randomized and sampled from the uniform distribution U(0, 1), while the adjacency matrix is kept
symmetric.

Bipartite null Using the original node counts from the subcortical region and the current output
region as baseline (i.e., the node set of the subgraph model), a complete undirected bipartite graph
consisting of only the input and output node sets is created. The weights between the two node sets
are sampled from the uniform distribution U(0, 1), while the adjacency matrix is symmetric. The
bipartite model is analogous to an untrained two-hidden-layer feedforward network model, where
the first layer is of the same size as the subcortical nodes and the second as the output functional
network (e.g., VIS).

Newman configuration model An entirely new graph is constructed from the degree sequence of
the original structural connectome, as opposed to only rewiring each edge once. The configuration
model generates a random undirected pseudograph by randomly assigning edges to match a given
degree sequence (Newman (2003)). Self-loops are then removed from the existing graph to obtain
the symmetric null connectome adjacency matrix for the reservoir.

4 EXPERIMENTATION: CONNECTOME-DEPENDENT PERFORMANCE OF ESNS

4.1 DATA

Structural and functional connectomes Adapted from structural consensus connectomes from
(Suarez et al. (2020)). The connectome is divided into 463 or 1015 approximately equally sized
nodes. A group-consensus approach is adopted to mitigate reconstruction inconsistencies (Betzel
et al. (2019)) and network measure sensitivities between different maps. Functional connectomes
are obtained from a publicly available dataset (Derived Products from HCP-YA fMRI, Tipnis et al.
(2021)). More information on the brain connectomic datasets is available in Appendix A.1.

Synthetic sequential behavioral data We used synthetic behavioral data to simulate computation
from multiple signal sources and assess the memory capacity of the reservoir under various means.
The PerceptualDecisionMaking (PDM) (Britten et al. (1992)) task is a two-alternative forced choice
task requiring the model to integrate and compare the average of two stimuli, with the PerceptualDe-
cisionMakingDelayResponse (PDMDR) (Inagaki et al. (2019)) variant artificially inducing a mem-
ory requirement by prompting the model to answer after a random delay. The context-dependent
decision-making task ContextDecisionMaking (CDM) (Mante et al. (2013)) requires the model to
make a perceptual decision based on only one of the two stimulus inputs from two different modal-
ities, where a rule signal indicates the relevant modality. The assessment for the memory capacity
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of the model is the MemoryCapacity (MemCap) (Suarez et al. (2020)) dataset, where the encod-
ing capacity of the model and readout modules are estimated through sequential recall of a delayed
time-series signal under various time lags, quantified by the Pearson correlation between the target
sequence and the model’s predicted memorization signal.

4.2 EXPERIMENTS

Procedure, Setup, and Benchmarking The general procedure and pipeline for all network mod-
els are described in Section 3. Each model is evaluated on 7 experiments each according to the 7
readout Yeo networks, with the synthetic datasets identically generated for all functional networks
on each of the same 1000 tests. The models are primarily evaluated on F1-score (for PDM, PDMDR,
CDM) and Pearson correlation (for MemCap). Details on the experimental setup and implementa-
tion libraries are included in the Appendix B.

4.3 EMPIRICAL PERFORMANCE: PROCESSING AND MEMORIZATION

We evaluate the performance of structural and null models under the mentioned processing and
memorization synthetic tasks, showing the performance of each model over multiple reservoir spec-
tral radius (alpha) in Figure 3. Models under perceptual and memorization tasks show performance
decay from α = 1, while contextual models perform well even in the chaotic α > 1 regime. The
memory capacity of reservoirs shows the most notable decline in the chaotic regime, similar to
results obtained in Suarez et al. (2020), and all models perform better than the fully connected bi-
partite null counterpart with the same read-in and read-out node count, showing gains in having
higher topological complexity when strictly compared to 2-layer feedforward model. Model per-
formance across 1000 different instantiations of the reservoir is fairly stable, showing that degree-
conserving null models and bipartite model performed worse than the original biological structural
model, structure-based subgraph model, and uniformly randomized structural weight model at close
to criticality α = 0.95 (Figure 4).

Between different complex topologies aside from the bipartite models, models that preserve the
original structural brain topologies perform better than other null models. The trend is consistent
across all alpha values except for CDM, where higher alpha shows the null uniform weights model
with identical topology outperforming the original structural model. Aside from MemCap, control
structural and subgraph networks perform almost identically, suggesting that information does not
propagate through non-input-output pathways in the reservoir for three NeuroGym tasks. MS rewire
and configuration model with only the degree sequence preserved show worse performance than
the nulls without topological randomization, suggesting that the topological control models contain
features that lead to better processing and memorization performance.

4.4 READ-OUT PERFORMANCE FROM FUNCTIONAL NETWORKS

We look into null models in comparison to the original structural model to compare the performance
when each functional network is chosen as the read-out node-set. The models under consideration
are the structural control model, the MS one-step model, uniform weights null models, and the label
permutation null, all under the equivalently-performing α = 0.95 (Figure 6). We observed that for
3 out of 4 datasets (PDMDR, MemCap, CDM) under the control model, the default mode network
(DMN) and somatomotor network (SM) perform better than the other functional networks, with
the DMN significantly outperforming SM in the majority of cases. This trend persists in other null
models other than control for the mentioned 3 tasks, with the ranking maintained in PDMDR and
MemCap, and DMN traded place with SM in CDM in nulls other than permutation. PDM shows
a contrastive difference to the other tasks, where the underperforming dorsal attention (DA) and
frontoparietal (FP) networks perform better than the other networks, while DMN and SM notably
performed worse than the other subnetworks. The performance ranking between different read-out
functional networks for PDM strongly persisted in other null models, regardless of weighting or
structural randomization.
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Figure 3: General performance of various reservoir models tested on four datasets. Performance is
shown as a function of the reservoir’s spectral radius alpha.
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Figure 4: Performance of various reservoir models on four datasets w.r.t. the reservoir configuration
at spectral radius alpha near criticality (0.95), demonstrating the best performances of ESNs in most
cases. (config: degree-sequence-preserving configuration random graph, bipar: bipartite random
graph)

4.5 COMPARISON WITH OTHER RNNS AND TESTING WITH REAL-WORLD DATA

Testing with traditional RNN models (Figure 5) We benchmarked the ESN variants against
LSTM and RNN models of various sizes. We found that sizes smaller than the tested configura-
tions do not perform as well as the shown ones, regardless of bi-directionality. In general, traditional
RNNs perform reasonably well but are not as well-rounded as ESNs and are also highly unstable in
training environments.

Testing of echo-state models in real-world time series prediction tasks (Table 1) We present
the ESN model, a control variant using the structural connectomes of size 500 as described in the
paper, for predicting the course of COVID-19 spread. We obtained the datasets from open sources:
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Figure 5: F1-score performance of various reservoir models on three datasets w.r.t. the reservoir
configuration at spectral radius 0.95. ESN configurations are identical to the original paper’s de-
scription, LSTM and RNN models are followed by the size of the hidden layer.

Model Up to next 7 Days Up to next 14 Days Up to next 21 Days
England France Spain England France Spain England France Spain

GAUSSIAN REG 14.13 4.44 51.28 12.00 3.03 43.12 10.04 1.96 31.58
RAND FOREST 7.16 5.01 37.05 10.01 7.13 51.72 13.03 9.76 61.38
PROPHET 14.45 13.86 75.86 23.43 21.25 114.87 33.59 27.88 149.51
ARIMA 9.51 9.08 40.54 9.63 8.78 48.46 9.77 8.13 56.45
Bi-LSTM 8.20 6.12 42.64 7.86 8.47 36.45 7.09 8.94 35.73
ESN (control) 13.34 4.41 48.95 11.24 3.01 42.60 9.35 1.95 33.63

Table 1: Performance of all experimental model evaluated based on Mean Absolute Error, prediction
of the number of COVID-19 new cases in England, France, and Spain in the next 3-21 days.

England, France, and Spain. For each model, we performed rolling-window training and testing,
where each time the model is evaluated it is trained on historical data up to the number of days (3-21
days later) in advance to be predicted until the target time point, then the model is evaluated from
the target time point to the number of days in advance to be predicted. We measured each model’s
performance using Mean Absolute Error.

The models tested follow the same notation described in prior work on COVID-19 prediction
(Panagopoulos et al. (2021)). The additional models we tested are briefly described in Appendix
B.4.

In general, we found that the performance of our echo-state models is well-rounded and fairly com-
petitive w.r.t. other benchmarking models, while also offering the advantage of being faster to
optimize when compared to trained network models (i.e., LSTMs), or being more generous in terms
of hyperparameter optimization compared to specialized time-series model (e.g., ARIMA).

5 FUNCTIONAL SUB-CIRCUITS’ TOPOLOGICAL PERFORMANCE ANALYSIS

In this section, we analyze the neuro-physiological characteristics of functional networks from a
topological perspective and their corresponding contributions to better model performance than oth-
ers. Specifically, we analyze FN’s graph-theoretical measures via two viewpoints: i) statics (e.g.,
size, betweenness, modularity) and dynamics (e.g., communicability) properties, quantifying their
relationship with model performance. All network measures used in this section are described in
details in Appendix C.

5.1 READ-OUT FUNCTIONAL NETWORKS’ STATICS PROPERTIES

In this sub-section, we investigate FN statics properties through their node count statistics and be-
tweenness measures (Puzis et al. (2007)). Based on Figure 5, we see that there exists an association,
for some FNs, between their sizes (through node count statistics) and their betweenness scores.
Specifically, DMN, the largest sub-circuits, also has the highest betweenness score. More impor-
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Figure 6: The number of best performance runs by model and nulls across 1000 runs, by each
functional network on identical initialization of each dataset. Note that the total of all functional
networks from the same color (reservoir configuration) adds up to exactly 1000.

tantly, there exists an association between the number of best performance analyses based on FN
(Figure 4) to their betweenness scores. Specifically, DMN, ranked top 2 in 3 out of 4 tasks per
Figure 4, ranked first in betweenness score. Other ”big” sub-circuits such as VIS or SM also have
competitive betweenness.
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Figure 7: Struct500 (463 nodes) connectome, various graph statistics, 1000 different consensuses.

5.2 READ-OUT FUNCTIONAL NETWORKS’ DYNAMICS PROPERTIES

Here, we evaluate read-out FN’s dynamics through diffusivity and communicability perspectives,
measuring the extent to which information flows through the FN topology (Estrada & Hatano
(2008)). Noticeably, we found that the communicability score reaffirms DMN dominance, not only
in the statics domain (e.g., betweenness) but also in the dynamics domain (e.g., communicability).
Nonetheless, DMN dominance is significantly larger (five times larger than the runner-up: VIS).
This result would further strengthen the anticipated best performance from DMN for 3 out of 4
tasks.

In Figure 8, we analyze the correlation between graph statistics and empirical performance on
PDMDR. Communicability spread shows that functional networks with high communicability gen-
erally perform well compared to networks with lower communicability, while there is no signifi-
cant correlation between modularity and performance. Importantly, group betweenness centrality
of functional networks is separated into four separate clusters, with certain networks or ranges of
centrality performing better than the others (third panel, Figure 8). For other datasets (results in Ap-
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pendix D) the results are generally the same for communicability and modularity, while betweenness
centrality clusters are generally the same with CDM and MemCap reproducing the performance seen
in PDMDR.
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Figure 8: Structural 500 nodes, statistic-performance correlations, PDMDR, α = 0.95, with slope
of best linear fit ρ.

5.3 TOPOLOGICAL FITNESS OF A PRIORI SET OF FNS ON CONNECTOME-BASED ESN

In this section, we propose the concept of FN topological fitness for connectome-based ESN us-
ing graph modularity score (Clauset et al. (2004a)). To evaluate the topological fitness of an a
priori set of FN, we measure Q with pre-set σ (e.g., Yeo’s FNs Yeo et al. (2011)). We performed
cross-comparison between processed functional and structural connectome on modularity measures,
performing community detection and comparing adjusted mutual info score with the original parcel-
lations. We found that, despite the functional networks parcellation derived from functional connec-
tomes, the modularity of the structural topology is higher than functional (Figure 9), while structural
connectomes also perform better than functional (Appendix D). We thus hypothesize that Yeo’s net-
works derived from Lausanne parcellation (Suarez et al. (2020)) and Schaefer parcellation (Tipnis
et al. (2021)) are not information-theoretically aligned, or that topological fitness strongly deter-
mines model performance.

6 DISCUSSION AND CONCLUSIONS
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Figure 9: Modularity histogram: difference be-
tween structural and functional connectome.

In this study, we explored bio-plausible topology
as computational structures in reservoir neural net-
works, particularly ESNs, and examined whether
complex functional topologies contribute to perfor-
mance in recurrent network settings. We found that
different topological properties are conducive to the
processing of different tasks. The topology of de-
fault mode network (DMN) facilitates better pro-
cessing and memorization, implying a link to the
”functional dichotomy” of DMN found in traditional
neuroscience studies (Uddin et al. (2009)).

Functional networks are embedded and extensively
tested in reservoir echo-state networks where differ-
ent performance scalings and dynamic entry points
are evaluated. In general, bigger connectomes per-
form better albeit with diminishing returns, and the flow through functional networks determines
how well the model performs. Interestingly, optimal thresholds for task performance are slightly
higher than positive. Experiments have also shown that the model’s performance is somewhat de-
pendent on the absolute size of the readout functional networks. Further experimentations on inte-
grating functional signals to embedded reservoirs will be conducted to optimize the use of rs-fMRI
or task fMRI data, more closely observing model performance and computational efficiency and
expanding the model representation space using different activations.
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A ADDITIONAL DATA DESCRIPTION

A.1 RESERVOIR CONNECTOMIC

For structural connectomes, we used connectomes from Suarez et al. (2020), publicly available at
https://zenodo.org/records/4776453, which was originally processed from the Uni-
versity of Lausanne’s data, also available at: https://zenodo.org/records/2872624.
For functional connectomes, we obtained the parcellated connectomes from the UCSD public repos-
itory: https://library.ucsd.edu/dc/object/bb59818382. All data are available for
public use with proper citations (included in the main text). None of the authors of this paper over-
lapped with the authors of the published datasets mentioned.

A.2 COVID-19 DATA

The ground truth for number of confirmed COVID-19 cases per region is gathered for four regions
through open data:

• Italy: https://github.com/pcm-dpc/COVID-19/blob/master/dati-province/dpc-covid19-ita-
province.csv

• England: https://coronavirus.data.gov.uk/
• France: https://www.data.gouv.fr/en/datasets/donnees-relatives-aux-tests-de-depistage-de-

covid-19-realises-en-laboratoire-de-ville/
• Spain: https://code.montera34.com:4443/numeroteca/covid19/

We directly used the preprocessed final version of the data from Panagopoulos et al. (2021) GitHub
repository in each country’s subfolder in the data folder, publicly available at: https://github.
com/geopanag/pandemic_tgnn/tree/master/data.

B DETAILED EXPERIMENT SETTINGS

B.1 FRAMEWORK

All of the code provided is in Python, with primary experiments run in conn2res (Suarez et al.
(2023)) framework for reservoir computing. The specific implementation of conn2res that we
used is publicly available at https://github.com/netneurolab/conn2res. Detailed
implementation is included in the supplementary material as .zip file.

B.2 HARDWARE

All experiments were conducted on a single-CPU server with no GPU, with the following specifica-
tions:

• CPU: 1x Ryzen 9 7950x
• RAM: 64GB DDR5 4800MT/s

B.3 HYPERPARAMETERS

We provide the hyperparameters for our experiments w.r.t. the conn2res (Suarez et al. (2023))
framework. Our attached supplemental code also contains all original hyperparameters used in
experiments.

• Number of experiment runs N = 1000

• Reservoir input factor C = 0.001

• Train-test split: 80:20
• Number of NeuroGymTask trials: 1000 (PDM, PDMDR, CDM)
• Number of MemCap trials: 4050
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• Number of reservoir nodes (structural): 463 (450 cortical nodes + 13 subcortical nodes)
• Ridge regressor hyperparameters: alpha=0.5, fit intercept=False

Hyperparameters for traditional RNNs models are identical to main experiments. For full details on
hyperparameters used, refer to attached supplemental code.

B.4 COVID-19 BENCHMARK MODELS

The models tested follow the same notation described in prior work on COVID-19 prediction
(Panagopoulos et al. (2021)). The additional models we tested are:

• GAUSSIAN REG: Gaussian Process Regression non-parametric model implement-
ing Gaussian processes (Ketu & Mishra (2021), https://scikit-learn.
org/stable/modules/generated/sklearn.gaussian_process.
GaussianProcessRegressor.html).

• RAND FOREST: Random Forest Regression case prediction model based on decision
tress (Galasso et al. (2022), https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestRegressor.html).

• Bi-LSTM: Same as paper, but tested with a two-layer bidirectional LSTM that retains the
sequence of cases for the last 7 days.

C NETWORK MEASURES

C.1 BETWEENNESS CENTRALITY

Betweenness centrality is a measure of information routing through a network, where the shortest-
path betweenness centrality is computed for nodes (Freeman (1977)). Betweenness centrality cB of
a node v is the sum of the fraction of all-pairs shortest paths that pass through v (Brandes (2001)):

cB(v) =
∑
s,t∈V

σ(s, t|v)
σ(s, t)

where V is the set of all nodes, σ(s, t) is the number of shortest (s, t)-paths, and σ(s, t|v) is the
number of those paths passing through some node v other than s, t. If s = t, σ(s, t) = 1; if v ∈ s, t,
σ(s, t|v) = 0.

C.2 COMMUNICABILITY

Communicability is a measure modeling the extent of information transfer between nodes in the
network, effectively provides a way to quantify the extent to which two regions in a network can
communicate with each other (Estrada & Hatano (2008)). Communicability is computed using a
spectral decomposition of the adjacency matrix. The communicability C between two nodes u and
v is computed using the connection between powers of the adjacency matrix and the number of
walks:

C(u, v) =

n∑
j=1

ϕj(u)ϕj(v)e
λj

where ϕj(u) is the uth element of the jth orthonormal eigenvector of the adjacency matrix with
eigenvalue λj

C.3 MODULARITY

Modularity is a measure of the degree to which the network can be separated into clearly independent
groups. As previously defined and reduced (Clauset et al. (2004b)), the measure is defined as:

Q =

n∑
c=1

[
Lc

m
− γ

(
kc
2m

)2
]
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where we iterate over all c communities. m is the numbed of network edges, Lc is the number of
within-community links for specific community c, kc is the sum of degrees of the nodes in commu-
nity c, and γ is the resolution parameter.

D ADDITIONAL RESULTS

D.1 EXPERIMENTAL SETUP WITH FUNCTIONAL CONNECTOMES

The resting state fMRI data from a single subject from the HCP1200 dataset pre-parcellated using the
Kong2022 individual areal-level parcellation procedure were used in this study (Kong et al. (2021)).
Models were examined under several parcellation settings, where the cortex is represented as func-
tional connectomes resolutions ranging from 100 to 1000 nodes in increments of 100 nodes each
(Kong et al. (2021)) and were evaluated on tasks. FC and adjacency matrix connections on each res-
olution describe the Pearson correlation between BOLD time series among brain regions. Regional
labels and indices were collected from atlas mapping of the Schaefer atlas directory (Schaefer et al.
(2017)), segregating every connectome resolution available of Kong’s parcellation into 17 functional
Yeo functional networks (Thomas Yeo et al. (2011)): Visual (A, B, and C), Auditory, Somatomotor
(SomMotA and B), Language, Salience/Ventral Attention (SalVenAttn A and B), Control (ContA,
B, and C), Default (A, B, and C), and Dorsal Attention (DorsAttnA and B).

For a weighted rs-fMRI graph we construct several thresholded graphs on different thresholding
values r ranging from -0.5 to 0.4 in increments of 0.1, with a threshold value of 0 effectively keeping
only positively correlated connections on the original graph. Varying r effectively filters the graph,
sparsifying graph connections based on the degree of thresholding in large degrees (magnitudes of
connections filtered between two consecutive thresholds). Keeping negative correlations on lower
threshold values may dilute the computation graph, and potentially decrease the model’s perfor-
mance on several metrics. Additionally, each connectome is scaled by an alpha parameter between
0.05 and 2, which determines the value of the largest eigenvector of the connectomic adjacency
matrix. The alpha scaling is applied after the normalization of all connections in the graph, and the
effect of the alpha parameter on reservoir network dynamics is discussed in-depth in Suarez et al.
(2020).

All models are evaluated on a perceptual decision-making task with delayed responsive, measuring
both the computation and memory capacity of the reservoir networks (Inagaki et al. (2019)).

D.2 RESERVOIR SIZE

In scaling experiments, the model generally performs better when larger parcellation sizes are used.
Visualizations and numerical results indicated diminishing returns over later larger parcellations,
while there is a substantial difference between the performance of the best and the worst alpha
scaling values. Size efficiency decreases as resolution increases with diminishing returns starting
at 400 nodes parcellation (Figure 15). On the other hand, SC reservoir with 1000 nodes has high
performance at 0.82 F1-score while FC at 700 nodes already reaches 0.75 F1-score, demonstrating
FC’s parameter efficiency and signifying that FCs can be better scaled to finer resolutions with
higher model performance.

D.3 FUNCTIONAL THRESHOLDINGS

Hyperparameter combination experiments showed that functional connectome benefits greatly when
positively thresholded, possibly confirming the hypothesis that negative correlations dampen reser-
voir dynamics. Reservoirs performed optimally when thresholded at 0-0.2 and scaled at alpha 0.85-
1.15 (Figure 16).

D.4 PERMUTATIONS

Input-output permutation experiments significantly varied performance on different pairings. There
are several different configurations where the model performed optimally for different parcellations;
however, better performance depends on the set of output nodes with Control and Default outputs
outperforming other groups. Most notable are readouts from Auditory and Language functional
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networks where performance is significantly worse than other readouts. Said two functional network
groups have substantially fewer nodes than the other functional network groups, possibly indicating
that performance heavily depends on the size of the readouts up to the optimal signal-to-noise ratio
(Figure 17).

D.5 READOUT SIZE

Readout balancing and permutation experiments show a potential correlation between the readout
functional network size and the model’s performance. While equal readout functional networks
perform roughly uniformly, the augmented functional network readouts perform slightly better with
increasing size relative to other readout functional networks. Such is the case for the Language
readouts from functional connectome and DA readouts from structural connectome, both of which
did not perform well on the original connectomes. However, despite the general increase in per-
formance and only slight variance between functional network readouts, certain combinations or
networks performed worse than others regardless of readout partitioning. The performance anomaly
refers to the darker 2-3 performance spots in the functional connectome, and similarly in structural
connectome.
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Figure 10: Structural 500 nodes, statistic-performance correlations, PDM, α = 0.95.
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Figure 13: Structural 500 nodes, statistic-performance correlations, MemCap, α = 0.95.
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Figure 17: Model performance w.r.t. various input-output functional network groups on 700
and 1000 parcellations, F1-score and balanced accuracy. Input denotes the set of nodes of
a certain functional network group where external stimuli representations can be routed into the
reservoir. Output denotes the set of nodes where internal reservoir dynamics representations are
read out to generate the final network results.
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