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Abstract

Lines and points are complementary local features, whose
combination has proven effective for applications such as
SLAM and Structure-from-Motion. The backbone of these
pipelines are the local feature matchers, establishing cor-
respondences across images. Traditionally, point and line
matching have been treated as independent tasks. Recently,
GlueStick proposed a GNN-based network that simultane-
ously operates on points and lines to establish matches.
While running a single joint matching reduced the overall
computational complexity, the heavy architecture prevented
real-time applications or deployment to edge devices.
Inspired by recent progress in point matching, we pro-
pose LightGlueStick, a lightweight matcher for points and
line segments. The key novel component in our architec-
ture is the Attentional Line Message Passing (ALMP), which
explicitly exposes the connectivity of the lines to the net-
work, allowing for efficient communication between nodes.
In thorough experiments we show that LightGlueStick es-
tablishes a new state-of-the-art across different bench-
marks. The code is available at https://github.
com/aubingazhib/LightGlueStick.

1. Introduction

Visual feature matching is a fundamental component in nu-
merous computer vision tasks, including visual localiza-
tion, pattern detection, Structure-from-Motion (SfM), and
Simultaneous Localization and Mapping (SLAM). These
tasks are essential for navigation and positioning in fields
such as robotics, augmented reality, architecture, and man-
ufacturing. Classical handcrafted keypoint detectors and
descriptors powered some of the first advances in these
areas. However, these methods typically require well-
textured regions and struggle with viewpoint and illumina-
tion changes. Conversely, line segments are abundant in
texture-less areas, provide robust structural cues, and are
resilient against occlusion and illumination changes. Their
complementary nature makes the joint matching of points
and lines an interesting paradigm for robust sparse image
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Figure 1. LightGlueStick outperforms other state-of-the-art
line matchers with a speed comparable to LightGlue [39]. The
depth adaptivity mechanism allows to predict line matches earlier.
The parameter « controls the tradeoff between speed and accuracy.
Here, LightGlue [39] matches lines using endpoints.

matching.

However, line matching presents unique challenges.
Line segments are frequently partially occluded or frag-
mented, and in general less repeatable compared to points,
at least in terms of endpoint consistency. As each line can
span a large region of the image, their local descriptors
are also more affected by foreshortening and other perspec-
tive effects. This yields a higher sensitivity to viewpoint
changes, making them harder to both detect and describe.
This is further complicated by lines frequently appearing
in texture-poor areas, e.g. delineating walls or other planar
surfaces.

Moreover, many image-matching applications require
on-device execution with strict latency and power con-
straints. These conditions limit the practicality of recent
dense [16, 18, 69] and semi-dense [28] matching meth-
ods, which typically demand significant computational re-
sources. Consequently, sparse matching techniques become
preferable due to their fast execution with minimal hard-
ware requirements. A lightweight scene representation is
also a requirement for real-time mapping purposes when
the map needs to be compact or efficiently transmitted over
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limited-bandwidth networks.

Recently, deep learning methods have significantly out-
performed classical matching and filtering techniques, such
as mutual nearest neighbor and ratio test [42]. Their key to
success is to relate not only to the visual descriptors rep-
resenting the image appearance but also to consider the lo-
cal feature geometry, i.e. how the points and lines are spa-
tially distributed in the images. These learned matchers
have since replaced classical hand-crafted heuristics based
on local planarity, coherence, or filtering [19, 44, 56, 78].
HDPL [24] and GlueStick [50] introduced the first learn-
ing approaches for joint matching of points and lines, yet
the computational cost limits their applicability in real-time,
on-device scenarios. Recently, LightGlue [39] has gained
attention for significantly accelerating point-only matching
through efficient attention mechanisms and reduced redun-
dant computations.

In this paper, we introduce the next generation of point-
line matching with LightGlueStick, a novel matcher that
marries the matching capabilities of GlueStick with the
computational efficiency of LightGlue. This facilitates ef-
fective joint matching of points and lines, making it suit-
able for real-time and on-device applications. Consider-
ing the importance of speed for downstream tasks, our ap-
proach ensures that joint matching remains practical by sig-
nificantly reducing inference latency. As we show in our ex-
periments, LightGlueStick surpasses current state-of-the-art
sparse methods in both accuracy and runtime performance.

We re-design the joint point-line matching strategy with
optimized attention mechanisms [66] into a unified archi-
tecture. Our method represents keypoints and line endpoints
as nodes within a graph-based structure, where edges dy-
namically adapt across layers. We leverage self-attention
and cross-attention techniques from transformers [61, 76],
complemented by our novel Attentional Line Message Pass-
ing (ALMP) layer. This layer explicitly encodes line
connectivity, enhancing communication between endpoints
while allowing the network to ignore non-repeatable line
endpoints. Extensive evaluation across multiple bench-
marks demonstrates that LightGlueStick achieves state-of-
the-art performance in multiple tasks. The code will be re-
leased upon publication. Our key contributions are:

* We achieve significant speedups while maintaining supe-
rior performance compared to state-of-the-art point and
line matchers.

* We introduce a new Attentional Line Message Passing
layer to improve the communication between line end-
points.

* Qur approach is flexible, with a tunable threshold to trade
off matching accuracy and efficiency.

» Extensive experiments demonstrate that our approach sets
new state-of-the-art results across multiple benchmarks.

2. Related Work

Point matching. Feature point matching has a long his-
tory in computer vision, and was originally performed by
extracting handcrafted descriptors from image patches [6,
42, 59]. Point matches were then obtained with either mu-
tual nearest neighbor or ratio test [42]. The resurgence of
deep learning introduced a series of more robust descriptors
by extracting learned embeddings of image patches [43, 47,
48,70, 71, 82]. Later, feature descriptors started to be ex-
tracted densely [13, 15, 17, 21, 51, 58, 68, 73, 85, 86], so
that point features can be retrieved with bi-linear interpola-
tion from the dense map. Learned matchers were originally
introduced with the pioneering work SuperGlue [61], which
proposed to combine Graph Neural Networks (GNNs) and
transformers to enrich the point descriptors with the context
of the other points. Subsequent works improved the orig-
inal architecture to make it less costly to use [9, 39, 64].
LightGlue [39] proposed in particular an adaptivity mech-
anism allowing to finish the inference earlier for easy im-
age pairs, thus significantly enhancing efficiency. Om-
niGlue [27] improved the robustness of the matching even
further, by incorporating features from a vision foundation
model. Instead of matching sparse keypoints, another line
of research aims at matching image pairs densely. Initiated
by LoFTR [69], this field has been very active in recent
years [10, 16, 18, 25, 28, 33, 69, 72, 79]. These matches
obtain good results at a higher computational cost. In this
work, we take inspiration from the breakthroughs in effi-
ciency brought by LightGlue [39], and incorporate them
into a sparse joint point-line matcher.

Line matching. Similarly as for points, line matching
has originally been performed by extracting image patches
around lines and by computing handcrafted heuristics to
describe the image gradient [34, 77, 78, 80, 84]. In the
same spirit, early line matchers followed the same trend
by running neural networks on the image patches around
lines [1, 30, 31], bringing additional robustness to the line
descriptors. Further improvements of the learned line de-
scriptors involved extracting dense line descriptors [49, 74],
sampling and describing points along the lines to increase
the robustness to occlusions [1, 49], and jointly extracting
lines and their descriptors with a single network [1, 49].
With the advent of transformers and GNNs, recent meth-
ods used attention within a line to enrich its line descrip-
tor [83], while others connected the line segments into
a graph and added self- and cross-attention between line
nodes [24, 45, 50]. While WGLSM [45] only used line fea-
tures, HDPL [24] and GlueStick [50] combined points and
lines within the same graph. The former represents lines as
a single node in the graph, while the latter leverages the line
endpoint descriptors to ease communication between point
and line features. Although GlueStick [50] is the current
state-of-the-art point and line matcher, its execution time
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Figure 2. Overview of the proposed pipeline: LightGlueStick takes as input two images where points and lines have been detected and
described. Our Graph Neural Network (GNN) is composed of three stages: 1) Self-Attention, 2) our novel Attentional Line Message
Passing, and 3) Cross-Attention. Depending on the achieved matching result at each layer, we can stop the execution to save computation.
The last step of Dual-Softmax generates two assignation matrices for points and lines, respectively.

remains slow, making it unpracticable for real-time applica-
tions. Our work improves the architecture of GlueStick, by
making it more efficient, while maintaining or improving its
performance.

Joint use of points and lines. Jointly matching point
and line features unleashes multiple applications fusing the
two kinds of features. SLAM has a long history of leverag-
ing both points and line segments [20, 22, 35, 38, 52, 57, 81,
90]. The long range of lines is indeed a strong asset to reli-
ably track features in a sequence and to reduce the drift over
time. Line by-products can also be used in SLAM to add
constraints, such as their junctions [57] and the vanishing
points [38, 67]. Liu et al. [40] proposed to reconstruct lines
in 3D, based on an existing point reconstruction, and fur-
ther extended it into a full SfM pipeline integrating points,
lines, and vanishing points [41]. Jointly using point and
line features can also benefit visual localization and the re-
lated solvers by providing additional constraints, as demon-
strated in [2, 40, 55, 75, 88, 89]. Finally, while lines do not
bring constraints for relative pose estimation, [26] showed
that one could combine points, line endpoints, and vanish-
ing points to better constrain the relative pose between two
images.

3. LightGlueStick

Our goal in this work is to match a given set of point and
line features between two images A and B. We use [ to
refer generically to either image. We adopt the same wire-
frame formulation as in [50], where we represent lines with
their two endpoints and initialize a graph where nodes con-
sist of keypoints and line endpoints, and edges connect end-
points that are part of the same line. We first extract a dense
descriptor map of dimension D for the entire image using
an off-the-shelf network, from which we can interpolate the

initial embedding ! € RP of each node i in image I. We
describe in Sec. 3.1 how we enrich these initial node em-
beddings with the visual and spatial context of the other
nodes, through a Graph Neural Network (GNN) [7] and
successive layers of transformer operations [76]. After the
GNN, we leverage the enriched node embeddings to asso-
ciate the point and line features of both images (Sec. 3.2).
The overview of our method is available in Fig. 2.

3.1. Transformer Backbone

We describe in the following how node features are enriched
in our proposed GNN, which consists of a series of 3 layers:
self-attention, cross-attention, and a novel Attention Line
Message Passing (ALMP). Each of these three layers is re-
peated up to L times to successively enrich the representa-
tion of each node before establishing matches.

Residual feature update. In each layer, the feature vec-
tor z! of a node i is updated by applying a Multi-Layer
Perceptron (MLP) to the concatenation of «! and m! <9,
where m.!< % represents a message received from a source
image S € {A, B}:

z! « x! + MLP([z]|m!~"]), (1)
where [-|-] represents concatenation. In self-attention lay-
ers, messages are aggregated only from nodes within the
same image, implying S = I. In cross-attention layers,
node states are updated using nodes from the other image,
meaning S = {A, B} \ I.

Self- and cross-attention layers. We use a lightweight
attention mechanism [39, 66] for the implementation of the
self- and cross-attention. The message is computed by an
attention mechanism:

mleS = Z Softmaxges (ail,f)jvjs, (2)
Jjes



where a/; S

is an attentlon weight between point ¢ € I and
point j € S, while v¥ 7 € RP is the value vector obtained by
applying a linear transformation to :EJS . We define next how
this attention is computed.

Consider nodes 7 and j at positions p;, p; € R2. For self
layers, we define the attention score as

al; = q] R(pj — pi) k;» 3)

where g;, k; € R are obtained from ] and «} via sep-
arated linear transforms. Here, R(d) is a rotary positional
encoding [66] that increases attention between nearby el-
ements in a learned distance space. To ensure translation
equivariance, we use the relative position d = p; — p; and
project it onto learned 2D vectors by, to obtain K /2 angles
0. This defines

R(b] d) 0

R(d) = .

0 R K d)

“4)

Thus, R(d) splits the K -dimensional space into K/2 2D

subspaces and rotates each by 6 (akin to Fourier Fea-

tures [36, 54]), combining spatial relative location with the

query-key alignment in a” In our implementation, we use
K = 64 with four parallel attention heads.

For cross layers, the attention score a!? i

;j 1s computed as

5= (k)T K], (5)

where the cross layers are bidirectional to save computation.

Attentional Line Message Passing. GlueStick intro-
duced the Line Message Passing (LMP) layer, which av-
erages messages from neighboring nodes based on line
connectivity. However, line detectors can produce non-
repeatable lines across views, causing inconsistencies in
line connectivity for some endpoints that are otherwise
matchable. To account for this, we propose Attentional Line
Message Passing (ALMP), which aggregates messages with
an attention mechanism.

Line endpoint feature vectors are updated as in Eq. (1),
where the messages are passed between nodes of the same
image. The message is computed as:

I _
m; = E

JEN ()U{i}

SOftmanGN(z)u{z}(azk)j JI’ (6)

where N (i) denotes the set of neighboring endpoint nodes
of 7 based on its line connectivity, that is, endpoints directly
connected to ¢ by wireframe construction. The term a;y,
represents the attention score between endpoints ¢ and k,
calculated as in Eq. (3), and ’UJI € RP is a value vector ob-
tained by applying a linear transformation to the endpoint

feature vector 335 )

T~ _ [ cos O —sin0y
R(Hk) - (sin 0, cos by ) .

By rotating feature vectors based on the relative positions of
line endpoints, the network effectively captures the angular
relationships between lines meeting at a junction, thereby
facilitating the matching of junctions with similar angular
connectivity across views. The learned attention further
enables the network, after the cross-layer, to identify end-
points that are non-repeatable but connected to repeatable
ones, and to ignore them for improved matching.

3.2. Correspondence Prediction

Points. To predict point correspondences, we compute an
assignment matrix based on point-wise similarity scores.
The similarity score s . for points 7 in A and j in B is:

M) Linear(z?), (7

where Linear(-) is a learned linear transformation. We com-
pute a matchability score for each point ¢ € I as

P! = Sigmoid (Linear(z;)). ©

K2

= Linear(x;

Finally, the assignment matrix Sfj combines the point
similarity and matchability:

SP =P p7BSOftmaX]€B( )Softmax;e 4 (sy;).  (9)

Lines. Lines are matched similarly, but by matching
endpoints in an order-agnostic manner. Suppose =%, z! are
feature vectors of two endpoints of the same line in image

1. We first project the features with a linear transform:

y! = Linear(x!), y! = Linear(x!) (10)

The similarity score s! ; forlines i in A and j in B is then:

si; = max ((y;“)Tyf + () Y2,
an
(u)"y? + () y?).
We define the matchability score of an endpoint as in Equa-
tion (8), but with a distinct linear layer. This ensures that
the noise from matching less repeatable endpoints does not
affect the point matching. The matchability score o for line
1 1s then computed as the average of its endpoint matchabil-
ities:
ol = Sigmoid (Linear(z,)) + Sigmoid (Linear(z.))
3 2 b
(12)
where =4 and z. are the endpoint descriptors. Similar to
keypoints, the assignment matrix for lines S ; combines line
similarity and matchability:
Sl _ l A z B

Softmax ;¢ p (s ;)Softmax;e 4 (s l) (13)

Match ﬁltermg. A pair of points or lines (¢, j) is con-
sidered a valid correspondence if both points or lines are
predicted to be matchable and if their similarity is higher
than that of any other point or line in either image. We se-
lect pairs where S;; exceeds a threshold 7 and is greater
than all other elements in its respective row and column.



3.3. Supervision

We supervise our model using ground truth point and line
matches derived from homographies or computed based on
pixel-wise depth and relative pose, following the ground
truth generation method of GlueStick [50]. This results
in the following ground truth matches: a set of positive
matches, represented by index pairs MP for points and M!
for lines, as well as sets of unmatchable point and line in-
dices for both views, denoted as AP s BP for points and fll,
B! for lines.

To encourage early prediction of correspondences, the
model is supervised after each layer. Dropping the index for
points or lines, we define the negative log-likelihood of the
predicted assignments for a given feature (points or lines) at
layer ¢:

- 1

L8, M, A, B) = M D log' s
(i,j)EM

1

- 2|A|

log (1-"07") (14
icA

~ 5 De (1=
jeB
The final loss is an average of the point and line losses at all
layers, where L is the total number of layers:
S LN(8Y, MY AT BY) + (8L, M AL B

£: 177 170
2L

(15)
3.4. Adaptive Depth and Width

We adopt adaptivity mechanisms from LightGlue, specifi-
cally reducing the number of layers based on the difficulty
of image pairs and pruning keypoints that are confidently
predicted as unmatchable.

Confidence Classifier: If an image pair is easy (i.e., has
large visual overlap and minimal appearance shift), early-
layer predictions will closely match those of later layers, so
that we can stop the prediction of the network early. After
each block ¢, we estimate the confidence that each node’s
assignment remains unchanged in the final output:

¢t = Sigmoid(MLP(x;)). (16)

Exit criterion: Following LightGlue, we terminate infer-
ence early when a sufficient fraction of nodes are confident.
A node is considered confident if its predicted confidence
exceeds a threshold A, at layer £. Assuming N nodes in im-
age A and M nodes in image B, inference is halted if the
fraction of confident nodes surpasses a predefined threshold
o

exit =

Z ZH0>A@ >a. (17)

Ie{A B} i€l

Note that we do not compute confidence scores for lines
directly; instead, we rely on keypoint and endpoint confi-
dences to obtain reliable line matches from earlier layers.
Pruning. When testing the point and line pruning proposed
in LightGlue [39], we did not observe a significant speedup
brought by pruning strategies. In particular for lines, given
that images often contain much fewer lines than points, the
overhead brought by the line pruning is often surpassing the
gains in speedup. Therefore, we did not further explore the
pruning of nodes during inference.

4. Experiments

We pre-train LightGlueStick on image pairs obtained by
synthetic homography warps, sampled from the 1M distrac-
tor images of [53]. Following this, we fine-tune the model
on the Megadepth dataset [37], which contains 196 scenes
of tourist landmarks. We use gradient checkpointing [11]
to fit a batch of 32 image pairs on a single 40Gb Nvidia
A100 GPU. The images are resized to 1024x1024 px. We
used Adam optimizer with a learning rate of 10~%. Train-
ing is conducted on homographies for 40 epochs, followed
by fine-tuning on MegaDepth for an additional 50 epochs.
The learning rate is exponentially decayed after the 20th and
30th epochs, respectively. The entire training process took
approximately 9 days.

Implementation details. LightGlueStick has L = 9
blocks of self-attention, Attentional Line Message Passing
(ALMP), and cross-attention layers. Each attention unit has
4 heads. The network is trained with 1500 keypoints and
250 lines, with nodes represented by D = 256 dimensional
features. We train LightGlueStick with Superpoint [13] lo-
cal features and use LSD [23] to detect lines.

Baselines. We compare LightGlueStick with the SOTA
sparse point matcher LightGlue [39]; the dense match-
ers LoFTR [69] and RoMa [18]; the line matchers:
SOLD? [49], LineTR [83], and L2D2 [1]; and two meth-
ods combining points and lines: PL-Loc [83] and Glue-
Stick [50]. SOLD? [49] employs its own line detec-
tor, while all other methods including LightGlueStick use
LSD [23] for line detection, if not otherwise specified.
“LG+Endpoints” refers to matching lines by first matching
their endpoints with LightGlue [39], then finding the best
association of pairs of endpoints as in [50].

Architecture Line AP  Time (ms)
GlueStick 70.9 105.6
LightGlueStick (ALMP) 74.6 47

< a) no LMP 68.4 39

< b) mean LMP 73.3 54

Table 1. Ablation study on the ETH3D dataset [63]. We com-
pare our ALMP against no LMP and GlueStick’s mean LMP.



(a) GlueStick [50]

(b) Ours

Figure 3. LightGlueStick successfully predicts matches on rotated
images, despite not being trained on them, whereas GlueStick [50]
fails to predict correct line matches.

4.1. Ablation Study

We evaluate the improvements brought by our contributions
on the ETH3D dataset [63]. Since our improvements are not
touching point matching, we show only the performance of
line matching here. We use the images of the 13 training
scenes of the high-resolution multi-view dataset, downsam-
ple them by a factor of 8, and sample pairs of images with
at least 500 keypoints in common in the official reconstruc-
tion. The ground truth line matches are obtained by lever-
aging the dataset LIDAR depth and poses, using the same
methodology as was used to supervise our network. Given
predicted line matches, we rank them by matching score,
and compute a precision-recall curve. We report the Aver-
age Precision (AP) in Tab. 1, computed as the Area Under
the Curve (AUC) of the precision-recall curve.

We compare the original GlueStick architecture [50]
with our final model (LightGlueStick (ALMP)), and also
ablate the latter with either no LMP, or the same LMP as
was used in GlueStick (referred to “mean LMP”). Starting
from the original GlueStick, we can observe that incorpo-
rating the learnings from LightGlue [39] for line matching
(rotary encoding, bi-directional attention, flash attention,
matchability prediction, shown in line “b) mean LMP”) al-
ready brings a significant boost of performance and effi-
ciency. Using no LMP incurs however a severe drop of
performance. On the contrary, our final model equipped
with our proposed ALMP gives the best balance between
performance and execution time.

4.2. Line Matching Evaluation on ETH3D

We evaluate the quality of our point and line matches on
the ETH3D dataset [63] by computing the Average Preci-
sion (AP) of either point or line matches. We also report
the average running time per image pair for each method.
The results can be found in Tab. 2. LightGlueStick obtains
the best performance across the board. One can note in par-

ticular that it surpasses the previous best point-line matcher
GlueStick [50] on both points and lines, while being more
than twice as fast. Note, that flash attention works better
with larger number of keypoints, hence there might not be
significant differences when using only points.

We also highlight in Fig. 3 an example where GlueStick
fails on a rotated image pair, while LightGlueStick man-
ages to correctly match lines, even though it was not trained
on such rotations. We hypothesize that the rotary encoding
is a strong asset in this situation because of its translation
equivariance that lets the network focus on modeling hard
transformations like the rotation in Fig. 3.

Method Point AP (1) Line AP (1) Time (ms) ()
LightGlue (LG) [39] 76.4 . 39
Points  C1ueStick [50] 77.0 - 92
LightGlueStick 77.0 - 44
L2D2 [1] - 249 546
. LineTR [83] - 32.7 189
Points = o1 b2 49] - 349 388
+ Lines K
LG+Endpoints 76.7 58.6 38
GlueStick [50] 76.5 70.9 106
LightGlueStick 78.1 74.6 47

Table 2. Point and line matching evaluation on the ETH3D
dataset [63]. We report the point and line Average Precision (AP)
in percentage, as well as the average execution time.

4.3. Homography Estimation on HPatches

HPatches [4] is a standard dataset used to benchmark ho-
mography estimation. It consists in 108 sequences display-
ing either homography viewpoint or illumination changes
between image pairs. We match points and/or lines with
the matchers to evaluate, use the 4-point homography solver
implemented in PoseLib [32] when solving for the homog-
raphy from points only, and use the same three minimal
solvers combining 4 points, 2 points and 2 lines, or 4 lines
in a hybrid RANSAC implementation [8, 62] as in [50] for
the joint estimation. Using the ground truth homography,
one can compute the precision and recall of the matching
for both points and lines, as well as evaluate the quality of
the retrieved homographies. For this, we compute the AUC
of the reprojection error of the four image corners at three
error thresholds: 1/3 /5 pixels.

The results can be found in Tab. 3. We compare sep-
arately point-only, line-only, and joint point-line methods.
On points, the dense matchers [18, 69] obtain the best re-
sults, as could be expected from such powerful methods.
However, these methods remain costly to use and are sig-
nificantly slower than lightweight sparse matchers. For line
matchers, LightGlueStick obtains the best precision and re-
call and is on par with GlueStick [50] for homography es-
timation. The best performance is obtained after combin-
ing points and lines in the estimation, as the two features



AUC (1) | Points (1) | Lines (1)

Method Ipx 3px 5px| P R | P R
RoMa 440 723 813|958 97.0| - -
LoFTR 406 69.1 785|982 99.6| - -
P LightGlue 39.0 69.1 789|957 87| - -
GlueStick 38.6 69.1 79.0|948 89.3| - -
LightGlueStick 38.9 69.1 79.0 963 87.5| - -
L2D2 225 508 623] — - [594 423
LineTR 156 422 542| - - |81.1 538
L  SOLD2 143 322 415 - - |83 776
GlueStick 228 528 649| - - |91.0 842
LightGlueStick 22.5 52.8 655| - - |92.2 86.8
PL-Loc 357 63.6 74.1]86.3 68.3]80.9 53.5
P+L  GlueStick 38.5 69.9 79.9|953 89.4|90.4 86.7
LightGlueStick 39.2 69.8 79.4 | 97.3 87.2|92.7 87.2

Table 3. Homography estimation on HPatches [4]. We report
the success rate AUC at 1/3 /5 px thresholds, along with precision
(P) and recall (R) for point and line matching.

can complement each other depending on the scene. There,
LightGlueStick scores again similarly or better compared to
GlueStick [50], while being faster.

4.4. Dominant Plane Estimation on ScanNet

One of the standard applications combining points and lines
is the estimation of a homography between two images.
However, as noticed in previous works [50], the existing
datasets used to benchmark homography estimation such as
HPatches [4] are already saturated, and a comparison on
such datasets is moderately meaningful. Thus, we follow
the example of these previous works [5, 50], in which an
evaluation of homography estimation is proposed, by con-
sidering a pair of images, estimating the homography be-
tween the two dominant planes from feature matches, and
then converting the retrieved homography into a relative
pose [46] and comparing it to the ground truth pose. We use
the same solvers as in the previous experiment on HPatches
to obtain the homography.

We reuse the 1500 image pairs selected in [61], origi-
nally taken from the ScanNet dataset [12]. These images
come with the ground truth relative pose between the two
images, making it possible to compare the homography-
based relative pose with the ground truth one. Similarly to
previous works [50, 61], we report the pose error consisting
of the maximum angular error in translation and rotation,
as well as the pose AUC at 10° / 20° / 30° error thresh-
olds. For enhanced performance, the image resolution was
reduced by half for LoFTR [69].

The results are displayed in Tab. 4. The dense matcher
RoMa [18] is the best, but at a prohibitive running time: it
is more than 10 times slower than our method. For all three
categories of sparse matched features, points-only, line-

Method Pose Error () Pose AUC (1) Time (ms)
RoMa [18] 6.77 34.8/54.7/65.6 593
P LoFTR [69] 15.5 18.6/33.7/43.8 80
LightGlue [39] 12.3 21.8/38.4/48.9 28
GlueStick [50] 13.9 19.6/35.7/45.8 47
LightGlueStick 12.0 22.5/39.1/49.3 28
L2D2 [1] 63.3 3.8/8.8/13.7 496
LineTR [83] 52.6 39/9.8/154 84
L SOLD2 [49] 52.6 51/11.4/17.2 454
GlueStick [50] 27.0 9.5/19.9/29.0 60
LightGlueStick 27.2 10.5/21.0/29.7 46
PL-Loc [83] 24.2 12.1/24.6/33.3 169
P+ L GlueStick [50] 12.2 21.7/38.8/49.3 72
LightGlueStick 10.8 24.3/42.0/52.5 49

Table 4. Relative pose estimation by dominant plane on Scan-
Net [12]. We first estimate a homography based on point-only,
line-only, or points+lines matches, then decompose it into the cor-
responding relative pose. We report the median pose error in de-
grees, as well as the AUC at 10° / 20° / 30° error.

only, and points+lines, LightGlueStick performs the best.
One can note that even though the point matching archi-
tecture of LightGlueStick remains similar to the one from
LightGlue [39], it can slightly improve upon the original
LightGlue. The best results overall are obtained when com-
bining points and lines, due to the complementary nature of
the features: points excel in textured areas, while lines help
on the frequent texture-less areas present in indoor data such
as in ScanNet. Notably, LightGlueStick is able to improve
the scores of GlueStick [50] by 3 points in AUC.

4.5. Visual Localization

We also evaluate our joint point-line matcher on a visual lo-
calization task, where the goal is to find the camera pose
of a query image with respect to a pre-built map coming
from a set of database images. The 7Scenes dataset [65] is
a well-known dataset for this task, consisting of seven in-
door scenes with RGB-D images and ground truth poses.
We follow the hloc [60, 61] and LIMAP [40] frameworks
by detecting SuperPoint feature points [13]; extracting LSD
lines [23]; for every query image, retrieve the top 10 closest
images in the database with NetVlad [3]; and match them
with the different matchers we are evaluating. When evalu-
ating a pure line matcher, we use LightGlue [39] to match
the points. Since ground truth depth is available, we use
it to back-project lines to 3D on the database images, so
that we get 2D-3D matches and can use the P3P solver of
PoseLib [14, 32] for points, and the joint point-line solvers
of PoseLib [29, 32, 87] to estimate the absolute pose from
points and lines. The 7Scenes is however quite saturated
already, but the scene stairs remains the most challenging
one, especially for point features due to the lack of texture



Figure 4. Depth Adaptivity of LightGlueStick. LightGlueStick adaptively adjusts its depth based on image difficulty, exiting after the
4th layer for the top pair, the 5th layer for the middle pair, and the 7th layer for the bottom pair. The bottom pair requires more layers due
to its smaller visual overlap, making it more challenging to match. Processing times for the top, middle, and bottom pairs are 27ms, 34ms,

and 42ms, respectively.

and the repeated pattern of steps. Thus, we only show the
results on this scene in Tab. 5.

As shown in the table, point-only methods perform sim-
ilarly, but adding line features yields a notable boost due to
their long range across the image and their presence even
in texture-less areas. Among point+line methods, Light-
GlueStick matches the previous best, GlueStick [50], but
is nearly four times faster: GlueStick processes 7.0 pairs
per second, while LightGlueStick manages to process 26.9
pairs per second.

Method T/Rerr. Acc.

LightGlue [39] 43/1.14 57.9

Points GlueStick [50] 4.1/1.08 60.3
LightGlueStick 41/1.13 59.8

SOLD2 [49] 3.1/0.82 78.1

Points LineTR [83] 3.1/0.81 76.8
+ Lines L2D2 [1] 29/0.77 78.4
GlueStick [50] 2.7/0.73 78.8
LightGlueStick 2.7/0.74 79.1

Table 5. Visual localization on scene stairs of the 7Scenes
dataset [65]. We report the median translation / rotation errors
(cm / deg) and pose accuracy at Scm / 5° threshold.

5. Conclusion

In this work, we introduced a deep network for joint point
and line matching that operates at near real-time speeds (20
FPS). Introducing novel architecture changes, we in partic-
ular explicitly encoded the line connectivity into the net-
work, and let the network reason about non-repeatable fea-
tures through a novel Attention Line Message Passing. We
demonstrate that our method maintains or even improves
upon the performance of state-of-the-art sparse matchers,
while also being among the fastest point matchers avail-
able. Furthermore, our approach surpasses the fastest line
matchers by a significant margin, setting a new benchmark
for speed and accuracy. Additionally, by incorporating the
adaptivity mechanism, we enable the network to predict
line matches earlier, further reducing the runtime of our
matcher, with only a marginal trade-off in performance. By
enabling fast and accurate feature matching, our method un-
locks the potential for real-time point-line feature fusion in
embedded systems, such as robotics and mobile devices.
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