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Pace-Adaptive and Noise-Resistant Contrastive
Learning for Multimodal Feature Fusion
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Abstract—Multimodal feature fusion aims to draw
complementary information from different modalities to
achieve better performance. Contrastive learning is effective
at discriminating coexisting semantic features (positive) from
irrelative ones (negative) in multimodal signals. However, positive
and negative pairs learn at separate rates, which undermines the
overall performance of multimodal contrastive learning (MCL).
Moreover, the learned representation model is not robust, as MCL
utilizes supervision signals from potentially noisy modalities. To
address these issues, a novel multimodal contrastive learning
objective, Pace-adaptive and Noise-resistant Noise-Contrastive
Estimation (PN-NCE), is proposed for multimodal fusion by
directly using unimodal features. PN-NCE encourages the
positive and negative pairs reaching to their optimal similarity
scores adaptively and shows less susceptibility to noisy inputs
during training. A theoretical analysis is performed on its
robustness. Maximizing modality invariance information in the
fused representation is expected to benefit the overall performance
and therefore, an estimator that measures the difference between
the fused representation and its unimodal representations is
integrated into MCL to obtain a more modality-invariant
fusion output. The proposed method is model-agnostic and can be
adapted to various multimodal tasks. It also bears less performance
degradation when reducing the number of training samples at
the linear probing stage. With different networks and modality
inputs from three multi-modal datasets, experimental results show
that PN-NCE achieves consistent enhancements compared with
previous state-of-the-art approaches.

Index Terms—Multimodal fusion, multimodal contrastive
learning, modality invariance.
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I. INTRODUCTION

HUMAN perception and reasoning about the world are
usually through processing multimodal information. Al-

though combining high-dimensional multimodal signals is nat-
ural and easy for humans, it is a challenge for current AI sys-
tems [1], [2], [3]. It is crucial for an intelligent system to ef-
fectively fuse useful information from multiple modalities for
various downstream tasks. With the encouraging success of con-
trastive learning in image recognition [4], [5], [6], [7], [8], nat-
ural language processing [9], [10], [11], [12] and audio signal
processing [13], [14], [15], recent works [15], [16], [17] have
started to explore its application on multimodal data and showed
its possibility for multimodal fusion.

Similar to traditional contrastive learning on unimodal repre-
sentation learning, the discrimination between positive and neg-
ative pairs relies on the hypothesis that modalities from the same
scenes contain identical or highly positive correlated seman-
tic information while modalities from different scenes are neg-
ative correlated [20]. Multimodal contrastive learning (MCL)
distinguishes the positive pairs from the negative ones, thus
learning the shared information from different modalities in a
self-supervised manner. In other words, paired modalities pro-
vide supervision to each other during training. Traditional con-
trastive learning methods [16], [17], [21], [22], [23] leverage on
InfoNCE (Information Noise-Contrastive Estimation) loss [15]
to learn the distribution of positive samples by comparing it
against a noisy distribution. More concretely, the contrastive
learning is conducted by pulling the elements in a positive pair
closer while pushing the positive pairs further from the negative
ones (see an illustration in Fig. 1).

However, the positive and negative pairs learning usually con-
verge at separate rates. MCL models are prone to shortcut learn-
ing, which undermines the overall performance [24]. As modal-
ities from the same scene are usually more correlated and easier
to learn than the negative ones, MCL using traditional InfoNCE
may lead to suboptimal solutions as it learns the positive and
negative pairs by the same way. Table I shows the training ac-
curacies of positive and negative pairs at the MCL stage and
also the linear probing accuracies on the test set. InfoNCE has
a large gap between the training accuracies of the positive and
negative pairs. The large difference between their average gradi-
ents indicates the imbalanced learning paces. Table I also shows
that the linear probing accuracy of InfoNCE on the test set is
lower. Moreover, the supervisions between modalities in a pair
may not always be reliable when a certain modality is noisy or
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Fig. 1. Multimodal contrastive learning. Modalities from the same scene are
pulled closer while modalities from different scenes are pushed away in the
embedding space (e.g., the positive pair is highlighted in yellow, which is a
meaningful yet sarcastic image-text pair, and the negative pairs are highlighted
in gray). Examples are taken from Sarcasm dataset [19].

TABLE I
TRAINING ACCURACIES (ACC %) AND AVERAGE GRADIENTS (GRAD) OF THE

LAST TRAINING EPOCH OF POSITIVE AND NEGATIVE PAIRS AT THE MCL
STAGE. TEST ACCURACIES AT THE LINEAR PROBING STAGE. EXPERIMENTS

ARE CONDUCTED ON VIOLIN DATASET [18]

corrupted. Thus, it is critical to balance the learning pace for pos-
itive and negative samples and improve robustness of MCL. At
the same time, from the perspective of multimodal fusion [17],
[21], [25], [26], [27], [28], [29], modality-invariant informa-
tion [30] is expected to be maintained and maximized, but this
problem is largely unexplored in MCL.

To address the aforementioned issues, in this work, a novel
MCL objective named Pace-adaptive and Noise-resistant Noise-
Contrastive Estimation (PN-NCE) is presented for multimodal
feature fusion. Our goal is to produce effective yet robust mul-
timodal fused representations via MCL by directly utilizing
extracted multimodal features as inputs. For a particular mul-
timodal fusion task, the learning process is divided into two
stages. In the first stage, self-supervised MCL is conducted on
trained features to produce fused representations. Particularly,
MCL is regarded as a binary classification problem with noisy
labels, where PN-NCE is introduced as the objective function.
PN-NCE is able to mitigate the imbalanced learning pace of pos-
itive and negative pairs. It adjusts the learning pace of positive
and negative pairs dynamically, according to pace factors esti-
mated in each iteration. PN-NCE is also effective at improving
the robustness of MCL against noisy inputs, where we propose
a cooperative classifier ensemble for robust MCL with theo-
retical proof. Instead of training each binary classifier with in-
dividual positive or negative input, we propose a cooperative
classifier ensemble that regards the MCL problem as training K
binary classifiers with an orderless score list as input for each
classifier, where each classifier satisfies the symmetric property.

To obtain a more modality-invariant fusion output, an explicit
distance estimation between the fused positive representation
and its unimodal representations is integrated with PN-NCE.
To achieve this, the fused representation of the positive sample
is mapped back to its unimodal representations via transforma-
tion networks. Then the similarity between the output and each
unimodal representation is evaluated by an L1 distance. This op-
eration serves as an auxiliary task in MCL, which is discarded
at the second stage.

In the second stage, linear probing is conducted by training
simple linear layers. By freezing the parameters of the MCL
model trained at the first stage, the linear layers take only the
fused representations as input to perform downstream tasks.
With simple classifiers, the proposed method shows the supe-
rior capability of fusing multimodal features. The experiments
are conducted on several multimodal fusion tasks that cover
video, language, and audio modalities [18], [19], [31]. Using
the same extracted multimodal features, the fused representa-
tions learned with PN-NCE achieve better linear probing results,
compared with InfoNCE and its variants. The proposed method
also outperforms the compared methods, even when the num-
ber of training samples is reduced at the linear probing stage.
Furthermore, the proposed method for multimodal fusion is in-
dependent of network architecture, and hence can be applied to
various multimodal fusion tasks.

In short, the contributions of this paper are summarized as:
� a novel PN-NCE objective is presented for efficient and

robust MCL, which is model-agnostic and directly deals
with unimodal features;

� the pace-adaptive learning for positive and negative pairs
is proposed to address the imbalanced learning issue;

� the cooperative classifier ensemble is proposed for robust-
ness with a theoretical proof;

� modality invariance estimator is explicitly integrated into
MCL for more reliable fused outputs;

� experimental results on three multimodal fusion tasks
demonstrate that the proposed method achieves consis-
tent improvement compared with other state-of-the-art
methods.

II. RELATED WORK

A. Multimodal Contrastive Learning

Contrastive learning [32], [33], [34] aims to learn useful rep-
resentations through directly comparing positive and negative
samples. It is a promising approach to representation learning.
Previous works [4], [5], [7], [9], [10], [12], [13], [14], [23] en-
hanced contrastive learning for unimodal representation learn-
ing from different perspectives. Some works [10], [12] focused
on generating more diverse negative samples to improve the
discriminating capability of the trained models, while others ad-
justed the training strategies [4], [5] or modified the objective
functions [7], [9], [13], [14], [23] to boost performance.

With the gradual deepening of multimodal research, recent
works [15], [16], [17], [21] extended contrastive learning to
multimodal learning tasks. CPC [15] combined predictive cod-
ing with a probabilistic contrastive loss [35] on a variety of data
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modalities. CMC [16] proposed to maximize the mutual infor-
mation among multiple views to capture the shared semantics.
MMV-FAC [17] created a modality embedding graph where se-
mantic comparisons were performed by dot products of differ-
ent modalities. TupleInfoNCE [21] proposed tuple disturbing
for multimodal data augmentation and extended InfoNCE loss
for a better comparison between modality vectors. Unlike the
previous MCL models that take raw data as input, we consider
MCL directly on the extracted features for multimodal fusion
tasks. Although previous works attempted to explore the shared
information across modalities in MCL, the methods fail to ac-
count for the imbalanced convergence rates between positive and
negative samples or resist noisy inputs. This may jeopardize the
performance of the multimodal fusion for downstream tasks.

B. Multimodal Fusion

Multimodal fusion is one of the core research topics in
multimodal representation learning [20]. It aims to draw the
underlying useful information from multiple modalities for
various tasks. Previous study [36] has summarized the basic
fusion strategies, including early fusion and late fusion. Early
fusion usually concatenates the input-level features before learn-
ing a concept, while late fusion focuses on learning the con-
cept from individual modalities and then integrating the results.
Recently, research works [21], [25], [27], [29], [37], [38] pro-
posed more promising fusion mechanisms using sophisticated
strategies. LMF [37] produced the multimodal representation by
performing low-rank multimodal fusion with modality-specific
factors. MFN [25] took both view-specific and cross-view in-
teractions into consideration and proposed a fusion architecture
based on LSTM [39]. MulT [29] addressed the issue of cross-
modal fusion via the directional pairwise crossmodal attention
technique based on transformer encoders [40]. Bottleneck fu-
sion [38] combined the unimodal representations through mul-
tiple attention layers to collate and condense the shared infor-
mation across modalities. CEN [27] proposed to measure the
individual channel importance and dynamically exchange chan-
nels between sub-networks of different modalities to learn the
crossmodal semantics.

Unlike previous works designing sophisticated architectures
for fusion, our proposed method leverages a simple fusion mod-
ule with concatenated unimodal representations. We focus on
producing better-fused output by improving MCL, which is
model-agnostic. The modality-invariant information is explored
within MCL stage followed by simple linear probing layers as
opposed to complicated architectures for different downstream
tasks.

III. APPROACH

In this section, we begin with describing the multimodal con-
trastive learning problem and revisiting the classic InfoNCE loss
for MCL. We then present the PN-NCE objective to deal with
the imbalanced learning paces of positive and negative samples.
We explain the robust property of PN-NCE against noisy modal-
ities, where a cooperative classifier ensemble is proposed. We
also introduce a modality invariance estimator (MIE) to produce

a modality-invariant fused output. The proposed MCL for mul-
timodal fusion is shown in Fig. 2, where PN-NCE objective and
MIE are applied.

A. Preliminary

Given two modalities M and N , multimodal contrastive
learning between a positive pair and its K negative pairs is
regarded as a binary classification problem, where the label
is assigned to 1 if the modalities are sampled from the joint
distribution, i.e., (m,n) ∼ PMN , and is assigned to -1 if the
modalities are from the marginal distribution product, i.e.,
(m, ñ) ∼ PMPN . For one positive pair (m,n) and its corre-
sponding negative pairs {(m, ñi)}Ki=1, the positive score is de-
noted as s+ and the negative scores are denoted as {s−i }Ki=1.
The task is to select the only positive pair from the set
Ω = {(m,n), (m, ñ1), (m, ñ2), . . ., (m, ñK)}, which contains
(K + 1) pairs. The classic InfoNCE loss [15] function is mini-
mized as follows:

LInfoNCE (s) = −E
Ω

(
log

es
+

es+ +
∑K

i=1 e
s−i

)
, (1)

where s is the set of similarity scores between the modalities, i.e.,
s = {s+, s−1 , s−2 , . . ., s−k }. Specifically, s+ = h1(m)ᵀh2(n)/τ
and s−i = h1(m)ᵀh2(ñi)/τ . h1 and h2 are two different en-
coders to produce the embeddings for modality M and N while
τ is the temperature parameter to adjust the dynamic range.
Therefore, for MCL, the trained model learns to classify the
positive pair from all the input pairs by maximizing s+ while
minimizing {s−i }Ki=1.

However, the positive pair and the negative pairs reach their
optimal scores at separate rates. On one hand, this is because
K is often set as a large value in practice to obtain promising
results; on the other hand, modalities from the same scene are
more correlated and easier to learn than the negative pairs. These
may lead to sub-optimal solutions. To mitigate this issue, we
introduce PN-NCE objective function, which is elaborated in
the following sections.

B. Pace-Adaptive Noise-Contrastive Estimation for MCL

To alter the learning paces for positive pairs and negative
pairs in MCL, we first introduce P-NCE (Pace-adaptive NCE)
objective that enables each pair to update its similarity score in
an adaptive manner. We define the optimal score for positive pair
as O+ = 1 and that for K negative pairs as {O−

i = 0 + ε}Ki=1,
where ε is a small positive constant. The P-NCE objective is
formulated by:

LP−NCE (s) = − E
Ω

(
log

eαs
+

eαs+ +
∑K

i=1 e
βis

−
i

)
,

s.t. α+

K∑
i=1

βi = 1, (2)

in which α and βi are the non-negative pace estimation factors
for reweighting the positive and negative scores. Concretely, α
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Fig. 2. MCL for multimodal fusion using PN-NCE. The part with the blue dashed square is the proposed MCL method. The extracted features m and n are from
different input modalities (image and text). h1 and h2 are two encoders for different modalities. rm are image embeddings and rn are text embeddings. MCL is
conducted between the positive and the negative pairs in the embedding space. The blue arrows show the process, i.e., the modalities from the positive pair are
pulled closer (the solid arrow) while the modalities between the positive pair and the negative pairs are pushed away (the dashed arrows). H is the fusion module.
rmn is the fused embedding. F and G are transformation networks. Modality Invariance Estimator (MIE) is introduced between the positive embeddings for each
modality, i.e., (r+m, r̂+m) and (r+n , r̂+n ), which are denoted by ‘+’. At the linear probing stage, the MCL model is fixed and simple linear layers are trained for
prediction.

and βi are calculated by:

α =

[
O+

s+

]
+

and βi =

[
s−i
O−

i

]
+

, (3)

where [·]+ indicates the non-negative truncation operation. Dur-
ing training, when the similarity score is far from its optimum,
the gradient regarding that pair will be multiplied by a larger
pace estimation factor α and βi in back-propagation, thus accel-
erating the learning pace. Conversely, when the similarity score
is near its optimum, the learning pace will be eased. Such pace
estimation factors are normalized between positive and nega-
tive pairs, which provides a relative adjustment. In practice, for
each batch of samples, we have one positive pair and K negative
pairs. If batchsize is set toB,α andβi are the average values over
the batchsize, i.e.,α = (

∑
B αb)/B andβi = (

∑
B βib)/B. For

each iteration, the pace estimation factors are recalculated to ad-
just the learning paces for both positive and negative pairs.

We note that reweighting similarity scores is a conventional
practice in many loss functions for classification problems. Tra-
ditional methods [15], [16], [17], [21], [41], [42] often take
equal scaling factors rather than adaptive values to reweight the
similarity scores. This is because, in the objective function of
a classification problem, the softmax value is regarded as the
probability of an input belonging to each category. However, in
MCL, equal scaling is not preferred as it restricts the learning
pace adjustment for each positive and negative pair. The pro-
posed method exploits adaptive reweighting factors for greater
flexibility, therefore providing a more desirable optimization
strategy.

C. Towards Robust MCL With Noisy Supervision

When a certain modality is noisy or corrupted, the supervi-
sion between modalities in a pair may not always be reliable.
However, traditional InfoNCE loss [35] is not able to deal with

noisy labels of training data. To overcome this issue, Chuang
et al. proposed a robust InfoNCE [23] that achieves robustness
against noisy views, which is defined as1

LR(s) = −E

(
es

+ − μ
K∑
i=1

es
−
i

)
, (4)

where μ is a hyperparameter balancing the score from the pos-
itive pair and the scores from negative pairs. They exploit the
robustness classification theorem [43] derived by Ghosh et al. to
prove that LR is robust against label noise. We can extend (4)
to be pace-adaptive i.e.,

LPN−NCE (s) = − E

(
eαs

+ − μ

K∑
i=1

eβis
−
i

)
,

s.t. α+

K∑
i=1

βi = 1, (5)

however, it no longer enjoys the theoretical guarantee given by
Chuang et al., because it cannot be decomposed to K classifiers.
Each of them takes only one input pair to make the decision
without influencing by other input pairs. More clearly, Chuang
et al.’s theory requires that the loss function has the form

L(s) = l+(s
+, 1) + λ

K∑
i=1

l−(s−,−1), (6)

where l is a binary classification loss that satisfies the symmetric
condition, i.e., l(s, 1) + l(s,−1) = const., ∀s ∈ R. Each of the
individual loss functions only takes a score from a pair of inputs,
l+ for positive pairs and l− for negative pairs. Due to the normal-
ization α+

∑K
i=1 βi = 1, LPN−NCE does not fit the form. As

1Note that Eq. 4 is the robust InfoNCE with parameter q equals to 1, achieving
robustness against noisy views in the same manner as binary classification with
noisy labels. ( 2 in Section 4 of Chuang et al. [23])
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a result, we cannot have the robustness guarantee from Chuang
et al.’s theory. However, it does not mean that LPN−NCE is
not robust against the noisy labels. To study the robustness of
LPN−NCE , we first define a cooperative classifier ensemble.

Definition 1: Let F be a cooperative classifier ensemble i.e.,
F = [f1, . . ., fu], where each fi is a binary classifier taking a
score list s = [s1, s2, . . ., su] as input to classify si.

For LPN−NCE , let l(f+(s, s+), y) = ye(αs
+) and

l(f−
i (s, s

−
i ), y) = ye(βis

−
i ) be the losses of the individual classi-

fiers in a cooperative classifier ensemble F = [f+, f−
1 . . . , f−

K ],
where each f classifies a score from a pair of inputs based
on scores from other pairs. Note that α and βi are functions
of the score list, s = [s+, s−1 , . . ., s

−
K ] defined before. Using

l(f+(s, s+), y) and l(f−
i (s, s

−
i ), y),LPN−NCE can be rewritten

as

L(F(s)) = −E

(
l(f+(s, s+), 1) + μ

K∑
i=1

l(f−
i (s, s

−
i ),−1)

)
.

(7)
Note that l(f+(s, s+), y) and l(f−

i (s, s
−
i ), y) fulfil the symme-

try property i.e., l(f+(s, s+), 1) + l(f+(s, s+),−1) = 0 and
l(f−

i (s, s
−
i ), 1) + l(f−

i (s, s
−
i ),−1) = 0. Since f−

i is identical
for all i, in the order of s−1 , . . ., s

−
K would not change the classi-

fication result. In the following discussion, f− is used to denote
f−
i to simplify the notation. Theorem 1 indicates thatLPN−NCE

is robust to noisy labels.
Theorem 1: Given a cooperative classifier ensemble, score list

s, and the loss l satisfying the symmetric property, and the opti-
mal F∗ obtained from clean data i.e., L(F∗(s)) < L(F(s)), ∀F,
if s+ and s−J , . . . , s

−
K ’s labels have η probability being wrong

and

η < min

{
0.5, sup

F

(
1

2

(
T1(F

∗)− T1(F)

T2(F∗)− T2(F)
+ 1

))}
, (8)

where T1(F) and T2(F) are defined as

T1(F) =

∫
s

μ

J−1∑
i=1

l(f−(s, s−i ), y
−
i )dp(s), (9)

T2(F) =

∫
s

l(f+(s, s+), y+)dp(s)

+ μ

K∑
i=J

l(f−(s, s−i ), y
−
i )dp(s), (10)

we have

Lη(F∗(s)) < Lη(F(s)), ∀F, (11)

where Lη(·) is the loss defined in (7) with s+ and s−J , . . . , s
−
K ’s

labels having η probability being wrong.
In other words, if the noisy probability is smaller than

min

{
0.5, sup

F

(
1

2

(
T1(F

∗)− T1(F)

T2(F∗)− T2(F)
+ 1

))}
, (12)

we can still obtain the same F∗ even when some labels are cor-
rupted. Note that y−i = −1 and y+ = 1.

We attached the proof of Theorem 1 in the Appendix. The
three possible cases analyzed in the proof demonstrate the ro-
bustness of F given the noisy probability condition in (8). Dis-

cussion on the term supF

(
1

2

(
T1(F

∗)− T1(F)

T2(F∗)− T2(F)
+ 1

))
is also

given in the Appendix. Therefore, the noise-resistant property
is achieved for MCL. We use LPN−NCE to denote the proposed
objective that combines pace-adaptive factors in the cooperative
classifier ensemble.

D. Modality Invariance Estimator

As our goal is to produce better-fused representations for
downstream tasks, we explicitly measure the modality invari-
ance between the fused representation of the positive pairs with
its unimodal representations in the embedding space. This relies
on transformation networks that take the fused embedding as
input. The outputs from the networks are then measured with
the unimodal embeddings by L1 distance.

Formally, let rm ∈ Rdm , rn ∈ Rdn represent the unimodal
embeddings of modality M and N , where rm = h1(m), rn =
h2(n), and dm and dn are their dimensions. r+m and r+n denote
the positive unimodal embeddings. Let rmn = H(rm, rn; θH)
be the fused embedding, rmn ∈ Rdh , where H is the fusion
module, dh is the fused dimension, and θH is the trainable pa-
rameters. r+mn denotes the positive fused embedding. The out-
puts of the transformation networks with respect to M and N
are:

{
r̂+m = F (r+mn; θF )

r̂+n = G(r+mn; θG),
(13)

where F and G are the two transformation networks with train-
able parameters θF and θG. The modality invariance estimator
(MIE) between r+ and r̂+ is defined as:

LMIE (m,n) = E
(m,n)∼PMN

log
(
(D1(r

+
m, r̂+m) + 1)

(D1(r
+
n , r̂

+
n ) + 1)

)
(14)

where D1(r
+
m, r̂+m)=(

∑
dm

|r+m − r̂+m|)/dm and D1(r
+
n , r̂

+
n )=

(
∑

dn
|r+n − r̂+n |)/dn. For each additional modality, an addi-

tional (D1(·) + 1) term must be appended in the log(·) term.
We expect that the fused embedding can maintain the

modality-invariant information to a large extent. In other words,
it can be reverted back to the corresponding unimodal em-
beddings as much as possible. During training, minimizing
LMIE (m,n) is integrated to MCL as an auxiliary task, which is
subsequently abandoned in the linear probing stage.

We treat each modality equally important. To build a com-
plete contrast, the proposed MCL objective is applied on
set Ω = {(m,n), (m, ñ1), (m, ñ2), . . ., (m, ñK)} and set Ω′ =
{(n,m), (n, m̃1), (n, m̃2), . . ., (n, m̃K)}. The loss for each set
is combined during MCL stage.
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E. Extension to Three Modalities

The proposed method can be generalized to more modal-
ities. Here, we take three-modality scenario as an example.
We denote the modalities as M , N , and Q. The MCL among
M,N,Q is to select the positive tuple (m,n, q) from the set
Ωm,n,q = {(m,n, q), {(m, ñ∗, q̃∗)}Ki=1} that contains (K + 1)
tuples with noisy supervision. This is achieved by splitting
Ωm,n,q into subsets (i.e.,Ωm,n,Ωn,q , andΩq,m) and performing
MCL on the subsets concurrently.

Hence, the proposed method for multimodal feature fusion is
formulated as optimizing the following objective function:

L
Ωm,n,q

=LPN−NCE
Ωm,n

+LPN−NCE
Ωn,q

+LPN−NCE
Ωq,m

,+LMIE (m,n, q),

(15)
where LMIE (m,n, q) is the modality invariance estimator for
three modaltities (see equation 14).

IV. EXPERIMENT

The proposed method is evaluated on three multimodal
datasets with visual, audio and language modalities for joint
multimodal understanding and inference. The multimodal fu-
sion tasks are: Video-and-Language Inference on Violin [18],
Multimodal Sentiment Classification on CMU-MOSEI [31], and
Multimodal Sarcasm Detection on Sarcasm dataset [19].

A. Dataset

Violin [18] is a large scale dataset for Video-and-Language In-
ference.2 It contains 95,322 video-hypothesis pairs from 15,887
video clips. Each video clip is paired with a subtitle and three
pairs of positive/negative natural language hypotheses. The task
is to infer whether the hypothesis is entailed or contradicted by
the given video clip.

CMU-MOSEI [31] is a dataset for multimodal sentiment
analysis and emotion recognition.3 The dataset is made up of
23,454 movie review video clips. The video clips cover a vari-
ety of topics. Each video clip is annotated with the sentiment on
a [−3, 3] Likert scale of [−3: highly negative, −2 negative, −1
weakly negative, 0 neutral, +1 weakly positive, +2 positive, +3
highly positive]. The metric Acc-7 represents the 7-class clas-
sification accuracy. The metric Acc-2 evaluates the positive and
negative sentiment accuracy by separating the labels into [−3,
−2, −1] and [0, 1, 2, 3] groups.

Sarcasm Detection [19] is a public dataset for multimodal
sarcasm detection.4 It is collected from English tweets con-
taining pictures, attributes descriptions, and texts. The training,
validation, and test sets have 19,816, 2,410, and 2,409 sen-
tences, respectively. The task is to determine whether the in-
put is sarcastic by combining the information from images and
texts.

2[Online]. Available: https://github.com/jimmy646/violin
3[Online]. Available: https://github.com/A2Zadeh/CMU-MultimodalSDK

for more information.
4[Online]. Available: https://github.com/wrk226/pytorch-multimodal_

sarcasm_detection

Fig. 3. Negative feature augmentation for MCL. On the left-hand side, train-
ing samples are from three modalities M , N , and Q. In the middle, the trian-
gle, square and circle with the same color is a positive sample from the three
modalities. On the right-hand side, negative samples are generated using training
samples by random permutation within one modality and then grouped across
modalities vertically. The number of permutations is set as a hyper-parameternp

(e.g., np = 3). The contrast between positive and negative samples is illustrated
by the blue dashed arrow. The contrast within positive samples is illustrated by
the red solid arrows.

B. Implementation Details

1) Feature Generation: The unimodal features are generated
by the protocol from each multimodal dataset.

For Video-and-Language Inference task on Violin dataset, the
global visual features for each frame are extracted using ResNet-
101 [44] pre-trained on ImageNet [45], and are down-sampled to
3 frames per second, resulting in a 2,048-dimensional feature for
each frame. Text features are encoded by finetuning a pre-trained
BERT-based model [46] on the statements and subtitles on the
Violin, which yields a feature dimension of 768.

For Multimodal Sentiment Classification task in CMU-
MOSEI, the inputs include visual, vocal, and verbal features.
The visual features contain 35 facial action units, 68 facial land-
marks, and general face features [47]. The audio features are
extracted using COVAREP [48], and the text features are ex-
tracted by Glove [49].

For Multimodal Sarcasm Detection task, the image and
the attribute features are extracted using ResNet-50 [44] pre-
trained on ImageNet [45]. The text features are extracted using
Glove [49].

2) Negative Feature Augmentation for MCL: Different from
traditional data augmentation for contrastive learning, our data
augmentation for MCL is illustrated in Fig. 3. The training sam-
ples cover three modalities, M, N, and Q, which are represented
by triangles, squares, and circles, respectively. A set of a tri-
angle, a square, and a circle arranged vertically constitutes a
positive sample or a negative sample (e.g., a positive pair is il-
lustrated in a red-dashed box). The same color set constitutes
a positive sample. The negative samples are generated by first
randomly permutating within each modality and then grouped
across modalities. The modalities from a positive sample are
pulled closer (illustrated by the red solid arrows). The contrast
between positive and negative samples happens between one
modality (e.g., M /N /Q) from the positive sample and other
modalities (e.g., (N, Q)/(M, Q)/(M, N)) from negatives (illus-
trated by the blue dashed arrow and the blue dashed cubes).
In our experiments, the number of permutations was set as a
hyper-parameter np (e.g., np = 3). This intuitively introduced
more diversified negatives, which were beneficial to MCL per-
formance.
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TABLE II
ENCODER SETUP FOR MCL

3) Encoder Setup: The encoders for different modalities are
summarized in Table II. The encoder setup for the Violin dataset
was the same as [18]. For sarcasm detection, encoders were
chosen from [19]. On CMU-MOSEI, we used the encoders
from [29]. The encoders trained from scratch via supervised
learning were set as the supervised baseline. For a fair com-
parison, all the MCL models were also trained using the same
encoder setup in Table II.

4) Fusion Module and Transformation Networks: Our pro-
posed method does not rely on a delicate fusion network. We
adopted the widely used transformer fusion module in our im-
plementation. To be specific, the Transformer encoders in [29]
were adopted as the fusion module and the transformation net-
works. However, the numbers of heads and layers were set dif-
ferently for each dataset. The fusion module had 2 heads and
4 layers for the Violin dataset, and 2 heads and 3 layers for
both CMU-MOSEI and Sarcasm datasets. The transformation
networks had 4 heads and 3 layers for all the tasks.

5) Linear Probing: The second stage of the proposed method
for multimodal fusion was linear probing. The inputs were orig-
inal multimodal features without augmentations. We kept the
trainable parameters from the MCL stage unchanged and trained
simple linear layers in a supervised manner for downstream
tasks.

6) Compared Approaches: To demonstrate the effective-
ness of the proposed PN-NCE objective, we compared it
with the supervised trained-from-scratch baseline as well as
several self-supervised MCL methods including CPC (In-
foNCE) [15], CMC [16], MMV-FAC [17], TupleInfoNCE [21],
and RINCE [23]. These methods proposed different learning ob-
jectives based on InfoNCE for self-supervised learning, which
are competitive SOTA methods.

C. Results

The proposed method was examined in three multimodal
fusion tasks. As presented in Table III, we compared the per-
formances with the supervised method and several state-of-
the-art self-supervised methods. For fair comparison with base-
line methods, we followed the same encoder setup in Table II.
Our method consistently outperformed previous self-supervised
MCL baselines. Furthermore, it was comparable to the super-
vised baseline, even surpassing it in some metrics. This show-
cased the versatility of the proposed method for different tasks.
The reported results in Table III were based on np = 40, i.e., we
generated our negative samples by 40 times random permuta-
tion on all the modalities. Specifically, for Video-and-Language
Inference task on Violin, the trained MCL model was able to ex-
plore and relate underlying multimodal information. Our method

Fig. 4. Accuracy (%) with different number of permutations (np). Perfor-
mances in different multimodal fusion tasks increase constantly when np be-
comes larger. After np = 30, performance improvement slows down gradually.
We limitnp up to 40 to address the scarcity of negative samples without spending
excessive training time.

reaches 67.25% of overall accuracy, which was close to the per-
formance of the supervised baseline of 67.60%. On the multi-
modal sentiment classification task, the diversity of input modal-
ities, including image, text, and audio signals, made fusion a
complex challenge. However, the proposed method also outper-
formed all the baselines and surpassed the supervised baseline
in terms of two-class accuracy. On the sarcasm detection task,
the proposed method was effective at exploring and fusing mul-
timodal features to discriminate the semantic differences.

1) Ablation Study: We show the ablation study results in
Table IV. PN-NCE achieved the best results among its vari-
ants. Specifically, PN-NCE reached higher performance com-
pared to P-NCE, which indicated that the noisy resistant prop-
erty of PN-NCE was beneficial for improving the performance.
By comparing PN-NCE to PN-NCE w/o MIE (and P-NCE to
P-NCE w/o MIE), we show that MIE was able to effectively im-
prove the performance for both P-NCE and PN-NCE objectives.
More intuitively, please refer to the improvements of PN-NCE
over PN-NCE w/o MIE in parentheses.

2) Effect of Size and Diversity of Training Data: It is worth
investigating the effect of size and diversity of training data on
model performance. Fig. 4 shows the accuracy curves regard-
ing the number of permutations np. We randomly permuted the
unimodal features np times and combined them by permuted
indexes, which diversified the training samples and increased
the number of negative samples. With the increasing number of
permutations, performance in the three tasks steadily improved.
After np = 30, a more gradual increase in accuracy was ob-
served. We stopped permutation atnp = 40, as the performances
were approaching or exceeding the supervised baselines. When
np = 45 or higher, the performances on different datasets did not
show significant and meaningful improvement. We suggest that
a proper value of np can effectively address the scarcity of neg-
ative samples for MCL without excessively increasing training
time.

D. Pace Adjustment in MCL

To deal with the imbalanced learning paces of positive and
negative samples in MCL, we introduced hyper-parameters α
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TABLE III
PERFORMANCE COMPARISONS WITH SUPERVISED AND SELF-SUPERVISED BASELINES ON VIOLIN, CMU-MOSEI AND SARCASM

TABLE IV
ABLATION STUDY ON VIOLIN, CMU-MOSEI, AND SARCASM

Fig. 5. Value changes of pace estimation factor (α for positive) and (β for
negatives) on Violin dataset.

and β (the sum for all negative samples) in the PN-NCE objec-
tive to adjust the learning paces dynamically. In our experiment,
we set the optimal scores O+ = 1 and O− = 0.01. To illus-
trate how α and β change during training, we present the value
curves in Fig. 5, and thereby intuitively show the effectiveness
of PN-NCE objective at providing a more balanced learning
pace between positive and negative samples. We collected the
average α and β values in each epoch (from epoch 1 to 80)
with multiple different initializations on the Violin dataset. The
curves were the mean estimates by aggregating multiple α and
β values. The shading of the curves represented the 95% confi-
dence interval of the estimates. As presented in Fig. 5, with the
encoder setup and np = 40 on the Violin dataset, positive sam-
ples showed a lower value of pace estimation factor α, which
adjusted the positive samples to slow down their learning paces.
On the contrary, the higher pace estimation factor β adjusted the
negative samples to accelerate their learning paces. We dynam-
ically changed the learning paces of positive and negative sam-
ples, which mitigated the imbalanced learning issue illustrated
in Table I.

During training, α and β were normalized to 1. We observed
that β remained at a high value to accelerate the learning pace
for negative samples at the first half of the training epochs while
decreasing gradually to ease the learning as the negative sam-
ples were approaching their optimums. For positive samples, α
kept lower than β. However, when negative samples learned rel-
atively faster, α increased to adjust the learning pace for positive
samples. PN-NCE achieved satisfying performances across all
the multimodal fusion tasks because it can learn the rich under-
lying multimodal dynamics by balancing the learning paces of
positive and negative samples at the MCL stage.

E. Robustness Comparison With Feature Perturbation

We evaluated the robustness of our method against different
levels of perturbation in the training data. We defined perturba-
tion level (P-Level) as the percentage of input training features
added with a Gaussian noise, which was sampled from a nor-
mal distribution with zero mean and unit variance. We randomly
selected one modality in a pair to partially introduce noisy su-
pervision in positive pairs to perform perturbation. This ensured
that the semantic information shared in positive pairs was not
totally lost. This was also to create a harder scenario for MCL.
We compared our method with CPC (InfoNCE) [15] as it was the
most popular approach for MCL. We also compared it with the
competitive method for multimodal fusion, TupleInfoNCE [21].
We took the same generated features and encoder setups as de-
scribed in section 4.3 but added perturbations to the features. We
also used the same linear probing layers for all the downstream
tasks.

At all P-Levels, our method outperformed the compared meth-
ods on all the metrics. As shown in Table V, with the increasing
P-Level, from 0% to 50%, the performances of both methods
dropped. With a mild perturbation, we noticed that the accura-
cies/F1 decreased steadily. Overall, PN-NCE degraded less with
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TABLE V
ROBUSTNESS COMPARISON WITH DIFFERENT LEVELS OF FEATURE PERTURBATION

increasing P-Level. We also found that the performances of In-
foNCE suffered a significant decrease from P-Level 30% to 40%.
For example, on CMU-MOSEI dataset, the Acc-2 drops 12.99%,
and the F1 drops 11.97%. Under large perturbation, the com-
pared methods suffered much degradation. PN-NCE was more
resilient at large P-Level. The results in parentheses show the
performance differences of PN-NCE over the compared meth-
ods. We focused on comparing the performance when positive
pairs introduce a large number of noisy modalities, i.e. P-Level
30% to 50% (see the bolded results in Table V). Under such cir-
cumstances, the supervision signals in positive pairs were unde-
sirably affected, which caused hard positive samples. However,
it can be observed that PN-NCE was more robust against noise in
training data and consistently outperforms the compared base-
line.

F. Linear Probing With Proportionally Reduced Training
Samples

We observed that the number of training data in MCL affected
the performance significantly. However, few studies were found
on performance degradation when using less training data in the
linear probing stage. We evaluated the effect of reduced training
samples on the model performance at the linear probing stage.

As shown in Fig. 6, with the same encoder and dataset
setup for all the compared methods, the two-class accuracies

Fig. 6. Accuracy (%) with proportions of training samples (%) on CMU-
MOSEI at the linear probing stage. As the training data is greatly reduced, e.g.,
from 70% to 60% (and 60% to 50%), the performance of the baseline models
degrades to a greater extent. Compared with other MCL baselines, our method
is the least affected.

on CMU-MOSEI dataset are reported. The number of training
samples varied from 100% to 50% of the original sample size.
While the trend of decreasing accuracy was expected with the
reduction of training samples, our proposed method was the least
affected. This effect was the most pronounced when there was
a large reduction in training samples. Under the circumstance
of losing a large proportion of training samples (70% to 50%),
our method bore the least degradation compared with the other
MCL baseline methods. As we only applied simple linear layers,
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the performance improvement was attributed to the MCL stage,
where we proposed PN-NCE objective function.

The results revealed that 1) linear probing with fewer training
samples undermines the fusion performance to a large extent
regardless of MCL models and 2) an effective MCL model can
mitigate the performance loss on multimodal fusion tasks. The
results provided strong evidence that validates the effectiveness
of the proposed PN-NCE for multimodal fusion.

V. CONCLUSION

In this work, we proposed Pace-adaptive and Noise-resistant
contrastive learning for multimodal feature fusion. To alleviate
the issue of the imbalanced learning pace of positive and negative
pairs, the PN-NCE objective function was proposed for efficient
and robust self-supervised multimodal contrastive learning. Fur-
thermore, modality-invariant information was maintained and
maximized by explicit distance measure between the fused rep-
resentation and the unimodal representations. The proposed
method for multimodal fusion directly took extracted unimodal
features as input and was model-agnostic. The experimental re-
sults on three multimodal fusion tasks showed the efficacy of
our proposed method. In the future, we consider extending our
method to other multimodal representation learning tasks, such
as multimodal generation.

APPENDIX A

A. Proof of Theorem 1

The loss function of the cooperative classifier ensemble with
noisy labels is defined as

Lη(F(s)) =

∫
s

l(f+(s, s+), ŷ+)dp(s)

+ μ

∫
s

(
J−1∑
i=1

l(f−(s, s−i ), y
−
i )

+

K∑
i=J

l(f−(s, s−i ), ŷ
−
i )

)
dp(s),

where y−i represents clean label and ŷ+ and ŷ−i represent labels
with η probability being wrong. Rewriting it,

Lη(F(s)) =

∫
s

μ
J−1∑
i=1

l(f−(s, s−i ), y
−
i )dp(s)

+

∫
s

(1− η)l(f+(s, s+), y+)

+ ηl(f+(s, s+),−y+)dp(s)

+ μ

∫
s

(1− η)
K∑
i=J

l(f−(s, s−i ), y
−
i )

+ η

K∑
i=J

l(f−(s, s−i ),−y−i )dp(s).

To simplify the notation, let

T1(F) =

∫
s

μ

J−1∑
i=1

l(f−(s, s−i ), y
−
i )dp(s).

Using the symmetric condition{
l(f+(s, si), 1) + l(f+(s, si),−1) = C

l(f−(s, si), 1) + l(f−(s, si),−1) = C,

Lη(F(s)) = T1(F) +

∫
s

(1− 2η)l(f+(s, s+), y+)

+ ηCdp(s) + μ

∫
s

(1− 2η)
K∑
i=J

l(f−(s, s−i ), y
−
i )

+ η(K − J + 1)Cdp(s),

Lη(F(s)) = T1(F) + (1− 2η)

∫
s

l(f+(s, s+), y+)dp(s)

+(1−2η)μ

∫
s

K∑
i=J

l(f−(s, s−i ), y
−
i )dp(s)+Const .

Considering

Lη(F∗(s))− Lη(F(s)) = T1(F
∗)− T1(F)

+ (1− 2η)

∫
s

l(f+∗(s, s+), y+)− l(f+(s, s+), y+)dp(s)

+(1− 2η)μ

∫
s

K∑
i=J

l(f−∗(s, s−i ), y
−
i )−l(f−(s, s−i ), y

−
i )dp(s),

where F∗ is optimal under clean data.
Let

T2(F) =

∫
s

l(f+(s, s+), y+)dp(s)

+ μ

∫
s

K∑
i=J

l(f−(s, s−i ), y
−
i )dp(s),

then we have

Lη(F∗(s))− Lη(F(s)) = T1(F
∗)− T1(F)

+ (1− 2η)(T2(F
∗)− T2(F)).

Case 1: T1(F
∗)− T1(F) < 0 and T2(F

∗)− T2(F) < 0
If η < 0.5, Lη(F∗(s))− Lη(F(s)) < 0. It implies the opti-

mal F∗ can be obtained from noisy training.
Case 2: T1(F

∗)− T1(F) < 0 and T2(F
∗)− T2(F) > 0

Note T1(F
∗)− T1(F) + T2(F

∗)− T2(F) = L(F∗(s))−
L(F(s)) and F∗ is optimal under clean data. In other words,
T1(F

∗)− T1(F) + T2(F
∗)− T2(F) < 0. As a result, any η

between 0 and 1, Lη(F∗(s))− Lη(F(s)) < 0. It also implies
robustness.

Case 3: T1(F
∗)− T1(F) > 0 and T2(F

∗)− T2(F) < 0
Since

L(F∗(s))− L(F(s)) < 0,

T1(F
∗)− T1(F) + T2(F

∗)− T2(F) < 0,
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T1(F
∗)− T1(F) < −(T2(F

∗)− T2(F)).

Combining T1(F
∗)− T1(F) > 0, we have

0 < T1(F
∗)− T1(F) < −(T2(F

∗)− T2(F)). (∗)
Considering

T1(F
∗)− T1(F) + (1− 2η0)(T2(F

∗)− T2(F)) = 0,

η0 =
1

2

(
T1(F

∗)− T1(F)

T2(F∗)− T2(F)
+ 1

)
.

Using (∗), we know that

0 >
T1(F

∗)− T1(F)

T2(F∗)− T2(F)
> −1.

Thus, 0 < η0 < 0.5.
If

η < sup
F

(
1

2

(
T1(F

∗)− T1(F)

T2(F∗)− T2(F)
+ 1

))
,

Lη(F∗(s))− Lη(F(s)) < 0. It implies the optimal F∗ can be
obtained from noisy training.

Note that Case 4: T1(F
∗)− T1(F ) > 0 and T2(F

∗)−
T2(F ) > 0 is impossible because F∗ is optimal under clean
data. Combining Cases 1–3, we complete the proof.

B. Discussion

We can observe from the proof of Theorem 1 that Case 2
requires the most relaxed condition for the noise probability η
(i.e., 0 ≤ η ≤ 1) compared with Cases 1 and 3.

According to Case 3 in the proof, if there exists an F fulfilling
T1(F

∗)− T1(F) > 0 and T2(F
∗)− T2(F) < 0,

η = sup
F

(
1

2

(
T1(F

∗)− T1(F)

T2(F∗)− T2(F)
+ 1

))
.

As
T1(F

∗)− T1(F)

T2(F∗)− T2(F)
is between −1 and 0, η is between 0 and

0.5 in this case. Note that F∗ is optimal, meaning that T1(F
∗) +

T2(F
∗) < T1(F) + T2(F), ∀F.

Since all the l and f− are identical and all s−i follows i.i.d,
as long as μ is large enough, l(f−(s, s−i ), y

−
i ) would dominate

the training and T1(F
∗)− T1(F) < 0. In other words, as long

as μ is large enough, the optimal F∗ would be obtained for noise
probability η < 0.5. If all the labels of s+, s−1 , . . . , s

−
K have η

probability of being corrupted, the theorem above is still valid
because there is no T1(F

∗) and T1(F), and we will obtain the
optimal F∗ as long as η < 0.5.

To sum up, we defined a cooperative classifier ensemble and
showed the robust property ofLPN−NCE in three possible cases.

REFERENCES

[1] T. Baltrušaitis, C. Ahuja, and L.-P. Morency, “Multimodal machine learn-
ing: A survey and taxonomy,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 41, no. 2, pp. 423–443, Feb. 2019.

[2] D. Ramachandram and G. W. Taylor, “Deep multimodal learning: A survey
on recent advances and trends,” IEEE signal Process. Mag., vol. 34, no. 6,
pp. 96–108, Nov. 2017.

[3] C. Zhang, Z. Yang, X. He, and L. Deng, “Multimodal intelligence: Rep-
resentation learning, information fusion, and applications,” IEEE J. Sel.
Topics Signal Process., vol. 14, no. 3, pp. 478–493, Mar. 2020.

[4] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proc. Int. Conf. Mach.
Learn., 2020, pp. 1597–1607.

[5] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for
unsupervised visual representation learning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 9729–9738.

[6] P. Khosla et al., “Supervised contrastive learning,” in Proc. Adv. Neural
Inf. Process. Syst., 2020, vol. 33, pp. 18661–18673.

[7] O. Henaff, “Data-efficient image recognition with contrastive predictive
coding,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 4182–4192.

[8] X. Chen and K. He, “Exploring simple siamese representation learning,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 15750–
15758.

[9] J. Giorgi, O. Nitski, B. Wang, and G. Bader, “DECLUTR: Deep contrastive
learning for unsupervised textual representations,” in Proc. 59th Annu.
Meeting Assoc. Comput. Linguistics 11th Int. Joint Conf. Natural Lang.
Process., 2021, pp. 879–895.

[10] T. Gao, X. Yao, and D. Chen, “SimCSE: Simple contrastive learning of
sentence embeddings,” in Proc. Conf. Empirical Methods Natural Lang.
Process., 2021, pp. 6894–6910.

[11] H. Bao et al., “Unilmv2: Pseudo-masked language models for unified
language model pre-training,” in Proc. Int. Conf. Mach. Learn., 2020,
pp. 642–652.

[12] C.-Y. Chuang, J. Robinson, Y.-C. Lin, A. Torralba, and S. Jegelka, “De-
biased contrastive learning,” in Proc. Adv. Neural Inf. Process. Syst.,
2020,vol. 33, pp. 8765–8775.

[13] A. Saeed, D. Grangier, and N. Zeghidour, “Contrastive learning of general-
purpose audio representations,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2021, pp. 3875–3879.

[14] S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec: Unsu-
pervised pre-training for speech recognition,” in Proc. InterSpeech, 2019,
pp. 3465–3469.

[15] A. V. D. Oord, Y. Li, and O. Vinyals, “Representation learning with con-
trastive predictive coding,” 2018, arXiv:1807.03748.

[16] Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview coding,” in Proc.
Eur. Conf. Comput. Vis., 2020, pp. 776–794.

[17] J.-B. Alayrac et al., “Self-supervised multimodal versatile networks,” in
Proc. Adv. Neural Inf. Process. Syst., 2020,vol. 33, pp. 25–37.

[18] J. Liu et al., “Violin: A large-scale dataset for video-and-language infer-
ence,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 10900–10910.

[19] Y. Cai, H. Cai, and X. Wan, “Multi-modal sarcasm detection in twitter with
hierarchical fusion model,” in Proc. 57th Annu. Meeting Assoc. Comput.
Linguistics, 2019, pp. 2506–2515.

[20] P. H. Le-Khac, G. Healy, and A. F. Smeaton, “Contrastive repre-
sentation learning: A framework and review,” IEEE Access, vol. 8,
pp. 193907–193934, 2020.

[21] Y. Liu et al., “Contrastive multimodal fusion with tupleinfonce,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 754–763.

[22] T. Han, W. Xie, and A. Zisserman, “Video representation learning by dense
predictive coding,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshops,
2019, pp. 1483–1492.

[23] C.-Y. Chuang et al., “Robust contrastive learning against noisy views,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022,
pp. 16670–16681.

[24] L. Jing, P. Vincent, Y. LeCun, and Y. Tian, “Understanding dimensional
collapse in contrastive self-supervised learning,” in Proc. Int. Conf. Learn.
Representations, 2022, pp. 1–17.

[25] A. Zadeh et al., “Memory fusion network for multi-view sequen-
tial learning,” in Proc. AAAI Conf. Artif. Intell., 2018, vol. 32,
pp. 5634–5641.

[26] D. Hazarika, R. Zimmermann, and S. Poria, “MISA: Modality-invariant
and-specific representations for multimodal sentiment analysis,” in Proc.
28th ACM Int. Conf. Multimedia, 2020, pp. 1122–1131.

[27] Y. Wang et al., “Deep multimodal fusion by channel exchanging,” in Proc.
Adv. Neural Inf. Process. Syst., 2020,vol. 33, pp. 4835–4845.

[28] A. Zadeh, M. Chen, S. Poria, E. Cambria, and L.-P. Morency, “Tensor fu-
sion network for multimodal sentiment analysis,” in Proc. Conf. Empirical
Methods Natural Lang. Process., 2017, pp. 1103–1114.

[29] Y.-H. H. Tsai et al., “Multimodal transformer for unaligned multimodal
language sequences,” in Proc. Conf. Assoc. Comput. Linguistics. Meeting,
2019, pp. 6558–6569.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on February 13,2025 at 12:48:02 UTC from IEEE Xplore.  Restrictions apply. 



9448 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

[30] R. Zhu, B. Zhao, J. Liu, Z. Sun, and C. W. Chen, “Improving contrastive
learning by visualizing feature transformation,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., 2021, pp. 10306–10315.

[31] A. B. Zadeh, P. P. Liang, S. Poria, E. Cambria, and L.-P. Morency, “Multi-
modal language analysis in the wild: CMU-mosei dataset and interpretable
dynamic fusion graph,” in Proc. 56th Annu. Meeting Assoc. Comput. Lin-
guistics, 2018, pp. 2236–2246.

[32] T. Wang and P. Isola, “Understanding contrastive representation learning
through alignment and uniformity on the hypersphere,” in Proc. Int. Conf.
Mach. Learn., 2020, pp. 9929–9939.

[33] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learn-
ing an invariant mapping,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., 2006, vol. 2, pp. 1735–1742.

[34] N. Saunshi, O. Plevrakis, S. Arora, M. Khodak, and H. Khandeparkar, “A
theoretical analysis of contrastive unsupervised representation learning,”
in Proc. Int. Conf. Mach. Learn., 2019, pp. 5628–5637.

[35] M. Gutmann and A. Hyvärinen, “Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models,” in Proc. 13th
Int. Conf. Artif. Intell. Statist., JMLR Workshop Conf. Proc., 2010,
pp. 297–304.

[36] K. Gadzicki, R. Khamsehashari, and C. Zetzsche, “Early vs late fusion in
multimodal convolutional neural networks,” in Proc. IEEE 23rd Int. Conf.
Inf. Fusion, 2020, pp. 1–6.

[37] Z. Liu et al., “Efficient low-rank multimodal fusion with modality-specific
factors,” in Proc. 56th Annu. Meeting Assoc. Comput. Linguistics, 2018,
pp. 2247–2256.

[38] A. Nagrani et al., “Attention bottlenecks for multimodal fusion,” in Proc.
Adv. Neural Inf. Process. Syst., 2021, vol. 34, pp. 14200–14213.

[39] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[40] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017,vol. 30, pp. 1–11.

[41] X. Zhang, F. X. Yu, S. Karaman, W. Zhang, and S.-F. Chang, “Heated-up
softmax embedding,” 2018, arXiv:1809.04157.

[42] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax for
face verification,” IEEE Signal Process. Lett., vol. 25, no. 7, pp. 926–930,
Jul. 2018.

[43] A. Ghosh, H. Kumar, and P. Sastry, “Robust loss functions under label
noise for deep neural networks,” in Proc. AAAI Conf. Artif. Intell., 2017,
vol. 31, pp. 1919–1925.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[45] J. Deng et al., “ImageNet: A large-scale hierarchical image database,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[46] J. D. M.-W. C. Kenton and L. K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding,” in Proc. NAACL-
HLT, 2019, pp. 4171–4186.

[47] T. Baltrušaitis, P. Robinson, and L.-P. Morency, “Openface: An open
source facial behavior analysis toolkit,” in Proc. IEEE Winter Conf. Appl.
Comput. Vis., 2016, pp. 1–10.

[48] G. Degottex, J. Kane, T. Drugman, T. Raitio, and S. Scherer, “Covarep–A
collaborative voice analysis repository for speech technologies,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., 2014, pp. 960–964.

[49] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for
word representation,” in Proc. Conf. Empirical methods Natural Lang.
Process., 2014, pp. 1532–1543.

Xiaobao Guo is currently working toward the Ph.D.
degree with the School of Computer Science and
Engineering, and with Rapid-Rich Object Search
(ROSE) Lab, Interdisciplinary Graduate Programme,
Nanyang Technological University, Singapore. Her
research interests include computer vision and mul-
timodal learning.

Alex Kot (Life Fellow, IEEE) has been with the
Nanyang Technological University, Singapore, since
1991. He was the Head of the Division of Informa-
tion Engineering and Vice Dean Research with the
School of Electrical and Electronic Engineering. Sub-
sequently, he was the Associate Dean for College of
Engineering for eight years. He is currently a Pro-
fessor and the Director of Rapid-Rich Object Search
(ROSE) Lab and NTU-PKU Joint Research Institute.
He has authored or coauthored extensively in the ar-
eas of signal processing, biometrics, image forensics

and security, and computer vision and machine learning. Dr. Kot was an Asso-
ciate Editor for more than ten journals, mostly for IEEE transactions. He was the
IEEE SP Society in various capacities such as the General Co-Chair for the 2004
IEEE International Conference on Image Processing and the Vice-President for
the IEEE Signal Processing Society. He was the recipient of the Best Teacher
of the Year Award and is a co-author for several Best Paper Awards includ-
ing ICPR, IEEE WIFS and IWDW, CVPR Precognition Workshop and VCIP.
He was elected as the IEEE Distinguished Lecturer for the Signal Processing
Society and the Circuits and Systems Society. He is a Fellow of Academy of
Engineering, Singapore.

Adams Wai-Kin Kong (Member, IEEE) received the
Ph.D. degree from the University of Waterloo, Water-
loo, ON, Canada. He is currently an Associate Profes-
sor with Nanyang Technological University, Singa-
pore. His papers have been published in TPAMI, TIP,
TIFS, TMM, TPWRS, NeurIPS, ICRL, CVPR, ICCV,
ECCV, EMLP, IJCA, and pattern recognition. His
research interests include pattern recognition, deep
learning, and their applications in power systems,
healthcare, and biometrics. One of his papers was se-
lected as a spotlight paper by TPAMI and another one

was selected as Honorable Mention by Pattern Recognition. With his students,
he was the recipient of the Best Student Paper Awards at The IEEE Fifth Interna-
tional Conference on Biometrics: Theory, Applications, and Systems, 2012, and
IEEE International Conference on Bioinformatics and Bioengineering, 2013. In
2016, he was also the recipient of the Best Reviewer Award from BTAS. He also
was an Associate Editor for TIFS.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on February 13,2025 at 12:48:02 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


