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Abstract

Label noise is ubiquitous in real-world datasets, posing significant challenges to machine learn-
ing models. While self-supervised learning (SSL) algorithms have empirically demonstrated
e�ectiveness in learning noisy labels, the theoretical understanding of their e�ectiveness
remains underexplored. In this paper, we present a theoretical framework to understand how
SSL methods enhance learning with noisy labels, especially for the instance-dependent label
noise. We reveal that the uniform and compact cluster structures induced by contrastive SSL
play a crucial role in mitigating the adverse e�ects of label noise. Specifically, we theoretically
show that a classifier trained on SSL-learned representations significantly outperforms one
trained using traditional supervised learning methods. This results from two key merits of
SSL representations over label noise: 1. Uniform Noise Distribution: Label noise becomes
uniformly distributed over SSL representations with respect to the true class labels, rather
than the noisy ones, leading to an easier learning task. 2. Enhanced Cluster Structure:
SSL enhances the formation of well-separated and compact categorical clusters, increasing
inter-class distances while tightening intra-class clusters. We further theoretically justify
the benefits of training a classifier on such structured representations, demonstrating that
it encourages the classifier trained on noisy data to be aligned with the optimal classifier.
Extensive experiments validate the robustness of SSL representations in combating label
noise, confirming the practical values of our theoretical findings.
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1 Introduction

Label noise is ubiquitous in the real world since acquiring accurately annotated datasets is expensive and
time-consuming (Patrini et al., 2017; Xiao et al., 2015; Natarajan et al., 2013). Alternatively, a large amount
of annotated images can be collected from unreliable sources such as non-expert annotators and image search
engines, where label noise is inevitable (Xia et al., 2020a; Li et al., 2017). Recent self-supervised learning
(SSL) with contrastive learning paradigms achieved great success in learning meaningful data representations
without label information (He et al., 2020; Chen et al., 2020c; Zbontar et al., 2021; Caron et al., 2020).

In SSL, any two augmented examples from the same image (referred to as positive pairs) are mapped to
nearby locations in the embedding space, whereas two augmented images from di�erent images (referred to
as negative pairs) are mapped to a distant location (Oord et al., 2018; Purushwalkam & Gupta, 2020; Chen
et al., 2020b). Empirical evidence demonstrates that representations learned by SSL can be easily adapted to
many downstream tasks such as image classification, objection detection, segmentation, and learning with
imbalanced datasets (Grill et al., 2020; Misra & Maaten, 2020; Zhao et al., 2021; Xie et al., 2021; Liu et al.,
2021; Yang & Xu, 2020).

Apart from these applications, in this paper, we show how SSL representations enhance learning with label
noise. Specifically, we first construct a motivating example of instance-dependent label noise, then we prove
that a classifier trained on representations learned by SSL with noisy labels is optimal over clean data
distribution. Then we systematically analyze the benefits of representations learned by SSL and find two
merits of SSL representations: (1) Uniform Noise Distribution: The label noise uniformly spreads over
the learned SSL representations, (2) Enhanced Cluster Structure: The learned representations exhibit a
separated and compact cluster structure with respect to true labels. It increases the distance of clusters
from di�erent classes while reducing the variance of the cluster of the same class.

For point (1), we theoretically show that the label noise is uniformly distributed across the learned representa-
tions by SSL in the motivating example, which is easier to address in practice (Cheng et al., 2020; Chen et al.,
2021a; Zhang et al., 2020). We further extend the relationship between label noise and the representations
learned by SSL to a more general case and provide empirical validation. For point (2), we empirically and
theoretically justify that representations learned by SSL exhibit a cluster structure based on true labels.

Furthermore, we demonstrate that such a structure encourages the classifier trained on noisy data to align
more closely with the optimal classifier learned from clean data. In contrast, representations learned through
supervised learning (SL) do not achieve uniform noise distribution or form a good cluster structure. In
particular, representations learned through supervised learning still depend on noisy labels and they exhibit
clusters with respect to noisy labels instead of true labels.

From the algorithmic perspective, we show that mixup over SSL representations boosts the property of cluster
structure discussed in our theory. Specifically, following the common setting of SSL evaluation (Chen et al.,
2020b; He et al., 2020; Grill et al., 2020), we fix representations learned by SSL and then only train a linear
classifier on the frozen representations with di�erent types of label noise methods, which show significant
improvements. The main contributions are summarized as follows:

• We provide theoretical analysis to show that representations learned by SSL exhibit a more uniform
and discriminative cluster structure under label noise, leading to a better classifier than supervised
learning.

• We systematically show that SSL breaks the dependency of label noise and representation, resulting
in uniformly distributed label noise over classes. Further, SSL enlarges the distance of clusters from
di�erent classes while tightening the cluster of the same class.

• Empirically, we show that mixup based on conventional SSL augmentations satisfies our theoretical
motivations and benefits cluster structure learning. Extensive experiments validate our analysis and
the e�ectiveness of SSL in noisy label learning.
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2 Related Work

Learning with Noisy Labels. There are di�erent approaches to addressing the issues caused by label noise.
Commonly used loss functions such as cross-entropy loss (CE) are not robust to label noise. Therefore, noise-
robust loss function methods are proposed to make models fit clean examples but not mislabeled examples
(Zhang & Sabuncu, 2018; Wang et al., 2019; Ma et al., 2020; Englesson & Azizpour, 2021). Alternative
solutions design selection strategies to improve the confidence of clean examples and filter them from noisy
data(Han et al., 2018; Yu et al., 2019; Wei et al., 2020; Song et al., 2019; Yang et al., 2023). Label correction
methods correct pseudo labels of noisy samples for computing their loss functions (Zhang et al., 2021; Liu
et al., 2020; Yi & Wu, 2019; Zhang et al., 2020). Noise transition matrix methods estimate the underlying
label noise distribution and use it to correct the noisy labels and build a robust classifier. Other solutions
include using the neural symbolic system to model and reduce the noise Smirnova et al. (2022), filtering
noisy labels from sample and parameter levels (Wang et al., 2023), and enhancing the label accuracy with
graph fusion (Xu et al., 2022). Cheng et al. (2021) provides a study on distilling the knowledge of SSL
representations to supervised learning representations. In contrast, we focus on revealing and investigating
how plain SSL representation can successfully address the label noise issue.

Self-supervised Learning. Representations of images learned by SSL have achieved remarkable success.
SimCLR (Chen et al., 2020b) requires a large batch size to contain su�cient in-batch negative pairs and
domain-specific augmentations such as Gaussian blur, color distortions, and color jittering. However, a large
batch size is infeasible. MoCo (He et al., 2020) solves this issue by introducing a memory bank to store
representations of data from previous iterations. The later work in this series uses the optimized large batch
to remove the memory bank and introduce ViT into the framework (Chen et al., 2021b). BYOL (Grill et al.,
2020) and SimSiam (Chen & He, 2021) propose new frameworks without using negative pairs so they can
work with a reasonable batch size. On the other hand, SSL relies on domain-specific image augmentation.
That is to assume that image augmentations such as changing the colors of images should not a�ect labels of
images in downstream tasks (Tsai et al., 2020). DACL (Verma et al., 2021) and I-MIX (Lee et al., 2020) both
leverage mixup augmentation (Zhang et al., 2017) as domain-agnostic augmentation and they find that SSL
methods with both domain-agnostic and domain-specific augmentations perform better.

Noisy labels with SSL. Applying SSL methods to mitigate label noise has recently been studied. Li et al.
(2021) propose the contrastive learning loss in the principle subspace via autoencoder and the mixup in the
low dimensional space to learn a robust representation. Ghosh & Lan (2021) empirically validates that the
representations pretrained by SSL methods are beneficial for noisy label learning. C2D (Zheltonozhskii et al.,
2022) propose a contrast and divide method to empirically address the warm-up obstacle for memorizing
the noise. Yi et al. (2022) analyze the memorization issue in cross-entropy issue and propose a contrastive
regularization to mitigate it. Xue et al. (2022) shows that contrastive learning boosts robustness by analyzing
the singular values of the representation matrix. However, these methods either lack systematic theoretical
analysis or rely on extra assumptions of sub-class structure to show how SSL benefits noisy label learning.

Di�erent from these discussed methods, our method provides theoretical analysis that SSL methods benefit
noisy label learning by learning a more separated and compact cluster structure. Concretely, we analytically
show that SSL can enlarge the cluster distance from di�erent classes and reduce the variance of each cluster.
Further, we empirically prove that the built-on mixup can achieve our theoretical motivations and improve
noisy label learning.

3 Analysis of SSL representations with noisy labels

We first provide a motivating example to show that SSL can be significantly better than supervised learning,
which enables us to explore and investigate the benefits of representations learned by SSL.

We first construct a binary classification problem with two linearly separable clusters, where the samples
from clusters are artificially flipped according to a label noise function. We denote yi by the true label for xi
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and assume it is a balanced sample from {≠1, +1}. Then the instance xi is decided in the following manner:

xi =
I

e1’i + e2›i, if yi = +1
≠e1’i ≠ e2›i, if yi = ≠1

where ’ ≥ U[0,b], › ≥ U[≠m,b≠m], b, m œ R, b > m > 0 denote the interval without the loss of generity, and
e1, e2 œ Rd are two orthogonal unit-norm vectors. We assume —(x, y) = sign(yx€e2) as the instance-dependent
label noise function. For each clean example (xi, yi), the corresponding noisy example is (xi, ỹi), where
ỹi = yi—(xi, yi). Then we can compute that there are 43.75% mislabeled examples if the noise function —(x, y)
is adopted.

We use a simple linear classifier parameterized by Ê and use the gradient descent algorithm to learn the
parameter Ê over the noisy data {xi, ỹi}n

i=1, with a logistic loss function. Thus, in conventional supervised
learning, we have the loss:

L(Ê) = 1
n

nÿ

i=1
log

!
1 + exp

!
≠ỹiÊ

€xi

""
.

In contrast, following the common practice in SSL research Chen et al. (2020b); He et al. (2020); Grill et al.
(2020), we first learn a linear representation model with parameter W œ R1◊d from {xi}n

i in a self-supervised
manner. Specifically, we adopt the linear SSL objective function studied in Liu et al. (2021); HaoChen et al.
(2021), which tends to pull two positive pairs (x + “, x + “Õ) to nearby locations in the embedding space:

WSSL = arg min

W œR1◊d

≠Ê[(x + “)
€W €W (x + “Õ

)] +
1

2

..W €W
..2

F
, (1)

where Ê is an empirical expectation over the data, with “, “Õ are independent and identical N (0, I) random
variables. Once the optimal representation model WSSL is obtained, we fix WSSL and then learn a linear
classifier parameterized by ◊ on the top of representations with noisy labels {(WSSLxi, ỹi)}i. Analogous to
supervised learning, we also use the gradient descent with a logistic loss function L(◊) to train the classifier.

L(◊) = 1
n

nÿ

i=1
log

!
1 + exp

!
≠ỹi◊

€WSSLxi

""
.

The following theorem states the behavior of linear classifiers on input data {(xi, ỹi)}i and representations of
inputs data {(WSSLxi, ỹi)}i, respectively.
Theorem 3.1. For a linear classifier trained with logistic loss function, let Ễ, ◊̃ be normalized optimal
parameters via gradient descent with logistic loss over the data {(xi, ỹi)}i and {(WSSLxi, ỹi)}i, respectively.
Then the generalization accuracy in supervised learning is upper bounded by:

Pr
(x,y)

[sign(Ễ€x) = y] Æ 9
16 + 2d

3n
, (2)

While the generalization accuracy in SSL is lower bounded by:

Pr
(x,y)

[sign(◊̃€WSSLx) = y] Ø 1 ≠ 2e≠n/128. (3)

Remark Theorem 3.1 reveals two interesting facts in the presence of label noise. (1) The prediction
accuracy under SSL is guaranteed to be a high value via a provable lower bound. The lower bound could
further converge to 1 (perfect prediction without error) when sample size n æ +Œ. (2) In contrast, in
supervised learning, simply collecting more samples does not guarantee a high accuracy, where the upper
bound of the accuracy converges to 9/16 as n æ +Œ. Theorem 3.1 is in proved in Supplementary Section B.
4 Why SSL Works

To show the benefits of SSL in noisy labels, we analyze the learned representation WSSL from Eq. (1).
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（a）SL(noisy labels) （b）SSL(noisy labels) （c）SL(true labels) （d）SSL(true labels) （e）SL(noisy labels) （f）SSL(noisy labels)

Figure 1: T-SNE of 60% instance-dependent label noise on CIFAR-10 and Clothing1M. We train a ResNet34
on the noisy data by supervised learning (SL), and we visualize the representations learned by SL in (a)
and (c) with respect to noisy labels and true labels, respectively. Similarly, we also train an SSL ResNet34
and visualize data representations in (b) and (d). We highlight regions with solid polygons that su�er from
the label noise in (a), where red points (label noise) represent wrong-labeled data. In (b), the red points
are almost uniformly spread over the data representations. Similarly, we also show results on the real-world
Clothing1M trained with ResNet50. The similar observation shows that the label noise is not uniformly
distributed in SL (e) while almost uniformly distributed in all classes in SSL (f).

Proposition 4.1. Let WSSL denote the feature representation learned from SSL and e1 denote the discrimi-
native feature-related true labels. The optimal solution WSSL in Eq. (1) converges in probability to ke1 with
the constant k > 0.

The solution WSSL is the span of the vector e1, which is crucial for learning an optimal classifier in Eq.(3).
Note that only e1 determines the true labels of data x. In fact, the injected label noise depends on the
non-discriminative feature e2 but not the discriminative feature e1. If we orthogonally project data x onto
the direction of e1, the label noise is independent of and is uniformly distributed over the projected data
points spanned by e1. The representation model WSSL exactly maps the data x onto the direction of e1
orthogonally. Thus, the label noise is uniformly distributed over data representations WSSLx, which makes
the label noise easier to address.

Remark The Proposition 4.1 indicates that the label noise dependent on the non-discriminative feature e2
is uniformly distributed over the projected data representation WSSL spanned by e1.

Now, we discuss the benefits of uniformly distributed noise toward learning a generalized classifier from two
aspects. First, if the label noise is uniformly distributed across the representation, the classifier trained on
data representation with this label noise can generalize better. Specifically, it can be verified that the optimal
Bayes classifier, h(x) = sign(e€

1 x), is also the optimal classifier over the clean distribution. On the other
hand, the classifier trained with the supervised learning method from Theorem 3.1 is forced to learn spurious
correlations between the inputs e2 and the labels.

Second, estimating a noise transition matrix is easier when the label noise is uniformly distributed over
inputs. In particular, the instance-dependent label noise can be characterized by the noise transition matrix
T (x) œ R|Y|◊|Y|, where T (x)ij measures the probability of observing a corrupted label j given the true label
i and an instance x. The issue of label noise is then solved by estimating the noise transition matrix T (x)
(Xiao et al., 2015; Liu & Tao, 2015; Patrini et al., 2017; Goldberger & Ben-Reuven, 2016). Estimating T (x)
for instance-dependent label noise is practically challenging since T (x) can be di�erent for di�erent x and we
may need to parametrize n di�erent T (x) from the noisy dataset of size n by a neural network (Cheng et al.,
2020; Xia et al., 2020b; Berthon et al., 2021). In contrast, T is the same for all x for symmetric label noise (i.e,
label noise is uniformly distributed over data) (Patrini et al., 2017) and we only need to estimate a constant
noise transition matrix. Therefore, by estimating a single noise transition matrix instead of parameterizing n
noise transition matrices by a neural network, the label noise is easier to solve.

5 Generalized Observations in Real World

In this section, we validate our theoretical analysis of the SSL representations in the real-world data.
Concretely, we visualized the feature representations learned with supervised learning and SSL in Fig 1.
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The data representations of supervised learning for noisy labels are in Fig 1(a) while representations of SSL
are in Fig 1(b). Fig 1(a) shows that in the representations learned by supervised learning, the label noise
and representations are still dependent (solid polygons highlight the regions), whereas the SSL breaks such
dependency and makes the label noise uniformly distributed across the data representations. We also get
similar observations on the real-world Clothing1M dataset as shown in (e) and (f). The representations of
green and yellow classes have less label noise, which indicates that label noise is not uniformly distributed in
the supervised learning classifier in Clothing1M. This empirical comparison and evidence in real-world data
confirms our analysis about uniformly distributed noise in Proposition 4.1. Quantitatively, results in Table 6
show SSL clearly and consistently improves the performance of label noise, which concides with the implication
of Theorem 3.1. These experiment results validate our experiments quantitatively and qualitatively.

Besides, we also visualize these representations with respect to their true labels in Fig 1(c-d). We find that
representations learned by SSL exhibit an intrinsic cluster structure that is consistent with the true labels
(Fig 1(d)). In contrast, Fig 1(c) shows that representations learned by supervised learning do not exhibit a
cluster structure with respect to true labels. Thus, it further motivates us to explore how the cluster structure
learned by SSL helps noisy label learning. We explore the theoretical properties of SSL on cluster structure
in the next sections.

6 Compact Cluster Structure for Label Noise

In this section, we investigate how the cluster structure can help mitigate the label noise. Concretely, we
show that for fixed representations, a good cluster structure encourages the classifier to be aligned to the
optimal classifier, resulting in better generalization performance.

For simplicity, we use a two-component Gaussian mixture model to describe the clusters of representations,
with each cluster representing one class. We assume that representations from class +1 are sampled from
N (µ, �) and representations from class ≠1 are sampled from N (≠µ, �), where µ œ Rd and � œ Rd◊d. In this
case, the distance between two clusters is controlled by ÎµÎ, and the variance of each cluster is controlled by
the sum of eigenvalues of �, which is equivalent to the trace of �.

We connect the cluster structure to ≠ÁÒL(Ê0)€µ̃, which can characterize the performance of the linear
classifier, where ÁÒL(Ê0) = ÒL(Ê0)

ÎÒL(Ê0)Î , µ̃ = µ
ÎµÎ , and ÒL(Ê0) is the gradient of the logistic loss computed by

the linear classifier (initialized by Ê0). The normalized gradient of the loss ≠ÁÒL(Ê0) represents the direction
of the steepest descent in the loss function calculated on the noisy data. Given that an optimal classifier
obtained from the clean data is kµ for any scalar k > 0, ≠ÁÒL(Ê0)€µ̃ can measure the cosine similarity
between the gradient descent direction and the direction where the optimal classifier points. After applying
one-step gradient descent on the classifier, the updated classifier is more correlated to the optimal classifier if
the cosine similarity is higher. More details can be found in the Appendix. This intuitively explains why
≠ÁÒL(Ê0)€µ̃ can be used to measure the performance of the linear classifier. Now we focus on establishing
the relationship between ≠ÁÒL(Ê0)€µ̃ and the cluster structure.

As shown in Section 4, label noise is uniformly distributed over representations. Thus, we define the symmetric
label noise function:

—(x, y) =
I

≠1, with probability r

+1, with probability 1 ≠ r

where 0 < r < 1 controls the noise level. Note that for symmetric label noise, the label noise function —(x, y)
is independent of the data. The relationship between ≠ÁÒL(Ê0)€µ̃ and the cluster structure is presented in
Theorem 6.1.
Theorem 6.1. Let r denote the noise level of symmetric label noise function —(x, y), if at least half of
examples are clean (r < 1

2 ),

≠ ÊÒL(Ê0)
€µ̃ Ø

Û
ÎµÎ2

cTr(�) + ÎµÎ2 (1 ≠ 2r) + o(n≠1/3
), (4)

where Tr(�) is the trace of � and c > 0 is a constant.
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Theorem 6.1 provides a lower bound for ≠ÁÒL(Ê0)€µ̃. The larger lower bound means the updated classifier is
more correlated to the optimal one.

The lower bound can be a�ected by the noise level r and the following two cluster properties: 1) the distance
between two clusters ÎµÎ, 2) the variance of each cluster Tr(�). Without considering any label correction
techniques, the noise level r is fixed given a dataset. Therefore, by learning clusters of data representations
that are distant from each other (larger ÎµÎ) and/or by learning tight representation clusters (smaller Tr(�)),
the classifier generalizes better.

Figure 2: Linear classifiers trained on synthetic
datasets with 40% noise level. The dashed line is
the performance of classifiers without label noise
and the solid line is that with label noise. The
histograms are sample loss values at epoch = 50
with respect to whether they are mislabeled.

Remark We remark that the spirits of encouraging a
good cluster structure are the same for other forms of
label noise such as asymmetric label noise, though their
expressions of ≠ÁÒL(Ê0)€µ̃ are di�erent. Details are in
Appendix C.2.

We empirically justify that linear classifiers get better per-
formance when ≠ÁÒL(Ê0)€µ̃ becomes larger. Fig 2 shows
the performances of classifiers trained on data points with
di�erent cluster structures given a fixed noise level 40%.
Specifically, with the same variance, the classifier trained
on clusters with larger distances performs better (orange
line v.s. red line). While with the same distance, the
classifier trained on tight clusters performs better (orange
line v.s. blue line). The two histograms show that the
linear classifier with larger ≠ÁÒL(Ê0)€µ̃ (orange) fits clean
examples better, compared with the linear classifier (red).
It also highlights that representations with better cluster
structure help the classifier generalize better on clean data
distribution.

7 Benefits of SSL on Cluster Structure

In this section, we rigorously justify that the cluster properties characterized in Theorem 6.1 can be achieved
by SSL. In particular, we focus on the SSL objective function Eq. (5) that has been studied in Wang & Isola
(2020). Notably, the loss and its variants have been widely adopted in the SSL (Chen et al., 2020b; He et al.,
2020; Tsai et al., 2021).

Lctr(f) =
1

n

nÿ

i=1

Eui≥Pr(u|xi)
u+

i
≥Pr(u|xi)

[

..f(ui) ≠ f(u+
i )

..2
]

¸ ˚˙ ˝
LAlign(i)

(5)

+ ⁄ log

5
1

n(n ≠ 1)

ÿ

i”=j

Eui≥Pr(u|xi)
uj ≥Pr(u|xj )

#
e≠Îf(ui)≠f(uj )Î2$

¸ ˚˙ ˝
LUniform(i,j)

6
,

where ⁄ is a hyper-parameter. {x1, x2, · · · , xn} are input instances, P (u|x) denotes the conditional distribution
of an augmented instance u gievn x, and f(·) is a representation network that takes u as an input. Intuitively,
Eq. (5) minimizes the distance between two representations of di�erent views from the same instance, and
the LUniform makes representations uniformly distributed over the embedding space.

To characterize the cluster properties studied in Theorem 6.1, we introduce the notion of ”-cluster closeness.
Definition 7.1 (”-cluster closeness). Let Si be the support where Pr(u|xi) > 0 for any u œ Si. Si and Sj are
”-cluster close if Pr[u œ Si fl Sj |xi] Ø ” for any two di�erent instances xi, xj with yi = yj.

The notion of ”-cluster closeness is similar to the cluster assumption in La�erty & Wasserman (2007); Rigollet
(2007); Singh et al. (2008). Definition 7.1 reveals that the instance augmentations should be rich enough so
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that any two di�erent distorted augmentations from the same class can be overlapped. Following (Verma
et al., 2021; Lee et al., 2020), we apply mixup data augmentation on top of the conventional SSL data
augmentations (Chen et al., 2020b) in order to have richer instance augmentations, making Definition 7.1
hold with a large ”. The definition of ”-cluster closeness provides us a tool to investigate how Eq. (5) influence
the cluster properties: the distances between any two clusters and the variance of each cluster.
To analyze the cluster properties, we decompose Lctr(f) into three components and study their e�ects
individually.

Lctr(f) =
1

n

ÿ

mœY

ÿ

iœJm

LAlign(i) + ⁄ log

5
1

n(n ≠ 1)

ÿ

mœY,nœY
m”=n

ÿ

iœJm
jœJn

LUniform(i, j)

+
1

n(n ≠ 1)

ÿ

mœY

ÿ

i,jœJm
i”=j

LUniform(i, j)

6 (6)

The following lemma indicates that a large distance between any two clusters can be achieved by optimizing
LUniform(i, j) for some i, j. We denote Jy by the index set corresponding to true class y.

Lemma 7.2. Let µ̂i =
q

kœJi

f(uk)
|Ji| , µ̂j =

q
kœJj

f(uk)
|Jj | be sample means of cluster i and cluster j with i ”= j.

Without loss of generality, we assume |Ji| = |Jj |. Then

E[Îµ̂i ≠ µ̂jÎ] Ø ≠ 1
|Ji|

ÿ

kœJi

log
!
LUniform(k, g(k))

"

where the function g : Ji æ Jj is any bijective function, and the expectation is over the data augmentation.

Remark Lemma 7.2 indicates that the distance between the cluster i and the cluster j can be lower
bounded by ≠ log

!
LUniform(k, g(k))

"
for k œ Ji. Since ≠LUniform(k, g(k)) measures the distance between

f(uk) from cluster i and f(ug(k)) from cluster j, minimizing LUniform(k, g(k)) for all k œ Ji increases the
distance between the cluster i and the cluster j.

On the other hand, the objective function Eq. (5) also controls the variance of each cluster. The following
lemma helps us understand how the SSL objective function Eq. (5) controls the variance of each cluster.
Lemma 7.3. Let ‚�y = 1

|Jy|
q

iœJy
(f(ui) ≠ µ̂i)(f(ui) ≠ µ̂i)€ be the sample covariance matrix. Suppose

Definition 7.1 holds. Then for any fixed ” œ (0, 1), we have

Tr(E[‚�y]) Æ 2
”|Jy|

ÿ

iœJy

LAlign(i),

where the expectation is over the data augmentation.

Remark Lemma 7.3 shows that the variance of cluster y is upper bounded by the term
q

iœJy
LAlign(i),

where the variance is measured by the sum of eigenvalues for the sample covariance matrix computed by
representations from the cluster y. In other words, a small variance of cluster y can be achieved by minimizingq

iœJy
LAlign(i).

Lemma 7.2 and Lemma 7.3 have shown the e�ects of the first two components in Eq. (6). The last component
in Eq. (6) serves as a contradiction against the first component. We note that minimizing LUniform(i, j) for
i, j from the same cluster undesirably increases the variance of that cluster. This intuition is justified by the
following proposition.
Proposition 7.4. Suppose Definition 7.1 holds with a fixed ”. Then

log[ 1
n(n ≠ 1)

ÿ

mœY

ÿ

i,jœJmi ”=j

LUniform(i, j)] Ø ≠–
ÿ

mœY

ÿ

iœJm

LAlign(i),

where – = 2(n/|Y|≠1)
”n(n≠1) > 0.
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Table 1: Test accuracy on CIFAR-10 and CIFAR-100 with SYM label noise over di�erent noise levels.
Dataset CIFAR-10 CIFAR-100

Noise 20% 40% 60% 80% 90% 20% 40% 60% 80% 90%

SSL+CE 92.66±0.05 92.60±0.06 92.53±0.11 92.22±0.04 91.61±0.04 64.16±0.13 63.76±0.72 62.25±0.42 60.56±0.27 57.07±0.96

GCE 93.16±0.18 90.11±0.27 82.35±0.29 74.95±0.51 54.34±0.81 71.71±0.09 67.72±0.19 59.50±0.43 35.80±0.62 14.04±0.97
+MoCo 95.74±0.07 95.67±0.06 95.58±0.04 95.36±0.08 94.68±0.24 75.21±0.03 74.89±0.08 73.36±0.09 71.91±0.31 68.22±0.72
+BYOL 95.55±0.02 95.46±0.05 95.32±0.06 95.11±0.08 94.66±0.16 73.53±0.03 72.04±0.04 71.43±0.09 69.40±0.20 65.94±0.26

CT 93.66±0.17 92.22±0.16 70.51±0.22 39.75±0.88 27.34±0.98 72.69±0.14 68.81±0.19 61.15±0.28 16.40±0.44 8.22±1.46
+MoCo 95.43±0.07 95.37±0.08 95.19±0.23 91.97±0.80 87.65±1.65 73.86±0.07 73.37±0.12 72.59±0.41 67.79±0.92 62.69±2.18
+BYOL 95.13±0.02 94.93±0.04 94.71±0.03 93.58±0.55 87.35±1.37 72.19±0.05 71.33±0.18 69.49±0.08 55.55±3.28 52.65±1.22

ELR 93.53±0.10 93.11±0.14 92.22±0.16 85.74±0.52 54.27±1.06 69.64±0.39 65.16±0.30 60.88±0.32 24.92±0.52 10.22±0.76
+MoCo 95.88±0.05 95.81±0.04 95.74±0.03 95.65±0.02 95.60±0.09 72.89±0.39 72.74±0.06 71.74±0.11 70.47±0.19 66.75±0.22
+BYOL 95.55±0.02 95.43±0.03 95.30±0.06 95.11±0.05 95.12±0.10 72.48±0.03 71.73±0.06 70.35±0.10 68.45±0.10 63.70±0.14

TCL 93.53±0.10 94.73±0.11 93.22±0.13 90.34±0.29 87.51±0.36 76.24±0.26 73.16±0.28 69.45±0.33 62.71±0.41 53.58±0.56
+MoCo 95.91±0.03 95.71±0.03 95.82±0.03 95.68±0.02 95.30±0.07 78.81±0.31 76.79±0.16 72.52±0.11 71.87±0.23 68.63±0.22
+BYOL 95.59±0.11 95.60±0.13 95.15±0.08 95.03±0.08 94.95±0.15 78.68±0.08 76.41±0.18 72.25±0.13 71.65±0.22 66.13±0.24

Table 2: Test accuracy on CIFAR-10 and CIFAR-100 with ASYM label noise over di�erent noise levels.
Dataset CIFAR-10 CIFAR-100

Noise 10% 20% 30% 40% 45% 10% 20% 30% 40% 45%

SSL+CE 92.25±0.06 87.63±0.21 86.29±0.14 83.86±0.22 79.13±0.55 64.01±0.20 63.42±0.11 62.24±0.62 59.06±0.75 53.16±0.54

GCE 93.02±0.10 91.92±0.23 90.85±0.28 89.44±0.44 85.51±0.59 73.52±0.08 70.05±0.31 65.80±0.35 53.49±0.53 44.08±1.22
+MoCo 95.63±0.04 95.37±0.08 95.00±0.31 93.30±0.26 88.31±0.41 74.54±0.04 73.60±0.12 72.63±0.13 66.27±0.24 56.12±0.68
+BYOL 95.50±0.02 95.23±0.14 94.83±0.19 93.56±0.36 90.69±0.16 73.17±0.04 72.12±0.09 70.75±0.14 65.09±0.13 53.96±0.50

CT 94.40±0.03 93.32±0.11 90.27±0.15 69.47±0.21 66.08±0.32 73.88±0.04 69.88±0.21 64.64±0.68 55.22±0.71 48.22±1.00
+MoCo 95.37±0.07 95.25±0.09 94.33±0.16 92.29±0.32 86.79±0.52 73.48±0.11 72.02±0.26 69.36±0.41 63.30±0.73 55.70±1.58
+BYOL 95.48±0.03 94.14±0.72 94.04±0.24 90.72±0.72 87.33±1.23 72.01±0.08 70.46±0.04 66.22±0.37 54.97±0.94 46.62±1.24

ELR 93.90±0.08 93.26±0.10 92.52±0.13 90.93±0.16 88.49±0.24 73.89±0.07 73.44±0.20 72.90±0.19 70.62±0.34 65.62±1.31
+MoCo 95.73±0.02 95.69±0.04 94.83±0.12 92.62±1.15 78.92±0.95 74.87±0.05 74.51±0.10 73.75±0.08 72.26±0.05 67.11±0.28
+BYOL 95.59±0.03 95.49±0.07 95.40±0.03 94.72±0.04 86.91±1.73 73.44±0.05 72.95±0.04 71.81±0.05 69.18±0.08 63.27±0.12

TCL 94.10±0.20 93.53±0.17 92.52±0.11 91.14±0.23 90.91±0.36 78.24±0.24 74.77±0.28 73.98±0.22 71.62±0.52 67.38±0.56
+MoCo 95.18±0.08 95.33±0.09 95.07±0.11 93.85±0.12 93.60±0.09 80.89±0.29 78.54±0.16 77.74±0.11 73.88±0.21 69.35±0.25
+BYOL 95.25±0.12 95.38±0.13 95.10±0.11 93.21±0.09 93.17±0.10 80.28±0.15 78.12±0.08 77.25±0.11 73.65±0.12 68.65±0.11

Remark Proposition 7.4 indicates that minimizing the third term in Eq. (6) forces the first term to be
larger, which makes the variance of clusters to be larger, where the strength is controlled by a factor –. We
note that the third term is due to LUniform of the instances from the same class and it cannot be eliminated
since the label information is not leveraged. The constraint strength is mitigated when – decreases. It is
small when instance augmentations are rich enough (” is large), which also highlights the importance of
data augmentations in learning SSL representations. In conclusion, our analysis for the SSL objective in
Eq. (6) reveals that SSL helps enlarge the inter-cluster distance (Lemma 7.2) and reduce intra-cluster variance
(Lemma 7.3) and the data augmentation can help get a better trade-o� (Proposition 7.4).

8 Experiment

To validate our analysis of the cluster properties of SSL representations, we combine di�erent SSL methods
(i.e., MoCo and BYOL) as complementary with label noise methods. Compared to MoCov2, BYOL does not
explicitly compute LUniform but implicitly computes it by the momentum update of the network.

Datasets. Following previous state-of-the-arts (Huang et al., 2023; Yang et al., 2023), we evaluate our
method on CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) with di�erent types of label noise: symmetric
(SYM), asymmetric (ASYM), and instance-dependent label noise (IDN). We also evaluate our method on two
real-world datasets ANIMAL-10N (Song et al., 2019) and Clothing1M (Xiao et al., 2015).

CIFAR-10 and CIFAR-100 both consist of 50,000 training and 10,000 test color images whose size is 32 ◊ 32.
The di�erence is that CIFAR-10 has 10 classes containing 5,000 training and 1,000 test images for each class
while CIFAR-100 has 100 classes containing 500 training and 100 test images for each class.
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ANIMAL-10N (Song et al., 2019) is a dataset with animals of confusing appearances crawled from several
online search engines including Bing and Google using the predefined labels as the search keyword. It includes
50,000 training and 5,000 test images. Since images are collected and labeled by online search engines, the
resulting classification has an estimated error from 6% to 10%.

Clothing1M (Xiao et al., 2015) has 1 million training images and 10,000 test images from 14 classes. The
noisy images are collected from online shopping websites, and there are many mislabeled samples since the
labels are created by the surrounding text provided by the sellers. These texts can be coarse and induce
realistic noisy labels.

Implementations. The implementation of MoCov2 and BYOL includes the backbone and a 2-layer MLP ad
the projected head. For CIFAR datasets, the backbone is ResNet34 with a 2-layer MLP as the projection head.
The input and output dimensions are 512. For ANIMAL-10N and Clothing1M, the backbone is ResNet50,
and the input and output dimensions are 2048.

For the data augmentations used in MoCov2 and BYOL, we use both strong image augmentation from Chen
et al. (2020b) and MixUp from Lee et al. (2020). MixUp (Zhang et al., 2017) has a hyper-parameter ⁄ that
controls the strength of interpolation between data points, where we set ⁄ = 1 for CIFAR datasets and ⁄ = 2
for ANIMAL-10 and Clothing-1M. Once we train the representation network, we train a linear classifier by
di�erent label noise methods on this representation network.

The linear classifier is trained for 100 epochs using SGD, where the learning rate starts from {1, 5, 10, 20,
30} and it is reduced by a factor of 5 after 20, 30 and 40 epochs. For GCE method (Zhang & Sabuncu,
2018), its parameter q is selected from {0.2, 0.4, 0.6, 0.8, 0.9}; for Co-teaching method (Han et al., 2018),
the warmup parameters is selected from {5, 8, 10}; for ELR method (Liu et al., 2020), the parameter — is
selected from {0.7, 0.9} and the parameter ⁄ is selected from {3, 5, 7}; for TCL method (Huang et al., 2023),
two augmentations are used, and the temperature · of contrastive loss and the – of mixup are 0.25 and 0.1.
All experiments including the SSL training are conducted on two Nivida A100.

Baselines. To show our analysis generally facilitating learning noisy labels, we combine frozen SSL
representations with di�erent types of algorithms: robust loss function GCE (Zhang & Sabuncu, 2018),
sample selection Co-teaching (Han et al., 2018), label correction ELR (Liu et al., 2020), and TCL (Huang
et al., 2023) that models and filter samples simultaneously, and the standard cross-entropy (SSL+CE). GCE
designs a loss function to address memorization issues for incorrect labels. Co-teaching selects clean examples
to update the neural network. ELR introduces a regularization for pseudo labels. TCL uses the GMM model
to model the noisy label distribution and filter wrong labels as out-of-distribution examples.

Main Results. Tables 1-3 show the results for SYM, ASYM, and IDN label noise on CIFAR-10 and
CIFAR-100, respectively. Table 6 shows the results on ANIMAL-10N and Clothing1M. Both MoCov2 and
BYOL SSL representations can improve e�cacy to a wide range of label noise methods: robust loss function
methods, sample selection methods, and label correction methods. Results show that training a linear
classifier on frozen SSL representations over noisy datasets is significantly better than training a whole neural
network over noisy datasets. Asymmetric label noise is to flip labels between semantically-similar classes. For
example, cats are inherently more di�cult to di�erentiate from dogs than trucks. To this end, we combine
IDN with ASYM to generate more realistic label noise. Specifically, we choose similar images for each class
and then we flip their labels to the next class. Results are reported in Table 4.

Following Zhang et al. (2020); Chen et al. (2020a); Lee et al. (2019), semantic label noise is a type of
instance-dependent label noise that follows the intuition that hard instances are more likely to be mislabeled,
where the hard instances are near the decision boundary of the model. To generate the semantic label noise,
we train a VGG-13 (Simonyan & Zisserman, 2014) on training datasets for 30 epochs. Following Chen et al.
(2020a), we select instances with the highest mislabeling scores to corrupt. For the first case, we corrupt
these instances with random labels. For the second case, we corrupt these instances with predictions of the
model VGG-13. We term the former TYPE-1 label noise and the latter TYPE-2 label noise. The results for
the two types of label noise are reported in Table 5. Therefore, extensive experiments have demonstrated the
e�ectiveness of applying frozen SSL representations.
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Table 3: Test accuracy on CIFAR-10 and CIFAR-100 datasets with IDN label noise over di�erent noise levels.
Dataset CIFAR-10 CIFAR-100
Noise 20% 40% 60% 80% 90% 20% 40% 60% 80% 90%
SSL+CE 91.86±0.23 90.79±0.13 89.65±0.23 87.80±0.19 80.01±1.24 65.78±0.11 63.19±0.14 61.47±0.25 58.84±0.49 54.86±0.57

GCE 90.05±0.29 80.35±0.34 66.94±0.51 49.38±0.66 34.49±0.97 69.58±0.16 60.48±0.32 44.63±0.62 28.34±0.84 14.18±1.29
+MoCo 95.41±0.07 95.05±0.10 94.35±0.21 91.87±0.33 87.72±0.28 74.19±0.04 72.48±0.09 70.47±0.14 66.67±0.46 61.67±0.48
+BYOL 95.22±0.08 94.80±0.09 94.26±0.25 92.88±0.22 90.33±0.77 72.69±0.06 70.86±0.10 68.24±0.10 65.20±0.20 60.06±0.41

CT 91.50±0.35 85.95±0.38 74.09±0.52 30.79±0.82 22.35±0.92 69.81±0.18 62.59±0.31 52.11±0.65 16.10±0.70 7.91±0.57
+MoCo 95.23±0.37 94.68±0.31 94.07±0.58 83.91±0.62 77.87±2.69 73.39±0.22 72.15±0.27 70.14±0.54 66.26±1.08 58.34±0.68
+BYOL 94.97±0.07 94.52±0.18 94.11±0.14 89.09±0.08 71.72±1.47 71.59±0.04 70.15±0.15 66.73±0.72 57.79±0.45 49.88±1.23

ELR 93.54±0.04 93.20±0.18 92.07±0.20 73.27±0.55 41.39±0.80 70.11±0.32 67.16±0.70 58.11±0.67 21.96±0.74 10.28±1.07
+MoCo 95.77±0.07 95.70±0.10 95.65±0.07 95.58±0.04 91.35±1.91 72.74±0.04 71.56±0.12 69.69±0.22 65.94±0.59 59.80±0.84
+BYOL 95.45±0.02 95.25±0.03 95.08±0.04 95.07±0.06 94.91±0.10 72.11±0.18 70.64±0.32 68.72±0.24 63.75±0.50 57.54±0.48

Table 4: Test accuracy on CIFAR-10 and CIFAR-100 with IDN-ASYM label noise over di�erent noise levels.
Dataset CIFAR-10 CIFAR-100
Noise Level 10% 20% 30% 40% 45% 10% 20 30% 40% 45%
GCE 87.02±0.16 77.40±0.29 68.63±0.68 57.85±0.81 54.01±0.92 71.01±0.12 62.42±0.18 52.48±0.33 44.69±0.78 40.02±0.65
+MoCo 95.20±0.02 94.89±0.05 93.28±0.21 84.26±0.43 71.66±1.10 73.90±0.04 71.52±0.57 69.12±0.21 61.69±0.87 52.17±2.23
+BYOL 95.19±0.05 94.85±0.10 93.66±0.21 85.57±0.37 70.44±1.44 71.58±0.14 69.61±0.13 67.22±0.08 59.33±0.77 50.37±1.57

CT 87.75±0.28 78.37±0.30 69.31±0.55 60.48±0.57 54.62±0.80 71.97±0.09 64.33±0.13 55.61±0.26 47.12±0.32 42.23±0.46
+MoCo 94.73±0.45 93.25±0.42 88.92±0.64 74.67±0.91 61.13±1.37 72.77±0.32 69.61±0.49 66.52±0.80 59.37±1.05 50.43±1.43
+BYOL 94.88±0.06 93.55±0.07 90.99±0.49 74.80±0.39 63.67±1.07 69.54±0.03 67.69±0.12 64.44±0.19 59.23±0.32 51.65±0.94

ELR 94.08±0.05 93.97±0.08 93.91±0.14 93.79±0.20 77.76±2.24 72.21±0.23 71.96±0.24 71.83±0.41 70.96±0.43 67.33±0.45
+MoCo 95.72±0.05 95.60±0.04 95.46±0.03 95.23±0.09 95.04±0.20 73.90±0.68 73.16±0.57 72.69±0.35 70.11±0.64 64.51±1.09
+BYOL 95.39±0.02 95.30±0.03 95.20±0.07 94.99±0.14 85.19±0.32 70.58±0.12 69.80±0.09 68.60±0.18 66.95±0.35 63.32±0.61

(a) Distances between different clusters (b) Variation of clusters
Figure 3: Illustration of cluster structures for CIFAR-10 dataset. Representations are learned in di�erent
label noise settings. ASYM (blue): 40% asymmetric noise; SYM (orange): 60% symmetric noise; IDN (green):
60% instance-dependent noise. And we visualize distances between two clusters in (a) and the variance of
each cluster in (b). The cluster structure (purple) serves as a baseline for representations that are trained by
supervised learning without label noise.

Cluster Structure. We evaluate our cluster structure of SSL representations learned by MoCov2 on
CIFAR-10. Learning SSL representations do not leverage the label information, so the representations are
invariant to label noise, whereas representations learned by supervised learning (SL) are sensitive to label
noise. We compare the cluster structure of SSL to that of SL in di�erent label noise settings in Figure 3. We
find that SSL representations (red) have a better cluster structure than SL representations obtained with
di�erent label noise. We note that although the distances between clusters of SL representations (green)
learned with IDN are slightly larger than that of SSL representations, the variance of each cluster is 10
times larger. We also highlight the baseline cluster structure with purple, which is trained by the SL method
without label noise.

Fine-tuned Performance. Following Chen et al. (2020b), we fine-tune the MoCov2 representation network
on CIFAR-10 by GCE algorithm. For noise-free classification tasks, fine-tuning usually outperforms linear
evaluation on various classification datasets (Chen et al., 2020b; Grill et al., 2020). However, Figure 4
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Table 5: Test accuracy on CIFAR-10 semantic label noise over di�erent noise levels.
Dataset TYPE-1 TYPE-2
Noise Level 20% 40% 60% 80% 90% 10% 20% 30% 40% 45%
GCE 88.61±0.11 79.01±0.36 68.77±0.43 53.24±0.82 33.66±0.74 85.31±0.08 76.08±0.22 70.44±0.34 64.71±0.63 57.8±0.47
+MoCo 95.39±0.04 94.80±0.10 89.94±0.16 83.13±0.95 71.84±0.59 90.92±0.05 83.10±0.12 76.41±0.17 69.60±0.29 66.68±0.55
+BYOL 94.86±0.04 93.69±0.31 89.19±0.36 83.53±1.26 75.77±1.44 89.64±0.27 83.34±0.29 75.65±0.37 69.32±0.15 66.86±0.34

CT 91.06±0.33 72.78±0.35 44.30±0.47 25.37±0.18 17.30±0.23 85.52±0.12 76.11±0.12 65.36±0.20 55.54±0.81 48.64±0.38
+MoCo 95.02±0.43 89.84±0.67 84.70±0.96 73.34±1.84 59.22±3.11 89.00±0.45 83.23±0.77 76.55±0.92 72.41±1.53 66.66±1.98
+BYOL 94.58±0.07 91.56±0.42 86.19±0.70 73.27±0.61 64.75±1.95 91.06±0.47 83.10±0.20 76.50±0.18 68.57±1.23 63.82±1.58

ELR 94.19±0.05 91.75±0.51 82.72±0.43 70.86±0.46 39.05±0.72 86.69±0.02 79.06±0.08 71.02±0.11 62.09±0.27 58.02±0.26
+MoCo 95.76±0.01 94.96±0.26 84.30±0.59 79.99±0.45 63.63±1.09 88.27±0.49 84.53±0.27 78.45±0.61 77.57±0.35 69.27±1.70
+BYOL 95.66±0.02 95.35±0.07 88.91±0.31 77.83±0.42 76.98±0.60 89.41±0.87 85.83±0.70 78.30±0.55 77.10±0.62 71.64±1.50

Table 6: Test accuracy on ANIMAL-10N and Clothing1M
Dataset Animal-10N Clothing-1M

Method GCE CT ELR TCL GCE CT ELR TCL

Origin 84.58 86.93 86.52 87.90 71.34 71.68 71.89 73.81

+MOCO 87.35 87.66 88.51 89.51 72.61 72.41 72.71 74.31
+BYOL 88.42 88.36 88.68 89.43 72.90 72.63 72.98 74.38

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
Figure 4: Left Two: comparison of linear eval and fine-tune on GCE. Right Two: comparison of SSL methods
with and without MixUp component enabled on 80% symmetric label noise.

illustrates that linear evaluation (orange) performs better than fine-tuning (blue) in the presence of label
noise. When label noise exits and the representations are not frozen, fine-tuning degrades the performance of
the neural network. We hypothesize that fine-tuning the learned SSL representations destroys the cluster
structure regarding true labels, leading to poor performance.

The e�ects of MixUp augmentation. We study the importance of mixup data augmentations. Our
analysis indicates the importance of keeping larger ” in Lemma 7.3 and Proposition 7.4 by data augmentation.
Without MixUp, the Definition 7.1 holds with smaller ”. With MixUp enabled, the bound in Lemma 7.3 is
tighter and the negative e�ects in Proposition 7.4 are mitigated. Results in Figure 4 indicate that applying
MixUp augmentation significantly improves the performance on noisy datasets.

9 Conclusion

We provide a simple but e�ective method to address label noise. We first construct a motivating example
to theoretically show that the classifier learned on SSL representations generalizes better than that from
supervised learning. By further investigating the SSL representations under label noise, we find that: (1) The
label noise is uniformly distributed over the data representations. (2) Representations learned by SSL exhibit
good cluster properties, which encourages the linear classifier to be aligned with the optimal classifier. From
the algorithmic perspective, we show that SSL representations can be applied as a strong complementary to
various label noise methods by extensive experiments.
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