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Abstract

Solving partial differential equations (PDEs) is a fundamental problem in engineer-
ing and science. While neural PDE solvers can be more efficient than established
numerical solvers, they often require large amounts of training data that is costly to
obtain. Active Learning (AL) could help surrogate models reach the same accuracy
with smaller training sets by querying classical solvers with more informative initial
conditions and PDE parameters. While AL is more common in other domains, it
has yet to be studied extensively for neural PDE solvers. To bridge this gap, we
introduce AL4PDE, a modular and extensible AL benchmark. It provides multiple
parametric PDEs and state-of-the-art surrogate models for the solver-in-the-loop
setting, enabling the evaluation of existing and the development of new AL methods
for PDE solving. We use the benchmark to evaluate batch active learning algo-
rithms such as uncertainty- and feature-based methods. We show that AL reduces
the average error by up to 71% compared to random sampling and significantly
reduces worst-case errors. Moreover, AL generates similar datasets across repeated
runs, with consistent distributions over the PDE parameters and initial conditions.
The acquired datasets are reusable, providing benefits for surrogate models not
involved in the data generation.

1 Introduction

Neural PDE solvers [48, 26, 6, 11, 25] promise a faster alternative to classical numerical solvers,
while being also end-to-end differentiable. A main challenge of neural PDE surrogates is that their
training data is often obtained from the same expensive simulators they are intended to replace.
Hence, training a surrogate provides a computational advantage only if the generation of the training
data set requires fewer simulations than will be saved during inference. Moreover, it is non-trivial to
obtain training data covering all challenging dynamical regimes sufficiently. AL is a possible solution
to these challenges as it iteratively selects the most informative and diverse training trajectories,
thereby reducing the total number of simulations required to reach the same level of accuracy. AL has
recently been applied to PDEs in the context of PINNs [56, 45, 1], specific PDE domains [36, 37], or
direct prediction models [24, 25]. For example, AL has been applied to the stationary solution of a
diffusion problem [5] and to finding extreme events [38]. In multi-fidelity AL, the optimal spatial
resolution of the simulation is chosen [22, 23, 57]. Li et al. [24] use an ensemble of FNOs in the
single prediction setting. Wu et al. [58] apply AL to stochastic simulations using a spatio-temporal
neural process. Hence, AL is still unexplored for a broader class of neural PDE solvers, which
currently rely on extensive numerical simulations to generate a sufficient amount of training data.
Thus, we introduce AL4PDE, which, contrary to prior benchmarks [48, 11, 12, 28, 27], is the
first framework for evaluating and developing AL methods for neural PDE solvers. In addition to
various AL algorithms, the extensible framework provides numerical simulators for multiple PDEs
(e.g., Navier-Stokes) and neural surrogates (e.g., SineNet [63]). An initial study shows that AL can
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Figure 1: An extensible benchmark framework for pool-based active learning of neural PDE solvers.

increase the data efficiency and especially reduces worst-case errors. The generated data distribution
is consistent between random repetitions, showing that AL reliably generates reusable datasets.

2 Background

We seek the solution u : [0, T ] × X → RNc of a PDE with a D-dimensional spatial domain X ,
x = [x1, x2, . . . , xD]⊤ ∈ X , temporal domain t ∈ [0, T ], and Nc field variables or channels c [6]:

∂t u = F (λ, t,x,u, ∂x u, ∂xx u, . . .) , (t,x) ∈ [0, T ]×X (1)

u(0,x) = u0(x), x ∈ X ; B[u](t,x) = 0, (t,x) ∈ [0, T ]× ∂X (2)

Here, the boundary condition B (Eq. 2) determines the behavior of the solution at the boundaries
∂X of the spatial domain X , and the initial condition (IC) u0 defines the initial state of the system
(Eq. 2). The vector λ = (λ1, ..., λl)

⊤ ∈ Rl with λi ∈ [ai, bi] denotes the PDE parameters. We
only consider a single boundary condition (periodic) for simplicity, and thus a single initial value
problem can be identified by the tuple ψ = (u0,λ). The inputs to the initial value problem are
drawn from pT , ψ ∼ pT (ψ) = pT (u

0)pT (λ). The solution u is uniformly discretized across
the spatial dimensions, yielding Nx spatial points in total and the temporal dimension into Nt

timesteps. We aim to replace the numerical solver with a neural, autoregressive PDE solver Gθ with
û(t + ∆t, ·) = Gθ(û(t, ·),λ) [26]. The network parameters θ are optimized on training samples
Strain = {(ψ1,u1), . . . , (ψNtrain

,uNtrain)} using the root mean squared error (RMSE).

3 AL4PDE: An AL Framework for Neural PDE Solvers

The AL4PDE benchmark consists of three major parts: (1) AL algorithms, (2) surrogate models, and
(3) PDEs and the corresponding simulators. It follows a modular design to make the addition of new
approaches or problems as easy as possible (Fig. 5).

Active Learning Setup AL aims to select the most informative training samples so that the model
can reach the same generalization error with fewer calls to the numerical solver. We measure the error
using test trajectories on random samples from an input distribution pT . Fig. 1 shows the full AL
cycle. Since it requires retraining the NN(s) after each round, we use batch AL with sufficiently large
batches. Specifically, in each round, a batch of simulator inputs Sbatch = {ψ1, ...,ψNbatch

} is selected.
We implement pool-based AL, which selects from a set of possible inputs Spool = {ψ1, ...,ψNpool

}
called “pool”. The selected batch Sbatch is then removed from the pool, simulated, and added to
the training set Strain. We sample the pool set randomly from the test input distribution pT . The
initial batch is selected randomly. Since neural PDE solvers provide high-dimensional autoregressive
rollouts without direct uncertainty predictions, many AL methods cannot be applied straightforwardly.
We select AL methods based on uncertainty and features [15]. As a generic baseline, we compare to
the selection of a (uniformly) random sampling of the inputs, ψ ∼ pT (ψ).

2



Uncertainty-based AL Epistemic uncertainty is often used as a measure of sample informativeness.
We adopt the query-by-committee (QbC) approach [47], a simple but effective method that utilizes
the variance between the ensemble members’ outputs as an uncertainty estimate:

aQbC(ψi) :=
1

NtNxNc

Nt∑
j=1

Nx∑
k=1

1

Nm

Nm∑
m=1

∥ûi,m(tj ,xk)− ûi(tj ,xk)∥22 . (3)

Here, ûi is the mean prediction of all Nm models with ûi(t,x) =
∑

m ûi,m(t,x)/Nm. The ensemble
members produce different outputs ûi due to the inherent randomness resulting from the weight
initialization and stochastic optimization. The assumption of QbC is that the variance of the ensemble
member predictions correlates positively with the error. A high variance, therefore, points to a region
of the input space where we need more data. When given a single-sample acquisition function a,
such as the ensemble uncertainty, a simple and common approach to selecting a batch is taking
the k most uncertain samples (Top-K). However, this does not ensure that the selected batch is
diverse. Stochastic batch active learning (SBAL) samples inputs ψ from the remaining pool set Spool
without replacement according to the probability distribution ppower(ψ) ∝ a(ψ)m, where m is a
hyperparameter controlling the sharpness of the distribution [18]. Hence, it also selects samples from
regions that are not from the highest mode of the uncertainty distribution and encourages diversity.

Feature-based AL Many deep batch AL methods rely on some feature representation ϕ(ψ) ∈ Rp

of inputs and utilize a distance metric in the feature space as a proxy for the similarity between inputs,
which can help to ensure diversity of the selected batch. Moreover, they only need a single model.
We compute the trajectory and concatenate the spatially averaged latent features at each timestep.
Additionally, Gaussian sketching is applied [15]. In the simpler version of their Core-Set algorithm,
Sener and Savarese [46] iteratively select the input from the remaining pool with the highest distance
to the closest selected or labeled point. While Core-Set produces batches of diverse and informative
samples, it does not select samples that are representative of the proposal distribution. To alleviate
this issue, Holzmüller et al. [15] propose to replace the greedy Core-Set with LCMD, a method
inspired by k-medoids clustering. LCMD interprets previously selected inputs as cluster centers,
assigns all remaining pool points to their closest center, selects the cluster with the largest sum of
squared distances to the center, and from this cluster selects the point that is furthest away from the
center. This point then becomes a new center and the process is repeated until the batch is complete.

PDEs and Surrogates We consider 1D and 2D parametric PDEs (full details in Appendix B).
The first 1D PDE is the Burgers’ equation from PDEBench [48] with the kinematic viscosity as
the PDE parameter. Secondly, the Kuramoto–Sivashinsky (KS) equation from Lippe et al. [26] that
demonstrates diverse dynamical behaviors, from fixed points and periodic limit cycles to chaos [16].
Next to the viscosity, the domain length is also varied. Thirdly, to test a multiphysics problem
with more parameters, we include the so-called combined equation (CE) from Brandstetter et al.
[6] although without the forcing term. Depending on the value of the three PDE coefficients, this
equation recovers the Heat, Burgers, or the Korteweg-de-Vries PDE. For 2D, we use the compressible
Navier-Stokes (CNS) equations from PDEBench [48], The ICs are generated from random initial
fields. Regarding the surrogates, we include (i) a recent version of U-Net [44] from Gupta and
Brandstetter [11], (ii) SineNet [63], an enhancement of modern U-Net that corrects the feature
misalignment in the residual connections of U-Net, and (iii) the Fourier neural operator [FNO, 25].

4 Selection of Experiments

We perform an initial study on the behavior of AL using AL4PDE. We use a smaller version of the
modern U-Net [11], which is trained using sub-trajectories (two steps) to strike a balance between
learning to rollout and fast training. In each AL iteration, the amount of data added is equal to the
current training set size [18]. The pool size is fixed to 100,000 candidates and two ensemble members
are used to measure uncertainty. We repeat all experiments with five random seeds (Burgers: ten)
and report the 95% confidence interval of the mean. Fig. 2 shows the RMSE for the various AL
methods and PDEs. AL often reduces the error compared to sampling uniformly at random for the
same amount of data. The advantage is especially large for CE, which is likely due to the diverse
dynamic regimes found in the PDE. SBAL and LCMD achieve similar errors on all PDEs with the
exception of KS, where only SBAL can improve over random sampling. SBAL and LCMD can reach
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Figure 2: Error over the number of training trajectories (N). AL can reduce the error relative to
random sampling of the inputs on all tested PDEs but CNS, where the difference was not significant.
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Figure 3: (a) Error quantiles on KS. The 50%, 95%, and 99% quantiles are displayed using full,
dashed, and dotted lines, respectively. AL especially improves the higher error quantiles, making
the trained model more reliable. (b) Different base models on CNS using SBAL (solid) and random
sampling (dashed). SBAL can also improve the accuracy of other models besides the U-Net. (c)
Error of the standard U-Net on Burgers, with data selected using FNO or U-Net with SBAL. The
selected data is also helpful for a model not used during AL. (d) Marginal distribution of the diffusion
parameter of Burgers in the training set generated by AL (relative to the uniform distribution). The
shaded area represents the standard deviation between the random seeds. The distribution a small
standard deviation, indicating that AL reliably generates similar datasets between independent runs.

lower error values with only a quarter of the data points in the case of CE and Burgers. However,
the greedy methods Top-K and Core-Set even increase the error for some PDEs. The difference
in the CNS task was not significant, likely due to the performance of the base model training (see
Fig. 3b) for a stronger model). Worst-case errors are of special interest when solving PDEs. Since
we found the absolute maximum error to be unstable, we show the RMSE quantiles in Fig. 3a).
Notably, AL reduces the higher quantiles while the 50 % percentile error is increased. The marginal
distributions of the PDE parameter of Burgers equation are shown in Fig. 3d). These distributions are
highly similar for different random seeds, and thus, AL reliably selects similar training datasets. The
various AL methods generally sample similar parameter values but can differ substantially in certain
regions of the parameter space (Appendix G). To investigate the effect of the generated data on other
models, we use an FNO ensemble to select the data that we use to train the standard U-Net. Fig. 3c)
depicts the error of the U-Net, showing that the selected data is beneficial for models not used for
the AL-based data selection. The reusability of the data is especially important since, otherwise, the
whole AL procedure would have to be repeated every time a new model is developed.

5 Conclusion

This paper introduces AL4PDE, an extensible framework to develop and evaluate AL algorithms for
neural PDE solvers. An initial study shows that existing AL algorithms can already allow a model
to reach the same accuracy with up to four times fewer data points, produces consistent as well as
reusable datasets, and works well across surrogate architectures.
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A Additional Background on Related Work

In this section, we elaborate on related works that tackle active learning in relevant settings and
problems discussed here. Moreover, we summarize related work on uncertainty quantification and
SciML benchmarks closely related to the proposed AL4PDE benchmark.

A.1 General Active Learning

Most AL algorithms are evaluated on classic image classification datasets [3, 4] and many benchmarks
also consider the more common classification setting [42, 61, 62]. There is also work on specialized
tasks such as entity matching [30], structural integrity [33], material science [54], or drug discovery
[31]. Holzmüller et al. [15] present a benchmark for AL of single-output, tabular regression tasks.
Wu et al. [56] study different adaptive and non-adaptive methods for selecting collocation points for
PINNs. Ren et al. [43] benchmark pool-based AL methods on simulated, mostly tabular regression
tasks.

In terms of deep active learning methods for regression, there are multiple approaches: Query-by-
committee [47] uses ensemble prediction variances as uncertainties. Tsymbalov et al. [52] use Monte
Carlo dropout to obtain uncertainties; however, their method is only applicable by training with
dropout. Approaches based on last-layer Bayesian linear regression [39, 3] are often convenient since
they do not require ensembles or dropout. These methods are applicable in principle in our setting
but lose their original Bayesian interpretation since the last layer of a neural operator is applied
multiple times during the autoregressive rollout. Distance-based methods like Core-Set [46, 10] and
the clustering-based LCMD [15] exhibit better runtime complexity than last-layer Bayesian methods
while sharing their other advantages [15]. Since these algorithms just require some distance function
between two input points, we can adapt them to the neural PDE solver setting.

Physics-Informed Neural Networks and Neural Operators. In the context of neural PDE solvers,
AL has primarily been applied to select the so-called collocation points of PINNs. A typical approach
here would be to sample these collocation points based on the residual error directly [2, 9, 29, 56].
While this strategy can be effective, it differs from standard AL since it uses the “label”, i.e., the
residual loss, when selecting data points. Aikawa et al. [1] use a Bayesian PINN to select points
based on uncertainty, whereas Sahli Costabal et al. [45] employ a PINN ensemble for AL of cardiac
activation mapping. Pestourie et al. [35] use AL to approximate Maxwell equations using ensemble-
based uncertainty quantification for metamaterial design. Uncertainty-based AL was also employed
for diffusion, reaction-diffusion, and electromagnetic scattering [37].

A.2 Uncertainty Quantification (UQ)

Uncertainty quantification has been studied in the context of SciML simulations. Psaros et al. [40]
provide a detailed overview of UQ methods in SciML, specifically for PINNs and DeepONets.
However, effective and reliable UQ methods for neural operators (i.e., mapping between function
spaces) and high dimensionality of data, which is common in PDE solving, remain challenging.

Neural Operators. LE-PDE-UQ [59] deals with a method to estimate the uncertainty of neural
operators by modeling the dynamics in the latent space. The model has been shown to outperform
other UQ approaches, such as Bayes layer, Dropout, and L2 regularization on Navier-Stokes turbulent
flow prediction tasks. Unlike the considered setting in our case, the model utilizes a history of 10
timesteps and has been tested only on a fixed PDE parameter. Hence, it is unclear whether the
robustness of this approach remains when these settings change.

Mouli et al. [32] aim to develop a cost-efficient method for uncertainty quantification of parametric
PDEs, specifically one that works well in the out-of-domain test settings of PDE parameters. First,
the study shows the challenges of existing UQ methods, such as the Bayesian neural operator
(BayesianNO) for out-of-domain test data. It then shows that ensembling several neural operators is
an effective strategy for UQ that is well-correlated with prediction errors and proposes diverse neural
operators (DiverseNO) as a cost-effective way to estimate uncertainty with just a single model based
on FNO outputting multiple predictions.
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Thakur [50] studies UQ in the context of neural operators and develops a probabilistic FNO model
to quantify aleatoric and epistemic uncertainties. [55] study UQ for FNO and propose a Laplace
approximation for the Fourier layer to effectively compute uncertainty.

A.3 Further Scientific Machine Learning Benchmarks

In recent years, various benchmarks and datasets for SciML have been published. We outline some
of the major open-source benchmarks below.

PDEBench [48] is a large-scale SciML benchmark of 1D to 3D PDE equations modeling hydro-
dynamics ranging from Burgers’ to compressible and incompressible Navier-Stokes equations.
PDEArena [11] is a modern surrogate modeling benchmark including PDEs such as incompressible
Navier-Stokes, Shallow Water, and Maxwell equations [7]. CFDBench [28] is a recent benchmark
comprising four flow problems, each with three different operating parameters, the specific instan-
tiations of which include varying boundary conditions, physical properties, and geometry of the
fluid. The benchmark compares the generalization capabilities of a range of neural operators and
autoregressive models for each of the said operating parameters. LagrangeBench [51] is a large-
scale benchmark suite for modeling 2D and 3D fluid mechanics problems based on the Lagrangian
specification of the flow field. The benchmark provides both datasets and baseline models. For the
former, it introduces seven datasets of varying Reynolds numbers by solving a weak form of NS
equations using smoothed particle hydrodynamics. For the latter, efficient JAX implementations of
GNN baseline models such as Graph Network-based Simulator and (Steerable) Equivariant GNN
are included. EAGLE [17] introduces an industrial-grade dataset of non-steady fluid mechanics
simulations encompassing 600 geometries and 1.1 million 2D meshes. In addition, to effectively
process a dataset of this scale, the benchmark proposes an efficient multi-scale attention model, mesh
transformer, to capture long-range dependencies in the simulation. BubbleML [13] is a thermal
simulations dataset comprising boiling scenarios that exhibit multiphase and multiphysics phase
change phenomena. It also consists of a benchmark validating the dataset against U-Nets and several
variants of FNO.

B Additional Task Details

In the following section, we will discuss the tasks considered in detail. Table 1 shows the temporal
and spatial resolution of the considered PDEs. The test data consists of 2048 trajectories generated
with inputs from pT .

Burgers KS CE

CNS t = 0.8s  t = 1.0s t = 0.6s t = 0.4s t = 0.2s t = 0.0s 

x
y

x
t

Figure 4: Example trajectories of the PDEs.

PDE T in s Sim. Res. Train. Res.
(Nt, Nx, [Ny]) (Nt, Nx, [Ny])

Burgers 2 (201, 1024) (41, 256)
KS 40 (801, 512) (41, 256)
CE 4 (501, 64) (51, 64)
CNS 1 (21, 128, 128) (21, 64, 64)

Table 1: Discretizations of the PDEs.

B.1 Burgers’ Equation

The 1D Burgers’ equation is written as

∂tu+ u∂xu = (ν/π)∂xxu. (4)

The spatial domain is set to x ∈ [0, 1]. Following the parameter spacing of the PDE parameters values
in PDEBench [48] and CAPE [49], we draw them on a logarithmic scale, i.e., we first draw λi,normed
uniformly from [0, 1) and then transform the parameter to its domain [ai, bi) using

λi = ai exp(log(bi/ai)λi,normed). (5)

The parameter space is set to ν ∈ [0.001, 1). We use the FDM-based JAX simulator and the initial
condition generator from PDEBench [48]. The ICs are constructed based on a superposition of
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sinusoidal waves [48],

u0(x) =

Nw∑
i=1

Ai sin(2πkix/L+ ϕi) (6)

where the wave number ki is an integer sampled uniformly from [1, 5), amplitude Ai is sampled
uniformly from [0, 1), and phase ϕi from [0, 2π). The number of waves Nw is set to 2. Windowing
is applied afterward with a probability of 10%, where all parts of the IC are set to zero outside of
[xL, xR]. xL is drawn uniformly from [0.1, 0.45) and xR from [0.55, 0.9). Lastly, the sign of u0 is
flipped for all entries with a probability of 10%.

B.2 Kuramoto-Sivashinsky (KS)

The 1D KS equation reads as
∂tu+ u∂xu+ ∂xxu+ ν∂xxxxu = 0 x ∈ [0, L]. (7)

The ICs are generated using the superposition of sinusoidal waves (Eq. (6)), but ki is sampled from
[1, 10), Ai from [−1, 1) and ϕi from [0, 2π). No windowing or sign flips are applied. The total
number of waves Nw in this case is set to 10. Since we cannot omit the first part of the simulations
as Lippe et al. [26], we reduce the simulation time to 40s, but allow for more variance in the ICs
to reach the chaotic behavior easier by increasing the number of wave functions of the IC. The
trajectories are obtained using JAX-CFD [8]. The PDE parameters are drawn uniformly from their
range (no logarithmic scale). The domain length L is chosen from L ∈ [0.1, 100) and the viscosity
from ν ∈ [0.5, 4).

B.3 Combined Equation (CE)

We adopt the combined equation albeit without the forcing term and the corresponding numerical
solver from Brandstetter et al. [6].

∂tu+ ∂x
(
αu2 − β∂xu+ γ∂xxu

)
= 0 (8)

As for the IC, the domain of ki is set to [1, 3) and for Ai it is set as [−0.4, 0.4). The number of
waves Nw is set to 5, and no windowing or sign flips are applied either. The PDE parameters are also
drawn uniformly from their range. The parameter space is defined to be α ∈ [0, 3), β ∈ [0, 0.4) and
γ ∈ [0, 1). Depending on the choice of the PDE coefficients (α, β, γ), this equation recovers the Heat
(0, 1, 0), Burgers (0.5, 1, 0), or the Korteweg-de-Vries (3, 0, 1) PDE. The spatial domain is set to
x ∈ [0, 16].

B.4 Compressible Navier-Stokes (CNS)

The 2D CNS equations from PDEBench [48] are written as

∂tρ+∇ · (ρv) = 0, (9a)

ρ(∂tv + v · ∇v) = −∇p+ η△v + (ζ + η/3)∇(∇ · v), (9b)

∂t(ϵ+ ρv2/2) +∇ · [(p+ ϵ+ ρv2/2)v − v · σ′] = 0, (9c)

where σ′ is the viscous tensor. The equation has four channels (density ρ, velocity x-component vx
and y-component vy as well as the pressure p. The spatial domain is set to x ∈ [0, 1]× [0, 1] We use
the JAX simulator and IC generator from PDEBench [48] for CNS equations. The PDE parameters
are drawn in logarithmic scale as in Eq. (5) with η, ζ ∈ [10−4, 10−1). The IC generator for the
pressure, density, and velocity channels is also based on the superposition of sinusoidal functions.
However, the velocity channels are renormalized so that the IC has a given input Mach number, which
is drawn from m ∈ [0.1, 1). Secondly, we constrain the density channel to be positive by

uρ = ρ0(1 + ∆ρ u
′
ρ /max

x
(|u′

ρ(x)|) (10)

where ρ0 is sampled from [0.1, 10) and ∆ρ from [0.013, 0.26). The pressure channel p is similarly
transformed using ∆p ∈ [0.04, 0.8). The offset p0 is defined relatively to ρ0 as p0 = T0ρ0 with
T0 ∈ [0.1, 10). The compressibility is reduced using a Helmholtz-decomposition [48]. A windowing
is applied with a probability of 50% to a channel.
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C Additional Model and Training Details

This section describes the baseline surrogate models used in more detail, lists the hyperparameters,
and explains various training methods. First, we provide a short description of the base models used.
Then, we explain the training methods and list the hyperparameters.

C.1 Fourier Neural Operators (FNOs)

We use the FNO [25] implementation provided by PDEBench [48]. FNOs are based on spectral
convolutions, where the layer input is transformed using a Fast Fourier Transformation (FFT),
multiplied in the Fourier space with a weight matrix, and then transformed back using an inverse
FFT. Following the recent observations made in [19, 20] that only a small fixed number of modes
are sufficient to achieve the needed expressivity of FNO, we retain only a limited number of low-
frequency Fourier modes and discard the ones with higher frequencies. The raw PDE parameter
values are appended as additional constant channels to the model input [49].

C.2 U-shaped Networks (U-Nets)

U-Net [44] is a common architecture in computer vision, particularly for perception and semantic
segmentation tasks. The structure resembles an hourglass, where the inputs are first successively
downsampled at multiple levels and then gradually, with the same number of levels, upsampled
back to the original input resolution. This structure allows the model to capture and process spatial
information at multiple scales and resolutions. The U-Net used in this paper is based on the modern U-
Net version of Gupta and Brandstetter [11], which differs from the original U-Net [44] by including
improvements such as group normalization [60]. The model is conditioned on the input PDE
parameter values, where they are transformed into vectors using a learnable Fourier embedding [53]
and a projection layer and are then added to the convolutional layers’ inputs in the up and down
blocks.

C.3 SineNet

U-Nets were originally designed for semantic segmentation problems in medical images [44]. Due to
its intrinsic capabilities for multi-scale representation modeling, U-Nets have been widely adopted
by the SciML community for PDE solving [48, 11, 26, 41, 34]. One of the important components
of U-Nets to recover high-resolution details in the upsampling path is by the fusion of feature maps
using skip connections. This does not cause an issue for semantic segmentation tasks since the desired
output for a given image is a segmentation mask. However, in the context of time-dependent PDE
solving, specifically for advection-type PDEs modeling transport phenomena, this is not well-suited
since there will be a “lag” in the feature maps of the downsampling path since the upsampling path
is expected to predict the solution u for the next timestep. This detail was overlooked in U-Net
adaptations for time-dependent PDE solving. SineNet is a recently introduced image-to-image model
that aims to mitigate this problem by stacking several U-Nets, called waves, drastically reducing the
feature misalignments. More formally, SineNet learns the mapping

xt = P ({ut−h+1, . . . ,ut})

ut+1 = Q(xt+1)

xt+∆k
= Vk(xt−∆k−1

), k = 1, . . . ,K

Unlike the original SineNet, our adaptation uses only one temporal step as a context to predict the
solution for the subsequent timestep.

C.4 Hyperparameters and Training Protocols

During AL, we use m=1 for power sampling and a prediction batch size for the pool of 200. The
features of all inputs are projected using the sketch operator to a dimension of 512. Table 2 lists the
model hyperparameters.

13



U-Net

Activation GELU [14]
Conditioning Fourier [53]
Channel multiplier [1, 2, 2, 4]
Hidden Channels 16
# Params (1D) 3,378,865
# Params (2D) 9,182,036

FNO

Activation GELU [14]
Conditioning As additional channel [49]
Layers 4
Width (1D) 64
Width (2D) 32
Modes 20
# Params (1D) 353,154
# Params (2D) 3,286,310

SineNet

Activation GELU [14]
Conditioning Fourier [53]
Hidden Channels 32
Waves 4
# Params (2D) 5,020,840

Table 2: Model hyperparameters.

The inputs are channel-wise normalized using the standard deviation of the different channels on the
initial data set. The outputs are denormalized accordingly. The input only consists of the current
state ut, not including data from prior timesteps. All models are used to predict the difference to the
current timestep (for U-Net, the outputs are multiplied with a fixed factor of 0.3 following Lippe et al.
[26].

The neural network parameters θ are minimized using the root mean squared error (RMSE) on the
training samples,

LRMSE(u, û) =

√√√√ 1

NtNxNc

Nt∑
i=1

Nx∑
j=1

∥u(ti,xj)− û(ti,xj)∥22. (11)

We employ one- and two-step training strategies during the training phase and a complete rollout of
the trajectories during validation. The training is performed with a cosine schedule, which reduces
the learning rate from 10−3 to 10−5. The batch size is set to 512 (CNS: 64). For the FNO model in
the 2D experiment, we found it better to use the teacher-forcing schedule from [49]. We found it
necessary to add gradient clipping to prevent a sudden divergence in the training curve. To account
for the very different gradient norms among problems, we set the upper limit to 5 times the highest
gradient found in the first five epochs. Afterward, the limit is adapted using a moving average.

C.5 Hardware and Runtime

The experiments were performed on NVIDIA GeForce RTX 4090 GPUs (one per experiment).
Table 3 shows the runtime and GPU memory during training.

D Framework Overview

The framework has three major components: Model, BatchSelection, and Task. Task acts as a
container of all the PDE-specific information and contains the Simulator, PDEParamGenerator,
and ICGenerator classes. PDEParamGenerator and ICGenerator can draw samples from the test
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Burgers KS CE CNS

Runtime in h

Random 15.1 12.9 16.8 37.9
SBAL 22.9 20.1 25.6 54.4
LCMD 14.5 13.9 17.2 39.0
Core-Set 14.5 13.4 16.6 39.7
Top-K 22.1 29.8 26.4 55.5

Training Memory in GB

All 8.16 8.18 4.47 7.29

Table 3: Total runtime of the different AL methods and the memory during training (since all methods
train the same model, the memory usage during training is identical).

train()
rollout(ic, param)

Model

U-Net

FNO

SineNet

Random

generate(model, task, train) 

BatchSelection  Task

generate() 

ICGenerator

generate() 

PDEParamGenerator

evolve(ic, param)  

Simulator

Ensemble

uncertainty(ic, param)

ProbModel UncertaintyBased

DistanceBased

select(model, pool, train)

PoolBased BurgersSim

KSSim

CESim

CNSSim

Figure 5: Structural overview of the AL4PDE benchmark.

input distribution pT . The inputs are first drawn from a normalized range and then transformed into
the actual inputs. Afterward, the inputs can be passed to the simulator to be evolved into a trajectory.
Listing 1 shows the pseudocode of the (random) data generation pipeline. In order to implement a
new PDE, a user has to implement a new subclass of Simulator overwrite the __call__ function
and, if desired, add a new ICGenerator.

Listing 2 shows the interface for the Model and ProbModel classes. Model provides functions to
rollout a surrogate and deals with the training and evaluation. In order to add a new surrogate, a
user has to overwrite the forward method. The rollout function also allows to get the internal
model features for distance-based acquisition functions. ProbModel is an extension of the Model
class, which adds the possibility of getting an uncertainty estimate. After training the model, the
BatchSelection class is called in order to select a new set of inputs. The most important subclass
is the PoolBased class, which deals with managing the pool and provides the select_next method,
which a new pool-based method has to overwrite.

The code is available on GitHub at https://github.com/dmusekamp/al4pde.
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1 class PDEParamGenerator:
2

3 def get_normed_pde_params(self, n):
4 # Generates the random PDE parameters in a normed space
5 # (e.g. between 0 and 1).
6

7 def get_pde_params(self, pde_params_normed):
8 # Transforms the normed parameters to their true value.
9

10

11 class ICGenerator:
12

13 def initialize_ic_params(self, n):
14 # Generates the random parameters of an IC (e.g. Mach number).
15

16 def generate_initial_conditions(self, ic_params, pde_params)
17 # Transforms the IC parameters and PDE parameters to the IC.
18

19

20 class Simulator:
21

22 def __call__(self, ic, pde_params, grid):
23 # Evolves the IC for a given PDE parameter.
24

25

26 # generate pde parameters
27 pde_params_normed = pde_gen.get_normed_pde_params(n)
28 pde_params = pde_gen.get_pde_params(pde_params_normed)
29

30 # generate ICs
31 ic_params = ic_gen.initialize_ic_params(n)
32 ic_gen.generate_initial_conditions(ic_params, pde_params)
33

34 trajectories = sim(ic, pde_param, grid)

Listing 1: Interface and example code for generating inputs and simulation.
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1 class Model(nn.Module):
2

3 def init_training(self, al_iter):
4 # Reset model, optimizer, scheduler, ...
5

6 def forward(self, xx, grid, param, return_features):
7 # Predic next state.
8

9 def rollout(self, xx, grid, final_step, param, return_features):
10 # Autoregressive rollout of the model until timestep final_step.
11

12 def evaluate(self, step, loader, prefix):
13 # Evaluate the model on the given dataset (e.g. validation, train).
14

15 def train_single_epoch(self, current_epoch, total_epoch, num_epoch):
16 # Train the model for one epoch.
17

18 def train_n_epoch(self, al_iter, num_epoch):
19 # Train the model .
20

21

22 class ProbModel(Model):
23

24 def uncertainty(self, xx, grid, param):
25 # Get uncertainty over next state.
26

27 def unc_roll_out(self, xx, grid, final_step, param, return_features):
28 # Compute prediction and uncertainty of the rollout.
29

30

31 class BatchSelection:
32

33 def generate(self, prob_model, al_iter, train_loader):
34 # Selects new inputs and passes them to the simulator.
35

36

37 class PoolBased(BatchSelection):
38

39 def select_next(self, step, prob_model, ic_pool, pde_param_pool,
40 ic_train, pde_param_train, grid, al_iter):
41 # Selects new input from (ic_pool, pde_param_pool).
42

43

44 for al_iter in range(num_al_iter):
45 # retrain model
46 prob_model.train_n_epoch(al_iter, num_epoch)
47

48 # select next inputs
49 batch_sel.generate(prob_model, al_iter, train_loader)

Listing 2: Interface and example code for the neural operator models and AL methods.
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E Additional Experiments

In this section, we provide additional experiments and ablation studies.

E.1 Timing Experiment

The main experiments only provide the error over the number of data points since we use problems
with rather fast solvers to accelerate the benchmarking of the AL methods. Additionally, a more
lightweight model, trained for a shorter time, might be enough for data selection even if it does not
reach the best possible accuracy. To investigate AL in terms of time efficiency gains, we perform one
experiment on the Burgers’ PDE, for which the numerical solver is the most expensive among all 1D
PDEs due to its higher resolution.
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Figure 6: (a) Error of the standard U-Net on Burgers over the required total time. Using smaller
FNOs to select the data, SBAL can provide smaller errors in the same amount of time. (b) Cumulative
training, selection, and simulation times necessary to reach the given active learning iteration (e.g.,
time to select data for iteration 2 counted in iteration 2) for the timing experiment.

A realistic time measurement for the simulator of Burgers’ equation is challenging. Firstly, we
observed that we can reach the shortest time per trajectory by setting the batch size to 4096 (0.52
seconds). Therefore, we use this as the fixed time per trajectory. The actual simulation times per
AL iteration are higher since we start with batch sizes below this saturation point. Secondly, the
simulation step size is adapted to the PDE parameter value due to the CFL condition [21]. Therefore,
it would be beneficial to batch similar parameter values together and also to consider the parameter
simulation costs in the acquisition function. Fig. 6b) shows training, selection, and simulation times.

The FNO surrogate used for selection is only trained for 20 epochs with a batch size of 1024. We use
one-step training, and the learning rate of 0.001 is not annealed. The model itself has a width of 20
and uses 20 modes, resulting in 36,706 parameters. During selection, a batch size of 32,768 is used.

We train a regular U-Net on the AL collected data, which allows us to use a small, lightweight model
for data selection only and an expensive one to evaluate the data selected. Fig. 6a) shows the accuracy
of the evaluation U-Net over the cumulative time consumed for training the selection model, selecting
the inputs, and simulation. For the random baseline, only the simulation time is considered. On
Burgers, AL provides better accuracy for the same time budget.

E.2 Different Error Function

It is important to consider error metrics for surrogate model training besides the RMSE [48]. Thus,
we explore the impact of AL on the mean absolute error (MAE) as an example of an alternative
metric. As depicted in Fig. 7, SBAL, when using the absolute difference between the models as the
uncertainty, can also successfully reduce the MAE. However, the MAE does not improve greatly
relative to random sampling when the standard variance between the models is used. Hence, it is
crucial to tailor the AL method to the relevant metric.
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Figure 7: AL with the MAE as the objective on Burgers, compared to the MAE of the same setup
trained with the RMSE (dashed). Considering the desired error metric in the uncertainty estimate and
training loss is essential.

E.3 Additional Ablations

We ablate different design choices for the considered AL algorithms. For the SBAL algorithm, we
investigate the ensemble size (Fig. 8a) next to the choice of the base model architecture in Fig. 3.
Consistent with prior work [38], choosing an ensemble size of two models is already sufficient
(Fig. 8a). In general, the average uncertainty and error of a trajectory with two ensemble members
are correlated with a Pearson coefficient of 0.41 on CE in the worst case up to 0.94 on CNS (Table 8).
Fig. 8b) compares different feature choices for the LCMD algorithm, which are used to calculate the
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(b)  LCMD Features
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Figure 8: (a) Number of models M in the ensemble on Burgers. SBAL works reliably with only
two models. (b) Comparison of different feature vectors LCMD on CE. Shown are the last layer
feature map (LL), its spatial average (LL), as well as the features of the mid layer (ML) and its
spatial average (ML). Averaging the feature maps improves the error, indicating the importance of
considering the model invariances.

distances. Using the spatial average of the last layer features produces higher accuracy than using
the full feature vector or the features from the bottleneck step in the middle of the U-Net. Thus, it
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is indeed important for distance-based selection to consider the equivariances of the problem in the
distance function.

F Detailed Results

Tables 4, 5, 6 and 7 list the results from the main experiments. Table 8 shows the Pearson and
Spearman coefficient of the average uncertainty per trajectory with the average error per trajectory.
Among the PDEs, the Pearson correlation coefficient is the lowest on CE. The Spearman coefficient,
which measures the correlation in terms of the ranking, is above 0.73 on average for all experiments.

Iteration 1 2 3 4 5

RMSE ×10−2

Random 3.684± 1.203 3.278± 2.107 1.607± 0.485 1.062± 0.614 0.552± 0.133
SBAL 3.684± 1.203 1.179± 0.223 0.586± 0.106 0.400± 0.075 0.259 ± 0.028
LCMD 3.684± 1.203 0.808 ± 0.053 0.521 ± 0.052 0.394 ± 0.043 0.269± 0.014

Core-Set 3.684± 1.203 1.021± 0.160 0.659± 0.100 0.476± 0.134 0.292± 0.015
Top-K 3.684± 1.203 1.494± 0.250 0.964± 0.258 0.477± 0.044 0.360± 0.096

50% Quantile ×10−2

Random 0.182± 0.015 0.122 ± 0.015 0.083 ± 0.010 0.058 ± 0.005 0.044 ± 0.007
SBAL 0.182± 0.015 0.178± 0.032 0.105± 0.011 0.078± 0.011 0.054± 0.006
LCMD 0.182± 0.015 0.129± 0.014 0.101± 0.015 0.068± 0.008 0.050± 0.006

Core-Set 0.182± 0.015 0.169± 0.017 0.133± 0.013 0.094± 0.014 0.063± 0.008
Top-K 0.182± 0.015 0.197± 0.020 0.176± 0.024 0.109± 0.010 0.078± 0.012

95% Quantile ×10−2

Random 1.468± 0.136 0.834± 0.125 0.502 ± 0.037 0.343 ± 0.014 0.255 ± 0.025
SBAL 1.468± 0.136 1.054± 0.248 0.544± 0.065 0.409± 0.064 0.269± 0.026
LCMD 1.468± 0.136 0.669 ± 0.069 0.503± 0.091 0.347± 0.030 0.259± 0.020

Core-Set 1.468± 0.136 0.865± 0.123 0.662± 0.090 0.503± 0.113 0.336± 0.034
Top-K 1.468± 0.136 1.273± 0.177 1.045± 0.200 0.575± 0.064 0.449± 0.077

99% Quantile ×10−2

Random 6.315± 0.838 3.327± 0.724 1.653± 0.111 0.968± 0.046 0.649± 0.027
SBAL 6.315± 0.838 3.169± 0.945 1.360± 0.213 0.987± 0.239 0.599± 0.056
LCMD 6.315± 0.838 1.802 ± 0.157 1.223 ± 0.237 0.819 ± 0.108 0.573 ± 0.041

Core-Set 6.315± 0.838 2.461± 0.500 1.756± 0.360 1.153± 0.295 0.703± 0.056
Top-K 6.315± 0.838 4.456± 1.685 3.251± 1.039 1.347± 0.129 1.048± 0.326

Table 4: Error metrics on the Burgers’ equation.
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Iteration 1 2 3 4 5

RMSE

Random 0.452± 0.026 0.370± 0.012 0.312± 0.013 0.272± 0.010 0.229± 0.010
SBAL 0.452± 0.0260.347 ± 0.0200.281 ± 0.0100.236 ± 0.0080.200 ± 0.012
LCMD 0.452± 0.026 0.370± 0.009 0.315± 0.013 0.266± 0.019 0.219± 0.018

Core-Set0.452± 0.026 0.389± 0.011 0.335± 0.013 0.278± 0.006 0.235± 0.020
Top-K 0.452± 0.026 0.378± 0.018 0.305± 0.011 0.264± 0.014 0.225± 0.015

50% Quantile

Random 0.021± 0.0050.011 ± 0.0020.008 ± 0.0010.005 ± 0.0010.003 ± 0.001
SBAL 0.021± 0.005 0.016± 0.004 0.013± 0.003 0.008± 0.001 0.006± 0.001
LCMD 0.021± 0.005 0.020± 0.003 0.016± 0.003 0.009± 0.003 0.006± 0.001

Core-Set0.021± 0.005 0.022± 0.003 0.021± 0.002 0.014± 0.002 0.009± 0.002
Top-K 0.021± 0.005 0.020± 0.003 0.018± 0.002 0.012± 0.003 0.010± 0.002

95% Quantile

Random 0.603± 0.1060.363 ± 0.0200.231 ± 0.0240.143 ± 0.0110.094 ± 0.006
SBAL 0.603± 0.106 0.376± 0.060 0.255± 0.031 0.163± 0.022 0.119± 0.018
LCMD 0.603± 0.106 0.458± 0.024 0.344± 0.024 0.230± 0.035 0.140± 0.023

Core-Set0.603± 0.106 0.501± 0.025 0.425± 0.034 0.295± 0.021 0.213± 0.053
Top-K 0.603± 0.106 0.458± 0.017 0.340± 0.026 0.257± 0.039 0.188± 0.016

99% Quantile

Random 2.368± 0.153 1.844± 0.105 1.382± 0.117 1.040± 0.092 0.708± 0.048
SBAL 2.368± 0.1531.655 ± 0.1371.177 ± 0.1000.844 ± 0.1030.619 ± 0.093
LCMD 2.368± 0.153 1.811± 0.056 1.440± 0.097 1.151± 0.123 0.802± 0.149

Core-Set2.368± 0.153 1.920± 0.077 1.571± 0.090 1.230± 0.046 0.982± 0.202
Top-K 2.368± 0.153 1.860± 0.126 1.356± 0.092 1.138± 0.086 0.873± 0.119

Table 5: Error metrics on KS.
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Iteration 1 2 3 4 5

RMSE ×10−2

Random 4.651± 1.293 3.814± 1.121 2.609± 0.466 1.630± 0.257 1.108± 0.117
SBAL 4.651± 1.293 1.597± 0.083 0.931± 0.125 0.496 ± 0.087 0.318 ± 0.048
LCMD 4.651± 1.293 1.528 ± 0.121 0.957± 0.114 0.609± 0.107 0.338± 0.041

Core-Set 4.651± 1.293 1.596± 0.235 1.033± 0.076 0.761± 0.230 0.424± 0.053
Top-K 4.651± 1.293 1.678± 0.099 0.904 ± 0.101 0.529± 0.103 0.373± 0.077

50% Quantile ×10−2

Random 0.238± 0.025 0.166 ± 0.036 0.125 ± 0.021 0.083± 0.005 0.065± 0.004
SBAL 0.238± 0.025 0.200± 0.024 0.125± 0.009 0.076 ± 0.008 0.052 ± 0.004
LCMD 0.238± 0.025 0.171± 0.007 0.128± 0.015 0.083± 0.008 0.054± 0.004

Core-Set 0.238± 0.025 0.224± 0.070 0.168± 0.020 0.143± 0.059 0.083± 0.009
Top-K 0.238± 0.025 0.211± 0.019 0.155± 0.016 0.111± 0.015 0.073± 0.008

95% Quantile ×10−2

Random 2.373± 0.220 1.619± 0.222 1.090± 0.050 0.695± 0.039 0.516± 0.019
SBAL 2.373± 0.220 1.723± 0.126 0.980 ± 0.070 0.510 ± 0.036 0.313 ± 0.014
LCMD 2.373± 0.220 1.485 ± 0.121 1.038± 0.087 0.609± 0.061 0.361± 0.020

Core-Set 2.373± 0.220 1.902± 0.379 1.389± 0.126 1.102± 0.469 0.598± 0.095
Top-K 2.373± 0.220 1.901± 0.100 1.236± 0.099 0.739± 0.151 0.416± 0.039

99% Quantile ×10−2

Random 10.192± 1.523 7.260± 1.226 4.741± 0.281 2.893± 0.227 1.870± 0.099
SBAL 10.192± 1.523 4.756± 0.215 2.701 ± 0.251 1.433 ± 0.070 0.896 ± 0.053
LCMD 10.192± 1.523 4.198 ± 0.103 2.787± 0.210 1.631± 0.178 0.991± 0.038

Core-Set10.192± 1.523 5.056± 0.827 3.526± 0.212 2.638± 1.069 1.446± 0.290
Top-K 10.192± 1.523 5.382± 0.373 3.174± 0.181 1.756± 0.448 0.972± 0.092

Table 6: Error metrics on CE.
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Iteration 1 2 3 4 5

RMSE

Random 2.662± 0.339 2.162± 0.029 1.856± 0.106 1.572± 0.072 1.362± 0.065
SBAL 2.662± 0.339 1.979 ± 0.226 1.790± 0.203 1.458± 0.140 1.205 ± 0.027
LCMD 2.662± 0.339 1.991± 0.293 1.734± 0.189 1.356 ± 0.081 1.277± 0.083

Core-Set 2.662± 0.339 2.322± 0.350 1.731 ± 0.168 1.613± 0.202 1.343± 0.186
Top-K 2.662± 0.339 2.684± 1.129 2.070± 0.368 1.623± 0.524 1.313± 0.106

50% Quantile

Random 0.506± 0.119 0.447 ± 0.156 0.356 ± 0.111 0.266 ± 0.087 0.209 ± 0.034
SBAL 0.506± 0.119 0.480± 0.116 0.543± 0.344 0.336± 0.063 0.295± 0.053
LCMD 0.506± 0.119 0.574± 0.361 0.412± 0.234 0.317± 0.065 0.312± 0.085

Core-Set 0.506± 0.119 0.562± 0.154 0.411± 0.085 0.433± 0.191 0.408± 0.120
Top-K 0.506± 0.119 0.653± 0.165 0.521± 0.133 0.483± 0.174 0.400± 0.065

95% Quantile

Random 4.421± 0.630 3.491± 0.154 2.828± 0.314 2.317± 0.207 1.927± 0.170
SBAL 4.421± 0.630 3.308± 0.550 2.936± 0.370 2.310± 0.349 1.821 ± 0.128
LCMD 4.421± 0.630 3.263 ± 0.561 2.758 ± 0.351 2.025 ± 0.177 2.003± 0.326

Core-Set 4.421± 0.630 4.235± 0.899 2.952± 0.375 2.690± 0.396 2.189± 0.437
Top-K 4.421± 0.630 5.009± 2.402 3.891± 0.921 2.911± 1.392 2.238± 0.289

99% Quantile

Random 11.378± 1.863 9.135± 0.253 7.754± 0.507 6.620± 0.340 5.735± 0.320
SBAL 11.378± 1.863 8.295± 1.062 7.195 ± 0.786 6.058± 0.573 4.933 ± 0.112
LCMD 11.378± 1.863 8.196 ± 0.926 7.229± 0.609 5.569 ± 0.362 5.265± 0.399

Core-Set11.378± 1.863 9.739± 1.416 7.263± 0.707 6.646± 0.794 5.404± 0.722
Top-K 11.378± 1.863 11.424± 5.585 8.531± 1.478 6.466± 2.101 5.237± 0.417

Table 7: Error metrics on CNS.

Iteration 1 2 3 4

Pearson

KS 87.1± 3.8 84.9± 2.3 78.0± 5.4 80.5± 3.7
CE 49.2± 16.2 62.0± 14.6 41.3± 22.1 73.8± 20.9

CNS 78.2± 6.4 78.9± 18.0 90.8± 2.7 94.3± 2.0

Burgers M = 2 92.0± 6.3 71.3± 27.1 71.4± 11.5 67.9± 18.4
Burgers M = 6 89.5± 8.2 60.9± 26.7 67.9± 19.6

Spearman

KS 86.4± 2.8 83.0± 2.8 83.9± 4.2 82.7± 0.4
CE 87.4± 1.7 83.9± 2.1 81.2± 1.0 80.5± 1.5

CNS 94.6± 2.4 93.4± 2.3 91.1± 3.9 93.4± 1.6

Burgers M = 2 87.5± 2.7 83.2± 11.0 75.2± 5.0 73.7± 5.3
Burgers M = 6 90.3± 0.9 84.5± 2.3 80.8± 2.2

Table 8: Correlation coefficients in percent between the error and the uncertainty averages per
trajectory, including the standard deviation. Computed for SBAL on the main experiments as well as
the ensemble size ablation experiment.
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G Overview of the Generated Datasets

In the following sections, we show visual examples of the data selected by random sampling and
SBAL, and the marginal distributions of all PDE and IC parameters afterwards.

G.1 Example Trajectories
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Figure 9: Example ground truth trajectories of random and SBAL on Burgers. The number on the top
left of the trajectories shows the PDE parameter ν.
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Figure 10: Example ground truth trajectories of random and SBAL on KS. The number on the top
left of the trajectories shows the parameters (ν, L). The x-axis is shown in normalized values between
0 and 1 independent of the variable domain length L.
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Figure 11: Example ground truth trajectories of random and SBAL on CE. The numbers on the top
left of the trajectories shows the PDE parameters (α, β, γ).
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G.2 IC Parameter Marginal Distributions

Figures 13, 14, 15 and 16 show the marginal distributions of the random parameters of the IC
generators, i.e. the random variables drawn which are then transformed using a deterministic function
to the actual IC. For example, the KS IC generator draws amplitudes and phases from a uniform
distribution and uses them afterward for the superposition of sine waves. If multiple numbers are
drawn from each type of variable, we put them together, e.g., in the case of KS, multiple amplitudes
are drawn for the different waves, but Fig. 14 only shows the distribution of all amplitude variables
mixed. The distribution curves for continuous variables are computed using kernel density estimation.
The shaded areas (vertical lines for discrete variables) show the standard deviation between the
marginal distributions of different random seeds.
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Figure 13: Marginal distribution of the parameters of the ICs sampled by the AL methods for Burgers.
Displayed as the ratio to the density of the uniform distribution.
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Figure 14: Marginal distribution of the parameters of the ICs sampled by the AL methods for KS.
Displayed as the ratio to the density of the uniform distribution.
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Figure 15: Marginal distribution of the parameters of the ICs sampled by the AL methods for CE.
Displayed as the ratio to the density of the uniform distribution.
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Figure 16: Marginal distribution of the parameters of the ICs sampled by the AL methods for 2D
CNS. Displayed as the ratio to the density of the uniform distribution.
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G.3 PDE Parameter Marginal Distributions

Similarly, Fig. 17 shows the KDE estimates of the dataset after the final AL iteration for the PDE
parameters.
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Figure 17: Marginal distribution of the PDE parameters, including the standard deviation between
different runs. Displayed as the ratio to the density of the test distribution.
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