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ABSTRACT

Time series forecasting is an important research topic in machine learning due
to its prevalence in social and scientific applications. Multi-model forecasting
paradigm, including model hybridization and model combination, is shown to be
more effective than single-model forecasting in the M4 competition. In this study,
we hybridize exponential smoothing with transformer architecture to capture both
levels and seasonal patterns while exploiting the complex non-linear trend in time
series data. We show that our model can capture complex trends and seasonal pat-
terns with moderately improvement in comparison to the state-of-the-arts result
from the M4 competition.

INTRODUCTION

Time series forecasting spans various fields like medicine and economics, employing methodologies
such as the transformer architecture for Influenza-like illness (ILI) prediction (Wu et al., 2020a)
and the hybridization of autoregressive integrated moving average (ARIMA) and artificial neural
network (ANN) for currency exchange rate forecasting (Khashei & Bijari, 2011). These methods
fall into categories like linear or non-linear, parametric or non-parametric, statistical or machine
learning, and single or multi-model approaches, each extracting different insights from data. The M4
competition (Makridakis et al., 2020) demonstrates the superiority of multi-model frameworks over
single-model ones. Two prevalent multi-model forecasting paradigms are model combination and
hybridization (Makridakis et al., 2018). Model combination constructs a panel of models, leveraging
a linear combination of their predictions. Conversely, hybridization passes data through a sequence
of models, such as the exponential smoothing - recurrent neural network (ESRNN), which excelled
in the M4 competition (Smyl, 2020), capturing levels, seasonality, and trends effectively.

Although RNNs are integrated into state-of-the-art model combinations, they come with significant
drawbacks. Firstly, the sequential nature of RNNs makes it challenging for them to effectively learn
long-term dependencies (Greaves-Tunnell & Harchaoui, 2019). Additionally, RNNs often encounter
numerical instability issues. Due to the repeated multiplication of weights by values at different time
points, gradients can either vanish or explode, making it difficult to update the weights effectively
for optimal results (Ribeiro et al., 2020). Finally, since RNN computes one-by-one values through
unrolled loop, the training and predicting process cannot be parallelized hence much slower.

The multi-head attention transformer architecture (Vaswani et al., 2017) aims to address the limita-
tions of RNNs. This transformer model employs a multi-head self-attention mechanism to handle
sequence data, allowing it to learn dependencies across sequences simultaneously and identify the
most pertinent data points for generating outputs. Therefore, the training and prediction of this ar-
chitecture is more efficient without numeric instability problems.

In this paper, we hybridize multi-head attention transformer architecture and the Holt-Winter’s
method to improve the state-of-the-arts forecasting method. Our model captures the pattern of levels
and seasonality, while exploits the nonlinear trend via the neural autoencoder. We conduct experi-
ments and ablation study on M4 to compare our model with various baselines.

RELATED WORKS

Exponential smoothing - recurrent neural network (ESRNN) is the state-of-the-art (SOTA) hybrid
model which is fast and applicable to different time series dataset. This model composes two dif-
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ferent layers which is the pre-processing for exponential smoothing and a Long-short term memory
(LTSM) layer that updates the parameters of Holt-Winter model through each series.

Pre-processing layer Following the application of Holt-Winters’ multiplicative trend and season-
ality as described earlier, the pre-processing step removes seasonality and normalizes the series to
derive the trend for the recurrent neural network layer. This is achieved through the calculation of
bt =

yt

ltst
, where yt represents the input vector, lt signifies the level, st denotes the seasonality, and

bt represents a vector of trend.

Deep Learning layer The neural network structure, as outlined in (Smyl, 2020), integrates LSTM
layers with skip connections to create the Dilated LSTM network. This design enhances compu-
tational efficiency and enables the retention of information across multiple past time intervals. By
introducing dilation in the second layer, the initial LSTM hidden weights, input to successive cells,
and bias weights can extend to two consecutive cells. Moreover, residual connections from the RNN
layers contribute to stable training, while a straightforward linear layer at the conclusion assists in
aligning RNN output with the residual prediction window in the normalized and deseasonalized data.
A notable feature of this architecture is its ability to simultaneously train both RNN and classical
Holt-Winters parameters.

Hybrid model Combining multiple models has been employed across various time series datasets,
as seen in the integration of models like ARIMA-ANN and ESRNN (Khashei & Bijari, 2011; Rahimi
& Khashei, 2018; Singh, 2015). One approach involves amalgamating two distinct neural network
models to discern intricate patterns within multivariate time series data (Wu et al., 2020b). Another
common strategy is to employ a statistical model to detect linearity within the time series data,
followed by the utilization of a neural network to capture non-linear patterns (Khashei & Bijari,
2011; Smyl, 2020). (Smyl, 2020) demonstrated the effectiveness of this hybrid ESRNN model across
various types of series, including those with high levels of randomness.

METHOD

Let w ∈ R be the window size from time step t to time step t + w (Hota et al., 2017). Our method
is to select the next segment from the end of the last segment. We repeat this process after going
through all data points within a series. The input matrix for our model is Yt,t+w ∈ R|D|×w which
contains |D| series with the length of each series is w (i.e. from time t to t+ w).

EXPONENTIAL SMOOTHING DECOMPOSITION

There are nine types of exponential smoothing (ES) models depending on variations in the combi-
nations of trend and seasonality, as outlined by (Hyndman & Athanasopoulos, 2018). (Smyl, 2020)
adopts the multiplicative seasonality approach due to the widening seasonal pattern observed in M4
data across various time frames (Hyndman & Athanasopoulos, 2018; Makridakis et al., 2020). The
Holt-Winter’s multiplicative ES model are specified as ŷt+h = ltb

h
t st−m+h with

lt = α
yt

st−m
+ (1− α)lt−1bt−1; bt = β

lt
lt−1

+ (1− β)bt−1; st = γ
yt

lt−1bt−1
+ (1− γ)st−m, (1)

where lt, bt, and st are the levels, trends, and seasonality at time t with the corresponding smoothing
parameters α, β, and γ, respectively. All smoothing parameters have the inclusive interval between 0
and 1. ŷt+h is the predicted value at time t+h where t is the current time frame that we use to analyze
and h is the forecast horizon. m is the windows size of the series. Decomposition layer extracts the
seasonality and levels from our series using multiplicative seasonality with no trend:

Lt,t+w = α

(
Yt,t+w∏

i S
i
t−s,t+w−s

)
+ (1−α)Lt−1,t+w−1;S

i
t,t+w = γ(

Yt,t+w

Lt,t+w
) + (1− γ)Si

t−s,t+w−s

(2)
where Lt,t+w ∈ R|D|×w is the levels matrix, Si

t ∈ R|D|×w is the seasonality matrix in the seasonal-
ity set S. α ∈ [0, 1]|D| and γ ∈ [0, 1]|D| are the smoothing vectors parameters of Lt,t+w and Si

t,t+w
respectively. α goes through a sigmoid layer, while γ is through an exponential layer.

In this ES layer, since the model no longer has local linear trend, we take out the levels and seasonal-
ity from our truth data to obtain the in-sample prediction Ŷt,t+w ∈ R|D|×(w+|M |) as follows.

Ŷt,t+w =
Yt,t+w

Lt,t+w ⊙
∏

i S
i
t,t+w

, (3)
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where ⊙ denotes element-wise multiplication. We concatenate the residual trend and five binary
variables indicating the domain m ∈ M (e.g. macro or finance) from D. Then, the non-linearity
residual passes through the transformer for next training process.

TRANSFORMER

The effectiveness of the Transformer architecture in sequence modeling has been demonstrated in
various studies (Li et al., 2019; Wu et al., 2020a;b). In the realm of time series forecasting, (Wu et al.,
2020a) utilize a Transformer architecture, which outperforms the current SOTA models in predict-
ing ILI. Our model follows the multi-head attention Transformer architecture (Vaswani et al., 2017),
with encoder-decoder as the primary layers and multi-head scale dot-product attention as the sub-
layer. Additionally, we employ a linear transformation with sigmoid activation instead of the softmax
function, which is more suitable for time series forecasting tasks. Let TFM() denotes our trans-
former layer, the final prediction Ŷ out

t,t+w ∈ R|D|×doutput is obtained by Ŷ out
t,t+w = TFM(Ŷt,t+w)

where doutput is the dimension of output vector and depends on how much steps we want to predict.
Details of the transformer is presented in Appendix Transformer layer.

EXPERIMENTAL RESULTS AND DISCUSSION

THE DATASET

The M4 competition dataset, sourced from the ForeDeCk database at the National Technical Univer-
sity of Athens (Makridakis et al., 2020), originates from a comprehensive database featuring 900,000
series for business forecasting collected from various sectors such as education and government.
From this extensive database, the M4 competition selected a subset of 100,000 series randomly,
spanning six different frequencies (Hourly, Daily, Weekly, Monthly, Quarterly, and Yearly) and six
diverse domains (Micro, Industry, Macro, Finance, Demographic, and Other). Details regarding the
number of observations are provided in Table 2, while Table 3 presents a summary statistic of the
dataset.

EVALUATION METRICS

Similar to the M4 competition (Makridakis et al., 2018) which use predictions from the Naive2
model as a baseline model, we use the Overall Weighted Average (OWA) between ESTransformer
and Naive2 as the baseline model. The OWA is constructed as:

OWA =
1

2

[
sMAPE

sMAPENaive2
+

MASE
MASENaive2

]
, (4)

where Symmetric Mean Absolute Percent Error (sMAPE) and Mean Absolute Scaled Error (MASE)
are represented as:

sMAPE =
200

h

h∑
i=1

|yt+i − ŷt+i|
|yt+i|+ |ŷt+i|

;MASE =
1

h

h∑
i=1

|yt+i − ŷt+i|
1

t+h−m

∑T+H
j=m+q |yj − yj−m|

. (5)

RESULTS AND DISCUSSION

The results of ESTransformer and ESRNN are reported in Table 1. From all frequencies data’ s
OWA, ESTransformer has comparable result with ESRNN with better performance in the Daily and
Quarterly data. Moreover, four out of six frequency in M4 data (i.e. Hourly, Weekly, Monthly, and
Yearly) has lower OWA value after training in ESRNN.

We depict the training and prediction results of three series in Figure 1. For Hourly series no.149
(Figure 1a and 1d), both ESTransformer and ESRNN perform well, closely resembling the test-
ing data due to the series’ strong cyclic pattern. However, for Weekly series no.106 (Figure 1b
and 1e), ESRNN over-forecasts while ESTransformer under-forecasts. Despite the sophistication
of ESRNN’s predictions, they significantly underestimate the true values. In contrast, our model’s
out-of-sample predictions are closer to the actual data. Lastly, for Quarter series no.996 (Figure 1c
and 1f), although both models’ in-sample predictions are close to the actual values, ESTransformer’s
prediction is visibly closer. Overall, our ESTransformer architecture demonstrates comparable or su-
perior performance to the state-of-the-art ESRNN model on the M4 dataset, as evidenced by the loss
metrics reported in Table 1 and Table 5.
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Table 1: OWA loss metrics’ results for testing data.

Model Frequency Hyperparameter OWA↓
ESTransformer Hourly |D| = 80730, dmodel = 128, N = 2, |M | = 6, w = 24,

doutput = 48, τ = 0.5, LP = 30
0.66

Daily |D| = 4227 1.00
Weekly |D| = 359, w = 10, doutput = 13, LP = 100 1.23
Monthly |D| = 24000, w = 12, doutput = 18, LP = 50 0.90
Quarterly |D| = 14400, w = 4, doutput = 8, LP = 100 0.90
Yearly |D| = 23000, w = 4, doutput = 6, LP = 100 0.81

ESRNN Hourly |D| = 80730, |M | = 6, w = 24, τ = 0.5, LP = 30 0.53
Daily |D| = 4227 1.01
Weekly |D| = 359, w = 10, LP = 100 1.10
Monthly |D| = 24000, w = 12, LP = 100 0.90
Quarterly |D| = 14400, w = 4, LP = 100 0.92
Yearly |D| = 23000, w = 4, LP = 100 0.79

(a) (b) (c)

(d) (e) (f)

Figure 1: Demonstration of ESTransformer (top - (a), (b), and (c)) and ESRNN (bottom - (d), (e),
and (f)) on Hourly series no.149 (left - (a) and (d)), Weekly series no.106 (middle - (b) and (e)), and
Quarterly series no.996 (right - (c) and (f)). The blue line represents the in-sample forecast. The red
line represents the out-sample forecast. The green line represents the real input value.

CONCLUSION AND FUTURE WORKS

In this paper, we propose ESTransformer, a hybridization approach for time series forecasting. We
utilize ES to extract the linear pattern and transformer architecture to explore the non-linearity pat-
tern in time series data. We show that our model can capture complex trends and seasonal patterns
with moderately improvement in comparison to the SOTA result from the M4 competition.

Various approaches can be explored to extend our work. For instance, instead of relying solely
on statistical methods for preprocessing, hybridizing different non-linear learners can delve deeper
into complex time series data patterns and elucidate variable impacts. As evidenced by (Guo et al.,
2021), combining a multi-scale residual convolutional neural network with long short-term mem-
ory reveals intricate feature interactions, outperforming single neural network models. Investigating
the rationale behind the superior performance of multi-model forecasting presents a compelling re-
search avenue, especially considering the unclear reasons behind its success despite demonstrated
effectiveness in competitions like M-competition. Additionally, addressing the absence of variance
estimation in models like ESRNN and ESTransformer by developing a hybridization framework
that provides confidence levels for predictions would be a significant contribution to the forecast-
ing domain. Despite limited time and computational resources, our model achieves comparable or
improved forecasting performance compared to ESRNN, signaling a modest yet foundational step
towards enhancing forecasting capabilities within the research community.
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TRANSFORMER LAYER

First, information about position of each token in the sequence needs to be encoded because trans-
former does not process token sequentially. Positional encoding of token x is

PE(x) = sin

(
2πx

period

)
(6)

where period is a hyperparameter. Due to different lengths in various series, using this seasonal func-
tion can extrapolate the sequence and equalize the length of each series. Also, this positional encod-
ing version is more suitable with time series data than the sine and cosine implemented in (Vaswani
et al., 2017).

Figure 2: Architecture of the ESTransformer model. The left upper uncolor fraction represents the
ES layer where the matrix levels Lt, seasonality Si

t where i starts from 1 to |S|, and trend Bt at time
t which are the outputs of this ES model. The yellow and blue fraction represents the encoder and
decoder architecture of Transformer layer, respectively.

The next sub-layer in both encoder and decoder is the multi-head scale dot-product self-attention.
A self-attention function finds the representation of the sequence through matrix of queries, keys,
and values. It connects a query and a set of key-value pairs to an output (Vaswani et al., 2017). The
compatibility between the query and the corresponding key will assign the weight to each value. The
sum of these weights is the output.

There are two commonly used types of attention: the addictive and dot-product (i.e. multiplicative)
functions. The additive attention computes the compatibility between the query and keys through a
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feed-forward network with a hidden layer. On the other hand, the multiplicative attention applies the
softmax function on the dot product of query with the corresponding keys. Even though these two
attention mechanism have similar complexity, the multiplicative method is much faster and utilizes
the memory more effectively due to its optimized matrix multiplication. Due to the efficiency in
speed and allocating memory, we choose to implement the scale dot-product attention, a version of
multiplicative self-attention with the scaling factor, in both encoder and decoder layer. As the keys
of dimension grows larger, the magnitude of the dot product QKT grows bigger, which causes the
attention function to fall into extremely small or invalid gradient regions. To counteract against these
regions, (Vaswani et al., 2017) scaled the dot-product by the keys of dimension

√
dk.

The weight are computed through a set of queries, keys, and values packed together simultaneously
into matrices Q, K, and V , respectively. We then apply the softmax function on the dot product of
queries and keys, scaled by the keys of dimension

√
dk for each corresponding values:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (7)

As the values of dk gets larger, the magnitude of dot product grows larger. The softmax function may
fall into regions where its gradients vanish. Thus, the scaling factor is to prevent attention function
from the extremely small gradients.

The multi-head attention consists of different scale dot-product attention layers. At the same time,
these attention computes the queries, keys and value with h times difference, learned the linear
projections to the dimension dk, dk, and dv , respectively. The result then is forwarded in the output
dimension dmodel and dimensional output values dv . Different positions can also participate in this
model at the same. The mechanism of multi-head attention can be represented as:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (8)

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (9)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel . Dif-

ferent from (Vaswani et al., 2017), with M4 data, we use h = 4 which represents the number of
parallel multi-head attentions layers. By default, we employ dk = dv = h = 4. Figure 3 demon-
strates our multi-head attention architecture using scale dot-product attention.

After the multi-head self-attention, encoder and decoder contains a fully connected feed-forward
network (FFN) sub-layer, which is also applicable for each position in a series. This sub-layer has
two linear transformations with a ReLU activation in between:

FFN = W1(ReLU(W0(Ŷt,t+w)))

The linear and ReLU transformations remains the same even if the positions change.

All of the components above are organized in two main layers: the encoder and decoder. Our first
main layer in the transformer architecture is the encoder layer. It composes a stack of N identical
layers. Each of them has two sub-layers. The multi-head attention is the first sub-layer, where it
contains all the keys, values, and queries from the output of the positional encoding layer. Each
position in the encoder computes the weights assigned to the corresponding positions in the series.
The higher the weight implies stronger connections between these locations. The second sub-layer is
a simple position-wise function which fully connects to the feed-forward network. Around these two
sub-layer, we implement the residual connections, which are added to the dropout and normalization
layer. To utilize these residual connections, all sub-layers and generic linear layers return the outputs
with the dimension dmodel.

Decoder architecture has many similarities to the encoder layer. Typically, the decoder as same
number N layers. The residual connections are employed around these sub-layers, which is similar
to the encoder architecture. But, one major difference is that the decoder has three sub-layers rather
than two. The self-attention in the first sub-layer uses the masking method to prevent the positions
from attending to subsequent positions. This technique combined with one offset position generated
by generic linear output layer allows the predictions to function properly, based on the outputs at
the previous positions. The second sub-layer is similar to the ones in encoder architecture. The
third performs the multi-head attention on output from the encoder and the previous masked multi-
head attention. In this “encoder-decoder attention” layer, only the queries come form the previous
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Figure 3: Multi-head attention with scale dot-product attention in Transformer.
⊗

denotes matrix
multiplication. Scale layer is for the scaling factor by

√
dk. The input is from the positional encoding

layer or from the residual connection. The output continues to go through the dropout and normal-
ized layer.

decoder layer, while memory keys and values are from the encoder output. Similarly to encoder,
every positions in decoder layer is allowed to attend all positions, including that own position.

After the decoder layer, we add the linear and sigmoid transformation to convert the input and output
to the matrix with dimension of output douput. Also, we change the embeddings layer in (Vaswani
et al., 2017) to linear transformation since our model is for the sequence of real numbers rather than
a sequence of words. The output of this step is our residual trends after training through transformer
with dimension (|D| × doutput).

DATASET PRELIMINARY ANALYSIS

In this section, we provide an overview of the statistics pertaining to the M4 dataset, accompanied
by preliminary observations gleaned from the data. Specifically, Table 2 and Table 3 delineate the
quantity of samples and their corresponding summary statistics grouped by collecting frequency.
Furthermore, Figure 4 and Figure 5 depict the outcomes of partial auto-correlation function (PACF),
and multiplicative decomposition conducted on select samples within the dataset.

TRAINING DETAILS

We implemented all neural networks using the Python PyTorch 1.7.1 library. The training-testing
ratio was 80:20. We use Adam Optimizer (Kingma & Ba, 2017) for ES and transformer architec-
ture. Table 4 demonstrates the training configuration for ESTransformer. Other training parame-
ters are set as default. More implementation details can be found at https://github.com/sangttruong/
hybcast.

Our first intention for the training loss function is to use the sMAPE and MASE, which both are
normalized absolute difference between actual and predicted values. Since the inputs to transformer
has been through deseasonalization and normalization layers, the training loss does not need to
normalize further. Therefore, we simply implement the difference between the target and predicted
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Table 2: Number of samples in M4 data summary with no value less than 10 due to scaling ef-
fect. (Makridakis et al., 2020)

Frequency Micro Industry Macro Finance Demographic Other Total
Yearly 6538 3716 3903 6519 1088 1236 23000

Quarterly 6020 4637 5315 5305 1858 865 24000
Monthly 10975 10017 10016 10987 5728 277 48000
Weekly 112 6 41 164 24 12 359
Daily 1476 422 127 1559 10 633 4227

Hourly 0 0 0 0 0 414 414
Total 25121 18798 19402 24534 8708 3437 100000

Table 3: Summary statistic of each frequency in M4 dataset.

Frequency Count Mean Median Std Dev Min Max
Yearly 720458 3689.73 2610.00 3173.55 22.10 115642.00

Quarterly 2214108 4240.60 3144.00 3469.55 19.50 82210.70
Monthly 10382411 4215.54 3250.00 3222.36 20.00 132731.32
Weekly 366912 3814.64 2676.86 3511.14 104.69 51410.00
Daily 9964658 5687.21 5232.20 4238.76 15.00 352000.00

Hourly 353500 5606.17 29.00 35495.30 10.00 703008.00

(a) (b) (c)

Figure 4: Preliminary analysis of (a) Hourly series no.149, (b) Weekly series no.106, and (c) Quar-
terly series no.996 from left to right

values. But, apparently, during backtesting, the positive bias appears due to squashing log function
from the ES layer. Our transformer architecture learns from the log space, but our prediction needs to
be in linear form. Therefore, for the training loss, we implement a pinball loss PB with the training
percentile (τ ), operated on the matrix:

PB =

{
τ × (Yt,t+w − Ŷt,t+w), if Yt,t+w ≥ Ŷt,t+w.

(1− τ)(Ŷt,t+w − Yt,t+w), otherwise.
(10)
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(a) (b) (c)

Figure 5: Preliminary analysis of (a) Hourly series no.373, (b) Weekly series no.254, and (c) Quar-
terly series no.8424 from left to right

Table 4: Training configuration

Frequency Batch size Learning rate Schedule decay Scheduler step size
Hourly 32 1e-2 0.5 7
Daily 64 1e-2 0.33 4

Weekly 32 1e-2 0.5 10
Monthly 64 7e-4 0.2 12
Quarterly 16 5e-4 0.5 10

Yearly 4 1e-4 0.1 10

where τ has the inclusive interval between 0.1 to 0.65; the Yt,t+N and Ŷt,t+w are calculated under
the log of deseasonalized-normalized of real and predicted matrices. Both matrices have the same
dimension which is |D|×w. The purpose of training percentile is to prevent the linearity of the final
forecast error. The Pinball loss takes the average P of each position’s highest value in τ × (Yt,t+w−
Ŷt,t+w) and (τ − 1)(Yt,t+w − Ŷt,t+w) matrix which both use dot wise operation. Therefore, this
pinball function can adjust for the penalty with different quantile, dealing with biases of various
series efficiently.

The pinball loss from the training loss could have been implemented as testing loss as well. Nonethe-
less, the prediction intervals metric in the M4 competition is not based on different upper or lower
pinball loss coverage percentage, but rather on the mean scaled interval score (Smyl, 2020; Makri-
dakis et al., 2020). Also, even though the positive bias have been counteracted from the training
loss, it can still happen if the upper interval exceed less frequently than the lower. Therefore, we de-
sign the testing loss aligned with the accuracy metrics in the M4 Competition, which is the Pinball
loss divided by the levels variability penalty. The smoothness of the level plays an important part in
forecasting accuracy. It also emphasizes the absorbance of seasonality on its components. Thus, we
implement the levels variability loss LV L function from (Smyl, 2020) defined below:

LV L = ((logLt+1,t+w+1 − logLt, t+ w)2)LP (11)
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where LP is the hyperparameter of level variability penalty which has the interval of 0 to 100,
Lt+1,t+w+1 and Lt,t+w are the levels matrices of each series. Similarly to the training loss, using
dot wise operation on logLt+1,t+w+1−logLt,t+w, we square and take the average of each levels log
differences matrix for each series. As (Smyl, 2020), the average and squares is a effective penalty
computation in handling the wiggliness of a curve. Then, we divide the average of Pinball loss by
the average of level variability loss LV L to obtain the testing loss:

TL =
PB

LV L
(12)

(a) (b)

Figure 6: Training (dashed line) and Testing (straight line) loss of ESTransformer (a) and ESRNN
(b)

ADDITIONAL RESULTS AND VISUALIZATIONS

Additional train and test results are reported in the Table 5 which compared our ESTransformer with
ESRNN (Redd et al., 2019). Figure 6 depicts the training and testing loss of these models, which
all frequencies data converge after 300 epochs. The training and testing loss of ESTransformer are
visibly similar to ESRNN, except for Weekly data. In Weekly data, the training process of ES-
Transformer is smoother and suffers from less noise than ESRNN. The noisy loss surface of RNN
architecture make it much more difficult for the optimizer to converge to a global optimum. The
loss surface of Transformer is often much smoother, hence converge faster as shown in the Weekly
data in this case. This is a major advantage of our framework in comparison to ESRNN. We also
visualize additional prediciton results of ESTransformer and ESRNN in Figure 7.

Table 5: Training and testing loss

Model Frequency Hyperparameter PB TL

ESTransformer Hourly |D| = 80730, dmodel = 128, N = 2, |M | = 6, w =
24, doutput = 48, τ = 0.5, LP = 30

0.06 0.03

Daily |D| = 4227 0.02 0.01
Weekly |D| = 359, w = 10, doutput = 13, LP = 100 0.08 0.04
Monthly |D| = 24000, w = 12, doutput = 18, LP = 50 0.42 0.06
Quarterly |D| = 14400, w = 4, doutput = 8, LP = 100 0.39 0.05
Yearly |D| = 23000, w = 4, doutput = 6, LP = 100 0.39 0.05

ESRNN Hourly |D| = 80730, |M | = 6, w = 24, τ = 0.5, LP = 30 0.07 0.04
Daily |D| = 4227 0.02 0.01
Weekly |D| = 359, w = 10, LP = 100 0.71 0.04
Monthly |D| = 24000, w = 12, LP = 100 0.45 0.07
Quarterly |D| = 14400, w = 4, LP = 100 0.39 0.05
Yearly |D| = 23000, w = 4, LP = 100 1.11 0.06

Residual diagnosis in training three data frequencies are shown in Figure 8. From Hourly to Yearly
data, both models have similar residual diagnosis graphs. Although most standardized errors are
centered around zero, some have extremely high value (e.g. from 30 to 40) which can be explained
by the fact that some series in the dataset have weak or no patterns. For example, Quarterly se-
ries no.996 shows a random trend in Figure 4c. These complicated series also cause a remarkable
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difference between the in-sample prediction and actual value. Quantile-Quantile plots demonstrate
the deviation of the residual from the diagonal line, which implies both overestimated and underesti-
mated prediction. This effect happens in both ESTransformer and ESRNN because of some irregular
patterns from the data.

(a) (b) (c)

(d) (e) (f)

Figure 7: Demonstration of ESTransformer (top - (a), (b), and (c)) and ESRNN (bottom - (d), (e),
and (f)) on Hourly series no.373 (left - (a) and (d)), Weekly series no.254 (middle - (b) and (e)), and
Quarterly series no.8424 (right - (c) and (f))

We analyze the first layer in attention mechanism in six different frequencies to understand the pre-
diction made by ESTransformer. Figure 9 demonstrates the attention weights of each positions 1.
The dark color represents weak dependency, whereas the bright color represents strong dependency.
Commonly, these six frequencies data only have short, mostly continuous, and constant-length de-
pendencies with the exception of daily data. Daily data in M4 dataset remains to be a challenge for
time series forecasting due to its high volativity and irregular pattern. Further investigation of model
behavior on Daily data is beyond the scope of this paper. The pattern of dependency learned from
the model is well-known as it is often utilized in other statistical model, such as ARIMA. The ability
of visualize the learned weights from the model is an advantage of our framework in comparison to
ESRNN.

1If we think of time series forecasting as weighted average of lagged value, the attention map is a square
matrix showing how which lagged value has significant contribution (i.e. large weight) on the prediction
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(a) ESTransformer - Hourly (b) ESRNN - Hourly

(c) ESTransformer - Weekly (d) ESRNN - Weekly

(e) ESTransformer - Quarterly (f) ESRNN - Quarterly

(g) ESTransformer - Yearly (h) ESRNN - Yearly

Figure 8: Residual diagnosis of ESTransformer and ESRNN on four different data frequencies
(Hourly, Weekly, Quarterly, Yearly)
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(a) Hourly data (b) Daily data (c) Weekly data

(d) Weekly data (e) Quarterly data (f) Yearly data

Figure 9: Attention mechanism in all frequencies data. The color bar shows the weight of each data
points connection in a series. The bright fractions demonstrate a strong connection or highest weight,
whereas the black ones demonstrate no weight or connection to the corresponding positions.
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