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ABSTRACT

We introduce a new approach to understanding how language models acquire syn-
tax. While large models achieve impressive results, little is known about their
learning dynamics. Our approach starts with the observation that most domains
of interest – such as natural language syntax, coding languages, arithmetic prob-
lems – are captured by context-free grammars (CFGs). In this work we initiate the
study of how language modeling for CFGs behaves with respect to the substruc-
ture of CFGs, namely the notion of a “subgrammar". We define subgrammars,
and prove a suite of fundamental results showing that the loss of language mod-
eling obeys recurrences with respect to subgrammars. We show empirically that
small transformers learn subgrammars in parallel, unlike children– who first mas-
ter simple substructures before progressing to more complex constructions. We
further explore whether curriculum learning using an inductive bias, by pretrain-
ing on a subgrammar, can improve performance, and use alignment analysis to
show definitively that such pre-training results in internal representations that are
more aligned with the grammar’s substructure. Finally we demonstrate that mod-
els struggle with deeper recursive structures (a limitation even of large language
models), revealing fundamental challenges in how neural networks represent hi-
erarchical syntax.

1 INTRODUCTION

Large language models (LLMs) have stunned the world by achieving sophisticated language abilities
in the past few years, yet we still do not know how they reach such high levels of performance. Little
is also known about the process of language acquisition. Do LLMs, for example, master simpler
substructures before progressing to more complex syntax, as children do?

A major approach has been to study trained language models – for instance investigating how a
trained model analyzes and uses its knowledge of a language during inference. More recently,
a small but burgeoning approach has been to study how neural architectures learn Context-Free
Grammars (CFGs), a class of formal languages that broadly captures the domains of interest, such
as natural languages and programming languages. The key insight is that by training models on
smaller, fully controllable CFGs, training can be very efficient, and one can probe for features of
the CFG (specific rules, etc). These approaches have gained us many valuable insights (summarized
below in the Related Work).

However, two things have been largely unstudied until now. First, little has been shown about
the dynamics of how models acquire language – not the static representations or logic of trained
models. Second, research studying CFGs has not considered that CFGs as a mathematical object
have a fascinating substructure; they decompose into “subgrammars". Indeed, in related research
areas that study how neural networks learn abstract hypothesis classes such as polynomials, XOR
functions, and modular counting, a major focus has been studying how learning interacts with the
substructure of these function classes (e.g. the monomials that compose polynomials).

In this work, we initiate the study of language modeling of CFGs with respect to the subgrammar
structure of CFGs. In many cases our results can also be seen in the lens of describing something
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about the dynamics of CFG learning. In Section 4, we begin by defining several notions of subgram-
mars: inner subgrammars, corresponding to subtrees of CFG derivations, and outer subgrammars,
corresponding to simplified versions of the CFG. Our definitions of subgrammars in this way are
novel (though related to classic work on the algebra of CFGs) and we believe they are the right
notions for studying the substructure of CFGs. The most important contribution of our work is a
suite of fundamental theorems showing that the loss of language modeling, or equivalently the
Kulback-Leibler (KL) divergence), obeys a recurrence over the subgrammar structure.

We show empirically that small transformers trained on CFGs learn all the subgrammars in parallel,
unlike how children acquire language. We present a theorem for a condition when this occurs, and
suggest open directions. Next, changing gears in 5 we study whether curriculum learning, by using
an inductive bias and training on a subgrammar first, can improve performance: for small models,
we show it can. In 5.2 we use alignment analysis to show, quite definitively, that such pre-training
results in very different internal representations of the CFG: it aligns subgrammar strings, and non-
subgrammar strings, respectively, resulting in internal representations that reflect the substructure of
the CFG. Finally, in Section 6 we show expeirmentally that even models that perform well do not
“know” the subgrammar structure perfectly, with the depth of recursion being the main difficulty.

2 RELATED WORK

Transformers (Vaswani et al., 2017), and language models more broadly, have been studied in two
predominant research directions: improving training methods (Bubeck et al., 2023; Jaech et al.,
2024; Guo et al., 2025) and probing trained models to analyze how knowledge is stored and acti-
vated during inference (Meng et al., 2022; Geva et al., 2021; Dar et al., 2022; Ferrando & Voita,
2024). Much less is known about how such models acquire language. However, one remarkable
study Evanson et al. (2023) showed that GPT-2 displayed developmental stages reminiscent of child
language learning, from simple subject–verb constructions to wh-questions and relative clauses.

We approach this problem via the surrogate (and theoretically significant in its own right) approach
of studying the dynamics of language models acquiring formal languages. Prior families such as
juntas, parities, and modular counting have highlighted optimization challenges ranging from vari-
able selection to hierarchical dependencies (Klivans & Kothari, 2014; Telgarsky, 2016; Abbe et al.,
2024; Daniely & Malach, 2020). CFGs provide a linguistically motivated setting where recursive
structure is explicit, and formal language theory offers a well-developed foundation (e.g. see (Cot-
terell et al., 2023) for a survey).

Formal languages have been used to test neural models, with mixed success. RNNs and LSTMs of-
ten fail to learn subregular grammars despite theoretical capacity (Avcu et al., 2017), and transform-
ers perform well on many formal languages but struggle with recursion and counter-based mech-
anisms (Bhattamishra et al., 2020). Other studies confirm that transformers often fail on deeply
nested grammatical structures (Lampinen, 2024). Results consistently show that gradient descent,
rather than model expressivity, is the limiting factor. Similar findings arise for LSTMs, where data
distribution and length generalization strongly affect performance (Suzgun et al., 2018).

On the theoretical side, Hahn (2020) established limitations of self-attention in capturing long-range
dependencies, even though transformers are known to be Turing-complete (Pérez et al., 2021) and
universal approximators of sequence functions (Yun et al., 2019); see Strobl et al. (2024) for a
survey. Probing studies have also revealed internal stack-like representations in models trained on
counter languages (Tiwari et al., 2025).

Our work contributes to the emerging but burgeoning subarea of studying how neural networks learn
or represent CFGs. (Cagnetta & Wyart, 2024) and follow-up work study how deep networks trained
by next-token prediction on PCFG-generated data acquire hierarchical structure, relating learning
curves to the underlying grammar and proposing random-hierarchy models for compositional learn-
ing. At the mechanistic level, (Allen-Zhu & Li, 2023) provide a thorough analysis of how trained
transformers represent a fixed CFG: once training has converged, transformers can implement stack-
like computations, encode nonterminal rewrite rules in their hidden states, and allocate different
attention heads to different levels of the grammar. However, what prior work in this subarea does
not sutdy, and ours is a foray into, is the learning dynamics of CFGs, and more specifically, how
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learning behaves with respect to the subgrammar structure of CFGs. This is the line of questioning
that our paper embarks upon.

3 PRELIMINARIES AND DEFINITIONS

3.1 FORMAL LANGUAGES

Definition 3.1 (CFG). A Context-Free Grammar (CFG) is a tuple G = (Σ,N ,S,P) where Σ is a
finite set of terminal symbols, N is a finite set of non-terminal symbols (disjoint from Σ), S ∈ N is
the designated start symbol, and P is a finite set of production rules of the form

A → α

where A ∈ N and α ∈ (N ∪ Σ)∗ is a string of terminals and non-terminals (α can be the empty
string which we designate with ϵ).

The language LG ⊆ Σ∗ associated with a CFG G is the set of all strings over the terminals that can
be derived from S via successive applications of rules in P . A language generated by a CFG is a
Context-Free Language (CFL).

Definition 3.2 (PCFG). A Probabilistic Context-Free Grammar (PCFG) is a context-free grammar
G = (Σ,N ,S,P) augmented with a probability function W that assigns to each rule (A → α) ∈ P
a non-negative probability W(A → α) such that for each A ∈ N ,

∑
{(A→α) ∈ P} W(A → α) = 1.

Brief history. CFGs were originally defined in the context of linguistics (Chomsky, 1956), as the
vast majority of the syntax of natural languages, as well as the syntax of programming languages
and mathematics, can be formulated as CFGs (Shieber, 1985; Pullum & Gazdar, 1982). CFGs
occupy a position of intermediate complexity in the "Chomsky hierarchy" of computational models,
strictly stronger than the finite-state automata which compute the regular languages, and weaker
than the Turing machine, which can compute (or recognize) any language that is computable1. Since
CFGs capture languages with recursion and embedded structure, there intuitively exists a notion of
a subgrammar within a grammar. However, several subtleties crop up when attempting to define a
subgrammar. We propose two notions of subgrammars, each of independent interet and relevance:
one is the grammar of substrings of CFG sentences that can be generated from a non-terminal,
and the other as a subset of the CFG language generated by a subset of the rules. We term these
inner and outer subgrammars respectively. Intuitively, inner subgrammars correspond to subtrees of
derivations of CFGs, whereas outer subgrammars correspond to a simplified version of the grammar.
We will sometimes say supergrammar for a bigger grammar containing a subgrammar.

Definition 3.3 (Inner Subgrammar). An inner subgrammar of a PCFG G = (Σ,N ,S,P,W) is
itself a PCFG G′ = (Σ′,N ′,S ′,P ′,W ′) such that Σ′ ⊆ Σ, N ′ ⊆ N , S ′ ∈ N ′ is the start symbol
of the subgrammar, and P ′ is the set of all rules with non-terminals in N ′. Finally, W ′ is the
restriction of W to P ′, renormalized so that for every A ∈ N ′,

∑
{(A→α)∈P′} W ′(A → α) = 1 .

Definition 3.4 (Proper Subgrammar). A proper subgrammar is an inner subgrammar G′ of a CFG
G which does not contain G itself.

Definition 3.5 (Outer Subgrammar). An outer subgrammar of a PCFG (Σ,N ,S,P,W) is a PCFG
G′ = (Σ′,N ′,S,P ′,W ′), with Σ′ ⊆ Σ, N ′ ⊆ N , P ′ ⊆ P , and W ′ is the renormalized restriction
of W to P ′. In particular, to be a valid outer subgrammar, P ′ must contain at least one rule from P
where the left-hand side is S, and for each of its non-terminals.

An outer subgrammar captures the notion of a subset of the language generated by a PCFG obtained
by keeping a subset of expansions of various non-terminals (starting from S). Every string gener-
ated by an outer subgrammar is a valid string of the supergrammar. An outer subgrammar more
closely corresponds to the notion of a “simple" version of a language– for instance, how children
produce language during acquisition, whereas inner subgrammars are the inherent compositional
substructures of a CFG.

1If one accepts the Church-Turing thesis, which states that any physically-realizable computational system
can be simulated by a Turing Machine.
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3.2 LANGUAGE MODELING

In this work, all distributions are assumed to be over strings of a finite alphabet Σ, although many
of the definitions apply to arbitrary domains.

Definition 3.6 (Kullback-Leibler Divergence). Given distributions P and Q over Σ∗, the Kullback-
Leibler (KL) Divergence of Q from P is

KL(P ∥ Q) =
∑
s∈Σ∗

P (s) log
P (s)

Q(s)

A language model Qθ is a function family parametrized by θ, such that Qθ(x) yields a probability
distribution over x ∈ Σ∗. In this work one can think of all Qθ as auto-regressive (though for
several theoretical results this is not strictly necessary), meaning Qθ explicitly models the next token
distribution, and Qθ(x1, . . . , xn) = Πn

i=1Qθ(xi|x1, . . . , xi−1).

In Language Modeling, Qθ is optimized with Maximum Likelihood Estimation:

Definition 3.7 (Maximum Likelihood Estimation). Given a model family Qθ and target distribution
P , the Maximum Likelihood Estimator Qθ̂ is parametrized by

θ̂ = argmax
θ

L(θ)

where
L(θ) = Es∼P [− logQθ(s)]

Practically, this is done by maximizing the combined likelihood under Qθ of a set of samples, or
equivalently (by monotonicity of log) minimizing the sum of negative log-likelihoods; in the limit,
this exactly approaches L(θ).
Definition 3.8 (Shannon Entropy). The Shannon Entropy of a probability distribution is

H(P ) = Es∼P [logP (s)]

Proposition 3.9. Given a true distribution P and model Qθ parametrized by θ,

L(θ) = DKL(P ∥ Qθ) +H(P )

The proof (given in the Appendix A) is a straightforward application of the linearity of expectation.
The theorem states that loss of a model equals its KL-divergence from the true distribution, plus an
entropy term that depends only on the underlying distribution (i.e. is independent of θ). In particular
this implies that θ̂ minimizes θ if and only if it minimizes DKL(P ∥ Qθ).

4 THE FUNDAMENTAL RELATION OF LANGUAGE MODELING AND
SUBGRAMMARS

4.1 DECOMPOSITION OF PCFG INTO SUBGRAMMARS

Theorem 4.1 (Unique decomposition of PCFG into inner subgrammars). Every (probabilistic)
context-free grammar G can be uniquely decomposed into a hierarchy of its inner subgrammars.

This hierarchical structure can be represented as a directed acyclic graph (DAG) with self-loops
(that is, the graph is acyclic except that edges from a node v to itself are permitted). Each node is
labeled by the set of non-terminals that generate the corresponding subgrammar.

The proof recursively constructs the DAG by first identifying the “top-level" subgrammars of G;
see Appendix A. While to our knowledge, the theorem in this particular formulation is our own,
the nodes of the DAG decomposition correspond to the “grammatical levels" of a CFG in Gruska’s
classical work on CFG theory (Gruska, 1971).
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4.2 SUBGRAMMAR STRUCTURE AND LANGUAGE MODELING

We now study the connection between the subgrammar structure of CFGs and training language
models on the corresponding CFL. Let G = (Σ,N , S,P,W) be a PCFG that induces a distribution
PG over Σ∗, and Qθ an autoregressive language model trained to approximate PG (that is, given a
partial sentence over Σ∗ it outputs a terminal, or EOS).

We first consider a very simple case, where the only expansion of S is S → αAβ, where A is some
proper subgrammar (does not generate S), and α, β ∈ Σ∗ are strings of terminals:

DKL(P ∥ Q) =
∑
a∈Σ∗

PG(αaβ) log
PG(αaβ)

Qθ(αaβ)
(1)

=
∑
a∈Σ∗

PG(αaβ)[logPG(α|ϵ) + logPG(a|α) + logPG(β|aα)− logQθ(α|ϵ) (2)

− logQθ(a|α)− logQθ(β|aα)] (3)

=
logPG(α|ϵ)
logQθ(α|ϵ)

+
∑
a

PG(a)
logPG(a)

logQθ(a|α)
+
∑
a

PG(a)
logPG(β|αa)
logQθ(β|αa)

(4)

In an abuse of notation, above PG(α|ϵ) denotes the probability of a partial sequence beginning with
α, PG(a|α) the probability of a following α (in a partial sequence), and so on; similarly Qθ(α|ϵ)
is the Qθ outputs the prefix α (starting with the empty context), etc. The decomposition of PG and
Qθ in the second line follows from the subgrammar structure of G in the case of PG, and from the
fact that Qθ is an autoregressive model (generating from left to right) for the Qθ terms. In short, the
KL-divergence evaluates to a sum of conditioned KL-divergences corresponding to the subgrammar
A, of prefix α, and suffix β. The latter can themselves be thought of as simple subgrammars; indeed,
we can rewrite G to include two new non-terminals that evaluate to α and β respectively (with prob.
1), and we would then have a sum over three “sub"-divergences.
Definition 4.2. Given PCFG distribution PG and arbitrary distribution Q over Σ∗, and top-level
subgrammar A of G, we denote by

DKL(PG ∥ Q)A =
∑
s∈Σ∗

P (s|ϵ)PG(A|s)
∑
a∈Σ∗

DKL(PG ∥ Q(·|s))

That is, DKL(R ∥ Q)A can be seen as the “restriction" of the KL-divergence to substrings from the
subgrammar A (by summing over all contexts that can begin A). In the case of a fixed string α ∈ Σ∗

we will write DKL(PG ∥ Q)α where the second sum is replaced with a single term for α (equiv. one
can view α as a subgrammar of one string).

Then we have, from our previous example

DKL(PG ∥ Q) = DKL(PG ∥ Q)α +DKL(PG ∥ Q)A +DKL(PG ∥ Q)β (5)

The same decomposition holds more generally. Let the top-level subgrammars denote the children
of the root node in a CFG’s subgrammar decomposition.
Theorem 4.3 (KL loss as a recursive function over subgrammars). Let G be a PCFG with top-level
subgrammars A1, . . . , Ak. Let C ⊂ Σ∗ be the set of (fixed) substrings of terminals that occur
between non-terminals of G. Then

DKL(PG ∥ Qθ) =

k∑
i=1

DKL(PG ∥ Qθ)Ai +
∑
α∈C

DKL(PG ∥ Qθ)α

Corollary 4.4. If we rewrite G as an equivalent PCFG with additional non-terminals such that S
maps to strings only non-terminals (corresponding to subgrammars A1, . . . , Ak); then the right sum
of Theorem 4.2 can be removed:

DKL(PG ∥ Qθ) =

k∑
i=1

DKL(PG ∥ Qθ)Ai
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The full proof of Theorem 4.2 and Corollary 4.4 are in Appendix A. Upon closer inspection, the
recursive formula actually applies to any subgrammar; that is, for subgrammar A with subgrammars
B1, . . . , Bl, DKL(PG ∥ Qθ)A =

∑
j DKL(PG ∥ Qθ)Bj

(indeed, we could have states Theorem
4.2 with respect to subgrammars, as DKL(PG ∥ Qθ) = DKL(PG ∥ Qθ)G). Hence, this formula
can be expanded recursively over each of the subgrammars Ai by repeated applications of the same
theorem, resulting in a sum over all the leaves of the DAG decomposition of G into its subgrammars;
see Corollary A.1 in the Appendix for the precise statement.

Now, suppose each top-level subgrammar Ai occurs with probability pi over the top-level rules
that expand S; it is tempting to conclude that the recursive formula simplifies to KL(PG ∥ Qθ) =∑k

i=1 piDKL(PG ∥ Qθ) (where the KL terms are no longer restrictions, but bona-fide divergences
between the distribution PG and Qθ as a language model for A). However, this works only if Qθ is
excellent and models PA identically under any context where the subgrammar A can occur, which
may not be the case!
Corollary 4.5. Let G be a PCFG where S evaluates to rules with only non-terminals (correspond-
ingly, subgrammars) A1, . . . , Ak each of which occurs with prob. pi.

Assume Qθ is “context insensitive" for each grammar Ai: that is, for two contexts s, s′ for which
PG(Ai|s)PG(Ai|s′) > 0, Qθ(Ai|s) = Qθ(Ai|s′) (the restrictions of Qθ to strings from Ai given
possible contexts s or s′, are the same). Then

DKL(PG ∥ Qθ) =

k∑
i=1

piDKL(PAi ∥ Qθ(Ai))

Where Qθ(Ai) = Qθ(Ai|s) for arbitrary context s s.t. PG(Ai|s) > 0.

Several comments are in order about this Corollary, which simplifies the general recursive formula of
Theorem so that the recursive terms are simple KL-divergences (not “conditioned" KL-divergences).
The corollary requires that the model be "context insensitive" for its subgrammars. This is a strong
assumption, but it results in a particularly elegant decomposition. This definition is with respect to a
model– when one considers a model being trained over time, it may or may not context insensitive
for a given subgrammar at different steps; but at any point that it is, this fundamental recurrence
must hold. While we do not present it formally out of interest of space, one can devise approximate,
or statistical versions of this corollary: to the extent that Qθ is not context-insensitive, the difference
between the elegant decomposition and the true loss will differ to the same extent. Finally, our ex-
periments suggest that this condition is perhaps not so strong, at least, again, in the statistical sense:
in the experiments in Figures 1, discussed below, qualitatively similar results were obtained when
we computed subgrammar divergences with varying prefixes. In Section 6, we find that for pre-
fixes of increasing length, our small transformer models the distribution of the ensuing subgrammar
identically, but not if the prefixes are highly deep; however, such strings are “rare" under the actual
probabiltiy distribution (so one could indeed say that these models appear to be context-insensitive
statistically).

Next, consider that in Theorem 4.2 and its corollaries, any of the top-level subgrammars Ai could
have been the grammar G itself (if G has a self-loop). It turns out we can say even more about the
KL-divergence as a function of the degree of “self-loopiness", or recursion.
Theorem 4.6 (KL-divergence with expected recurrence). Let G have proper top-level subgram-
mars A1, . . . , Ak, each occurring with probability pk over the rules expanding S, and let Qθ be a
language model for PG that is context-insensitive for its subgrammars.

Let the recursion R be the number of times S occurs in the top-level rule chosen to expand S. Then,

DKL(PG ∥ Qθ) =

∑k
i=1 DKL(PAi

∥ Qθ(Ai))

1− E[R]

If 1− E[R] < 0, then the KL-divergence is unbounded if DKL(PAi
∥ Qθ(Ai)) > 0 for any Ai.

See A for the full proof. Theorem 4.6 can be seen as the equation for the “base case" in the recur-
sive formula for KL-divergence, since an irreducible (leaf) subgrammar evaluates only to strings of
terminals and itself. This equation shows that the expected recursion in such a (sub)grammar must
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be less than 1 (and the closer it is to 1, the greater the “blow-up" of its divergence to a language
model); indeed, if the expected recursion is 1 or greater, the PCFG sampling process that recur-
sively expands the root symbol will in expectation never terminate. Note that a similar, but more
clunky, theorem can be stated and proven without assuming context-insensitivity to subgrammars
(with KL-divergences replaced with the conditioned / averaged versions, etc.)

Finally, Theorem A.2 proves a similar, recursive decomposition for outer subgrammars; the state-
ment and proof have been moved there for brevity.

To visualize these recurrence relations, we train a small transformer on several synthetic CFGs with
varied subgrammar structure, and plot the KL-divergence over training in Figure 1. These plots
show visually how, throughout all stages of learning, the KL divergence (loss) is the sum over the
corresponding loss for each subgrammar.

(a) A grammar with inner subgrammars, each occurs
with 100% probability. Overhead refers to constant
strings in between subgrammar roots.

(b) L2_1 and L2_2 occur with 30% probability; L2_3
with 40% probability (scaling the divergences by
their probabilities give a perfect decomposition like
on the left).

Figure 1: KL-divergence decomposition in a two-layer Transformer. Grammar definitions are given
in the appendix. The results above compute KL-divergence for subgrammars using a random (but
likely) prefix– varying the prefix did not result in qualitatively different results, suggesting these
models are largely “context-insensitive" in the sense of Corollary 4.5

To illustrate Theorem 4.6, consider a simple CFG with two rules:

S → x (p), S → (S and S) (1− p)

The expected recursion is E[R] = 2(1 − p). Assuming the language model understands compo-
sition, we then have that the KL-divergence is C/(2p − 1) where C is some constant. We train a
small transformer over this language with increasing p ∈ (0.5, 1], demonstrating qualitatively the
non-linear (inverse proportional) growth of KL-divergence as p (the probability of not recursing)
approaches 0.5). A visual representation can be found in Appendix 4.

The plots above give a precise visual depiction of loss decomposition over substructure. However,
an additional phenomenon jumps out: they learn all subgrammars in parallel! One might have
intuitively expected a model to first master a simpler subgrammar before progressing to the encom-
passing supergrammar. While the loss decomposition results show that at least nothing is preventing
such parallel optimization within the task of language modeling itself, one could cook up a patho-
logical, theoretical scenario where a model independently optimizes each subgrammar in sequence.
This phenomenon is a property of the training method and model architecture, and we believe our
work opens a fascinating new direction of studying when and why models learn all subgrammars in
parallel. Towards this, we offer a simple but fundamental scenario in which this would happen:
Corollary 4.7. (Stated informally) Suppose Qθ is trained on PCFG G with subgrammars
A1, . . . , Ak via gradient descent, and that the model and PCFG together obey a kind of “indepen-
dence": for a gradient update of θ on a subgrammar Ai, that is δ = ∇θ(−DKL(PG || Qθ)Ai

),
applying it does not hinder performance on other subgrammars. That is, for θ′ = θ + δ,
DKL(PG || Qθ′)Aj ≤ DKL(PG || Qθ)Aj for j ̸= i (in fact it is sufficient for this condition to
hold only for θ within the path of gradient descent). Then, via gradient descent Qθ learns all sub-
grammars in parallel.
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An immediate future direction would be to study whether the small transformers and PCFGs of this
paper learn subgrammars in parallel because they satisfy the independence condition of 4.7; this
may indeed be the case, since depsite their small size, they are likely still overparametrized with
respect to the even tinier PCFGs. Future work can aim to weaken the assumptions that would result
in parallel learning.

(a) Deeper Recursion: a language with an inner
subgrammar DAG of depth 4.

(b) KL decomposition for an outer subgrammar
using most of the rules (see Theorem A.2)

Figure 2: Additional examples of how loss, or KL-divergence, behaves with respect to varying
subgrammar structure.

5 SUBGRAMMAR LEARNING IN SMALL TRANSFORMERS

While the previous section establishes a mathematical relationship between training loss and sub-
grammar structure, it is natural to consider whether the structure of CFGs could be exploited in
training; e.g. is pretraining on a subgrammar helpful? Perhaps mastering simpler components first
facilitates learning of more complex structures later. Such approaches are studied in curriculum
learning (Bengio et al., 2009; Wang et al., 2021) and modular pretraining strategies (Andreas et al.,
2016; Kaiser et al., 2017).

5.1 ROBUSTNESS TO SUBGRAMMAR LOCATION

One might expect the choice of subgrammar to influence learning, given the autoregressive nature
of transformers. In particular, a prefix subgrammar, an inner subgrammar always occurring at the
beginning of sequences of G, might be easier to retain, whereas the results from pretraining on a
suffix subgrammar or an infix subgrammar (appearing in the middle and disconnected from sentence
endpoints) might be overwritten when training on the full grammar begins. However, our results
show this is not the case: the model reliably retains modeling performance on any subgrammar,
regardless of its position. This robustness is illustrated in Figure 5. As the experiments of the
following section suggest, it appears that training on a subgrammar ferries the model into a distinct
area of weight space in which the subgrammar is internally represented, and further optimization
(on the whole language) remains in this subspace.

5.2 ACTIVATION-SPACE ANALYSIS

We examine how subgrammar pretraining affects internal representations by comparing models
trained from scratch to those pretrained on a subgrammar and then continued on the full gram-
mar. Similarity is measured with Centered Kernel Alignment (CKA) (Kornblith et al., 2019) across
30 random seeds.

Much to our surprise, we also found that for smaller models, subgrammar pretraining can even help
achieve a lower final loss (Figure 6). This effect diminishes as the model size and representational
complexity increase (for instance, this occurs for 2-layer transformers but not 4-layers). As expected,
larger models consistently reach lower losses regardless of pretraining.

CKA analysis reveals that pretrained models exhibit higher alignment across attention layers than
models trained from scratch, both when computed over full-grammar sequences, and (less surpris-
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ingly) subgrammar sequences (Table 1). A longer pretraining phase further increases alignment,
although excessive pretraining can eventually reduce gains in final loss (see same Table).

Why are the pretrained models more “aligned" to one another (that is, represent sequences more
similarly)? To probe this, we compare the representational similarity of the top quantile of seeds via
cosine similarity of embeddings of three types of sequences: (i) sequences consisting solely of the
subgrammar, (ii) sequences with no occurrence of the subgrammar, and (iii) sequences with both the
subgrammar and other subsequences. We also compute (iv) the similarity between embedded pairs
of a subgrammar sequence and a subgrammar-free sequence. For (i) and (ii), the attention-layers
of pretrained models cluster subgrammar sequences (resp. no subgrammar sequences) significantly
closer together than directly-trained models. This suggests that substructures learned during pre-
training are retained after exposure to the full grammar. Finally, the gap between (iv) and (i), and
between (iv) and (ii) is greater in pretrained models, suggesting pretrained models are better at in-
ternally segregating sequences with and without subgrammar subsequences (Table 3).

Our experiments are not exhaustive, and we leave open the question of how to train a model to
consistently converge to the best optima, given the rather strong prior of the subgrammar structure
of the target CFG. Too little pretraining may not provide a strong enough inductive bias, while too
much may over-specialize the model to the subgrammar and hinder transfer. This trade-off mirrors
classical insights from curriculum learning, where an optimal “window” of pretraining exposure
exists (Bengio et al., 2009; Weinshall et al., 2018).

Two-layer Transformer Four-layer Transformer

Pretraining 10 epochs Pretraining 20 epochs Pretraining 10 epochs

Attention MLP Attention MLP Attention MLP

Full grammar sequences
From Scratch 0.258 0.535 0.249 0.535 0.249 0.469
With Pretraining 0.281 0.534 0.303 0.511 0.323 0.491
Percentage change (%) +8.9 -0.2 +21.7 -4.7 +8.3 +1.0

Subgrammar sequences
From Scratch 0.298 0.561 0.288 0.558 0.295 0.513
With Pretraining 0.339 0.566 0.348 0.544 0.347 0.525
Percentage change (%) +13.8 -0.1 +20.8 -2.6 +10.7 +1.9
Subgrammar pretraining only 0.288 0.558 0.288 0.558 0.295 0.523

Table 1: Average CKA similarity (0–1) across attention and MLP layers of a different Transformers
when pretraining for 10 vs. 20 epochs. Percentage change indicates the relative difference between
models trained from scratch and with pretraining.

6 GENERALIZATION: DO LMS “KNOW SYNTAX"?

With language models achieving low training loss, it is natural to ask whether they genuinely inter-
nalize and can generalize the rules of the PCFG. This question connects to the broader debate about
whether language models exhibit intelligence in terms of structure and composition, or whether they
are best understood as extraordinarily powerful pattern-matchers.

To probe this, we evaluate a small transformer trained on an especially simple PCFG: Nested
Parentheses (Appendix D). The model achieves very low loss statistically. We test generaliza-
tion to probabilistically unlikely (but grammatically valid) sequences with increasing length in two
ways: (i) extending the context at the same depth of recursion, feeding in (a)i, and (ii) growing se-
quences through repeatedly applying the recursive rule, resulting in contexts at increasingly deeper
depths of recursion, of the form )i. We then compare the model’s output logits (its output distribu-
tion) against the ground-truth next-token distribution. The next-token distribution is identical for all
test contexts, even between cases (i) and (ii).

Figure 3 shows a striking contrast. For case (i), the prediction error remains low throughout, while
for case (ii) it grows similarly to an inverse log curve. While the model appears to master the
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rules of the PCFG at shallow depth, this does not translate into robust handling of deeper recursive
dependencies.

We also evaluate the effect of prepending different valid prefixes to the sequence of increasing depth.
The results remain largely unchanged— even when using a faulty (non-grammatical) prefix. This
suggests that the model’s primary difficulty lies in handling the depth of the subsequence it must
complete, while it pays relatively little attention to the completed prefix.

(a) Contexts of the form (a)i (depth 0) (b) Contexts of the form (i (depth i)

Figure 3: LM error vs. longer context, with or without recursion

Anecdotally, we find similar behavior even in state-of-the-art frontier models. We test GPT-5.1
Instant model on arithmetic expressions generated by a PCFG, presenting two kinds of long expres-
sions: a chain composed of non-deep arithmetic operations, and a single deep arithmetic expression
(depth 7)2. These experiments show 3 that even LLMs, similar to our small LMs, struggle with
depth and not length, correctly answering 5/5 non-deep arithmetic expressions but only 2/5 for a
deep arithmetic expression. Note that for the not-deep arithmetic expressions (type 1), the LM in
fact has to solve more terms than with the deeper recursion, but still solves them correctly.

7 DISCUSSION

With this work, we study the learning dynamics of language models on probabilistic CFGs, initiat-
ing the study of how learning interacts with subgrammars. We propose several open problems and
future directions. First, we recall the question of Section 3: improving the initial result for when a
model will learn subgrammars in parallel. Next, we conjecture that despite the results of Section 6
there exists a setting of the weights of, say, a 2-layer, 2-head transformer (as in our experiments) that
does correctly model the PCFG (at least up to some very high bound on depth). This would show
that gradient descent is not able to find such ideal solutions, analogous to work showing that while
neural networks can in principle represent functions like parity, modular counting, or compositional
rules, gradient descent often fails to find these solutions without strong inductive bias or curricula
(Telgarsky, 2016; Abbe et al., 2024). Just as we considered CFGs, a theory of deep learning dynam-
ics can be developed for other classes in the Chomsky hierarchy, including regular languages, mildly
context-sensitive languages, etc. As a first step, how much harder is it for a fixed model architecture
to learn synthetic languages from these classes (controlled for average sentence length, vocabulary
size, etc)? How does “difficulty of depth" compare to other kinds of dependent structure? Finally,
our work does not explore the question of grammar induction, the learning task of determining the
CFG underlying the input data.

2We do not find the same discrepancies for GPT-5.1 Thinking, which solves all of our examples within 3-4
minutes for each expression. The Thinking model may pass arithmetic expressions to a calculator or program,
and/or uses an externally prompted or engineered chain-of-thought process; in any case, this departs from
language modeling in the strict sense, and as considered in this work.

3These arithmetic tests are purely anecdotal and should not be interpreted as direct evidence about training
difficulty on recursive PCFGs or any other recursive structure. Our only intention is to illustrate informally
that long-range recursion can stress current models, consistent with the difficulties observed in our controlled
experiments.
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A ADDITIONAL PROOFS AND THEOREMS

Proof of Proposition 3.9.

L(θ) =
∑
x∈Σ∗

P (x)(− logQθ(x)) (6)

=
∑
x∈Σ∗

P (x)(logP (x)− logP (x)− logQθ(x)) (7)

=
∑
x∈Σ∗

P (x) log
P (x)

Qθ(x)
−

∑
x∈Σ∗

P (x) logP (x) (8)

= DKL(P ∥ Qθ)−H(P ) (9)

Proof of Theorem 4.1. The decomposition can be constructed recursively. Given CFG G =
(Σ,N ,S,P,W), the root node of the DAG – initially labeled with only S – represents the entire
grammar. If S can generate itself through successive applications of rules of G, we add a self-loop
from S to itself.

Let X ⊆ N be the subset of non-terminals on the right-hand side of any rule S → α. For each
A ∈ N , let GA be the inner subgrammar generated by taking the closure of A in P – that is, all the
expansions A → α, all expansions of those non-terminals on the right-hand side of those rules, and
so on. In the case that the result subgrammar is all of G, we can add A as an additional label to the
root node. Otherwise, GA is a proper inner subgrammar, in which case we assign it a node as a child
of S. Inductively, this procedure is applied to each new subgrammar node (which by construction
has strictly fewer non-terminals than its supergrammar).

Proof of Theorem 4.2. Theorems 4.2 and Corollary 4.4 are equivalent, for simplicity we directly
prove Corollary 4.4.

Let A1, . . . , Ak be the top-level subgrammars of G. Let S → Ai1,1,...,i1,l1
, ..., S → Air,1,...,ir,lr

be
all rules expanding S in P , with probabilities p1, . . . , pr respectively. As we are directly proving
Corollary 4.4, we assume S expands only to non-terminals (by which we will also denote the top-
level subgrammars; note that some of these may be S itself if they are not proper subgrammars).

Denoting P = PG and Q = Qθ,

DKL(P ∥ Q) =
∑
s∈Σ∗

P (s) log
P (s)

Q(s)
(10)

=

r∑
j=1

pj
∑

aj,1,...,aj,lj

P (aj,1 · · · aj,lj ) log
P (aj,1 · · · aj,lj )
Q(aj,1 · · · aj,lj )

(11)

=

r∑
j=1

pj
∑

aj,1,...,aj,lj

PAj,1(aj,1) · · ·PAj,lj
(aj,lj )

lj∑
i=1

log
PAj,i

(aj,i)

Q(aj,i|aj,1 · · · aj,i−1)
(12)

=
[ r∑
j=1

pj

lj∑
i=1

∑
aj,1,...,aj,i−1

PAj,1(aj,1) · · ·PAj,i−1(aj,i−1)
]∑

a

PAj,i(a) log
PAj,i

(a)

Q(a|aj,1 · · · aj,i−1)

(13)

=

k∑
i=1

∑
s

PG(s|ϵ)PG(A|s)
∑
a

PAi log
PAi

(a)

Q(a|s)
(14)
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Corollary A.1. Suppose G has subgrammars Z1, . . . , Zl as irreducible “leaf" subgrammars in its
DAG subgrammar decomposition, and all rules evaluate to strings of only non-terminals, or only-
terminals. Then

DKL(PG ∥ Qθ) =

l∑
i=1

DKL(PG ∥ Qθ)Zi

Proof of Theorem 4.6. Let G be a PCFG with top-level, proper subgrammars A1, . . . , Ak. Summing
over the top-level rules (expansions of S), suppose S maps to a rule with i recursive S’s with
probability pi (

∑N
i=0 pi = 1 for some N < ∞). Then, E[R] =

∑N
i=1 pi · i. Then by Corollary 4.5

(treating both proper subgrammars and recursive S as top-level subgrammars), we have

DKL(PG ∥ Qθ) =

k∑
i=1

DKL(PAi ∥ Qθ(Ai)) +

N∑
i=1

pi · iDKL(PG ∥ Qθ) (15)

=

k∑
i=1

DKL(PAi
∥ Qθ(Ai)) + E[R]DKL(PG ∥ Qθ) (16)

=⇒ DKL(PG ∥ Qθ) =

∑k
i=1 DKL(PAi

∥ Qθ(Ai))

1− E[R]
(17)

Theorem A.2. For G with outer subgrammar A, let Ā be its complement. The KL-divergence splits
as a weighted sum:

DKL(PG ∥ Qθ) = PG(A)DKL(PA ∥ Qθ|A) + PG(Ā)DKL(PG|Ā ∥ Qθ|Ā) +DKL(P
∗
G ∥ Q∗

θ)

Where D∗, for D ∈ {PG, Qθ} is the 2 valued distribution of whether D outputs a string in A or Ā,
PA is the language from CFG A, and D|B indicates the marginal distrubution of D over strings of
B ∈ {A, Ā}.

Proof. Writing P for PG and Q for Qθ for legibility,

DKL(P ∥ Q) =
∑
s∈A

P (s) log
P (s)

Q(s)
+

∑
s∈Ā

P (s) log
P (s)

Q(s)
(18)

= P (A)
∑
s∈A

PA(s)[logP (A) + logP |A(s)− logQ∗(A)− logQ|A(s)] (19)

+ P (Ā)
∑
s∈Ā

P |Ā(s)[logP (Ā) + logP |Ā(s)− logQ∗(Ā)− logQ|Ā(s)] (20)

(21)

From which the final decomposition follows quite immediately by rearranging terms.

B DETAILS OF OUR TRANSFORMER ARCHITECTURE

The transformer architectures used in our experiments are scaled-down variants of nanoGPT (Karpa-
thy, 2023). Training proceeds with batches sampled uniformly at random from the dataset. The
number of batches per epoch depends on the total size of the training data – this implies that PCFG
G which generates longer sequences yield more iterations per epoch. Furthermore, the tokenizers
contain only two special tokens: BOS (beginning-of-sequence) and EOS (end-of-sequence). We
deliberately omit UNK (unknown) and PAD (padding) tokens, since all tokens are guaranteed
to be in the grammar’s terminal set N ; this ensures the training distribution matches as closely as
possible to the grammar distribution.
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Config L h d |V|
FourLayer 4 4 8 100
TwoLayer 2 2 20 100
TwoLayer_SMALL 2 2 6 100
TwoLayer_smallVoc 2 2 20 5
OneLayer 1 1 8 100
OneLayer_LARGE 1 1 32 100

Table 2: Transformer configurations used in our experiments.

B.1 MODEL PARAMETER SETTINGS

All models share the same decoder-only Transformer architecture as nanoGPT (Karpathy, 2023).
Each model consists of a learned token embedding matrix E ∈ R|V|×d, learned positional embed-
dings for a fixed context window of 256 tokens, L stacked decoder blocks with multi-head self-
attention and a two-layer feed-forward network with hidden size 4d, followed by a final LayerNorm
and a tied output projection E⊤. We use GELU activations, dropout rate p = 0.1 in the attention,
feed-forward, and embedding layers, and LayerNorm with learned scale and bias. Input and output
token embeddings are tied, and we exclude the positional embeddings when reporting parameter
counts.

We vary the number of layers L ∈ {1, 2, 4}, the model dimension d ∈ {6, 8, 20, 32}, the num-
ber of attention heads h ∈ {1, 2, 4} (with per-head dimension d/h), and the vocabulary size |V|,
which is determined by the underlying grammar. Table 2 summarizes the configurations used in our
experiments.

B.2 TRAINING AND REGULARIZATION

All models are trained with the AdamW optimizer using a fixed learning rate of 6×10−4, (β1, β2) =
(0.9, 0.95), and a batch size of 8. We train for a fixed number of epochs.

A central aspect of our training setup is relatively strong weight decay. We use AdamW with an ℓ2
penalty λ = 0.1 applied to all parameters with at least two dimensions (i.e., the token embedding
matrix, attention projection matrices, and feed-forward weights), while excluding all bias terms and
LayerNorm scale parameters from weight decay. This decoupled weight decay acts as our main
form of explicit regularization in addition to dropout (p = 0.1 in the attention, feed-forward, and
embedding layers) and the small model sizes described in Section B.1. Together, these choices
constrain effective capacity and discourage simple memorization of grammar-generated strings.

To further stabilize optimization, we apply gradient norm clipping with a maximum global norm of
1.0 at every step. We do not use any learning-rate scheduling or warmup; the learning rate remains
constant throughout training. Checkpoints are saved periodically and at the beginning and end of
training, allowing us to analyze learning dynamics across epochs.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 CHATGPT-5 INSTANT ARITHMETIC STRESS TEST

We generate arithmetic expressions using integers uniformly sampled from 0–9 and the operators
{+, -, *, / } are generated. Expression depth is defined as the maximum level of nested parentheses.
Non-deep chains consist of 50 expressions of depth at most 2, concatenated by addition. Deep chains
consist of single expressions with recursive nesting up to depth 7. Below are an example each:

Non-deep arithmetic expression:
((4∗4)∗(1−9))+((6/3)∗(5/1))+((2−8)∗(8/5))+((5/9)∗(7∗7))+((7−4)+(8/7))+((9−6)+
(1−0))+((0/1)+(9−9))+((4/1)+(0+5))+((6+6)/(2/5))+((4/5)+(0−2))+((3∗1)+(5+
3))+((1−0)−(7−6))+((2∗5)∗(5/3))+((6+9)−(6/1))+((1+4)/(6+9))+((9/7)−(6+2))+
((6−7)/9)+((4+1)+(7−3))+((5−3)−(1∗3))+((5+6)+4)+((5∗2)+(0−0))+((6∗7)∗8)+
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((5/2)+(4+6))+((5/5)∗(9/6))+((4−3)∗(8∗7))+((7/3)∗(9+3))+((7−0)+(5/9))+((6/8)−
(2+0))+((0+6)/4)+((9−5)−(3−9))+((0+1)+(9−4))+((7−7)∗(1−8))+((7−1)+9)+((4−
0)+(0∗8))+((6/9)∗(2−2))+((5−6)−(8/4))+((3∗5)/(4+2))+((3∗4)−(5+2))+((7−1)+
(8/8))+((4∗0)−(9+7))+((3/6)−(4/3))+((0−2)−(1/9))+((0−8)∗(8∗0))+((0/1)∗(2/8))+
((9+5)∗(8/3))+((1+8)/(4−9))+((0∗6)∗(2+4))+((5/6)+(2+0))+((2∗7)−(2/2))+((8+8)∗2)
Result: 707449

1260

Deep arithmetic expression:
(((((((3 + 8) + (5 − 1)) − ((1 − 6) + (5 + 3))) + (((8 − 2) − (3 − 8)) + ((2 ∗ 9) ∗ (4 + 5)))) ∗
((((1/7)− (6 ∗ 4)) ∗ ((7 + 3) ∗ (6 + 6)))− (((8 ∗ 3) ∗ (1 + 8)) + ((5− 9) + (7/1))))) + (((((8 ∗
6)/(5− 3)) ∗ ((8 ∗ 0)− (8− 0)))+ (((8− 9)+ (3− 6))− ((9/8)/(7 ∗ 8))))/((((7− 4) ∗ (2+2))−
((3− 5)/(9− 2)))/(((6/8)+ (5 ∗ 5)) ∗ ((4− 1)− (8+8))))))− ((((((4− 0)/(4− 8)) ∗ ((8− 0)−
(3−1)))+(((7∗7)∗ (4/7))∗ ((7∗0)− (0/7))))− ((((8∗6)/(8+7))− ((8/8)+(8/4)))− (((5+
5)∗ (9∗8))− ((9/2)/(3−9)))))+ (((((9−8)+(2∗1))− ((4+3)/(9−5)))/(((2∗2)∗ (4∗3))−
((6− 6)− (6 + 9)))) ∗ ((((8/8)− (3 ∗ 3))/((8 + 0) + (9/1))) ∗ (((2 ∗ 1) ∗ 6) ∗ ((1 + 5)/8))))))

Result: 892410719
448320600

C.2 RECURSIVE DECOMPOSITION EXPERIMENTS

Figure 4: Two-layer Transformer showing the impact of the probability of recursion.

C.3 PRETRAINING RESULTS

This appendix provides the detailed results referenced in the main text. All experiments compare
transformers trained from scratch against those pretrained on a subgrammar before continuing on
the full grammar. Figure 5 shows that no matter which subgrammar is chosen, when later training
on the full grammar, it is not forgotten.

(a) Pretraining on an infix subgrammar (b) Pretraining on a suffix subgrammar

Figure 5: Examples of pretraining on differently placed subgrammars using ABC Grammar.

Figure 6 illustrates the distribution of KL-divergences across 30 seeds when training directly versus
with 10 epochs of subgrammar pretraining. Pretraining consistently shifts the distribution toward
lower KL.
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(a) Two-layer Transformer (b) Four-layer Transformer

Figure 6: Distribution of final KL value of pretraining versus training from scratch

Table 3 reports average cosine similarity across attention and MLP layers, on three types of test
sequences: (i) sequences consisting solely of subgrammar subsequences, (ii) sequences with no
subgrammar subsequences, and (iii) sequences mixing subgrammar and other subsequences.

Attention MLP

Sequences with subgrammar only
From Scratch 0.660 0.635
With Pretraining 0.743 0.611
Percentage change (%) +12.6 -3.9

Sequences without subgrammar
From Scratch 0.835 0.837
With Pretraining 0.876 0.841
Percentage change (%) +4.9 +0.5

Sequences with subgrammar
From Scratch 0.726 0.501
With Pretraining 0.687 0.543
Percentage change (%) -5.7 +8.4

Table 3: Average cosine similarity [-1, +1] across attention and MLP layers of a two-layer Trans-
former when pretraining for 10 epochs. Percentage change indicates the relative difference between
models trained from scratch and with pretraining.

C.4 GENERALIZATION AND PREFIX EXPERIMENTSN

This appendix provides the detailed figures referenced in the main text. They compare how different
valid prefixes (shallow vs. deeply recursive) and malformed prefixes affect model stability, showing
that deeply recursive but valid prefixes can degrade performance even more than ungrammatical
ones.

D DEFINITION OF GRAMMARS USED FOR EXPERIMENTS

In this section we properly introduce the PCFGs used for running the experiments.

17



(a) Prefix = (a)(a)(a)(a)(a)(a) (b) Prefix = (((((((((a)))))))) (c) Wrong prefix =
(a)(a)(a))(aa)(a)(a)

Figure 7: Comparison of different prefixes for recursion type 2

KL DECOMPOSITION EXAMPLE 1

L1 → sL2_2 L2_2 eL2_2 sL2_1 L2_1 eL2_1 sL2_3 L2_3 eL2_3 [1.0]

L2_1 → NUM [0.4] | L2_1 * L2_1 [0.15] | L2_1 + L2_1 [0.15] | NUM NUM [0.3]

L2_2 → a L2_2 b [0.6] | c [0.4]

L2_3 → x L2_3 [0.8] | x [0.2]

NUM → 0 [0.2] | 1 [0.2] | 2 [0.2] | 3 [0.2] | 4 [0.1] | 5 [0.1]

KL DECOMPOSITION EXAMPLE 2

L1 → sL2_1 L2_1 eL2_1 [0.3] | sL2_2 L2_2 eL2_2 [0.3] | sL2_3 L2_3 eL2_3 [0.4]

L2_1 → NUM [0.4] | L2_1 * L2_1 [0.15] | L2_1 + L2_1 [0.15] | NUM NUM [0.3]

L2_2 → a L2_2 b [0.6] | c [0.4]

L2_3 → x L2_3 [0.8] | x [0.2]

NUM → 0 [0.2] | 1 [0.2] | 2 [0.2] | 3 [0.2] | 4 [0.1] | 5 [0.1]

DEEPER RECURSION

L0 → sL1 L1 eL1 [0.7] | L0 L0 [0.3]

L1 → sL2 L2 eL2a [0.6] | L1 L1 [0.3] | V [0.1]

L2 → sL3 L3 eL3 [0.6] | L2 L2 [0.3] | V [0.1]

L3 → sL4 L4 eL4 [0.6] | L3 L3 [0.3] | V [0.1]

L4 → ( V ) [0.7] | V [0.3]

V → a [0.04] | b [0.04] | c [0.04] | d [0.04] | e [0.04] | f [0.04] | g [0.04]

h [0.04] | i [0.04] | j [0.04] | k [0.04] | l [0.04] | m [0.04] | n [0.04]

o [0.04] | p [0.04] | q [0.04] | r [0.04] | s [0.04] | t [0.04] | u [0.04]

v [0.04] | w [0.04] | x [0.04] | y [0.04]
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OUTER SUBGRAMMAR EXAMPLE

START → sSUBJ SUBJ eSUBJ sVERB V ERB eVERB sOBJ OBJ eOBJ [1.0]

SUBJ → NOUN [0.2] | a NOUN [0.4] | the NOUN [0.4]

NOUN → N [0.7] | ADJ NOUN [0.3]

V ERB → V [0.3] | V ADV [0.7]

OBJ → blank [0.5] | with SUBJ [0.5]

N → dog[0.2] | cat[0.2] | fox[0.1] | parrot[0.1] | hamster[0.1] | turtle[0.1] |
horse[0.1] | pig[0.1]

ADJ → big[0.2] | poisonous[0.2] | cute[0.2] | lazy[0.2] | quick[0.2]

V → eats[0.15] | runs[0.4] | sleeps[0.15] | talks[0.15] | cleans itself[0.15]

ADV → quickly[0.2] | slowly[0.3] | happily[0.3] | excitedly[0.1] | lazily[0.1]

where the rules that are used for the unified subgrammar are highlighted in bold.

ABC GRAMMAR

L0 → sL1a L1a eL1a sL1b L1b eL1b sL1c L1c eL1c [1.0]

L1a → sL2a L2a eL2a L1a sL2_2a L2_2a eL2_2a [0.4] | sL2a L2a eL2a L1a [0.2] |
action [0.4]

L1b → L1b + sL2b L2b eL2b [0.25] | sL2b L2b eL2b [0.75]

L1c → xy L1c [0.3] | x L1c [0.3] | sL2c L2c eL2c [0.4]

L2a → sL3 L3 eL3 [0.5] | not L2a [0.25] | L2a and L2a [0.1] | L2a or L2a [0.15]

L2_2a → a L2_2a [0.8] | a [0.2]

L2b → a L2b b [0.6] | c [0.4]

L2c → c L2_2ac [0.7] | c [0.6]

L3 → == [0.2] | <= [0.2] | < [0.2] | >= [0.2] | > [0.2]

NESTED PARENTHESES

L0 → ( L1 ) [0.7] | L0 L0 [0.3]

L1 → ( L1 ) [0.8] | a [0.2]
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