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ABSTRACT

Deep neural networks (DNNs), including convolutional neural networks, are
known to be vulnerable to adversarial attacks, which may lead to disastrous con-
sequences in life-critical applications. Adversarial samples are usually generated
by attack algorithms and can also be induced by white noises, and therefore the
threats are real. In this study, we propose a novel training method, named In-
creasing Margin Adversarial (IMA) Training, to improve DNN robustness against
adversarial noises. During training, the IMA method increases the margins of
training samples by moving the decision boundaries of the DNN model far away
from the training samples to improve robustness. The IMA method is evaluated
on six publicly available datasets (including a COVID-19 CT image dataset) under
strong 100-PGD white-box adversarial attacks, and the results show that the pro-
posed method significantly improved classification accuracy on noisy data while
keeping a relatively high accuracy on clean data. We hope our approach may fa-
cilitate the development of robust DNN applications, especially for COVID-19
diagnosis using CT images.

1 INTRODUCTION

Deep neural networks (DNNs), especially convolutional neural networks (CNNs), have become
the first choice for automated image analysis due to its superior performance. However, recent
studies have shown that DNNs are not robust to a special type of noise, called adversarial noise.
Adversarial noise was first discovered by (Szegedy et al., 2013) and then explained by (Goodfellow
et al., 2014). Adversarial noises can significantly affect robustness of DNNs for a wide range of
image classification applications (Akhtar & Mian, 2018), such as handwritten digits recognition
(Graese et al., 2016), human face recognition (Mirjalili & Ross, 2017), and even traffic sign detection
(Eykholt et al., 2018). DNN-based image segmentation can also be affected by adversarial noises
because image segmentation is often realized by pixel classification.

The COVID-19 pandemic has infected millions of people and caused the death of about 1 million
people as of today (WHO, 2020). A large scale study in China shows that CT had higher sensitivity
for the diagnosis of COVID-19 as compared with initial reverse-transcription polymerase chain
reaction (RT-PCR) from swab samples (Ai et al., 2020). As reviewed in (Shi et al., 2020), many
DNN models for COVID-19 diagnosis from CT images have been developed and achieved very
high classification accuracy. However, none of these studies (Shi et al., 2020) considered DNN
robustness against adversarial noises. We modified a Resnet-18 model (He et al., 2016) and trained
it on a public COVID-19 CT image dataset (Soares et al., 2020), and then the model robustness is
tested (details in section 3.3). Fig. 1 shows a CT image (denoted by x) of a lung that was infected by
COVID-19 and correctly classified as infected. After adding a small amount of noise δ to the image
x, the noisy image x + δ is classified as uninfected. On the test set, although the model achieved
≥ 95% accuracy on original clean images, its accuracy dropped to zero on the noise level of 0.03.
This non-robust model clearly cannot be used in real clinical applications. It may be argued that
adversarial noises are created by algorithms and therefore may not exist in the real world unless
some bad people want to hack the system to achieve personal gain at the expense of public health.
However, on the COVID-19 dataset, we found that 2.75% of the noisy samples with uniform white
noises on the noise level of 0.05, can cause the DNN model to make wrong classifications, which

1



shows that white-noise-induced adversarial samples can exist. For medical applications, 2.75% is
not a negligible number, and it is worth developing methods to improve DNN adversarial robustness.

There are mainly two categories of adversarial attacks: white-box attack and black-box attack. For
a white-box attack, the attacker knows everything about the DNN to be attacked. For a black-box
attack, the attacker only can use the DNN as a black-box (i.e., send an input to the DNN and get
an output from the DNN, not knowing anything else). From the perspective of defense, we should
consider the worst-case scenario: white-box attack. People have explored many ideas to improve
robustness, but many of them have been shown to be ineffective (Uesato et al., 2018; Tramer et al.,
2020). A general and effective strategy is adversarial training (Goodfellow et al., 2014; Madry et al.,
2017; Miyato et al., 2018; Ding et al., 2019a), and the basic idea is to use adversarial attack al-
gorithms to generate noisy samples and add those samples to the training set, which basically is a
special data augmentation strategy. Through adversarial training, the DNN model can learn from
the noisy samples and become robust to noises. Adversarial training is straightforward but compu-
tationally expensive. Thus, one needs to make sure that the generated noisy samples can indeed help
to improve robustness: samples with too much noise can harm performance while samples with too
little noise may have no effect at all. Generative adversarial training has been directly applied to
improve robustness; however, it can only defend against black-box attack (Wang & Yu, 2019).

In this paper, we propose a novel method, Increasing-Margin Adversarial (IMA) Training, to im-
prove robustness of deep neural networks for classification tasks. Our method aims to increase
margins of training samples by moving decision boundaries far away from the samples to improve
robustness. We evaluated our method on six datasets with 100-PGD white-box attack and the results
show that our proposed method can achieve a significant improvement in DNN robustness against
adversarial noises.

Figure 1: An example of clean and
noisy images.
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Figure 2: Left: case-0 in BPGD; Right: case-1 in BPGD.
Please zoom in for better visualization.

2 METHODOLOGY

2.1 ADVERSARIAL ATTACK AND NEURAL NETWORK ROBUSTNESS

To evaluate the robustness of different adversarial training methods, we use projected gradient de-
scent (PGD) (Madry et al., 2017; Kurakin et al., 2016) to generate adversarial noises, which is widely
used for method evaluation (Uesato et al., 2018; Tramer et al., 2020). For the convenience of the
reader, we briefly describe PGD: Let x denote an input sample and y be the true class label. Let
J (x) denote the scalar objective function of PGD, which could be the cross-entropy loss function or
other classification loss functions. Let δ denote the adversarial noise, and its magnitude is ε which
is measured by the vector Lp norm of δ, i.e., ε = ||δ||p, where p is inf or 2 usually. PGD adds noises
to x iteratively:

x(i) = clip
(
x(i−1) + η · h

(
J ′
(
x(i−1)

)))
(1)

where η is step size, J ′ (x) = ∂J
∂x , and i is iteration index. x(0) = x + ξ, where ξ is random

noise with ||ξ||p ≤ ε. || ||p denotes the vector p-norm. The clip operation in Eq.(1) ensures that
||x(i) − x||p ≤ ε (called ε-ball). If x is an image, the clip operation also ensures that pixel values
stay within the feasible range (e.g. 0 to 1). If L-inf norm is used, h (J ′) is the sign function;
and if L2 norm is used, then h (J ′) normalizes J ′ by its L2 norm. The total adversarial noise is
δ = x(NPGD) − x, and NPGD is the number of iterations. η is usually set to α · ε/NPGD, and
therefore the algorithm may sweep the ε-ball α times (α ≥ 1) within NPGD iterations. By adding
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the adversarial noise δ to the input x, the objective function J (x+ δ) will be significantly larger
than J (x), leading to wrong classification of the noisy sample x+ δ.

It is easy to understand the robustness issue through Eq.(1) and Fig. 1. Given a trained classifier, if
a sample x is very close to the decision boundary of the classifier, then one could add a small noise
δ to x such that x + δ goes across the decision boundary and is wrongly-classified. As shown in
section 3, using standard training with cross-entropy loss and clean data, the decision boundaries of
the trained classifier will often be very close to the samples; as a result, the accuracy can drop to
zero upon very small noises. To improve robustness, vanilla adversarial training (Goodfellow et al.,
2014; Kurakin et al., 2016) based on PGD can be used: given the maximum noise level ε = εmax,
generate a noisy sample xε = PGD(x, y, ε) for every clean sample x in training set; use the clean
samples and noisy samples together to train the model. The loss function is given in (Goodfellow
et al., 2014):

Ladv = (Lce(x, y) + Lce(xε, y))/2 (2)

In practice, the loss is accumulated over each mini-batch. Lce is the cross-entropy loss. As shown
in Section 3, the vanilla adversarial training is very sensitive to the user-defined noise level εmax.

2.2 INCREASING-MARGIN ADVERSARIAL (IMA) TRAINING

We developed a novel method, Increasing-Margin Adversarial (IMA) training, to enhance DNN
classifier robustness. As its name indicates, IMA is a type of adversarial training: it generates noisy
samples and trains a DNN model on clean and noisy samples. IMA algorithms are significantly
different from the other adversarial training algorithms.

IMA training includes two alternating sub-processes: Algorithm 1 to compute loss and update the
DNN model, and Algorithm 2 to update margin estimation. In Algorithm 1, by minimizing the loss
on clean and noisy data, the model will reach a balance between robustness and accuracy on clean
data. In Algorithm 2, the sample margins are updated after each epoch. These estimated margins
are used to generate noisy samples for training the model in the next epoch.

Algorithm 1 compute loss and update model in an epoch
Input: : S = (x, y) is the training set, containing pairs of clean sample x and true label y. f is the

DNN model and ŷ = f(x). E is an array containing the estimated margins of individual training
samples. β is a scalar coefficient. In a batch, X contains samples and Y contains class labels.

Output: updated model f after this training epoch
Process:

1: for Batch data X and Y in S do
2: Run model f to classify the samples and divide the samples into two groups, wrongly-

classified X0, Y0 and correctly-classified X1, Y1 where X = X0 ∪X1 and Y = Y0 ∪ Y1
3: Get noisy samples Xn = BPGD(X1, Y1, E (X1)) and classify them Ŷn = f(Xn) · E (X1)

is a sub-array of E , containing the estimated margins of samples in X1. BPGD is described in
Algorithm 3.

4: Compute the loss L:
5: L0 = cross entropy(f (X0) , Y0) (take sum)
6: L1 = cross entropy(f (X1) , Y1) (take sum)
7: L2 = cross entropy(f (Xn) , Y1) (take sum)
8: L = ( (1− β ) · (L0 + L1) + β · L2)/batch size
9: Back-propagate from L and update the model f

10: end for

Our IMA method tries to generate noisy samples on decision boundaries as much as possible: adding
too much noise to a training sample may lead to low accuracy on clean samples, but adding too little
noise may have no effect on robustness. Since the distance between a training sample and a decision
boundary is different for different training samples, the noises added to the training samples have
different magnitudes (i.e., vector norms). The rationale of doing so is discussed in section 2.3. Here,
the margin of a sample is the minimum distance between the sample and the decision boundaries.
It is difficult to compute the exact margin for a sample in a high dimension space, and therefore we
can only estimate it.
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Algorithm 2 update margin estimation after an epoch
Input: S = (x, y) is the training set. f is the DNN model and ŷ = f(x). E is an array of

the estimated margins of training samples. E (x) is the estimated margin of x. ∆ε is margin
expansion step size. εmax is the maximum noise level, i.e., the allowed maximum margin.

Output: updated E
Process:

1: for each sample x and y in S do
2: Classify the sample ŷ = f(x)
3: if x is wrongly-classified (ŷ is not y) then
4: Update E(x) = ∆ε (re-initialize)
5: else if x is correctly-classified (ŷ is y) then
6: Get noisy sample xn = BPGD(x, y, E (x))
7: if xn is on decision boundary (not None) then
8: Update E (x) = ||x− xn||p (refine/shrink)
9: else

10: Update E (x) = E (x) + ∆ε (expand)
11: end if
12: end if
13: end for
14: Clip every element of E into the range of ∆ε to εmax

Note: Every E (x) is initialized to be ∆ε which can be set to εmax divided by the number of
adversarial training epochs. The algorithm runs in mini-batches.

Algorithm 3 (BPGD): generate noisy samples
Input: : a sample x with class label y, the estimated margin ε of x, and the model f ·NPGD is the

number of iterations in PGD. Nbinary is the number of iterations in binary search.
Output: xn = BPGD(x, y, ε)

Process:
1: Run the standard PGD(x, y, ε) and obtain a sequence of noisy samples (NPGD samples)
2: Classify those noisy samples using the model f
3: if all of the noisy samples are correctly-classified (case-0 in Fig.2) then
4: return None (xn is None and will be ignored)
5: else
6: (case-1 in Fig.2) Find xn1 and xn2, two adjacent samples in the sequence. xn1 is correctly-

classified and xn2 is wrongly-classified. Thus, xn1 and xn2 are close to the decision boundary.
7: Run binary search along the straight-line segment between xn1 and xn2 in order to find xn

on the decision boundary (Fig.3)
8: return xn
9: end if

Note: it is unnecessary to store the whole sequence. The algorithm runs in mini-batches.

We developed Algorithm 3, named BPGD, to find noisy samples on decision boundaries. At the very
beginning of the IMA training process, the margins of the training samples are initialized to a small
number equal to margin expansion step size in Algorithm 2. Intuitively, during IMA training, the
margin of a training sample keeps increasing as if a ball is expanding (the ball center is the sample
x, and the radius is the margin E (x); it is called ε-ball), until the ball of the sample x collides
with the ball of another sample x′ in a different class. When the two balls collide and therefore
a local decision boundary is formed, Algorithm 2 will prevent them from further expansion by
refining/shrinking margins (Fig. 4). In section 2.3, we will show that an equilibrium state may exist
(Fig. 5) under which the margins of the samples are maximized.

2.3 THE EQUILIBRIUM STATE

We can show that on certain conditions, an equilibrium state (Fig. 5-Left) exists under which the
margins of the samples are maximized. To simplify the discussion, we assume there are three classes
and three decision boundaries between classes (Fig. 5-Right). The softmax output of the neural
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Three-class Scenario.

network model f has three components: P1, P2 and P3 corresponding to the three classes. If a
point (i.e., a sample) x is on the decision boundary Bij between class-i (ci) and class-j (cj), then
Pi (x) = Pj (x). The mathematical expectation of the cross-entropy loss of the noisy samples (L2

in Algorithm 1) is:
E = EXn∈c1 (−log (P1 (Xn))) + EXn∈c2 (−log (P2 (Xn))) + EXn∈c3 (−log (P3 (Xn))) (3)

The IMA method puts the noisy samples on the decision boundaries, thus:
EXn∈c1 (−log (P1 (Xn))) = EXn∈c1,B12 (−log (P1 (Xn))) + EXn∈c1,B13 (−log (P1 (Xn))) (4)
EXn∈c2 (−log (P2 (Xn))) = EXn∈c2,B12

(−log (P2 (Xn))) + EXn∈c2,B23
(−log (P2 (Xn))) (5)

EXn∈c3 (−log (P3 (Xn))) = EXn∈c3,B13
(−log (P3 (Xn))) + EXn∈c3,B23

(−log (P3 (Xn))) (6)
If the noisy samples (random variables) Xn ∈ ci and Xn ∈ cj have the same spatial distribution on
the decision boundary Bij between the two classes, Eq.(3) can be simplified to

E = EXn∈ B12
+ EXn∈ B23

+ EXn∈ B13
(7)

where
EXn∈ Bij = EXn∈ Bij (−log (Pi (Xn))− log (Pj (Xn)))

= EXn∈ Bij
(−log (Pi (Xn)Pj (Xn)))

≥ EXn∈ Bij

(
−log

(
Pi (Xn) + Pj (Xn)

2

)2
) (8)

E reaches the minimum when Pi (Xn) = Pj (Xn).

The analysis shows that the loss of noisy samples will increase if the decision boundaries of the
model f change a little bit from the current state. Thus, when the loss (L0 + L1) on clean data is
minimized and noisy samples are on the decision boundaries, an equilibrium is reached under the
condition that noisy samples have the same spatial distribution on the decision boundaries between
classes. This analysis provides the rationale that our IMA method puts the noisy samples on deci-
sion boundaries as much as possible, which is significantly different from the theory of the MMA
method (Ding et al., 2019a). The dynamic process to achieve the equilibrium state is discussed in
the Appendix G.

3 EXPERIMENTS

We applied the IMA method for six DNNs on six different datasets. For the datasets of Moons,
Fashion-MNIST, SVHN, and COVID-19 CT, β in Algorithm 1 is 0.5 because robustness and ac-
curacy are equally important. In Algorithm 3, NPGD is 20, Nbinary is 10, and there is no repeat.
α in PGD is 4. Larger NPGD and Nbinary may lead to better convergence of the algorithms but
more computing-time. The settings and results on MNIST and CIFAR10 are reported in Appendix
D. Pytorch (Paszke et al., 2017) is used for model implementation. Nvidia V100 and Titan V GPUs
are used for model training and testing.

To describe the DNNs, we use “COV (a, b, c, d, e)” to represent a convolution layer with “a” input
channels, “b” output channels, kernel size of “c”, stride of “d” and padding of “e”; “Linear (f,
g)” to denote a linear layer with input size of “f” and output size of “g”; “IN” to denote instance
normalization; “LN” to denote layer normalization, and “LR” to denote leaky ReLU.
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To obtain the baseline performance, each DNN was trained with cross-entropy loss on clean data,
and the trained model is denoted by “ce”. To evaluate the performance, we compare our method with
the other three adversarial training methods, including: (1) 20-PGD (NPGD=20 and α=4) based
vanilla adversarial training with noise level ε, denoted by “adv ε”; (2) tradeoff-inspired adversarial
defense via surrogate-loss minimization, named TRADES in (Zhang et al., 2019); (3) adversarial
training for direct input space margin maximization, named MMA in (Ding et al., 2019a). MMA is
a state-of-the-art method, and TRADES was state-of-the-art at the time of its publication.

To make the comparison as fair as possible, the number of iterations and step size of TRADES
are the same as those of the 20-PGD; and the number of PGD-iterations in MMA is 20. We used
PGD to evaluate the robustness of the methods, which is widely used for method evaluation (Liao
et al., 2018; Uesato et al., 2018). The number of PGD iterations is 100 to ensure a strong attack,
and it is called 100-PGD. To further enhance the attack during model testing, each 100-PGD rans
twice, using MarginalLoss and CrossEntropyLoss respectively, which is implemented in (Ding et al.,
2019b)https://github.com/BorealisAI/advertorch. More evaluations are shown in Appendix D. Dis-
cussion about effect of coefficient β is shown in Appendix E. In Appendix F, we show how the
allowed maximum margin (i.e., εmax) affects the performance, and how to choose its value.

3.1 EVALUATION ON MOONS DATASET

The Moons dataset is available in sk-learn (Pedregosa et al., 2011). There are two classes of 2D
points in the dataset. The training set has 20000 samples, the validation set has 2000 samples,
and the test set has 2000 samples. The neural network structure is Linear(2, 32)-LR-Linear(32,
64)-LN-LR-Linear(64, 128)-LN-LR-Linear(128, 2). The purpose of this evaluation is to visualize
the decision boundaries of the models trained by different adversarial training methods. For every
method, we set the number of training epochs to 30, maximum noise level to 0.3, and batch-size
to 128; Adam optimizer was used with default parameters. To measure robustness on the test set,
adversarial samples on different noise levels (defined by L-inf norm) are generated by the 100-PGD.
The results of decision boundaries and accuracy scores are shown in Fig. 6. The accuracy scores

IMA MMA

TRADES adv0.3

ce

Figure 6: Results on Moons dataset.
Figure 7: Results on Fashion-MNIST (L-inf and L2 norm in
100-PGD).

are also reported in Table 1 in Appendix B. Our method IMA is better than the other methods, and
its decision boundary is close to the “middle line” of the two classes. The results of TRADES and
adv0.3 are very similar: the decision boundary is far away from most of the red dots. MMA is better
than TRADES and adv0.3 when the noise level is less than 0.15, and then it becomes worse with
larger noises. Surprisingly, “ce” (model trained with cross-entropy loss and clean data) has very
good robustness when the noise level is less than 0.15.

3.2 EVALUATION ON FASHION-MNIST AND SVHN DATASETS

We used Fashion-MNIST dataset instead of MNIST which is too easy. The dataset contains 28×28
grayscale images in 10 classes (shirts, shoes, etc.). The network structure is COV(1, 64, 5, 2, 2)-
LR-COV(64, 128, 5, 2, 2)-IN-LR-COV (128, 256, 5, 2, 2)-IN-LR-COV (256, 512, 4, 1, 0)-Flatten-
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LN-LR-Linear(512, 10). For every method, we set the number of training epochs to 60, maximum
noise level to 0.3 for IMA, MMA and TRADES, and batch-size to 128. Adam optimizer was used
with default parameters. Besides adversarial training, we did not use any other data-augmentation
(e.g. crop, etc.). The results on the test set are shown in Fig. 7 and reported in Table 2 and Table 3
in Appendix B.

We also used SVHN dataset which contains 32×32 color images of 0 ∼ 9 digits. The network
structure is COV(3, 32, 3, 1, 1)-LR-COV(32, 32, 3, 2, 1)-IN-LR-COV(32, 64, 3, 1, 1)-IN-LR-
Conv2d(64, 64, 3, 2, 1)-IN-LR-COV(64, 128, 3, 1, 1)-IN-LR-Conv2d(128, 128, 3, 2, 1)-IN-LR-
COV(128, 256, 4, 1, 0)-Flatten-LN-LR-Linear(256, 10). Besides adversarial training, we did not use
any other data-augmentation. Training parameters (e.g. epochs) are the same as those for Fashion-
MNIST. The results on the test set are shown in Fig. 8 and reported in Table 4 and Table 5 in
Appendix B.

Form the results shown in Fig. 7 and Fig. 8 on the two datasets, it can be seen that “ce” had the
worst performance on noisy samples, “adv ε” is very sensitive to the maximum noise level ε for
training, and TRADES did not perform well on L-inf norm-based tests. Compared to “ce”, accuracy
of every adversarial training method on clean data is slightly lower, which shows the sign of trade-off
between robustness and accuracy on clean data.

Recall that IMA significantly outperformed the other methods on the Moons dataset, which demon-
strates its strong potential. On Fashion-MNIST and SVHN datasets, IMA also significantly outper-
formed TRADES and “adv ε”. However, IMA is only slightly better than MMA on Fashion-MNIST
and on-par with MMA on SVHN. The non-ideal performance of IMA is hightly likely caused by
data scarcity in high dimensional space, so that the ideal equilibrium cannot be reached. To further
improve its performance, generative adversarial training could be used to generate more clean sam-
ples to fill the “holes” of the space, which will be our future work. Nevertheless, our method IMA
is at least on-par with MMA method which is state-of-the-art.

Figure 8: Results on SVHN (L-inf
and L2 norm in 100-PGD).

Figure 9: Results on COVID-19 CT: accuracies (left),
IMA margin estimations (middle), and MMA margin es-
timations(right). MMA significantly overestimated the
margins.

3.3 APPLICATION OF COVID-19 DETECTION FROM CT IMAGES

We used a public COVID-19 CT image dataset (Soares et al., 2020), which is collected from pa-
tients in hospitals from Sao Paulo, Brazil. It contains 1252 CT scans (2D images) that are positive
for COVID-19 infection and 1230 CT scans (2D images) for patients non-infected by COVID-19,
2482 CT scans in total. From infected cases, we randomly selected 200 samples for testing, 30 for
validation, and 1022 for training. From the uninfected cases, we randomly selected 200 for testing,
30 for validation and 1000 for training. Each image is resized to 224× 224. Since there is no pixel
segmentation mask in the dataset, we can only perform classification for COVID-19 detection on
the image level.

We modified the output layer of the Resnet-18 model (He et al., 2016) for the binary classification
task: uninfected (label 0) vs infected (label 1), and we also replaced batch normalization with in-
stance normalization because it is known that batch normalization is not stable for small batch-size
(Wu & He, 2018). As shown in the previous studies (Shi et al., 2020), infected regions in the images
have a special pattern called ground-glass opacity.
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For every method, we set the number of training epochs to 100, and maximum noise level to 0.3 for
IMA, MMA and TRADES, and batch-size to 32. Adam optimizer was used with default parameters.
For “ce”, weight decay of 0.01 is applied with Adam (i.e., AdamW with default parameters). To
measure robustness on the test set, adversarial samples on different noise levels (L-inf norm) are
generated by the 100-PGD. We choose L-inf over L2 norm because L-inf norm can be used to control
the maximum amplitude of noises on individual pixels, which resembles random white noises from
a uniform distribution. We also tested the effect of adding uniform white noises to the images, and
the trained model is denoted by “rand ε” where ε is the maximum noise level/amplitude. “rand ε”
can be considered a weak form of adversarial training, analog to “adv ε”. The results on the test set
are shown in Fig.9 and reported in Table 6 in the appendix. Examples of clean and noisy images are
shown in Fig. 10 (see in Appendix C).

The results show that IMA has the strongest overall performance, and MMA is slightly better than
IMA when noise level is larger than 0.2. As shown in Fig. 10, when noise level is larger than 0.1,
the noisy images look significantly different from the clean images, and those noisy images cannot
be from a well-functioning CT machine (Hamper et al., 2020) and may even look like images of
infection. Thus, a model robust to noises less than the level of 0.2 is good enough for this application.
Also, from Fig. 9 (right), we can see that most of the estimated margins from MMA were larger than
0.3, which means most of the samples should have been free of influence of noises of magnitude less
than 0.3. However, if this were true, the accuracy of MMA in Fig. 9 (left) at noise of 0.3 should not
have been significantly different from that of “adv0.3”. The results show that MMA significantly
overestimated the margins of samples, because that MMA does not consider the equilibrium (Fig.5)
between classes.

From Section 1 and 2, it can be seen that the vanilla adversarial training (“adv ε”) is quite good
when the maximum noise level ε for training is chosen “properly”. The question arises: what is the
proper ε of “adv ε”? A straightforward way to find a good ε would be running grid-research and
evaluating the performance on the validation set. However, the grid-research is impractical because
adversarial training is computationally expensive and time-consuming, compared to training with
cross-entropy loss on clean data. It turns out that the sample margin distribution (E in Algorithm 1)
estimated by our method IMA indicates a good ε = 0.1 (Fig. 9). For this application, “adv0.1” is
as competitive as other advanced methods and has a less computational cost. Although adversarial
training may reduce accuracy on clean data, for this application, one can tweak the classification
threshold to increase the sensitivity to infection, which is often desired.

The results also show that adding random noises to the input can improve classification accuracy
on clean samples (from 0.9575 of “ce” to 0.9775 of “rand0.1”). However, random noise-based data
augmentation (“rand0.1”, “rand0.2” and “rand0.3”) has little effect on adversarial robustness for this
application, which is easy to explain: not every noise (vector) is in the direction that can drive the
input across the true decision boundary.

4 CONCLUSION

In this study, we proposed a novel Increasing-Margin Adversarial (IMA) training method to improve
the robustness of DNNs for classification tasks and applied it for the application of COVID-19
detection from CT images. Our method aims to increase the margins of the training samples to
improve DNN robustness against adversarial attacks. The experiment results show that our method
significantly improved DNN classification accuracy on noisy data while keeping a relatively high
accuracy on clean data, and its performance is at least on-par with the state-of-the-art MMA method.
We also show that the vanilla adversarial training with a properly chosen ε is as competitive as other
advanced methods for the COVID-19 detection application, and our method IMA can provide a good
ε for it from the sample margin distribution. We hope our approach may facilitate the development
of robust DNNs, especially for COVID-19 diagnosis using CT images.

Note: (1) we will release the code when the paper is accepted. (2) all figures are in high resolution,
please zoom in. (3) please read the appendices for more results and discussions.
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A APPENDIX

It seems that adversarial noises are created by algorithms (e.g. PGD) and therefore it is only a
security issue caused by hackers. In fact, random imaging noises could also be “adversarial” noises
leading to wrong classifications. For the COVID-19 application, we did an additional test and found
out that 2.75% of the noisy samples with uniform white noises on the level of 0.05, can cause the
model “ce” to make wrong classifications. 2.75% is not a negligible number for this application.
We note that CT imaging noises can be better described by Poisson distribution (Wang et al., 2008).
However, without the hardware parameters of the CT machine, it is impossible to simulate Poisson
noises. Nevertheless, adversarial robustness should be the built-in property of a model for this
application, and all of the DNN models in the previous COVID-19 studies (Shi et al., 2020) should
be checked and enhanced for adversarial robustness before deploying those models in clinics and
hospitals.

B APPENDIX

Table 1: Results on Moons dataset (L-inf norm-defined noise level)

noise 0.0 0.05 0.1 0.15 0.2 0.25 0.3
IMA 1.0 0.999 0.9975 0.9915 0.9755 0.927 0.823
MMA 1.0 0.9985 0.993 0.957 0.882 0.772 0.597
TRADES 0.996 0.9805 0.9575 0.936 0.906 0.875 0.8255
adv 0.9975 0.985 0.957 0.9365 0.9095 0.883 0.822
ce 1.0 1.0 0.9975 0.9855 0.935 0.7995 0.606
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Table 2: Results on Fashion-MNIST dataset (L-inf norm-defined noise level)

noise 0.0 0.05 0.1 0.15 0.2 0.25 0.3
IMA 0.89 0.789 0.6688 0.5457 0.4121 0.2715 0.1521
MMA 0.8955 0.746 0.6166 0.5051 0.3902 0.2644 0.1425
TRADES 0.9116 0.4759 0.4151 0.3722 0.3298 0.2453 0.0949
adv0.1 0.9112 0.7739 0.6613 0.4743 0.2376 0.0602 0.0046
adv0.2 0.9101 0.5879 0.5218 0.4885 0.4164 0.2199 0.0313
adv0.3 0.9132 0.3637 0.2506 0.1992 0.1671 0.1364 0.0854
ce 0.9117 0.0236 0.0 0.0 0.0 0.0 0.0

Table 3: Results on Fashion-MNIST dataset (L2 norm-defined noise level)

noise 0.0 0.5 1.0 2.0 3.0 4.0 5.0
IMA 0.8881 0.8069 0.6914 0.4711 0.3046 0.1666 0.0567
MMA 0.8926 0.807 0.6927 0.4617 0.2651 0.1361 0.0526
DDN 0.8666 0.789 0.6989 0.5066 0.3409 0.1965 0.0781
TRADES 0.9176 0.6103 0.4977 0.3425 0.1857 0.039 0.0008
adv1 0.9086 0.8096 0.6549 0.2726 0.0513 0.0015 0.0
adv3 0.9172 0.641 0.5859 0.4754 0.3325 0.1558 0.0229
adv5 0.9148 0.4851 0.4161 0.3011 0.2121 0.1419 0.075
ce 0.9117 0.2512 0.0033 0.0 0.0 0.0 0.0

Table 4: Results on SVHN dataset (L-inf norm-defined noise level)

noise 0.0 0.005 0.01 0.02 0.04 0.06 0.08 0.1
IMA 0.8919 0.8387 0.7731 0.6123 0.3461 0.1818 0.0938 0.0481
MMA 0.887 0.8357 0.771 0.6204 0.3693 0.2139 0.1216 0.0688
TRADES 0.9243 0.0995 0.0705 0.044 0.0371 0.0827 0.1748 0.1885
adv0.01 0.9152 0.8352 0.7095 0.4401 0.1174 0.0281 0.0062 0.0017
adv0.06 0.9105 0.6851 0.5737 0.5115 0.3599 0.1852 0.0784 0.0318
adv0.10 0.9209 0.2112 0.0086 0.0052 0.0048 0.0022 0.004 0.0472
ce 0.932 0.56 0.2384 0.0368 0.001 0.0 0.0 0.0

Table 5: Results on SVHN dataset (L2 norm-defined noise level)

noise 0.0 0.05 0.1 0.25 0.5 1.0 1.5 2.0
IMA 0.8995 0.8797 0.8576 0.7731 0.6012 0.2982 0.128 0.05
MMA 0.8765 0.8548 0.8322 0.7518 0.5974 0.3215 0.1519 0.0654
DDN 0.8649 0.8432 0.8184 0.7396 0.5852 0.3183 0.153 0.0669
TRADES 0.8652 0.8377 0.8076 0.6903 0.4581 0.1238 0.0256 0.0047
adv0.5 0.8986 0.876 0.849 0.7508 0.539 0.2062 0.0654 0.0208
adv1.0 0.873 0.8513 0.8284 0.7504 0.5857 0.2654 0.0955 0.0326
adv2.0 0.8663 0.8436 0.8175 0.7195 0.5458 0.2883 0.1454 0.0631
ce 0.932 0.8656 0.7588 0.4125 0.1185 0.0092 0.0006 0.0
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Table 6: Results on COVID-19 CT image dataset (L-inf norm-defined noise level)

noise 0.0 0.01 0.03 0.05 0.1 0.15 0.2 0.25 0.3
IMA 0.925 0.92 0.9 0.885 0.8 0.575 0.1675 0.02 0.0025
MMA 0.915 0.91 0.9 0.8825 0.77 0.5 0.19 0.09 0.03
TRADES 0.975 0.135 0.1925 0.295 0.485 0.4825 0.485 0.485 0.485
adv0.1 0.9175 0.915 0.8975 0.8675 0.77 0.2375 0.0125 0.0 0.0
adv0.15 0.9275 0.9225 0.91 0.8975 0.85 0.74 0.355 0.035 0.0025
adv0.2 0.975 0.04 0.01 0.005 0.0075 0.1725 0.4475 0.405 0.3225
adv0.3 0.975 0.0775 0.0025 0.0025 0.0 0.0025 0.3175 0.49 0.4925
rand0.1 0.9775 0.155 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rand0.2 0.965 0.3575 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rand0.3 0.9725 0.4175 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ce 0.9575 0.045 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C APPENDIX

Figure 10: Each row shows a clean image and noisy images associated with a training method. The
title of each image shows the predicted class label and the noise level. The clean images are correctly
classified.

D APPENDIX

D.1 EVALUATION ON THE MNIST DATASET

We evaluated IMA on the MNIST dataset. The maximum noise level (i.e., εmax) matches the
corresponding parameter in MMA (4.0 for L2-norm defined noise level and 0.45 for Linf-defined
noise level); Adamax optimizer was used with default parameters, and other settings are the same
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as those for Fashion-MNIST. The CNN model is the same as that in the MMA paper. We run the
IMA method twice with two different random seeds and name the resulting models as IMA s0 and
IMA s1. The scores of MMA are directly copied from the MMA paper (Ding et al., 2019a). The
settings of PGD attack are the same as those in the MMA paper. The results are reported in Table 7
and Table 8, which show that the performance of the two methods is similar.

Table 7: Results on MNIST (L2 norm-defined noise level, white-box PGD attack)

noise 0 1 2 3 4
IMA s0 0.9841 0.9387 0.7426 0.3904 0.0843
IMA s1 0.9848 0.9372 0.7379 0.3889 0.0750

MMA-4.0-sd0 0.9871 0.9393 0.7406 0.4002 0.0581
MMA-4.0-sd1 0.9881 0.9398 0.7381 0.3876 0.0575

Table 8: Results on MNIST (Linf norm-defined noise level, white-box PGD attack)

noise 0 0.1 0.2 0.3 0.4
IMA s0 0.9901 0.9764 0.9506 0.9022 0.7856
IMA s1 0.9904 0.9762 0.9508 0.8994 0.7692

MMA-0.45-sd0 0.9895 0.9789 0.9626 0.9357 0.8816
MMA-0.45-sd1 0.9890 0.9783 0.9618 0.9334 0.8791

To show that IMA does not do gradient obfuscation, we applied a black-box attack to the trained
models using the SPSA method (Uesato et al., 2018). For the SPSA attack, the number of SPSA
samples is 2018, the maximum number of iterations is 100, delta is 0.01 and learning rate is 0.01.
Since SPSA is extremely time-consuming, we only applied it for the first 100 samples in the test set,
which is the same approach used in the MMA paper. We also applied 100-PGD attack for the first
100 samples in the test set. The results are reported in Table 9 which shows that SPSA attack is not
stronger than PGD attack, and therefore there is no gradient obfuscation.

Table 9: Results on MNIST subset (Linf norm-defined noise level, SPSA and PGD attacks)

noise 0 0.1 0.2 0.3 0.4
SPSA on IMA s0 1.00 1.00 0.99 0.96 0.96
PGD on IMA s0 1.00 1.00 0.98 0.90 0.82
SPSA on IMA s1 1.00 1.00 0.99 0.96 0.94
PGD on IMA s1 1.00 1.00 0.98 0.92 0.77

D.2 EVALUATION ON THE CIFAR10 DATASET

We encountered a problem when we were trying to evaluate IMA and MMA on CIFAR10.

MMA(Ding et al., 2019a) was evaluated on CIFAR10 with standard data augmentation (e.g. crop).
Without standard data augmentation, it is impossible to achieve a classification accuracy > 90% on
clean data.

However, standard data augmentation imposes two challenges:

(1) standard data augmentation produces a random set of augmented images, and the randomness
may affect robustness

(2) both IMA and MMA need to record the margin of each sample. Since the augmented images are
generated online, then it is impossible to assign an ID to each augmented image. The way of MMA
handling this issue is not ideal: it assigns the same ID to image x and its augmented version x aug.
In fact, x and x aug have different margins and thus need different IDs in the margin data array.
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The solution could be to generate a large number of images from standard data augmentation and
save those images to hard-drive before training. This solution needs a huge amount of storage and
computing power (the margin of every sample needs to be expanded), which our humble research
lab currently does not have.

Per the request of the reviewer, we evaluated the IMA method by assuming x and x aug have the
same margin. β is set to 0.5. The maximum noise level (i.e., εmax) matches the corresponding
parameter in MMA (3.0 for L2-norm-defined noise level and 32/255 for Linf-defined noise level);
SGD optimizer was used with momentum 0.9 and initial learning rate 0.1. The learning rate is
reduced by half after every 25 epochs, and the total number of training epochs is 200. Since MMA
used 10-PGD for adversarial training, IMA used 10 PGD-iterations in algorithm 3. The CNN model
is the same as that in the MMA paper. We run the IMA method twice with two different random
seeds and name the resulting models as IMA s0 and IMA s1. The scores of MMA are directly
copied from the MMA paper. The settings of PGD attack are the same as those in the MMA paper.
The results are reported in Table 10 and Table 11, which show that the performance of the two
methods are similar. In general, IMA has higher accuracy on clean data, while MMA has higher
accuracy on noisy data.

Table 10: Results on CIFAR10 (L2 norm-defined noise level, white-box PGD attack)

noise 0 0.5 1.0 1.5 2.0 2.5
IMA s0 0.8638 0.6584 0.4185 0.2283 0.1042 0.0375
IMA s1 0.8610 0.6549 0.4120 0.2204 0.0988 0.0389

MMA-3.0-sd0 0.8211 0.6425 0.4761 0.3348 0.2207 0.1250
MMA-3.0-sd1 0.8179 0.6282 0.4733 0.3379 0.2236 0.1340

Table 11: Results on CIFAR10 (Linf norm-defined noise level, white-box PGD attack)

noise 0 4/255 8/255 12/255 16/255 20/255 24/255 28/255 32/255
IMA s0 0.8678 0.6540 0.4123 0.2378 0.1259 0.0622 0.0313 0.0140 0.0073
IMA s1 0.8675 0.6489 0.4111 0.2315 0.1191 0.0628 0.0265 0.0129 0.0064

MMA-32-sd0 0.8436 0.6525 0.5020 0.3878 0.3001 0.2257 0.1666 0.1230 0.0907
MMA-32-sd1 0.8476 0.6466 0.4823 0.3565 0.2574 0.1786 0.1186 0.0779 0.0488

To show that IMA does not do gradient obfuscation, we applied the SPSA black-box attack to the
trained models, using the same settings. The results are reported in Table 12 which shows that SPSA
attack is not stronger than PGD attack, and therefore there is no gradient obfuscation.

Table 12: Results on CIFAR10 subset (Linf norm-defined noise level, SPSA and PGD attacks)

noise 0 4/255 8/255 12/255 16/255 20/255 24/255 28/255 32/255
SPSA on IMA s0 0.86 0.61 0.34 0.27 0.19 0.18 0.09 0.07 0.05
PGD on IMA s0 0.86 0.61 0.30 0.21 0.10 0.03 0.02 0.02 0.02
SPSA on IMA s1 0.87 0.63 0.38 0.26 0.19 0.12 0.07 0.07 0.06
PGD on IMA s1 0.87 0.61 0.34 0.21 0.08 0.06 0.02 0.02 0.02

We note that the user could tweak the parameters of IMA on the validation set to further improve
the performance. In the next two appendices, Appendix E and Appendix F, we show how each of
the two parameters β and εmax can be used to make a trade-off between robustness and accuracy on
clean data.
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E APPENDIX

We evaluated the effect of β in the IMA method on the Fashion-MNIST dataset, and the other
settings are the same as those in Section 3.2 (e.g. white-box 100-PGD attack on the test set). The
results are reported in the Table 13 and Table 14.

Table 13: Results on Fashion-MNIST (L2 norm-defined noise level)

noise 0 0.5 1 2 3 4 5
β =0.1 0.8963 0.7981 0.6678 0.4203 0.2597 0.1288 0.0335
β =0.3 0.8957 0.8001 0.6804 0.4469 0.2838 0.1494 0.0470
β =0.5 0.8881 0.8069 0.6914 0.4711 0.3046 0.1666 0.0567
β =0.7 0.8800 0.8075 0.7055 0.4861 0.3195 0.1829 0.0711
β =0.9 0.8691 0.8048 0.7128 0.5001 0.3340 0.2006 0.0852

Table 14: Results on Fashion-MNIST (Linf norm-defined noise level)

noise 0 0.05 0.1 0.15 0.2 0.25 0.3
β =0.1 0.8998 0.7638 0.6122 0.4787 0.3266 0.1919 0.0738
β =0.3 0.8945 0.7742 0.6384 0.5093 0.3596 0.2240 0.1054
β =0.5 0.8900 0.7890 0.6688 0.5457 0.4121 0.2715 0.1521
β =0.7 0.8826 0.7955 0.6864 0.5720 0.4346 0.2951 0.1745
β =0.9 0.8709 0.8029 0.7107 0.6003 0.4682 0.3265 0.1992

It can be clearly seen that smaller β leads to higher accuracy on clean data (noise level = 0) and
larger β leads to higher accuracy on noisy data.

The trade-off between robustness and accuracy is highly nonlinear, as shown in the Table 15: a
small decrease in accuracy on clean data can result in a large increase in accuracy on noisy data.

Table 15: Accuracy differences caused by different values of β

noise 0 0.05 0.1 0.15 0.2 0.25 0.3
β =0.1 0.8998 0.7638 0.6122 0.4787 0.3266 0.1919 0.0738
β =0.5 0.8900 0.7890 0.6688 0.5457 0.4121 0.2715 0.1521

difference 0.0098 0.0252 0.0566 0.0670 0.0855 0.0796 0.0783

The nonlinear trade-off between robustness and accuracy makes it difficult to directly compare
two methods, as different methods make different trade-off between robustness and accuracy.
The average accuracy is clearly not a good measure of performance on robustness.

Adjusting the parameter β of IMA is not a computationally efficient approach to make a trade-off
between robustness and accuracy, because for every possible value of β in the range of 0 to 1, the
user has to train a model from scratch through many epochs. In Appendix F, we show that the user
of IMA can make such a trade-off much more efficiently by “adjusting” the parameter εmax of IMA.

F APPENDIX

In this appendix, we show how the allowed maximum margin (i.e., εmax in Algorithm 2) affects the
performance of IMA, and how to choose its value.

Noisy samples with adversarial noises can be correctly-classified by humans but may be incorrectly-
classified by neural networks, which is basically the definition of adversarial noises. By following
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this definition, we choose the allowed maximum margin by looking at the noisy samples: if the
noise magnitude is too large such that we barely can recognize the objects in the images, then this
magnitude is chosen as the allowed maximum margin. This is how we choose the allowed maximum
margin in the experiments on the datasets, except for MNIST and CIFAR, for which the allowed
maximum margin matches the corresponding parameter of the MMA method.

Next, we provide a strategy for the user of IMA to refine the choice of εmax by making a trade-off
between robustness and accuracy. As shown in Fig. 11, the trade-off between clean-accuracy (i.e.,
accuracy on clean data) and robustness (i.e., accuracy on noisy data) can be observed during training
by using our IMA method.

Figure 11: The training and validation curves (accuracy vs epoch) on different datasets obtained by
using our IMA method. The accuracy scores are measured on clean data.
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During IMA training, the (estimated) margin of a sample x1 in class-1 is initialized to be close to 0
and it keeps increasing as if the radius of a ball increases during the training process. The sample x1
is at the center of the ball, and the radius of the ball is the current margin of the sample. When the
ball of x1 collides with the ball of another sample x2 from a different class-2, then a local decision
boundary is formed, and the two balls stop expanding.

If there are enough training data samples, a sample x in some class will eventually meet with its
counterpart in another class somewhere in the middle of the two classes, which forms a robust deci-
sion boundary. In practice, the amount of training data is never enough to cover the input space, and
therefore the margin of a sample could be overestimated because of missing the counterparts that are
needed to stop the expansion of the margin. If the margins of many samples are overestimated, then
the balls of these samples may penetrate the optimal decision boundary and cause lower classifica-
tion accuracy on the validation set of clean samples, which explains the existence of the trade-off
between robustness and clean-accuracy from the perspective of sample margins.

The above analysis is confirmed by the trend of the training and validation accuracy curves in the
Fig. 11: after some epochs, the training accuracy curve becomes stable, and the validation accuracy
curve starts to decrease, which indicates margin overestimation occurs. For our IMA method, the
cause of margin overestimation is the lack of data in high dimensional space. In the 2D Moons
dataset, there are enough training samples, and therefore, the decision boundary of our IMA method
is almost in the “middle” between the two classes, i.e., no margin overestimation.

Using the validation accuracy curve, the user of IMA can choose the allowed maximum margin
such that validation accuracy is above a pre-defined threshold that is set by the user to meet some
application requirements. Next, we demonstrate this approach on the Fashion-MNIST dataset. We
note that during IMA training, the margins of the samples are gradually increasing. Immediately
after M epochs, the maximum of the training sample margins is M ×∆ε where ∆ε is the margin
expansion step size in Algorithm 2. Thus, the maximum margin is εmax = M ×∆ε for the model
trained for M epochs. Since we do not know the threshold on validation accuracy, which a user may
be interested in on the dataset, we selected six models trained by IMA after 10, 20, 30, 40, 50, and
60 epochs, and we evaluated the robustness of the six models on the test set by using the 100-PGD
attack. Basically, we re-analyzed the models trained through 60 epochs in Section 3.2. The results
are reported in Table 16 and Table 17, which reveal the effect of εmax on robustness.

Table 16: Effect of εmax on Fashion-MNIST test set (L2 norm-defined noise level, ∆ε = 5/60).
The last column (named 0 (val)) shows the accuracies on the validation set (clean data).

noise 0 0.5 1 2 3 4 5 0 (val)
εmax = 10∆ε 0.9106 0.7760 0.5590 0.1275 0.0037 0 0 0.9102
εmax = 20∆ε 0.9058 0.8103 0.6758 0.3448 0.0831 0.0023 0 0.9087
εmax = 30∆ε 0.8976 0.8122 0.6975 0.4468 0.2070 0.0441 0.0019 0.8998
εmax = 40∆ε 0.8888 0.8116 0.7061 0.4805 0.2915 0.1267 0.0289 0.8890
εmax = 50∆ε 0.8887 0.8058 0.6968 0.4772 0.3153 0.1685 0.0538 0.8862
εmax = 60∆ε 0.8881 0.8069 0.6914 0.4711 0.3046 0.1666 0.0567 0.8882

Table 17: Effect of εmax on Fashion-MNIST test set (Linf norm-defined noise level, ∆ε = 0.3/60).
The last column (named 0 (val)) shows the accuracies on the validation set (clean data)

noise 0 0.05 0.1 0.15 0.2 0.25 0.3 0 (val)
εmax = 10∆ε 0.9159 0.6479 0.2598 0.0402 0.0009 0 0 0.9165
εmax = 20∆ε 0.9095 0.7459 0.5165 0.2449 0.0647 0.0035 0 0.9115
εmax = 30∆ε 0.9015 0.7754 0.6021 0.4022 0.2050 0.0644 0.0053 0.9018
εmax = 40∆ε 0.8995 0.7895 0.6452 0.4877 0.3141 0.1588 0.0446 0.9013
εmax = 50∆ε 0.8957 0.7887 0.6564 0.5217 0.3657 0.2245 0.0989 0.8953
εmax = 60∆ε 0.8900 0.7890 0.6688 0.5457 0.4121 0.2715 0.1521 0.8910
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From Table 16 and Table 17, it can be clearly seen that smaller εmax leads to higher accuracy on
clean data (noise level = 0), and larger εmax leads to higher accuracy on noisy data. Since the
maximum of the sample margins gradually increases during IMA training, the validation accuracy
changes gradually (increasing and then decreasing), which makes it easy for the user of our method
to choose the trained model with validation accuracy above the user-defined threshold.

We have done similar analyses on the models trained by IMA through 60 epochs on the SVHN
dataset (Section 3.2). We selected six models trained by IMA after 10, 20, 30, 40, 50, and 60 epochs,
and we evaluated the robustness of the six models on the test set by using the 100-PGD attack. The
results are reported in Table 18 and Table 19, which reveal the effect of εmax on robustness. By
monitoring the validation accuracy curve during training, the user of IMA can choose a trained
model such that validation accuracy of the chosen model is above a threshold defined by the user to
meet some application requirements.

Table 18: Effect of εmax on SVHN test set (L2 norm-defined noise level, ∆ε = 2/60). The last
column (named 0 (val)) shows the accuracies on the validation set (clean data).

noise 0 0.05 0.1 0.25 0.5 1 1.5 2 0 (val)
εmax = 10∆ε 0.9382 0.9173 0.8888 0.7539 0.4602 0.1131 0.0231 0.0040 0.933
εmax = 20∆ε 0.9303 0.9126 0.8893 0.7918 0.5658 0.2002 0.0570 0.0147 0.9257
εmax = 30∆ε 0.9204 0.9012 0.8797 0.7944 0.6020 0.2588 0.0918 0.0290 0.9173
εmax = 40∆ε 0.9139 0.8952 0.8721 0.7885 0.6081 0.2820 0.1066 0.0371 0.9120
εmax = 50∆ε 0.9014 0.8824 0.8616 0.7769 0.6083 0.3002 0.1258 0.0484 0.9058
εmax = 60∆ε 0.8995 0.8797 0.8576 0.7731 0.6012 0.2982 0.1280 0.0500 0.9016

Table 19: Effect of εmax on SVHN test set (Linf norm-defined noise level, ∆ε = 0.1/60). The last
column (named 0 (val)) shows the accuracies on the validation set (clean data).

noise 0 0.005 0.01 0.02 0.04 0.06 0.08 0.1 0 (val)
εmax = 10∆ε 0.9362 0.8674 0.7497 0.4637 0.1258 0.0284 0.0060 0.0012 0.9293
εmax = 20∆ε 0.9294 0.8708 0.7869 0.5756 0.2409 0.0850 0.0291 0.0091 0.9229
εmax = 30∆ε 0.9171 0.8617 0.7878 0.6095 0.3035 0.1317 0.0543 0.0208 0.9146
εmax = 40∆ε 0.9110 0.8566 0.7862 0.6137 0.3259 0.1543 0.0702 0.0320 0.9095
εmax = 50∆ε 0.9049 0.8518 0.7836 0.6180 0.3418 0.1724 0.0850 0.0417 0.9034
εmax = 60∆ε 0.8919 0.8387 0.7731 0.6123 0.3461 0.1818 0.0938 0.0481 0.8983

We also have done similar analyses on the models trained by IMA through 200 epochs on the CI-
FAR10 dataset (Appendix D.2). We selected four models trained by IMA after 50, 100, 150, and
200 epochs, and we evaluated the robustness of the four models on the test set by using the 100-PGD
attack. The results are reported in Table 20 and Table 21, which reveal the effect of εmax on robust-
ness. By monitoring the validation accuracy curve during training, the user of IMA can choose a
trained model such that validation accuracy of the chosen model is above a threshold defined by the
user to meet some application requirements.

Table 20: Effect of εmax on CIFAR10 test set (L2 norm-defined noise level, ∆ε=3/200). The last
column (named 0 (val)) shows the accuracies on the validation set (clean data).

noise 0 0.5 1 1.5 2 2.5 0 (val)
εmax = 50∆ε 0.9140 0.5616 0.1792 0.0324 0.0036 0.0004 0.9124
εmax = 100∆ε 0.8959 0.6545 0.3547 0.1461 0.0451 0.0122 0.8980
εmax = 150∆ε 0.8728 0.6644 0.4037 0.2041 0.0873 0.0333 0.8798
εmax = 200∆ε 0.8610 0.6549 0.4120 0.2204 0.0988 0.0389 0.8676
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Table 21: Effect of εmax on CIFAR10 test set (Linf norm-defined noise level, ∆ε=(32/255)/200).
The last column (named 0 (val)) shows the accuracies on the validation set (clean data).

noise 0 4/255 8/255 12/255 16/255 20/255 24/255 28/255 32/255 0 (val)
εmax = 50∆ε 0.9079 0.6056 0.2756 0.0911 0.0258 0.0073 0.0019 0.0004 0.0002 0.9090
εmax = 100∆ε 0.8932 0.6598 0.3983 0.2107 0.1050 0.0494 0.0236 0.0113 0.0059 0.8974
εmax = 150∆ε 0.8758 0.6598 0.4170 0.2369 0.1248 0.0624 0.0301 0.0146 0.0082 0.8816
εmax = 200∆ε 0.8675 0.6489 0.4111 0.2315 0.1191 0.0628 0.0265 0.0129 0.0064 0.8704

Next, we plot the curves from the COVID-19 dataset in Fig. 12. The validation accuracy decreased
only slightly after 20 epochs, which means the value of the allowed maximum margin is reasonable
and the risk of margin overestimation is low.

Figure 12: The training and validation curves (accuracy vs epoch) on the COVID-19 CT dataset
obtained by using our IMA method. The accuracy scores are measured on clean data.

We note that using the margin distribution estimated by IMA, we can obtain a good pertur-
bation mangnitude ε (0.1 or 0.15) for the vanilla adversarial training. When ε=0.15, vanilla
adversarial training achieved the best performance on the COVID-19 CT dataset, compared
to other methods. Please see Fig. 14 which contains the margin distributions estimated by IMA,
and Table 6 which contains accuracy scores in a large range of noise levels. In practice, we only
need robustness against noises within a certain level, because significantly-noisy images can only
be produced from a malfunctioning CT machine. Thus, vanilla adversarial training (denoted by adv
ε) should be good enough (much less computation cost and time compared to advanced adversarial
training methods) as long as its parameter ε is appropriate. In this application, good values of ε are
0.1 and 0.15, as revealed by the margin distribution estimated by IMA. For the convenience of the
reader, we re-plot the results in the new Fig. 13 and Fig. 14.

For vanilla adversarial training, a straightforward way to find a good ε would be running grid-
research and evaluating the performance on the validation set. However, the grid-research in a large
range (e.g. 0 to 0.3) is impractical because adversarial training is computationally expensive and
time-consuming, compared to standard training with cross-entropy loss and clean data. The margin
distribution estimated by IMA can reveal a good range of the ε, and then grid-research in this small
range can be performed to find the optimal ε. After the optimal ε is found for vanilla adversarial
training, we could could combine other techniques to further improve robustness.
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Figure 13: The performance of the methods on
COVID-19 test set

Figure 14: Margin distribution estimated by
IMA on training set

G APPENDIX

G.1 THE BASIC IDEA OF OUR IMA METHOD

If there are only two classes and the data samples are linearly-separable, then linear SVM (support
vector machine) will produce a linear decision boundary in the “middle” between the two classes.
The decision boundary of SVM is robust against noises: the classification output will not change if
a small amount of noise δ is added to x as long as the vector norm of δ is smaller than the margin of
x. Here, the margin of x is the (minimum) distance between x and the decision boundary.

In general, the data samples in multiple classes are nonlinearly-separable, and the robust decision
boundary should be somewhere in the middle between classes, which is the goal that IMA pursues.
The result on the Moons dataset shows that IMA can indeed produce a nonlinear decision boundary
in the “middle” between classes. We use 2D Moons dataset because it is impossible to directly
visualize a nonlinear decision boundary in a high dimensional space. As shown on this dataset,
other methods are not trying to find a decision boundary in the “middle” of the two classes.

G.2 THE EQUILIBRIUM STATE

Our IMA method is a heuristic-based method that is not derived from any theory. We use the
equilibrium state analysis to provide a theoretical explanation of the method. We have shown that an
equilibrium state can be achieved when the noisy samples have the same spatial distribution on the
decision boundary. Here, we will analyze what will happen if the spatial distributions of the noisy
samples in different classes are not the same on the current decision boundary. We note that our
IMA method will actively generate and put noisy samples on (“close to” due to numerical precision)
the current decision boundary of the neural network model, and the training is a dynamic process to
adjust the decision boundary of the model. Let’s focus on the following two terms:

Fi , EXn∈ ci and Xn∈ Bij
= −

∫
qi(x)log(Pi(x))dx (9)

Fj , EXn∈ cj and Xn∈ Bij
= −

∫
qj(x)log(Pj(x))dx (10)

where qi(x) and qj(x) are the distributions (i.e., densities) of the noisy samples on the current
decision boundary between the two classes, and qi(x) and qj(x) may not be equal to each other.
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In fact, Fi and Fj can be interpreted as two forces that try to expand the margins of the samples
in the two classes against each other. By dividing the decision boundary into small regions (i.e.,
linear segments), the two integrals can be evaluated in the individual regions. In a region, if qi (x) >
qj(x) (i.e., more samples in class-i) then the current state is not in equilibrium: after updating
the model using these noisy samples, the noisy samples in class-i will be correctly classified and
the noisy samples in class-j will be incorrectly-classified (this is a simple result of classification
with imbalanced data in the region), which means the decision boundary will shift towards the
samples in class-j, and therefore the margins of the corresponding samples in class-i will expand
and the margins of the corresponding samples in class-j will shrink. Thus, the decision boundary
may shift locally towards the samples in one of the classes. Obviously, the decision boundary will
stop shifting when the local densities of noisy samples in different classes are the same along the
decision boundary, i.e., qi(x) becomes equal to qj(x), which means an equilibrium state is reached.
This analysis is a sketch of the dynamic process during training, and we defer a math-rigor analysis
to our future work. Two questions arise from the above analysis:

(1) Will there exist a decision boundary somewhere in the “middle” between classes, along which
the local densities of noisy samples in different classes are roughly the same? Clearly, the existence
of such a decision boundary is determined by the dataset itself. If the samples in different classes
are well separated (e.g. the datasets used in our experiments), we hypothesize that such a decision
boundary exists, just like the decision boundary of IMA on the 2D Moons dataset.

(2) Assuming such a robust decision boundary exists on a dataset, will the IMA method find it?
Although it cannot give a theoretical guarantee, the experimental results show that our IMA method
can indeed increase the margins of the samples on different datasets: increasing margin means
increasing robustness.

H APPENDIX

In this appendix, we discuss the trade-off between robustness and accuracy from the perspective of
sample margins. Let x denote a clean sample (i.e., unaltered by any adversarial attacks). Let x(δ)
denote the noisy sample generated by adding an adversarial noise δ to x, i.e., x(δ) = x + δ. The
vector norm of δ is ε. Let y denote the true class label of x.

For vanilla adversarial training, the class label of the noisy sample x(δ) is assumed to be the same as
the class label y of the clean sample x, no matter how large the noise level ε is. This label assignment
can be wrong if ε is very large: large enough such that x(δ) may “look like” a sample in a different
class (not y), which has been shown in numerous studies. Here, “look like” refers to the judgment
of a human. However, it is impractical to let a person actually look at every noisy sample to assign
the right label to it.

If there are unlimited training samples that cover the input space, the samples can reveal the true
class distributions p(x|y). Then, the optimal decision boundary can be obtained by Bayesian classi-
fication using p(x|y) and p(y) of each of the classes. For example, p(x|y) can be simply modeled
by a Gaussian mixture model, and p(y) may be assumed to be the same for every class. If we as-
sume Bayesian classification with unlimited data is as good as the judgment of human experts, then
Bayesian decision boundary is optimal and robust against noises. Let g(x) denote the Bayesian clas-
sifier (g means ground truth), and it outputs the true label of the input: y = g(x) and y(δ) = g(x(δ)).
Using the Bayesian-optimal decision boundary, the true margin of a clean sample x can be obtained,
i.e., the (minimum) distance between x and the decision boundary, which is denoted by m(x).

During adversarial training (vanilla or IMA), a noisy sample is generated, x(δ) = x+δ with ε = ||δ||,
and the class label y is assigned to it. If the noise/perturbation magnitude ε is larger then the true
margin m(x), then the assigned class label is wrong for x(δ), and training the model with x(δ) may
cause its decision boundary to deviate from the Bayesian-optimal decision boundary even if the
model f(x) is initialized to be very close to g(x). As a result, the classification accuracy on the
test/validation set (clean data) will become lower, but the classification accuracy on the training set
(clean data) may not change because the decision boundary has been pushed far away from the clean
training sample x. This phenomenon has been revealed by the training and validation accuracy
curves of IMA (see Fig. 11 in Appendix F), which explains the well-known trade-off between
robustness and accuracy.
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Thus, the success of adversarial training depends on the accurate estimation of the true margin
m(x): if E(x) = m(x), then IMA could be perfect. For the 2D Moons dataset, IMA can indeed
find a nearly perfect decision boundary, significantly better than the other methods (see Fig. 6
in Section 3.1). However, for a high dimensional dataset (e.g. Fashion-MNIST), there are not
enough training samples to cover the input space. As a result, perfect Bayesian classification is not
achievable because of inaccurate estimation of p(x|y), and IMA cannot obtain perfect estimations
of the true margins because there may not exist the counterparts in other classes (not y) that can stop
the expansion of ε-ball (margin estimation) of x in class y. Margin overestimation is revealed by the
gradually-decreasing trend of the validation accuracy curve (see Fig. 11 in Appendix F). However,
the good news for the user of IMA is that the user can choose a good value of εmax such that the
validation accuracy is above a pre-defined threshold (e.g. 90% for the COVID-19 application). Also,
the user does not need to pre-define the value of εmax: the allowed maximum margin will increase
with the number of training epochs (see Appendix F), and the user only needs to monitor the training
and validation accuracy curves. Although IMA is not perfect, it brings such a significant benefit to
the user: the ease of “adjusting” εmax to make a trade-off between robustness and accuracy
(simply set β=0.5).

From IMA, when an equilibrium state is reached, the distributions (i.e., local densities) of noisy
samples in different classes are the same along the decision boundary (note: it does not necessarily
mean the clean samples in different classes are equally spaced from the decision boundary). This
is somewhat analog to Bayesian classification: at the optimal decision boundary, the distributions
(densities) of samples in two classes are the same, assuming the classes have equal prior probabili-
ties. From this perspective, the noisy samples, which are generated by IMA, serve as the surrogates
of the real samples. Obviously, we cannot claim it is Bayesian classification because noisy samples
may not reveal the true distributions. From this perspective, more advanced adversarial training
methods may be developed such that the generated samples may reveal the true distributions (i.e.,
p(x|y)); if so, then the resulting decision boundary could be optimal and robust.

Additional Note: The validation accuracy curves of IMA in Fig. 11 in Appendix F increase and
then gradually decrease. Please do not confuse this with the common concept of overfitting on
clean data. Actually, when the models were trained with cross-entropy loss and clean data, there is
no gradually-decreasing trend in validation accuracy curves, as shown in Fig. 15. Thus, the only
explanation of the gradually-decreasing trend in Fig. 11 in Appendix F is margin overestimation.

Figure 15: Training and validation accuracy curves (accuracy vs epoch) on the datasets, using
standard training with cross-entropy loss and clean data. The accuracy scores are measured on clean
data.
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