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ABSTRACT

While multi-agent reinforcement learning (MARL) has been proven effective
across both collaborative and competitive tasks, existing algorithms often strug-
gle to scale to large populations of agents. Recent advancements in mean-field
(MF) theory provide scalable solutions by approximating population interactions
as a continuum, yet most existing frameworks focus exclusively on either fully
cooperative or purely competitive settings. To bridge this gap, we introduce MF-
MAPPO, a mean-field extension of PPO designed for zero-sum team games that
integrate intra-team cooperation with inter-team competition. MF-MAPPO em-
ploys a shared actor and a minimally informed critic per team and is trained
directly on finite-population simulators, thereby enabling deployment to realis-
tic scenarios with thousands of agents. We further show that MF-MAPPO natu-
rally extends to partially observable settings through a simple gradient-regularized
training scheme. Our evaluation utilizes large-scale benchmark scenarios using
our own testing simulation platform for MF team games (MFEnv), including of-
fense–defense battlefield tasks as well as variants of population-based rock-paper-
scissors games that admit analytical solutions, for benchmarking. Across these
benchmarks, MF-MAPPO outperforms existing methods and exhibits complex,
heterogeneous behaviors, demonstrating the effectiveness of combining mean-
field theory and MARL techniques at scale.

1 INTRODUCTION

Existing state-of-the-art MARL algorithms built upon MADDPG, MAAC and MA-PPO (Lowe
et al., 2017; Yu et al., 2022), face severe scalability challenges as the number of agents grows,
primarily due to the well-known curse of dimensionality. A promising remedy is offered by
mean-field theory, which approximates large-scale agent–environment interactions in the infinite-
population limit (Huang et al., 2006). Two major areas of mean-field research are mean-field
games (MFGs) (Huang et al., 2006; Lasry & Lions, 2007; Sen & Caines, 2019; Laurière et al.,
2022), which focus on non-cooperative agents, and mean-field control (MFC) problems (Ben-
soussan et al., 2013; Gu et al., 2021), which study fully cooperative scenarios. In contrast,
mixed collaborative–competitive scenarios that arise in many real-world domains, such as team
sports (Gaviria Alzate et al., 2025) and social dilemmas (Leibo et al., 2017), remain relatively under-
explored. To address this gap, we propose Mean-Field Multi-Agent Proximal Policy Optimization
(MF-MAPPO), the first PPO-based learning algorithm tailored for mixed cooperative–competitive
mean-field settings. Guided by existing theoretical results (Guan et al., 2024a), MF-MAPPO scales
to hundreds or thousands of agents while preserving convergence guarantees and remaining agnostic
to individual identities or private observations.

Mean-Field Teams. The single-team problem was explored in Arabneydi & Mahajan (2014), where
agents share a common team reward (MFC). In contrast, Mahajan & Nayyar (2015) established op-
timality for finite-population games only in the LQG setting, while Sanjari et al. (2022) analyzed a
two-team setting with continuous states and actions—unlike our finite state-space formulation that
directly admits the familiar MDP-type structure. Similarly, multi-population MFGs (MP-MFGs)
have been studied in the past but often restrict agent dynamics and policies to be independent of both
other agents and other population distributions, see Perolat et al. (2021) and references therein. More
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Figure 1: (a) Battlefield as a ZS-MFTG (b) Overview of the architecture of MF-MAPPO.

recently, Guan et al. (2024a) introduced zero-sum mean-field team games (ZS-MFTGs), modeling
large-population teams that compete while cooperating internally. A common-information decom-
position (Nayyar et al., 2013) enables team-size-independent learning with identical optimal team
policies using MF feedback, unlike aforementioned MP-MFGs (open-loop MF policies). However,
computing such policies numerically, especially in large state-action spaces using dynamic program-
ming, is costly. By contrast, MF-MAPPO leverages shared actor–critic networks per team and uses
only commonly accessible information (exact/estimated), ensuring tractability and scalability.

Mean-Field Theory and Learning. Recent advances in mean-field learning span Q-function–based
methods, such as MF-Q and MF-AC (Yang et al., 2020) and DDPG-MFTG (Shao et al., 2024b), to
value-function–based methods like Dec-POMFPPO (Cui et al., 2024) (MFC only). While DDPG-
MFTG incorporates team games, it is restricted to simple grid worlds, unlike our focus on tightly
coupled collaborative–competitive domains (ZS-MFTGs). We adopt it as a baseline and show that
MF-MAPPO consistently outperforms it in stability and performance. Other related works in-
clude PMD-TD for MFGs (Yardim & He, 2024) and GAN-based ECA-Net for continuous-space
attack–defense games (Wang et al., 2022), both differing in scope and structure. Moreover, Yang
et al. (2020) define mean fields over neighboring actions rather than the full state space. MF-
MAPPO extends PPO (Schulman et al., 2017) to competitive MFTGs, using team distributions as
critic inputs for scalability, a shared actor–critic per team with a single buffer for efficiency, and
simultaneous team training to avoid the inefficiencies of iterative best-response methods (Lanctot
et al., 2017; Smith et al., 2021). Unlike prior MF methods that rely on infinite-population ora-
cles (Shao et al., 2024a; Perolat et al., 2021; Carmona et al., 2021), MF-MAPPO is trained directly
in finite-population simulators, making it suitable for realistic deployment. Finally, to standardize
evaluation in large-scale MFTGs, we create novel MFTG benchmark environments (Constrained
Rock–Paper–Scissors, Battlefield) going beyond existing ones that either focus only on MFGs (Guo
et al., 2023) or omit MF coupling altogether (Terry et al., 2021; Zheng et al., 2018).

Mean-Field Estimation and Opponent Modeling. To enable reactive behavior to opponents’ ac-
tions, most existing MF approaches assume centralized or exact knowledge of the opponent’s MF,
which is rarely practical. While Cui et al. (2024) considers partial observability, it is limited to MFC.
Estimation methods such as kernel density estimation (Inoue et al., 2021) or normalizing flows (Per-
rin et al., 2021) struggle with discrete spaces and limited agent-visibility. Communication-based
methods (Benjamin & Abate, 2025b;a) address these constraints but assume uniform estimates for
unobserved states and rely on perfect multi-round communication while being restricted to fully co-
operative or competitive regimes; noisy variants may even produce invalid distributions. We instead
propose Dynamic-Projected Consensus (D-PC), a constrained consensus algorithm that ensures va-
lidity, exponential convergence, and bounded deviations when paired with a gradient-regularized
MF-MAPPO policy. Gradient regularization naturally stabilizes MF-MAPPO in partially observ-
able MFTGs. Experiments show that D-PC matches baseline performance and even outperforms
them under limited communication, especially critical in adversarial settings requiring rapid adapta-
tion (Richards et al., 2012), enhancing robustness and fault tolerance. To our knowledge, this is the
first use of MF estimation for opponent modeling in competitive team settings.

Our contributions. The main contributions of our work can be summarized as: 1) MF-MAPPO,
a scalable shared-actor–critic algorithm for large-scale MFTGs; 2) novel MFTG benchmarking
environments (MFEnv) for validating MARL scalability; 3) A gradient-regularized extension of
MF-MAPPO coupled with a decentralized mean-field estimation framework D-PC, with theoretical
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performance guarantees in partially observable MFTGs; 4) comprehensive numerical experiments
demonstrating MF-MAPPO and D-PC’s superior performance and efficiency over existing baselines.

2 PROBLEM FORMULATION

2.1 ZERO-SUM MEAN-FIELD TEAM GAME

The zero-sum mean-field team game models a discrete-time stochastic game between two large
teams of agents (Guan et al., 2024a). The Blue and Red teams consist of N1 and N2 identical agents
for each team, with the total number of agents being N =N1+N2. Let XN1

i,t 2 X and UN1
i,t 2 U

represent the state and action of Blue agent i 2 [N1] at time t. Here, X and U are the finite state and
action spaces of the Blue team. Similarly, Y N2

j,t 2 Y and V N2
j,t 2 V denote the state and action of

Red agent j 2 [N2] at time t. The joint state-action variables for the Blue and Red teams are denoted
as (XN1

t ,UN1
t ) and (YN2

t ,VN2
t ), respectively. We denote the space of probability measures over a

set E as P(E). Below, dTV

�
µ, µ0

�
represents the total variation between µ, µ0

2 P(E).

Definition 1. The empirical distributions (ED) for the Blue and Red teams are defined as

M
N1
t (x) =

1

N1

N1X

i=1

1x(X
N1
i,t ), x 2 X , and N

N2
t (y) =

1

N2

N2X

j=1

1y(Y
N2
j,t ), y 2 Y, (1)

where 1a

�
b
�
= 1 if a = b and 0 otherwise. Specifically, MN1

t (x) gives the fraction of Blue agents
at state x and, similarly, for NN2

t (y). We use M
N1
t = Empµ(X

N1
t ) and N

N2
t = Emp⌫(Y

N2
t ) to

denote the EDs computed from the given joint states. Note that the Emp operators remove agent
index information, so one cannot determine the state of a specific Blue agent i from M

N1
t .

We consider weakly-coupled dynamics where the dynamics of each individual agent is coupled
with other agents through the EDs (Huang et al., 2006; Sanjari et al., 2022). For Blue agent i, its
stochastic transition is governed by the transition kernel ft : X ⇥ U ⇥ P(X )⇥ P(Y) ! P(X ):

P(XN1
i,t+1 = xN1

i,t+1|U
N1
i,t = uN1

i,t ,X
N1
t = xN1

t ,YN2
t = yN2

t ) = ft(x
N1
i,t+1|x

N1
i,t , u

N1
i,t , µ

N1
t , ⌫N2

t ), (2)

where µN1
t = Empµ(x

N1
t ) and ⌫N2

t = Emp⌫(y
N2
t ). Similarly, the dynamics of Red agent j is

governed by the transition kernel gt : Y ⇥ V ⇥ P(X ) ⇥ P(Y) ! P(Y). All agents in the Blue
team receive an identical weakly-coupled team reward, i.e., rt , rt(µt, ⌫t) : P(X ) ⇥ P(Y) ! R.
The Red agents receive �rt(µt, ⌫t) as their rewards (zero-sum). We assume that the Blue team is
maximizing while the Red team is minimizing and rt 2 [�Rmax, Rmax] for all t.

Assumption 1 (Lipschitz Model). For all x 2 X , u 2 U , µ, µ0
2 P(X ), ⌫, ⌫0 2 P(Y) and

all t, there exist constants Lf , Lr > 0 such that
P

x02X
|ft(x0

|x, u, µ, ⌫)� ft(x0
|x, u, µ0, ⌫0)| 

Lf

�
dTV

�
µ, µ0

�
+ dTV

�
⌫, ⌫0

��
and |rt(µ, ⌫)� rt(µ0, ⌫0)|  Lr

�
dTV

�
µ, µ0

�
+ dTV

�
⌫, ⌫0

��
. A

similar assumption also holds for gt.

Lipschitz continuity is commonly assumed (Huang et al., 2006; Gu et al., 2021), and at minimum
uniform continuity is required; see Cui et al. (2024) for counterexamples.

The first grid in Figure 1(a) depicts the individual agents’ local positions, with the target marked by
the green cell. The subsequent grids illustrate the state distributions µN1

t and ⌫N2
t of both teams.

The agent interactions depend only on µN1
t and ⌫N2

t (weakly-coupled) as described in (2).

We consider a mean-field sharing information structure (Arabneydi & Mahajan, 2015), where each
agent’s decision depends on its own state and the two team EDs. We start with assuming full ob-
servation of mean-fields and later relax this assumption. Specifically, the Blue and Red agents
seek to construct mixed Markov policies �i,t : U ⇥ X ⇥ P(X ) ⇥ P(Y) ! [0, 1], and  j,t :
V ⇥ Y ⇥ P(X ) ⇥ P(Y) ! [0, 1], where the Blue policy �i,t(u|xN1

i,t , µ
N1
t , ⌫N2

t ) dictates the prob-
ability that Blue agent i selects action u given its state xN1

i,t and the observed/estimated team EDs
µN1
t and ⌫N2

t . Note that each agent’s individual state is its private information.
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Let�t ( t) denote the set of individual Blue (Red) policies at time t. We define the Blue team policy
�N1
t ={�i,t}

N1
i=1 as the collection of the N1 Blue agent individual policies, and denote the set of Blue

team policies as �N1
t =⇥N1�t. Similarly, the Red team policy is denoted as  N2

t 2  N2
t =⇥N2 t.

Definition 2 (Identical team policy). The Blue team policy �N1
t = (�N1

1,t , . . . ,�
N1
N1,t

) is identical, if
�i1,t = �i2,t for all times t and all i1, i2 2 [N1]. � represents the set of identical Blue team policies.

The definition extends naturally to the Red team, and  denotes the set of identical Red team poli-
cies. The expected cumulative reward defines the performance of the team policy pair (�N1 , N2):

JN,�N1 , N2 �
xN1
0 ,yN2

0

�
= E�N1 , N2

h TX

t=0

rt(M
N1
t ,NN2

t )
���xN1

0 ,yN2
0

i
. (3)

When the Blue team considers its worst-case performance, we have the following max-min opti-
mization problem:

JN⇤(xN1
0 ,yN2

0 ) = max
�N12�N1

min
 N22 N2

JN,�N1 , N2
(xN1

0 ,y
N2
0 ), (4)

where JN⇤ is the lower game value for the finite-population game. Similarly, the minimizing Red
team considers a min-max optimization problem, which leads to the upper game value. Note that
we allow both teams to follow non-identical team policies in (4).

2.2 INFINITE-POPULATION SOLUTION

To reduce the complexity of team policy optimization domains in (4), the authors of Guan et al.
(2024a) examined team behaviors under identical team policies at the infinite-population limit. It
was shown that the team joint states can be represented using the team population distribution, which
coincides with the state distribution of a typical agent referred to as the mean-fields (µt and ⌫t for
the Blue and Red teams, respectively). They also proved that MFs induced by identical team policies
in an infinite-population game closely approximate the EDs induced by non-identical team policies
in the corresponding finite-population game, which justifies the simplification of the optimization
domain in (4) to identical team policies (also see Theorem 1). Furthermore, there is a one-to-one
correspondence between infinite-population coordination policies (↵,�) and local identical team
policies (�, ) 2 � ⇥  . The performance of (�, ) in the equivalent zero-sum coordinator game
is measured by

J↵,�
1

(µ0, ⌫0) ⌘ J�, 
1

(µ0, ⌫0) =
TX

t=0

rt(µt, ⌫t), (5)

where µt and ⌫t follow a deterministic dynamics (Guan et al., 2024a) similar to the state dis-
tribution propagation of a controlled Markov chain. The worst-case performance of the Blue
team in this infinite-population game is then given by the lower game value J⇤

1
(µ0, ⌫0) =

max�2� min 2 J�, 
1

(µ0, ⌫0), where the optimization domain is restricted to identical team
policies. Guan et al. (2024a) establishes guarantees that identical team policies resulting from the
solution of this equivalent zero-sum coordinator game are still ✏-optimal for the original max-min
optimization problem in (4) where ✏ = O(1/

p
N) and N = min{N1, N2}.

The infinite-population limit of large-population games offers several theoretical advantages, such
as representing the population by a typical agent and deterministic dynamics that reduce (3) to the
non-stochastic optimization of (5). Previous works (Shao et al., 2024a; Perolat et al., 2021; Carmona
et al., 2021) depend on infinite-population oracles to obtain mean-field trajectories (µt, ⌫t) in order
to compute (5). This is rather unrealistic, since in practice, only finite-population simulations and
local states (xN1

t ,yN2
t ) with actions (uN1

t ,vN2
t ) are available/observable. Moreover, a single coor-

dinator policy ↵(�) defines a distribution over actions for each state conditioned on the mean-field,
causing its dimensionality to scale with the joint state–action space (e.g., DDPG-MFTG), leading
to high computational cost and degraded empirical performance (see Section 5). In summary, the
infinite-population model is both impractical (due to oracle dependency) and computationally in-
tractable (due to policy size). Thus, we turn to finite-population simulators and derive guarantees of
optimality, scalability, and convergence of the policy gradient to the infinite-population ZS-MFTG.

The next result quantifies the level of suboptimality for the Blue team when it deploys the optimal
identical policy learned directly from the solution of finite-population ZS-MFTG.
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Theorem 1. The value of the optimal identical Blue team policy �⇤ obtained from the finite popula-
tion game is within ✏ of the finite-population lower game value defined in (4). Formally, for all joint
states xN1 and yN2 ,

min
 N2

JN,�⇤, N2
(xN1 ,yN2) � JN⇤(xN1 ,yN2)�O

⇣ 1
p
N

⌘
, where N = min{N1, N2}. (6)

Theorem 1 provides a principled justification for learning identical finite-population team policies in
competitive–collaborative team games even when being exploited by non-identical opponent team
strategies. Its motivation and proof build on the performance guarantees of the ZS-MFTG in the
infinite-population limit, i.e., the coordinator game. Moreover, the error vanishes as N1, N2 ! 1,
thereby recovering the well-studied infinite-population MF formulation (Huang et al., 2006). We
detail this finite-population training paradigm in the next section.

3 MEAN-FIELD MULTI-AGENT PROXIMAL POLICY OPTIMIZATION

Motivated by Theorem 1, we present an algorithm to learn the finite-population optimal identical
team policy. We build our algorithm based on the proximal policy optimization (PPO) framework
due to its simplicity and effectiveness. While PPO has shown promising performance in cooper-
ative tasks including MFC problems (Yu et al., 2022; Cui et al., 2024), its application in mixed
competitive-collaborative scenarios is less studied. In the sequel, we introduce our key contribution:
MF-MAPPO. We initialize two pairs of actor-critic networks, one for each team, deployed to learn
the identical policy used by each team, see Figure 1(b). Specifically, we introduce a minimally-
informed critic network by exploiting the MF information structure. The key point here is that we
only require commonly accessible information for the critic network in order to learn the value func-
tion (Proposition 1). Further, the private information available to each agent only individually enters
the actor during training. This results in neural networks that scale well with the number of agents.
We present the team actor-critic networks from the Blue team’s perspective, and due to symmetry
results extend naturally to the Red team.

Minimally-Informed Critic. The MF-MAPPO critic network of the Blue team evaluates the value
function VBlue(µ, ⌫), which depends only on the common information (MFs)—assumed to be avail-
able at the time of training—and is independent of the joint agent states and actions. We use the
parameter vector ⇣Blue to parameterize the critic network while minimizing the MSE loss

Lcritic(⇣Blue) =
1

|B|

|B|X

k=1

⇣
VBlue(µk, ⌫k|⇣Blue)� R̂Blue,k

⌘2
, (7)

where B refers to the mini-batch size and R̂Blue,k is the discounted reward-to-go for sample k.
The following proposition results from weakly-coupled team rewards and the use of identical team
policies-justifying the deployment of a minimally-informed critic network with only MF inputs.

Proposition 1. Let µN1
t , and ⌫N2

t denote the EDs of a finite-population game obtained from iden-
tical Blue and Red team policies �t 2 �t and  t 2  t, respectively. The team reward structure
admits a critic that depends only on µN1

t and ⌫N2
t . Specifically, for each Blue team agent i 2

[N1], the individual critic value function V N1,�t
i,t (xi,t, µ

N1
t , ⌫N2

t ) satisfies V N1,�t
i,t (xi,t, µ

N1
t , ⌫N2

t ) =

V N1,�t

Blue,t (µ
N1
t , ⌫N2

t ), where V N1,�t

Blue,t (µt, ⌫t) is the team-level critic.

Importantly, it reduces the learning problem to one critic network per team. Specifically, the shared
team reward structure along with the assumption of homogeneous agents in each team enables us
to evaluate the performance of a team’s agent using the minimally-informed critic—even if the
individual agent has additional local observations such as their actions and private states.

Shared-Team Actor. As discussed in earlier sections, the coordinator game is a useful theoretical
construct but has limited practical value for real-world deployment since it relies on an infinite-
population oracle for training and produces policies whose size scales poorly with the state-action
space. We therefore directly train finite-population identical local policies, which preserve the mean-
field structure while reducing complexity and improving tractability, with guarantees in Theorem 1.
Not only is the approach computationally tractable in terms of the size of the policy, but is also more
realistic in terms of sampling training data. We use a single actor network per team to learn identical
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team policies. The actor optimizes a PPO-based objective with a decaying entropy bonus (Schulman
et al., 2017; Huang et al., 2022), which promotes exploration and stabilizes learning in mean-field
settings (Cui & Koeppl, 2022; Guan et al., 2022). Permutation invariance and identical team policies
further allow a single replay buffer per team, reducing memory costs and simplifying experience
collection. The PPO-based objective function of the Blue actor is given by:

L(✓Blue) =
1
|B|

|B|X

k=1

h
min

⇣
gk(✓Blue)Ak, clip[1�✏,1+✏](gk(✓Blue))Ak

⌘
+ !S(�✓Blue(xk, µk, ⌫k))

i
, (8)

where, g(✓) = �✓(u|x,µ,⌫)
�✓old (u|x,µ,⌫)

, Ak is the generalized advantage function estimate (Schulman et al.,
2018) and the tunable parameter ! weighs the contribution of the entropy term S

�
�✓(x, µ, ⌫)

�
and

decays as training progresses.

3.1 THEORETICAL GUARANTEES

As described in Section 2, the theoretical benefits of MFTGs at the infinite-population limit remain
of significant interest. Indeed, the following theorem shows that policy gradients obtained through
finite-population training (using a finite-population simulator) converge to their infinite-population
counterparts as the population size grows.
Theorem 2. The approximate policy gradient of the infinite-population Blue (Red) team coordi-
nator policy ↵ (�) computed using local policies from the finite-population ZS-MFTG via MF-
MAPPO (ĴN1(↵✓)) uniformly tends to the true policy gradient as the population size increases,
i.e., kr✓J1(↵✓)�r✓ĴN1(↵✓)k2 ! 0 as (N1, N2) ! 1, where k · k2 is the 2-norm.

The results extend to the Red team. We next demonstrate the scalability of MF-MAPPO as a direct
consequence of Theorem 1 and the infinite-population coordinator game, by showing that, under
certain conditions, the learned team policies generalize to varying population sizes (N̄1, N̄2) while
maintaining performance guarantees. Theorem 3 allows MF-MAPPO to be trained on a smaller pop-
ulation and deployed to larger teams without additional tuning, significantly reducing computational
costs while maintaining performance consistency and generalizability across population sizes.
Theorem 3. Let G1 denote the finite-population game where the agents utilize the identical team
policies �⇤t and  ⇤

t derived from MF-MAPPO trained on G1 and let the finite-population game G2

with the same state-action space, dynamics, and rewards, but with population sizes N̄1 and N̄2 such
that N̄1/N̄2 = N1/N2 and min(N̄1, N̄2) � min(N1, N2). Then, (�⇤t , ⇤

t ) remain ✏-optimal for G2.

4 MF-MAPPO FOR PARTIALLY OBSERVABLE MFTGS

To have strategies reactive to opponent’s unexpected behaviors, one needs feedback on opponent’s
MF-distribution, which in practice, is often unavailable through direct means. We consider a par-
tially observable ZS-MFTG, relevant to domains like competitive sports/battlefield, where decentral-
ized decision-making relies on estimating the opponent’s state distribution. The two main challenges
are: 1) the sensitivity of MF policies (�, ) to the MF (µt, ⌫t) feedback and 2) constructing valid,
performance-preserving MF estimates that can serve as inputs to the trained MF policies.

To address the first challenge, we introduce a gradient penalty to the MF-MAPPO objective (8),
enforcing Lipschitz continuity in the mean-field and ensuring robustness: small estimation errors
induce only minor changes in actions distributions. The following proposition formalizes this idea.
Proposition 2. If the log-probability of the Blue team policy is bounded such that for all x 2 X , u 2

U , µ 2 P(X ), ⌫ 2 P(Y), kr⌘ log �(u | x, µ, ⌫)k2  L�/2|U|, where the gradient is taken with
respect to ⌘ 2 P(X ) ⇥ P(Y) , [µT, ⌫T]T and L� > 0, then �(u | x, µ, ⌫) is Lipschitz continuous
with Lipschitz constant L�, i.e.,

X

u

|�t (u|x, µ̂, ⌫̂)� �t (u|x, µ̂
0, ⌫̂0) |  L�

�
dTV

�
µ̂, µ̂0

�
+ dTV

�
⌫̂, ⌫̂0

��
8 x 2 X . (9)

Similarly, we can define Lipschitz continuous policies for the Red team with constant L . This idea
of penalizing the gradient of the policies was introduced in robotics to promote smooth and stable
policies in order to aid sim-to-real transfer (Chen et al., 2024; Shin et al., 2025).
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To address the second challenge, we require a filter that can estimate the opponent distribution at
every time-step for each agent (e.g., i 2 [N1] obtains an estimate of the Red team distribution at time
t given by ⌫̂N2

i,t ) with accuracy guaranteed within a bounded tolerance ensuring agent actions and
overall performance (3) remain within acceptable limits. Note that we formulate the problem from
the Blue team’s perspective. The results extend naturally to the Red team’s perspective. Let the
full-information and estimated MF trajectories be {M

N1 ,NN2} and {M̂
N1 , N̂N2}, respectively.

We measure estimator performance for gradient-regularized MF-MAPPO (GR-MF-MAPPO) team
policies (�⇤t , ⇤

t ) via the cumulative regret between fully and partially observable MF rewards as:

�J(�⇤
t , 

⇤
t ) = E�⇤, ⇤

"���
TX

t=0

rt(MN1
t ,NN2

t )�
TX

t=0

rt(M̂N1
t , N̂N2

t )
���

#
. (10)

In fact, any ✏-accurate estimator can be utilized during the deployment of GR-MF-MAPPO.

Proposition 3. Consider a given ✏-accurate estimator, i.e., dTV

�
⌫̂N2
i,t , ⌫̂

N2
t

�
< ✏, for all i, t, where

⌫̂N2
t is the true opponent MF at time t and ✏ > 0. For the identical team-policy pair (�⇤t , 

⇤
t )

obtained via gradient-regularized MF-MAPPO and deployed using this estimator, the cumulative
regret satisfies �J(�⇤t , 

⇤
t )  K✏+O(1/

p
N) for some constant K > 0.

We emphasize that MF-MAPPO is modular and policy inputs can be swapped with different es-
timates (using estimation/prediction algorithms) and still have good performance. Gradient regu-
larization is key to ensure that minor errors in estimation do not result in extreme changes in MF
trajectories and performance.

In lieu of Proposition 3, we propose a communication network-based decentralized estimation fil-
ter, namely, Dynamic-Projected Consensus (D-PC). It is an extension of the control-theoretic con-
strained consensus problem (Nedić & Liu, 2016) and addresses the shortcomings of the estimation
algorithm proposed in Benjamin & Abate (2025b), namely, estimation under limited communica-
tion rounds, and ensuring valid estimates in the presence of errors. Following the connected graph
topology used in MFGs (Benjamin & Abate, 2025b), we define a state-based visibility graph G

viz
t

and team-based communication graphs G
com
Blue,t and G

com
Red,t. We also define the projection operator

⌦R(x)[⌘] , argmin!2R(x) k⌘ � !k2 for ⌘,! 2 R|Y| where R(x) is a closed and convex set. We
assume that all agents in the same state receive the same information, so naturally they have the
same estimate, i.e., all Blue agents at state x 2 X at time t have the same estimate ⌫̂N2

x,t of the Red
team MF. We consider two time scales: t for system dynamics (2) and ⌧ for communication rounds.
At time t, and ⌧ = 0, each Blue agent at state x 2 X holds a belief ⌫̂⌧=0

x,t consistent with G
viz
t . At

communication round ⌧ , agents share estimates ⌫̂⌧�1
x,t with neighbors defined by G

com
Blue,t and perform

for Rcom communication rounds: a) weighted-average consensus; and b) a projection onto a closed
and convex constraint set R(x). The set R(x) combines the Red team’s MF components known
with certainty by the Blue agents at state x—i.e., the observable states given by G

viz
t —with those

that must be estimated. R(x) guarantees that operations such as information aggregation, averaging,
or distributed communication do not alter the parts of the distribution that are known with certainty.
See Appendix A for detailed definitions.
Theorem 4. D-PC satisfies Proposition 3 with ✏ = O

�
e�cRcom

�
with c > 0.

5 NUMERICAL EXPERIMENTS

In this section, we evaluate MF-MAPPO across large-population scenarios using our custom-made
benchmark simulation platform, MFEnv. Built as an extension of Gymnasium (Towers et al., 2024),
MFEnv is developed specifically to facilitate research in MFTGs, supporting both finite-agent sim-
ulations and oracle-based infinite-population models. Unlike existing toolkits, MFEnv includes ag-
gregate reward metrics, policy-versus-policy evaluation, and flexible APIs for custom mean-field
environments that adhere to MF dynamics, rewards and information structures. We showcase MF-
MAPPO’s efficacy on two representative environments (1) a constrained-action variant of the classi-
cal rock–paper–scissors game (Raghavan, 1994), enabling validation against analytically computed
equilibria and (2) a complex battlefield setting where Blue and Red teams engage in attack–defense
tasks with higher-dimensional state and action spaces, requiring sophisticated team-level coordina-
tion. Additional results and environments (not limited to ZS-MFTGs) in Appendix E.
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Figure 2: (a) 150 initializations of µt=0 = [1, 0, 0]T and ⌫t=0 = [0, 1, 0]T for cRPS; N1 = N2 =
1, 000 (b) Deploying MF-MAPPO trained on N1 = N2 = 1, 000 to varying team sizes.

Figure 3: I. Average test rewards for Battlefield on a 4x4 grid (100 initializations); II. Example
configuration; III. Comparing dTV

�
·
�

for D-PC and Benchmark estimator for different Rcom.

Constrained Rock-Paper-Scissors (cRPS). The state space of each individual agent is S =
{R,P,S}, representing rock, paper, and scissors, respectively. We consider a non-trivial restric-
tion of the action space to A = {CW,Stay} allowing agents to either move clockwise ( R ! P,
P ! S, S ! R) or remain idle, respectively. We assume deterministic transitions, where each action
leads to a unique next state deterministically. At each time step t, the Blue (Red) team receives a
team reward rt(µt, ⌫t) = µT

tA⌫t (�µT
tA⌫t) where A is the standard RPS payoff matrix.

Figure 2(a) compares trajectories from MF-MAPPO and DDPG-MFTG (Shao et al., 2024a). Exist-
ing algorithms such as MADDPG and MAAC (Lowe et al., 2017) are unsuitable as baselines because
their centralized action-value functions require the actions of all agents and the full state informa-
tion, leading to poor scalability in the large-population settings considered in this work. We see that
MF-MAPPO successfully reaches the equilibrium distribution. The transient time is attributed to
finite-population approximation and entropy regularization. By contrast, DDPG-MFTG diverges,
relying on a mean-field oracle, which is valid only in the infinite-population limit, and “central
players” that map mean-field distributions to deterministic policies without clipping or regulariza-
tion, making it unstable. Unlike multi-agent DDPG extensions (e.g., MADDPG), which consider
other teams’ local policies, DDPG-MFTG conditions only on its own, limiting inter-team awareness.
Figure 2(b) shows MF-MAPPO’s scalability, where larger populations reduce noise and variance,
aligning with Theorem 3. MF-MAPPO updates every Trollout steps, unlike DDPG-MFTG which
updates per time step, making MF-MAPPO significantly faster and efficient (2h vs. 60h).

Battlefield Game. To fully test the capability of MF-MAPPO on a more complex scenario, we
propose a grid-based battlefield game where an individual agent’s dynamics is highly coupled with
both teams’ distributions. The Blue agents aim is to reach their targets without being deactivated,
while the Red agents learn to guard them. Deactivation occurs when one of the opponents holds
a numerical advantage within a cell, incentivizing both teams to aggregate to reduce the risk of
being deactivated by a numerically superior opponent. The Blue team’s reward depends on the
fraction of agents active at the target, the Red team’s reward follows from the zero-sum structure,
and (to avoid degeneracy) the Red agents are restricted from entering the target. All experiments
use N1 = N2 = 100 agents on grids with varied targets (lilac) and obstacles (black).

We compare MF-MAPPO and DDPG-MFTG by pitting them against each other on a 4 ⇥ 4 grid
with full MF information. As shown in Figure 3I, MF-MAPPO consistently outperforms DDPG-
MFTG across various initializations, achieving up to 10⇥ higher rewards when attacking and
lower/comparable rewards while defending. Figure 3II shows MF-MAPPO Red agents success-
fully cover both corridors and deactivate several Blue attackers II(a). Panels II(a) and II(b) highlight
that DDPG-MFTG Blue agents do not aggressively pursue the target, illustrating their tendency
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Figure 4: I. Red is concentrated; 30% Blue are at the bottom, rest are at the top II. Blue is evenly split,
Red is concentrated III. Comparing dTV

�
·
�

for D-PC and the Benchmark estimator for different
communication rounds IV. % error in cumulative rewards: D-PC vs. fully observable ZS-MFTG.

to passively seek zero-reward outcomes rather than take goal-directed actions, unlike II(c) where
MF-MAPPO agents exhibit coordinated maneuvering, forming coalitions to reach the target. While
cases I and II utilize complete observability, case III evaluates the proposed D-PC estimator against
the estimator in Benjamin & Abate (2025a) (Benchmark) under a gradient-penalized MF-MAPPO
policy when Red has full information and Blue estimates Red’s distribution. Both estimators yield
comparable total variation errors relative to the full-information case, with D-PC showing advan-
tages under low communication budgets (Rcom < 20). One can trivially show that the Benchmark
satisfies Proposition 3 with ✏ = 1 � O(Rcom/|X |) and assumes uniform estimates for unobserved
states, which degrades estimation accuracy under limited communication. It also relies on accurate
information from neighbors to ensure validity of estimates. In contrast, D-PC exchanges inexact
information but applies state-dependent corrections (projection), preserving privacy and robustness.

In Figure 4, the Red team faces a dilemma in deciding which target to defend, while the Blue team
exploits this ambiguity. Due to DDPG-MFTG’s high computational cost and frequent network up-
dates, it is excluded from our analysis. With no other baselines for such large-scale complex MFTGs,
we qualitatively assess MF-MAPPO’s performance. Figures 4I–II illustrate how identical policies
can generate heterogeneous team behaviors, with Blue adapting target selection and Red reallocat-
ing defenses, highlighting the flexibility of the mean-field approximation. Furthermore, D-PC again
outperforms the Benchmark under limited communication (III) (Rcom < 10) and performs competi-
tively otherwise. Cumulative rewards (IV) show only small deviations, consistent with Proposition 3
and Theorem 4, confirming that agents can rely on local observations with minimal communication.

6 CONCLUSION

We introduced MF-MAPPO, a novel MARL algorithm for large-population competitive team games
that leverages finite mean-field approximation. With a minimally informed critic and shared team
actor, MF-MAPPO scales efficiently while retaining performance, as shown against baselines such
as DDPG-MFTG on cRPS and battlefield scenarios using the developed platform MFEnv. Despite
shared policies, heterogeneous sub-population behaviors emerge, confirming that mean-field ap-
proximations do not hinder performance. We showed that MF-MAPPO naturally extends to partial
observability via a simple gradient-regularized training scheme, and proposed D-PC, a decentral-
ized mean-field estimator that ensures accuracy and strong performance when integrated with it.
Empirically, D-PC outperforms baselines under limited communication. Limitations include MF-
MAPPO’s scaling with state dimensionality, which motivates future work on dimensionality reduc-
tion (e.g., kernel embeddings). Additional directions include extending D-PC to noisy settings and
to more general, time-varying network topologies.
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