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Abstract

Recent reinforcement learning (RL) methods have adopted ideas from image processing
tasks by employing Fourier Features (FFs) encoding. This approach enables a typical multi-
layer perceptron (MLP) to learn different frequency features. However, a disparity exists
between the scale of frequencies used for image and RL problems. Previous works employed
significant lower frequencies to successfully train RL agents and defer to the Neural Tangent
Kernels (NTK) theory for justification. However, we observed that NTK cannot provide
satisfactory explanations. We present a novel perspective empirically to show why lower
frequencies are essential for the successful training of RL agents. Our empirical investiga-
tion is based on the cross-correlation among state dimensions and their overall cross energy
spectral density (CSD). Based on our empirical observation, we propose a simple enhance-
ment to the current FFs formulation and achieve performance improvements over current
FFs formulation and baseline methods.

1 Introduction

It has been shown in prior research (Rahaman et al., 2019; Cao et al., 2021; Fridovich-Keil et al., 2022) that
during the training process, neural networks tend to prioritise the extraction of low-frequency information
over high-frequency details. In other words, they initially capture broad global patterns within the data before
progressively refining their understanding to encompass finer-grained, higher-frequency components. This
newfound theory of neural networks training, known as the spectral bias (Rahaman et al., 2019), has proven
applicable to techniques such as positional encoding within neural radiance fields (NeRFs) (Mildenhall et al.,
2020). This enables neural networks to directly learn high-frequency details, which turns out is a critical
capability for generative tasks involving image-based data.

Similar concept has also been explored in reinforcement learning (RL). Recent investigations (Konidaris
et al., 2011; Li & Pathak, 2021; Yang et al., 2022; Brellmann et al., 2023) corroborates the potential for ma-
nipulating frequencies to learn robust policies and state-action value functions. Although empirical evidence
suggests that using high frequencies in Fourier Features (FFs) is essential for optimal performance in NeRFs
(Mildenhall et al., 2020) and related implicit neural representation (INR) tasks (Benbarka et al., 2021; Tan-
cik et al., 2020), recent research contradicts this notion in the contexts of RL. Employing significantly lower
frequencies in the FFs is essential for robust RL learning (Li & Pathak, 2021; Yang et al., 2022). However,
existing literature primarily focuses on justifying the empirical effects of employing FFs for RL using the
theory of Neural Tangent Kernels (NTK) (Jacot et al., 2018).

The motivation for this work stems from our observation that, while lower frequencies were employed in
previous works employing FFs for RL (Li & Pathak, 2021; Yang et al., 2022), their use of NTK theory
cannot comprehensively justify this choice of lower frequencies. This observation prompts us to investigate
the change in behaviour of the state information when encoded with FFs using lower and higher frequencies.

In summary, the contributions of this work are as follows:

• We show empirically that NTK theory, a tool that previous works use, cannot comprehensively
explain why lower frequencies in FFs are essential in the contexts of RL.
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• We propose an alternative perspective to explain the significance of using lower frequencies in FFs,
which are essential in the contexts of RL. Our analysis of encoded state information is based on
observations of cross-correlation among state dimensions and consequent energy distribution among
them when FFs are employed for RL. We observe certain unique cross-correlation and energy dis-
tribution phenomena that emerge exclusively when lower frequencies are employed. We hypothesise
that augmenting with FFs effectively changes the energy distribution, thus the importance of certain
features in the state information.

• Consequently, we propose a simple enhancement to complement the current FFs method for RL.
While recent FF-based methods use frequencies that follow a zero-mean Gaussian distribution, we
demonstrate that this approach is not necessarily optimal. We propose an alternative approach to
choosing frequencies based on a fixed spacing scheme, which can lead to performance gains over
current FFs and baseline methods.

• We further verify that our proposed enhancement are less sensitive to hyperparameter choice re-
garding FFs, and can be justified based on our alternative perspective and empirically.

2 Preliminaries

2.1 Reinforcement Learning

A standard RL problem is defined as an infinite-horizon Markov Decision Process (MDP) = 〈S, A, p, R,
γ〉, where the RL agent at timestep k observes a state sk from a set of states S, chooses an action a from a
set of actions A, and receives a reward r according to a mapping of the reward function R, r : S × A → R.
The environment then transitions into a state s′

k with a transition probability function p and the interaction
continues. We define the replay buffer D containing a set of state, action, reward, and next state at timestep
k as D = {(sk, ak, rk, s′

k)}Nk=1 with N denoting a replay buffer size hyperparameter. The objective of an RL
agent is to find a policy π that maximise the discounted expected return Eπ[

∑∞
t=0 γkR(sk, ak)], which is the

expected cumulative sum of rewards when following the policy in the MDP, where the importance of the
horizon is determined by a discount factor γ ∈ [0, 1).

2.2 Viewing the mini-batch as timeseries

Figure 1: Example illustrating
the state dimensions. We cal-
culate the cross-correlation for
each state dimension pairs.

Conventionally speaking, in deep RL, we randomly sample b samples, b
being determined by a hyperparameter, from the replay buffer D into a
mini-batch Dbatch = {(st, at, rt, s′

t)}bt=1. Each st may contain j state di-
mensions, {stk , stl ..., stj } where {k, l ∈ Z|0 ≤ k < l ≤ j}. As illustrated
in Figure 1, for instance, a state of a robot can contain several joints,
such as certain joints in robot-leg one and certain joints in robot-leg two.
In the remainder of this work, we use the batch index t as discrete time
index, and we can thus view a joint’s state skl

as a discrete timeseries.
It is worth noting that the correlation between samples (st, s′

t) is explic-
itly disregarded in order to reduce variance during training (Lin, 1992),
thus the correlation between of the same state dimension (stk , s′

tk
) is also

explicitly disregarded.

2.3 Cross-correlation and Autocorrelation

With t denoting the time, the cross-correlation describes the similarity be-
tween two time-dependent discrete timeseries x[t] and y[t] that are shifted
against each other on the time axis, given a time lag τ between the points.
It can be used to identify overlapping periodic components in the timeseries x[t] and y[t]. The Autocorrelation
is a special case of cross-correlation where x[t] = y[t] and is a tool for identifying recurring patterns in a time-
series x[t] and distinguishing periodic components from noise. Specifically, we calculate the cross-correlation
between two state dimensions pairs {stk , stl}.
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Definition 2.1 (Cross-correlation). The cross-correlation of two discrete time-dependent timeseries x[t] and
y[t] is defined as:

Rxy[τ ] :=
∞∑

t=−∞
x[t]y[t+ τ ] (1)

Definition 2.2 (Autocorrelation). The autocorrelation of a discrete timeseries x[t] is defined as:

Rxx[τ ] :=
∞∑

t=−∞
x[t]x[t+ τ ] (2)

2.4 Energy Spectral Density and Cross Energy Spectral Density

The cross energy spectral density (CSD) quantifies the relative energy distribution across frequencies for
the cross-correlation function, Rxy, between two timeseries, x[t] and y[t]. The CSD at a specific frequency
reveals how the energy of x[t] and y[t] is jointly distributed across the frequency spectrum (i.e. at which
frequency the two signals share more energy). It is also the Fourier transform of Rxy. Conversely, the energy
spectral density (ESD) defines the energy distribution of individual frequency components within a single
timeseries. It highlights the frequencies where the timeseries exhibits significant or minimal energy.
Definition 2.3 (Cross Energy Spectral Density). Given two finite timeseries x[t] and y[t], the cross energy
spectral density (CSD) is defined as:

Sxy(f) :=
∞∑

τ=−∞
Rxy[τ ]e−i2πfτ Syx(f) :=

∞∑
τ=−∞

Ryx[τ ]e−i2πfτ (3)

Definition 2.4 (Energy Spectral Density). Given a timeseries x[t], the energy spectral density (ESD) is
defined as:

Sxx(f) := |x̂[f ]|2, where x̂[f ] =
∞∑

t=−∞
x[t]e−i2πft (4)

2.5 Kernels and Random Fourier Features

In the context of kernel methods, Rahimi & Recht (2007)’s seminal work on RFFs presented them as a means
to approximate a given kernel K. While cosine is used in the seminal formulation, subsequent investigations
(Sutherland & Schneider, 2015) changed RFFs with using sine FFs.
Definition 2.5 (Random Fourier Features (Rahimi & Recht, 2007)). With frequency fi ∼ N (0, σ2) for i =
0, . . . , n and b ∼ U(0, 2π), the Random Fourier Features are derived as

K(x− x′) = E[2 cos(fx+ b) cos(fx′ + b)]

≈ 1
n

n∑
i

√
2 cos(fix+ bi)

√
2 cos(fix′ + bi) = Z(x)TZ(x′) (5)

where Z(x) = [
√

2
n

cos(f1x+ b1),
√

2
n

cos(f2x+ b2), ...,
√

2
n

cos(fnx+ bn)]T

is the Random Fourier Features (RFFs). (6)

While different formulations exist, previous works (Mehrkanoon & Suykens, 2018; Tancik et al., 2020; Li
& Pathak, 2021; Yang et al., 2022) simplified the original formulation as the following. Unless specified
otherwise, this is the definition we will use throughout this work, while we briefly discuss the effect of
different formulations in Section C.

RFFs(x) = [cos(2πf1x), sin(2πf1x), ..., cos(2πfnx), sin(2πfnx)]T (7)
where frequencies fi ∼ N (0, σ2) for i = 0, . . . , n

3



Under review as submission to TMLR

2.6 The Neural Tangent Kernel and its Relationship to Fourier Features

The Neural Tangent Kernel (NTK) is a kernel function that describes the evolution of neural networks during
training.
Definition 2.6 (Neural Tangent Kernel). Let f(x; θ) denote the scalar function computed by a given neural
network with parameters θ on input x. Assuming the network has infinite width and is trained via stochastic
gradient descent, the Neural Tangent Kernel (Jacot et al., 2018) is defined as:

k(xi, xj ; θ) = ⟨∇θf(xi; θ),∇θf(xj ; θ)⟩ (8)

The convergence rate of a neural network during training is closely related to the eigenvalues of the Neural
Tangent Kernel (NTK) (Arora et al., 2019; Yang & Salman, 2020; Basri et al., 2020). For a conventional
MLP, the eigenvalues of the NTK decay rapidly, due to the resulting narrower kernel width.

In the seminal work of Tancik et al. (2020), FFs were shown to be able to tune the kernel width of the NTK
function, therefore affecting its resulting eigenvalues. By doing so, it is possible to tune to which frequencies
the neural network should focus on, mitigating the spectral bias of neural networks and improve their ability
to learn high-frequency features.

3 Motivation: Gap Between NTK-Based Theoretical Analysis and Practical
Implementation

Building on the established analyses in the existing literature (Li & Pathak, 2021; Yang et al., 2022), following
(Tancik et al., 2020), we first plot the NTK function of a three-layer MLP network, given inputs from [0, 1),
when employing FFs for RL tasks with lower frequencies f sampled from various σ, f ∼ N (0, σ2).
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Figure 2: NTK function for various FFs f . Previous analyses in RL contexts emphasise that because of
a larger σ, the spectral decay would be slower in higher frequencies, thus allowing faster convergence for
high-frequency details. Employing a small σ, however, the NTK plot showed little difference. The right plot
shows an enlarged view of the left plot where the difference between σ = 1e−05 (blue) and σ = 0.001 (green)
is almost indistinguishable. An explanation in using lower frequencies for employing FFs for RL is lacking.

While previous works (Li & Pathak, 2021; Yang et al., 2022) point to NTK as a justification for using lower
frequencies, if we closely examine the NTK in Figure 2, there is no real difference in terms of the narrowness
or width of the kernel for much lower frequencies, therefore there should not be a huge performance differ-
ence when training RL tasks using these lower frequencies. Nevertheless, previous works were employing
frequencies sampled from as small as σ = 0.00005 to train RL agents (depending on the task), because a
larger σ, such as σ = 1, would cause the algorithms to overwhelmingly underperform (Yang et al., 2022). It
is worth noting that in NeRF (Mildenhall et al., 2020) tasks, σ on the scale of tens is often necessary.
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Thus, we argue that there is an empirical disparity in using the NTK theory to justify employing lower
frequencies, which were necessary for achieving competent RL performance, as shown in previous works (Li
& Pathak, 2021; Yang et al., 2022). We contend that additional, unobserved but influential factors exist.

4 Fourier Features Augment the Cross-correlation among State Dimensions

Figure 3: An example of encoding toy input values with FFs over two
frequencies f1 and f2. The subtitle is the randomly sampled frequencies
used. The x-axis and the y-axis denote toy input values, ranging from -4
to 4. Top: lower fi ∼ N (0, 0.05). Bottom: higher fi ∼ N (0, 1).

In this work, we aim to pro-
vide an alternative perspective
on why lower frequencies in FFs
are necessary for RL. Although
correlation is explicitly disre-
garded when we randomly sam-
pled from D to form the mini-
batch Dbatch, one noteworthy
question that we can ask is to
understand how the state input
Dbatch is affect by encoding with
FFs. Naturally we can look at
cross-correlations as a tool for
analysis, because of the poten-
tial for cross-correlation among
states after encoding with FFs,
which has periodic functions,
and the filtering effect of cosine and sine functions which suppresses large change in values into the range of
(−1, 1).

We first start by examining the changes done to Dbatch when employing FFs and examine the cross-correlation
among state dimensions. Using Figure 1 as an illustrative example, some joints (i.e. state dimensions) are
naturally correlated to other joints, while being negatively correlated or uncorrelated to others. For instance,
the angle of the front tip might have a certain correlation with the angular velocity of the front tip, as they
move together generally. We can naturally hypothesise that neural networks learn these cross-correlations
implicitly.

To give an intuition of how FFs encoding can effect values, we begin by presenting an example in 2D in
Figure 3 to illustrate how FFs encoding affects the input when two lower and two higher frequencies ω1
and ω2 are used. When lower frequencies are used, naturally, after encoding, the frequency of change is
much smaller, while higher frequencies would represent recurring changes. For lower f , the dominant output
becomes close to magnitude equals 1 (colour blue) where changes occur slowly. On the contrary, higher f
would result in much higher periodic values. Effectively, these toy values are smoothed when lower frequencies
are used, only high toy values are preserved.

We demonstrate in this section that FFs offer a method to explicitly encode cross-correlations, and different
frequencies in FFs can shift the cross energy spectral density among state dimensions Dbatch. We then
subsequently demonstrate that random sampling frequencies (i.e. RFFs), as depicted in (Rahimi & Recht,
2007) and directly adopted in previous related works on RL (Li & Pathak, 2021; Yang et al., 2022), might
not be as beneficial as previously suggested, and we propose an enhancement as a remedy. For the following
illustrations, unless otherwise specified, we plot using the task Ant-v5 (Towers et al., 2024).

4.1 Cross-Correlation Analysis of Fourier Features Reveals the Importance of Low-Frequency
Components

To examine the impact of FFs encodings across varying frequencies, we examine the cross-correlation between
two distinct state dimensions in batch Dbatch both before and after encodings. Figure 4 provides a numerical
illustration of this cross-correlation. Specifically, we plot the cross-correlation between the state dimensions
st3 (y-orientation of the torso (centre)) and st5 (angle between torso and first link on front left), using the
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batch index as a proxy for the time index. Specifically, the states are sampled from the replay buffer using
consecutive indices, so that temporally consecutive states from the same trajectory were used. Further details
about the illustration can be found in Section A.

Our analysis of the illustrations reveals two key findings. Originally, prior to encoding Dbatch with the RFFs,
both timeseries exhibit high-frequency variations and they were weakly correlated (top row). Intuitively
speaking, noisy cross-correlation suggests an absence of discernible cross-correlation. On the other hand,
a perfect cross-correlation between two identical timeseries would manifest as a distinct, clean pyramidal
pattern.

Firstly, encoding with FFs explicitly introduces cross-correlation only if we use the lower frequencies (second
to fourth row). This is due to lower frequencies can filter out certain parts of state information, while higher
frequencies tend to preserve all information, and even overestimates the importance of certain information.
Interestingly, if significant low frequencies are used, the respective cross-correlation becomes closer to a
pyramid-like shape, which indicates that the two timeseries become almost identical. This phenomenon
diminishes progressively as frequency hyperparameter increase (forth row) and eventually vanishes entirely
at higher frequencies (fifth row to last row), and states remain weakly correlated or noisily uncorrelated.

Thus, we hypothesise that only employing FFs with lower frequencies can explicitly filter out certain state
information, encode certain cross-correlations and shift the overall energy towards the low-frequency compo-
nents within the batch Dbatch. Our results indicates that employing FFs with lower frequencies can encode
meaningful information of state and dynamics. Note that this kind of cross-correlation shape also happens
to different pairs of state dimensions, although to various different degrees.

Similarly, the CSD (in the right-most column), which analysis how energy is distributed across frequency
spectrum of the states, show that much more energy are concentrated in the low frequency spectrum when
encoded with lower frequencies f , whereas the energy remains evenly distributed across the high frequency
spectrum if we use higher frequencies.

As evidenced by the peaks in the leftmost two columns, st3 and st5 , since there no cross-correlation before
encoding, the energy of these two timeseries is spread more evenly across the spectrum. However, after
encoding with low-frequency FFs, higher amplitude dynamics change occur much less frequently. That is,
certain originally low-energy features are filtered out by FFs while only high-energy dynamics remain. On
the other hand, if we employ high frequency, we might over-energises some dynamics then it should have
been.

Plots of different pair of state dimension timeseries can be found in Section E, where we select two one pair
where pre-encoded states show some cross-correlation and another pair where the noisy cross-correlation
exist. Both pair confirms our finding that low-frequency FFs explicitly filter out certain state information,
shift the overall energy towards the low-frequency components within the timeseries. Such effect cannot be
readily observed if high frequencies are employed in FFs.

4.2 Our Proposed Method: Frequency Sampling Need Not Be Gaussian

We have observed that FFs augment cross-correlation, only if lower frequencies are used. However, how
to generate these frequencies can be improved, as long as they augment cross-correlation and shift energy
towards low frequency spectrum in the CSD plot. Building on the considerations presented, we propose a
simple enhancement to the original RFFs formulation, based on our empirical observations. Specifically, we
propose to 1) generate FF frequencies based on a fixed spacing scheme 2) no negative frequencies.

Intuitively, since we cannot determine in advance which feature is more important (i.e. which feature
should be given more energy), an intuitive approach is to assign the same feature importance, allowing
neural networks to decide which encoded state dimensions hold greater significance as training progresses.
A Gaussian distribution, in addition to negative frequencies, is expected to provide more energy to certain
state dimensions initially, which may not be necessarily optimal.

We propose to assign f as uniformly spaced frequencies at initialisation for RL tasks, with each interval
calculated by a hyperparameter ψ. The output matrix size of f is determined by the hyperparameter n (ff
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dimension, which is shared with original RFFs formulation) and ψ determines the maximum frequency (ff
scale). We refer to this approach to generating the frequencies as the linear Fourier Features (LinFFs), which
is defined as

LinFFs(x) = [cos(2πf1x), sin(2πf1x), ..., cos(2πfnx), sin(2πfnx)]T (9)
where fi = iψ/n for i = 0, . . . , n

A numerical example containing the states, cross-correlation and CSD of our proposed LinFFs in shown in
Section B. We generally observe that our proposed LinFFs have have some cross-correlation among state
features even with higher frequency. Additional plots for both RFFs and LinFFs of different pairs of k, l
state dimensions {stk , stl} where one where some cross-correlation exists before encoding and another where
correlation does not exist in Section E.

5 Experiments

The main goals of the experiments are (1) to empirically demonstrate that a random sampling scheme is
not essential, and that a more suitable frequency sampling scheme can often outperform randomly sampled
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Figure 4: An example illustration of encoding a pair of state dimensions Dbatch with RFFs. The top row
denotes pre-encoded state dimensions. The second row to the last row denotes encoded states with frequencies
f ∼ N (0, σ2) sampled using various σ. Originally, both timeseries have higher frequency of change and they
were noisily correlated (in the third column). The cross-correlation and CSD become more apparent for
smaller σ (second row and third row) but remain noisy for larger σ (fourth to bottom row). We use the
same y-axis scale for the CSD plot.

7



Under review as submission to TMLR

frequencies, and (2) to illustrate that energy distribution concentrated in the low frequency spectrum is
essential for desirable results. Vice-versa, a spread of energy across the entire spectrum, resulted from
sampling higher frequencies, does not yield desirable results.

5.1 Experiment Setups

We conducted our experiments based on two commonly used benchmarking state-based RL algorithms:
TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018). We selected 5 commonly used tasks from
gymnasium (Towers et al., 2024) and 2 tasks from panda-gym (Gallouédec et al., 2021)) to verify our
proposal. gymnasium are locomotion tasks and panda-gym are manipulation tasks. We follow previous
works employing FFs in the context of RL (Li & Pathak, 2021; Yang et al., 2022; Brellmann et al., 2023)
and make the frequencies f trainable. These learned fourier features are termed as Fourier Feature Networks
(FFN) by (Yang et al., 2022), where they build a layer of learned fourier features on top of SAC. We will
thus refer to their baseline method that uses RFFs at initialisation as GaussFFN and our proposed LinFFs
initialisation as LinFFN. All tasks are trained for 3 ∗ 106 steps evaluated on 30 episodes over 10 seeds,
seed ∈ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. We aggregate using mean and standard deviation and count the number of
first places. If two performances are statistically the same, we count both as first. It is worth noting that
compared to previous works employing FFs for RL, we do not introduce more hyperparameters. We vary
the frequency hyperparameters σ of GaussFFN and ψ of LinFFN per task. Further details on training and
the hyperparameters can be found in Section D.

5.2 Results on baselines

The results with TD3 as base algorithm are shown in Table 1. We found that most tasks trained with our
proposed LinFFN encoding achieved better performance than those initialised with GaussFFN encoding,
indicating that the designed frequencies f can outperform previous state-of-the-art methods in employing
FFs. The performance gains for SAC in Table 2 are not as apparent, but we generally observe that our
proposed LinFFN can generally obtain the best or near-best performance.

5.3 Our Proposed Enhancement is Less Sensitive to Frequencies Choice

To further demonstrate the sensitivity to the range of frequencies empirically, we performed experiments
with TD3 as base algorithm on two tasks with high frequencies parameter σ and ψ ∈ {1.0, 5.0, 10.0}. Based
on the performance shown in Table 3, depending on the task, we observed that RFFs encoding severely
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Figure 5: Results on 5 gymnasium tasks and 2 panda-gym tasks.
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Table 1: Performance on the gymnasium and panda-gym benchmark with TD3 as base algorithm at 1M and
3M timesteps, calculated over 10 seeds, with ± denoting standard deviation. The highest performance is
highlighted in blue. Any performance which is not statistically significantly worse than the highest perfor-
mance (according to a Welch’s t-test with significance level 0.05) is also highlighted in yellow.

Task Timestep TD3 TD3+GaussFFN TD3+LinFFN
Ant-v5 1M 3735 ± 986 3792 ± 810 4950 ± 370
Ant-v5 3M 3919 ± 1049 4564 ± 624 6260 ± 190

HalfCheetah-v5 1M 9765 ± 1090 10847 ± 248 10856 ± 760
HalfCheetah-v5 3M 12483 ± 1234 12316 ± 565 14257 ± 1018

Hopper-v5 1M 3063 ± 701 3098 ± 362 3296 ± 171
Hopper-v5 3M 2690 ± 806 2752 ± 706 3147 ± 613

Swimmer-v5 1M 75 ±30 80 ±25 102 ±12
Swimmer-v5 3M 100 ±38 98 ±32 128 ±12
Walker2d-v5 1M 4111 ±485 4044 ±740 4021 ±1126
Walker2d-v5 3M 4520 ±908 4638 ±901 5331 ±686

PandaPush-v3 1M -31.7 ±9.3 -28.7 ±10.1 -25.5 ±9.0
PandaPush-v3 3M -7.6 ±1.0 -7.4 ±1.1 -10.8 ±10.2
PandaSlide-v3 1M -49.8 ±0.4 -46.9 ±4.7 -47.8 ±3.7
PandaSlide-v3 3M -43.1 ±6.2 -41.8 ±5.8 -43.5 ±6.3

# of best performances 3 5 13

underperformed, whereas our proposed LinFFs initialisation allowed a wider frequency range to perform to
a certain degree. Our proposed enhancement are much less sensible to the frequency hyperparameter choice.

To understand why, we first define a tool to study the whole encoded state information Dbatch directly. We
define the overall Cross Energy Spectral Density (overall CSD) by summing together the CSD for every
combination of state dimension pairs in the frequency domain as in Equation (10). This approach provides
an overall view of state without the need to examine the cross-correlation and energy shifts of each state

Table 2: Performance on the gymnasium and panda-gym benchmark with SAC as base algorithm at 1M and
3M timesteps, calculated over 10 seeds, with ± denoting standard deviation. The highest performance is
highlighted in blue. Any performance which is not statistically significantly worse than the highest perfor-
mance (according to a Welch’s t-test with significance level 0.05) is also highlighted in yellow.

Task Timestep SAC SAC+GaussFFN SAC+LinFFN
Ant-v5 1M 4052 ±1147 3706 ±1049 3094 ± 821
Ant-v5 3M 5606 ±947 3315 ±942 5507 ±845

HalfCheetah-v5 1M 11034 ±936 11218 ±659 11732 ±699
HalfCheetah-v5 3M 14673 ±1350 12950 ±1226 15611 ±275

Hopper-v5 1M 2909 ±860 2296 ±783 2773 ±689
Hopper-v5 3M 2886 ±959 2318 ±879 2877 ±565

Swimmer-v5 1M 81 ±17 67 ±18 107 ±12
Swimmer-v5 3M 129 ±18 81 ±28 131 ±5
Walker2d-v5 1M 3789 ±1008 3937 ±672 3883 ±1172
Walker2d-v5 3M 4693 ±1255 4972 ±657 5015 ±1669

PandaPush-v3 1M -15.2 ±9.2 -24.1 ±7.7 -12.9 ±2.6
PandaPush-v3 3M -7.2 ±0.3 -8.7 ±1.4 -6.9 ±0.2
PandaSlide-v3 1M -47.5 ±2.8 -45.5 ±4.8 -45.7 ±4.2
PandaSlide-v3 3M -42.7 ±4.7 -44.0 ±5.7 -40.3 ±5.4

# of best performances 6 4 14
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Table 3: Performance on the gymnasium benchmark with TD3 as base algorithm at 1M and 3M timesteps,
calculated over 10 seeds, standard deviation is omitted for clarity. Tasks are all v5 versions. We show
the performance related to the best TD3 with FFs. Performance within ±20% of the best performance is
highlighted in green. With our proposed enhancement, FFs can show much less sensitivity to the frequency
hyperparameter and can even achieve comparable results.

Task Timestep TD3 + GaussFNN + GaussFFN (high-freq)
σ 1.0 5.0 10.0

Ant-v5 1M 3735 4494 938 (-79%) 934 (-79%) 945 (-79%)
Ant-v5 3M 3919 6137 904 (-85%) 2346 (-62%) 1386 (-77%)

HalfCheetah-v5 1M 9765 10522 623 (-94%) 646 (-94%) 832 (-92%)
HalfCheetah-v5 3M 12483 13125 7496 (-43%) 5844 (-55%) 4252 (-68%)

Task Timestep TD3 + LinFFN + FNN(linear) (high-freq)
ψ 1.0 5.0 10.0

Ant-v5 1M 3735 4950 4021 (-19%) 4235 (-14%) 4717 (-5% )
Ant-v5 3M 3919 6260 6157 (-1%) 6228 (-0%) 5990 (-4%)

HalfCheetah-v5 1M 9765 10856 10530 (-3%) 8479 (-22%) 4515 (-58%)
HalfCheetah-v5 3M 12483 14257 13238 (-7%) 12375 (-13%) 6221 (-56%)

dimension pair individually. j is the total number of state dimensions depending on the task.∑
k,l

0≤k<l≤j

Skl(f) =
∑
k,l

0≤k<l≤j

∞∑
τ=−∞

Rkl[τ ]e−i2πfτ (10)

Using overall CSD, we can observe that with lower frequencies f , the energy of the whole state dimensions
Dbatch become more concentrated in the low frequency spectrum. A numerical example of the overall CSD
is shown in Figure 6 (using the same input states as in Figure 4).
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Figure 6: An example showing the overall CSD of encoding the input states Dbatch with RFFs and LinFFs.
The overall CSD of the pre-encoded states is the left-most sub-figure. Top row: GaussFFN. Bottom row:
LinFFN. From left to right, the frequency sampling hyperparameter (σ or ψ) increases. After encoding with
FFs, the overall energy becomes more augmented for lower frequencies but remains spread out across the
spectrum as frequencies goes higher. Our proposed LinFFN allow more energy to remain concentrated in the
low frequency spectrum when σ/ψ goes higher compared to GaussFFN. Thus, our proposed enhancement
suffer less from the drop in performance when higher frequencies are used. We use the same y-axis scale for
the CSD plot.
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The overall energy distribution of the states without FFs encoding was generally distributed evenly across
all frequencies with slightly higher energy concentrated in the low frequency spectrum, indicating that all
states sc are generally changing at a similar amplitude for all frequencies within the whole state dimensions.

By encoding the states with low-frequency FFs, the energy of the whole encoded state information is essen-
tially shifted towards lower frequency spectrum regardless how the frequencies are generated. If too high
frequencies were employed, the overall energy is shifted towards more toward higher frequencies spectrum,
resulting a evenly distributed overall energy distribution.

Based on the empirical performance shown in Table 3, we demonstrate that the overall energy of Dbatch should
be concentrated in the low frequency spectrum. As shown in Section 4.1, more meaningful state information
can be encoded at lower frequencies, and thus, the energy spectrum also highlights the advantage of using low-
frequency FFs, where more meaningful information about states and dynamics can be encoded. Employing
RFFs with higher frequencies disrupts this natural energy distribution. Both meaningful and less meaningful
information about states and dynamics were encoded at the same energy, leading to poor performance. Our
proposed LinFFs initialisation allow more energy to concentrate in the low frequency spectrum even at large
frequency hyperparameter, which in turn reduces the sensitivity of the final performance.

This intuition can also be empirically verified using the illustration presented in Figure 6. We observed that
states encoded with LinFFs exhibited a greater concentration of energy in the low frequency spectrum and
remain so even as frequency goes higher. Where as for RFFs the energy becomes evenly distribution at high
frequency spectrum, hurting performance. The cross-correlation plot for the LinFFs using the same states
sk for plotting Figure 4 can be found in Section B.

Furthermore, we also study the effect of formulation of FFs with cosine & sine components (the default),
with cosine component only or with sine component only. We find that generally having both components
is better. This can also be empirically explained using the cross-correlation and CSD plots using only cosine
or sine components. More details are shown in Section C.

6 Related Works

6.1 Fourier Features for RL

Previous research has focused on employing FFs for RL, including that of (Brellmann et al., 2023; Konidaris
et al., 2011; Li & Pathak, 2021; Yang et al., 2022). In particular, (Li & Pathak, 2021; Yang et al., 2022)
addressed the problem from an approximate bias perspective in both actor and critic networks using tools
such as NTK (Jacot et al., 2018). (Brellmann et al., 2023) employed FFs only in the critic network and
proposed a simplified calculation of FFs while also verifying performance gains with the on-policy algorithm
PPO (Schulman et al., 2017). The primary distinction of our work from previous studies lies in our unique
method for generating frequencies. We also encode only the state to the policy to isolate and study the effect
of changing state information caused by employing FFs.

6.2 Fourier Features Theories and Variants

Most theoretical work discussing the benefits of FFs in deep neural networks have been within the context
of image tasks. The original work proposing the theoretical benefits of FFs in deep neural networks was
introduced by (Tancik et al., 2020), where both cosine and sine FFs were used. (Sitzmann et al., 2020)
explored an alternative approach by employing FFs as a periodic activation rather than as an encoding
function. (Yuce et al., 2022) showed that FFs can be interpreted as a structured signal representation
dictionary, where the periodic activation’s non-linearity dictates the units of the dictionary. Additionally,
(Saragadam et al., 2023) extended FFs to wavelets, citing research from harmonic analysis, showing that
Fourier-based methods are suboptimal for typical vision tasks. These advancements have the potential to
further enhance the performance of RL tasks if thoroughly adopted.
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6.3 State Encoding beyond Fourier Features for RL

Beyond encoding features with FFs, several methods discuss encoding states in the context of RL. For
example, TD7 (Fujimoto et al., 2023) jointly encodes both state sk and action ak into a state-action embed-
ding zsak , which is trained against estimating the next state s′

k. In addition to encoding states, (Chandak
et al., 2019; Hausknecht & Stone, 2016) aimed to parametrise action spaces to learn a more compact action
representation.

7 Conclusion and Limitations

As demonstrated in previous works (Li & Pathak, 2021; Yang et al., 2022), the use of RFFs with lower
frequencies can achieve state-of-the-art performance. In this work, we delved into the disparity between
employing lower frequencies in FFs in the context of RL and the higher frequencies commonly used in
image tasks. We demonstrated that previous theories based on NTK could not comprehensively explain
what happens to the state information and dynamics. We can also observe that randomly assigning the
frequencies via a zero-mean Gaussian distribution, as has been done in previous works (Brellmann et al.,
2023; Li & Pathak, 2021; Yang et al., 2022) can cause degradation in cross-correlation when higher frequencies
are used.

The overall goal of this work was not to surpass the current state-of-the-art results regarding use of FFs.
Instead, our goal was to propose an alternative perspective on the underlying phenomenon when employing
FFs. We offer an alternative perspective on how employing low frequencies in FFs can influence the cross-
correlations and shift the corresponding energy distribution towards the low frequency spectrum. None of
the above phenomena are observable with higher frequencies. We propose a simple enhancement to the
original FFs formulation based on our observations and show that our proposed adjustments can stabilise
the previous weaknesses of employing FFs for RL.

Although we showed that cross-correlation and energy shift of the state information play an important
part empirically, how to incorporate these findings into further algorithms were not thoroughly discussed
in the work. One potential direction for future algorithms is to consider how cross-correlation among state
dimensions can be used to understand different failure modes. We also encourage further discussions on
using these empirically findings and expand to discrete tasks.
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A Plotting Details for Figures in Section 4, Section B, Section C and Section E

States are sampled from a replay buffer from the task Ant-v5, with batch size 1024 (timeseries length 1024).
For the two leftmost columns (stk , stl )„ they are cropped to length of 128 to improve readability. The
cross-correlation column is calculated using the full 1024-length timeseries stk and stl . Cross-correlation is
calculated via SciPy’s built-in function. The CSD is calculated via matplotlib’s built-in function, with no
zero-padding.

B Figures for LinFFs

In this section, for LinFFs, we show the cross-correlation and the overall CSD (Figure 7) plots calculated
using the same states as in Figure 4 and Figure 6 for the RFFs plots in Section 4. For completeness, we also
show the overall CSD of LinFFs here again.
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Figure 7: An example of encoding the state dimensions (stk , stl ) ∈ Dbatch with LinFFs. Top row denotes
pre-encoded state dimensions (stk , stl ). Second to last row denotes encoded states with various σ. Originally,
the state dimensions are not well correlated with each other. The cross-correlation becomes more augmented
for smaller σ (middle row) but remains weak for larger σ (third and bottom row). The right-most column
denotes the CSD of the two state dimensions on the left.

C Effects of different formulation of FFs encodings

In the main texts, we opted to follow the original formulation of FFs, which includes both sine and cosine
components. However, since cosine and sine are simply a phase shift between themselves, we can formulate
FFs encoding with sine only or cosine only.
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Repeating Section 2.5, the Random Fourier Features (RFFs) we used throughout the paper is defined as
follows.

RFFs(x) = [cos(2πfx), sin(2πfx)]T where frequency matrix f ∼ N (0, σ2) (11)

Depending on the way the frequencies are obtained, RFFs can also be defined with only cosine with sine
function as follows. b denotes a phase shift.

cosine-RFFs(x) = [cos(2πfx) + b]Tand (12)
sine-RFFs(x) = [sin(2πfx) + b]T (13)

where frequency matrix f ∼ N (0, σ2) and b ∼ U(0, 2π)

C.1 Cross-correlation and CSD plots of different formulation of FFs encodings

Using the same timeseries states, we plot the same cross-correlation and CSD plots using cosine-FFs and
sine-FFs. We can observe that generally having both cosine and sine features make the cross-correlation
more pyramid-like. Having only sine features or cosine features occasionally make the FFs encoding non
pyramid-like, potentially harming the performance.

C.2 Results of different formulation of FFs encodings

We show the effects of using cosine-FFs and sine-FFs for training. Having both cosine and sine features can
generally get better performance, depending on the task.

Table 4: Performance on the gymnasium benchmark with TD3 as base algorithm, varying FF formulations
when FFs are used, at 1M and 3M timesteps, calculated over 10 seeds, with ± denoting standard deviation.
FF formulations include cosine only, sine only and both (which is not marked).

Task Step TD3 + GaussFFN TD3 + GaussFFN(cosine) TD3 + GaussFFN(sine)
Ant-v5 1M 3792 ± 810 3215 ± 1522 3608 ± 807
Ant-v5 3M 4564 ± 624 3682 ± 1301 4199 ± 1093

HalfCheetah-v5 1M 10847 ± 851 10333 ± 589 10545 ± 721
HalfCheetah-v5 3M 12316 ± 892 11840 ± 677 12208 ± 637

Task Step TD3 + LinFFN TD3 + LinFFN(cosine) TD3 + LinFFN(sine)
Ant-v5 1M 4950 ± 370 3916 ± 1093 3797 ± 942
Ant-v5 3M 6260 ± 190 6025 ± 460 5501 ± 965

HalfCheetah-v5 1M 10856 ± 760 10424 ± 634 10576 ± 748
HalfCheetah-v5 3M 14257 ± 1018 13741 ± 964 13852 ± 1150
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Figure 8: An example of encoding the state dimensions (stk , stl ) ∈ Dbatch with cosine-RFFs. Top row
denotes pre-encoded state dimensions (stk , stl ). Second to last row denotes encoded states with various σ.
The right-most column denotes the CSD of the two state dimensions on the left.
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Figure 9: An example of encoding the state dimensions (stk , stl ) ∈ Dbatch with sine-RFFs. Top row denotes
pre-encoded state dimensions (stk , stl ). Second to last row denotes encoded states with various σ. The right-
most column denotes the CSD of the two state dimensions on the left.
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Figure 10: An example of encoding the state dimensions (stk , stl ) ∈ Dbatch with LinFFN(cosine). Top row
denotes pre-encoded state dimensions (stk , stl ). Second to last row denotes encoded states with various σ.
The right-most column denotes the CSD of the two state dimensions on the left.
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Figure 11: An example of encoding the state dimensions (stk , stl ) ∈ Dbatch with LinFFN(sine). Top row
denotes pre-encoded state dimensions (stk , stl ). Second to last row denotes encoded states with various σ.
The right-most column denotes the CSD of the two state dimensions on the left.
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D Implementation details and Hyperparameters

We plan to open-source our implementation if accepted. For specific packages versions, we use gymnasium
v1.0.0 (Towers et al., 2024), MuJoCo v3.2.6 (Todorov et al., 2012), and panda-gym v3.0.7 (Gallouédec
et al., 2021). We feed the returned states from gymnasium package directly to the algorithms, without any
modification. We implement RFFs and LinFFs as a linear layer, where the weight of the linear layer is first
generated from RFFs or LinFFs. The resulting algorithm are called GaussFFN and LinFFN respectively.
When FFs employ both cosine and sine features (the default), the effective n for each cosine and sine are
n/2, such that the total number of FFs would be n. Following previous works (Li & Pathak, 2021; Yang
et al., 2022; Brellmann et al., 2023), frequencies is generated only once at the start of training. The NTK
functions are calculated automatically using the Neural Tangents (Novak et al., 2020) library and uses the
same configurations as in the open sourced code of (Tancik et al., 2020). The hyperparameters are listed in
Table 5, and reference implementation is listed in Pseudocode 1.

Table 5: Hyperparameters for algorithms, for all tasks.
algorithm Parameters Value

common

optimiser AdamW (Loshchilov & Hutter, 2019)
batch size 256

critic learning rate 3e-04
actor learning rate 3e-04
activation function ReLU

hidden dim 256
discount γ 0.99

action repeat 2
initial random collection steps 10000

total train steps 3 ∗ 106

replay buffer size 106

weight decay default

TD3

critic target tau τ 0.005
target actor noise 0.2

noise clipping 0.5
target update freq 2
actor update freq 2

SAC
initial temperature 0.1
target update freq 1
actor update freq 1

GaussFFN
FF dim n 256
FF type cosine + sine

FF trainable True

LinFFN
FF dim n 256
FF type cosine + sine

FF trainable True
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Table 6: Frequency related hyperparameters for individual tasks for Figure 5, Table 1 and Table 2.

Task/Algo LinFFN scale σ GaussFFN scale ψ
TD3 SAC TD3 SAC

Ant-v5 0.005 0.0001 0.005 0.001
HalfCheetah-v5 0.0005 0.001 0.005 0.001

Hopper-v5 0.005 0.0005 0.005 0.0005
Swimmer-v5 0.005 0.0005 0.005 0.0005
Walker2d-v5 0.00005 0.005 0.00005 0.005

PandaPush-v3 0.1 1.0 1.0 1.0
PandaSlide-v3 0.1 0.1 0.1 0.1

Pseudocode 1. Fourier Feature Networks (FFN) Details

Value Q Network:
▷ Identical to base algorithm, SAC or TD3.

Value Q Forward Pass:
▷ Identical to base algorithm, SAC or TD3.

Policy π Network:
▷ Initialise Fourier Features layer l_ff weights with either

random scheme fi ∼ N (0, σ2), or
linear scheme fi = iψ/n for i = 0, . . . , n.

▷ For other layers, identical to base algorithm, SAC or TD3.
l_ff = Linear(state_dim, ff_dim)
l1 = Linear(ff_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, action_dim) # for sac, action_dim*2

Policy π Forward Pass:
▷ Pass the input states through l_ff first, without activation
▷ Here, a TD3 based algorithm is shown.
input = state
x = l_ff(input)
x = ReLU(l1(x))
x = ReLU(l2(x))
action = tanh(l3(x))
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E Plots of Different Pairs of Cross-correlation among State Dimensions

We have shown an example of numerically calculated cross-correlations in Section 4.1. To give more examples,
we sample more pairs stj in the same state st input as in Figure 4. The goal is to show that cross-correlation
between features is much more apparent when encoded with lower frequencies FFs. If we encode with higher
frequencies, the cross-correlation does not manifest in an apparent way.

Specifically, we chose two set of state dimensions, one where we deem there should be a certain correlation
between features before encoding and another where there are less likely certain correlation between features
before encoding.

We plot the cross-correlation and CSD from st4 (z-orientation of the torso (centre)) versus st5 (angle between
torso and first link on front left) in Figure 12 where certain correlation exists before encoding. and from st2
(x-orientation of the torso (centre)) versus st9 (angle between torso and first link on back left) in Figure 13,
where almost no correlation exists.
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Figure 12: Cross-correlation among different pairs of state dimensions. The illustration is plotted from st7
(z-orientation of the torso (centre)) versus st14 (angle between torso and first link on front left). Upper
illustration: GaussFFN. Lower illustration: LinFFN.
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Figure 13: Cross-correlation among different pairs of state dimensions. The illustration is plotted from
st2 (x-orientation of the torso (centre)) versus st9 (angle between torso and first link on back left). Upper
illustration: GaussFFN. Lower illustration: LinFFN.
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