
Machine Learning and LLM-Boost Symbolic Regression for Predicting
Q-Gonality of Modular Curves

Xu Zhuang * 1 Xiaokang Wang * 1 Yuxiang Yao * 1 Po-Chu Hsu * 2 Peikai Qi * 3

Abstract

We aim to predict the Q-gonality of modular
curves, an invariant measuring the minimal de-
gree of a nonconstant rational map to P1. Three
machine-learning architectures—Extrem gradient-
boosted trees, feedforward neural networks, and
transformer-based models—achieve over 90%
exact-match accuracy on existing curves, with
more than 89% of predictions falling within
known theoretical bounds. To improve inter-
pretability, we employ an LLM-guided boost sym-
bolic regression pipeline that proposes nonlinear
feature combinations and uncovers concise ana-
lytic formulas. These expressions match the pre-
dictive power of our models while revealing how
core arithmetic invariants interact. Our results
highlight the effectiveness of combining data-
driven prediction with LLM-enhanced symbolic
discovery in arithmetic geometry.

1. Introduction
Machine learning and artificial intelligence are increas-
ingly used to study mathematical objects, including in pure
mathematics. Prior works have applied machine learning
to number theory (He, 2023; He et al., 2024a; Alessan-
dretti et al., 2023; Babei et al., 2025), Calabi-Yau topology
(He et al., 2024b), affine Deligne-Lusztig varieties (Dong
et al., 2024), and combinatorial constructions (Charton et al.,
2024). Transformers have also been used in enumerative
geometry (Hashemi et al., 2025). Large Language Models
(LLMs) have shown promise in mathematical discovery,
such as finding constructions in extremal combinatorics
(Romera-Paredes et al., 2024; Ellenberg et al., 2025).

*Equal contribution 1Department of Mathematics, University
of California, Irvine,United States 2Department of Computer Sci-
ence, University of California, Irvine,United States 3Department
of Mathematics, Michigan State University, East Lansing,United
States. Correspondence to: Xu Zhuang <xzhuang8@uci.edu>.

The second AI for MATH Workshop at the 42nd International
Conference on Machine Learning, Vancouver, Canada. PMLR 267,
2025. Copyright 2025 by the author(s).

Modular curves are important in arithmetic geometry, with
invariants like the Q-gonality, which measures the minimal
degree of a rational map to P1(Q). Computing Q-gonality
is challenging for general modular curves.

This work explores whether machine learning can predict
Q-gonality from known invariants of modular curves. We
analyze the LMFDB dataset to select features most relevant
for prediction, aiming for a minimal and non-redundant
set. We then evaluate models including XGBoost, feedfor-
ward neural networks, and FT-transformers, assessing their
accuracy and ability to respect known bounds.

Recent works have also used LLMs for symbolic regression
(SR) (Shojaee et al., 2024; Merler et al., 2024). We investi-
gate whether LLMs can help discover symbolic expressions
for Q-gonality in terms of other invariants. We introduce
LLM-Boost, a symbolic regression method that combines
LLM-generated features with Adaboost, building an inter-
pretable additive model. Our approach outperforms SR
baselines and suggests new relationships between invariants
and Q-gonality.

2. Preliminaries
2.1. Dataset Description

This study utilizes modular curve data from the L-
functions and Modular Forms Database (LMFDB)
(LMFDB Collaboration, 2025), which catalogs arithmetic
and geometric invariants including genus, level,
rank, q gonality, cusps, rational cusps,
conductor, and log conductor.

The LMFDB provides q gonality bounds containing
constraints on q gonality values. For curves with exact
values, this field shows ‘[a, a]’. For partial information, it
shows ‘[a, b]’, where a and b are lower and upper bounds
respectively.

For machine learning purposes, interval notations were
transformed into numerical values. Curves with exact
q gonality values (denoted as ‘[a, a]’) were assigned
their precise values. For curves with only bounds (‘[a, b]’),
the data was primarily used for model evaluation. In the
case of feedforward neural networks, we also experimented

1

Machine Learning for Predicting Q-Gonality of Modular Curves

with weakly supervised learning techniques using the data
that only have bounds.

2.2. Definitions and Mathematical Motivation

Here we collect basic definitions used in this work. For
more detailed mathematical background, see Section A.

Given an open subgroup H ⊂ GL2(Ẑ), we can define
the associated modular curve XH (LMFDB Collaboration,
2025). Several important invariants are associated with
modular curves, including the level, genus, cusps,
index, and psl2index.

• The level of a modular curve XH is the smallest
positive integer N , such that H is the inverse image of
its projection to GL2(Z/NZ).

• The genus of XH is the genus of any of its geometric
components.

• The cusps of XH are the points whose image under
the canonical morphism j : XH → X(1) ≃ P1 is∞.

• The index of XH is [GL2(Ẑ) : H].

• The psl2index of XH is defined as [PSL2(Z) :
±H ∩ SL2(Z)].

These indices satisfy the following relation:

psl2index =

{
index if − 1 ∈ H,

index/2 if − 1 /∈ H.

If K is a number field, then the K-gonality of a mod-
ular curve XH is defined as the minimal degree of a
dominant morphism XH 99K P1 defined over K. The
value qbar gonality refers to the Q-gonality, while
q gonality refers to the Q-gonality. It is clear that
q gonality ≥ qbar gonality. Gonality is a subtle
and intriguing arithmetic invariant that measures the geo-
metric complexity of a modular curve. In this project, our
goal is to investigate whether machine learning can effec-
tively predict q gonality using other known invariants
of modular curves.

Computing the gonality of a modular curve directly is of-
ten challenging, but bounds can frequently be established.
For instance, psl2index represents the degree of the
map j : XH → X(1) ∼= P1 over the complex field C,
which implies psl2index ≥ qbar gonality by def-
inition. Additionally, Abramovich (Abramovich, 1996)
established a linear lower bound: 7

800 · psl2index ≤
qbar gonality. Various other techniques exist for de-
termining upper and lower bounds on gonality (see, e.g.,
(Derickx & van Hoeij, 2014), (Orlić, 2025)). Below, we

summarize some general properties of the K-gonality of a
curve X of genus g, denoted γK(X), as outlined in Proposi-
tion A.1 of (Poonen, 2006).

Proposition 2.1. (Proposition A.1 of (Poonen, 2006))

1. If π : X 99K Y is a dominant rational map of curves
over a field K, then γK(X) ≤ deg(π)γK(Y).

2. If g > 1, then γK(X) ≤ 2g − 2.

3. If X(K) ̸= ∅ and g ≥ 2, then γK(X) ≤ g.

The LMFDB database collects such bounds for
q gonality for modular curves and records them
as q gonality bounds.

We now recall the definitions of other key features used in
our training data. Roughly speaking, the rank of a modu-
lar curve XH refers to the order of vanishing at the central
point of the L-function associated with its Jacobian. The
conductor of XH is the conductor of this L-function.
The canonical conjugator is an element that con-
jugates the subgroup generated by the generators to the
subgroup generated by the canonical generators.

The features mentioned above are not strongly correlated
in the sense that one invariant can not be determined from
the others. Although we generally avoid using features
that are strongly related during training, including addi-
tional (even correlated) features in the model can some-
times improve prediction accuracy. We now introduce
several such features. In mathematics, there is currently
no known formula that directly relates these features to
the gonality of a modular curve. Some of them are self-
explanatory. For instance, contains negative one
is a boolean value indicating whether H contains −1, and
pointless is a boolean value indicating whether XH(Q)
is empty. The LMFDB also includes many features labeled
as “coarse invariant”, which refer to the correspond-
ing invariant of the group generated by ±1 and H . For
example, the coarse level of XH denotes the level of
the group ⟨±1, H⟩.

3. Feature Selection
Feature selection is a crucial step in building effective ma-
chine learning models. In this section, we outline our sys-
tematic approach to identifying the most relevant features
for predicting the Q-gonality of modular curves.

3.1. Methodology and Approach

We began by sampling 100,000 modular curves from the
LMFDB dataset and computed the correlation matrix for all
available numerical features. Features exhibiting strong cor-
relation with q gonality were initially prioritized, but

2

Machine Learning for Predicting Q-Gonality of Modular Curves

we carefully considered multicollinearity to avoid redun-
dancy, as high correlation between predictors can lead to
model instability and reduced interpretability.

Most numerical features in the dataset are integers, and
for effective prediction, we required a feature set that could
uniquely characterize q gonality values. To achieve this,
we employed an inductive approach, incrementally adding
features until we identified a minimal set that uniquely de-
termined q gonality across the dataset.

3.2. Feature Selection Process

The LMFDB dataset provides many numer-
ical features for modular curves, such as
coarse level, coarse index, genus,
coarse class num, level, index, fine num,
psl2index, nu2, nu3, cusps, psl2level,
sl2level, rational cusps, rank,
genus minus rank, trace hash, log conductor,
num bad primes, level radical, q gonality,
and qbar gonality.

We visualized feature relationships using a correlation ma-
trix heatmap (Figure 13). Based on this, we selected
genus, cusps, rank, log conductor, level, and
rational cusps as the most relevant features for pre-
dicting q gonality.

However, these features alone could not uniquely de-
termine q gonality—some entries had the same fea-
ture values but different q gonality. By adding
coarse class num and coarse level, we obtained
a feature set that uniquely determined q gonality for all
data points.

Further analysis showed that while genus,
log conductor, and rank are strongly correlated
with q gonality, none alone is sufficient for accurate
prediction. Details are in Appendix E.

4. Machine Learning Q-Gonality Prediction
For a regression modelM such as XGBoost or Feedforward
neural network, we use mean squared error (MSE) as the
loss function. For a test set (Xtest, Ytest), we denote predic-
tions byM(Xtest). Since q gonality is a non-negative
integer, we define modified predictions as the closest integer
toM(Xtest):

⌊M(Xtest) + 0.5⌋

This modification is necessary because regression models
produce continuous outputs, whereas q gonality must
be a non-negative integer, requiring appropriate rounding.

Then we can define the accuracy for the regression model

M on (Xtest, Ytest) as

Acc(M(Xtest)) :=
1

|Ytest|

|Ytest|∑
i=1

1[⌊M(X
(i)
test)+0.5⌋ = Y

(i)
test]

where 1[·] is the indicator function and Y
(i)
test denotes the

true q gonality value for the i-th test sample.

An interesting direction for future work would be to inves-
tigate how bounded conditions on certain features could
constrain predicted q gonality values to specific ranges.
Such an approach might yield more precise predictions by
incorporating known mathematical constraints from modu-
lar curve theory.

4.1. Data Preparation

Based on our feature selection analysis, we identified eight
numerical features that uniquely determine q gonality:
genus, level, rank, log conductor, cusps,
rational cusps, coarse class num, and
coarse level. Additionally, we incorporated
canonical conjugator and conductor as supple-
mentary features in our custom dataset.

Figure 1 illustrates the distribution of q gonality values,
revealing that the majority are small, with a few outliers
at larger values. This presents a challenge for regression
models, as they tend to perform well on small q gonality
values but consistently struggle to predict larger ones.

Figure 1. Distribution of q gonality values in the dataset. Most
values are small, with a few outliers at larger values.

Tables 1 and 2 summarize the five most and least frequent
q gonality values, respectively. The results show that
the values 4, 8, 16, 2, and 6 together constitute a substantial
portion of the dataset, indicating that most modular curves
have low q gonality in the custom dataset, while higher
values are comparatively rare.

After extracting data from LMFDB and removing entries
with null values, we obtained 46,260 unique modular curves.
We split the dataset into Dexact (with precise q gonality
values) and Dbounds (with only bounds available). The

3

Machine Learning for Predicting Q-Gonality of Modular Curves

Table 1. Top 5 q gonality Value Distributions

Value Count Percentage
4 17,268 42.679%
8 8,068 19.941%

16 6,544 16.174%
2 5,960 14.731%
6 788 1.948%

Table 2. Last 5 q gonality Value Distributions

Value Count Percentage
336 7 0.017%
252 4 0.001%

1008 2 0.005%
504 2 0.005%
324 2 0.005%

Dexact dataset was further divided into a fixed test set Dtest

(10%) for final evaluation, and the remaining data was split
into training (80%) and validation (10%) sets. For cross-
validation, we performed 5-fold splits on the non-test por-
tion, denoting the resulting training and validation sets as
D

(i)
train and D

(i)
val for the i-th fold, where i = 1, . . . , 5. The

test set Dtest remains fixed and is not included in the cross-
validation folds.

4.2. Experiments

4.2.1. HARDWARE AND SOFTWARE CONFIGURATION

All experiments were conducted on a workstation equipped
with an AMD Ryzen 9 7900X3D CPU, 128GB DDR5 RAM,
and an NVIDIA GeForce RTX 4080 GPU. The software
environment consisted of Ubuntu 24.04 LTS and Python
3.11.11.

4.2.2. XGBOOST

XGBoost (Chen & Guestrin, 2016) is a gradient boosting al-
gorithm widely used for regression tasks due to its speed and
accuracy. We used XGBoost with squared error loss, max
depth 10, learning rate 0.02, 700 trees, subsample 0.6, col-
sample 0.8, and GPU acceleration. The model was trained
on Di

train and evaluated on Di
val, Dtest, and Dbounds. Ta-

ble 3 shows the mean and standard deviation of metrics over
5 cross-validation folds.

4.2.3. FEEDFORWARD NEURAL NETWORK

We implemented a Feedforward Neural Network (FNN) us-
ing PyTorch with an architecture optimized for this regres-

Table 3. Performance metrics for the XGBoost regression model
across different datasets

Dataset Acc. (%) R2 RMSE

Di
train 95.12± 0.08 0.9995± 0.0001 0.258± 0.021

Di
val 93.91± 0.28 0.9971± 0.0028 0.687± 0.541

Dtest 93.84± 0.11 0.9988± 0.0001 0.302± 0.012

Dbounds 89.14± 0.36 – –

sion task. In this model, we used a simple neural network
with the architecture: 12− 128− 32− 1, where 12 is the in-
put dimension, 128, 32 describe the hidden layer shape, and
1 is the output dimension, each followed by LeakyReLU
activation functions with the negative slope 0.01. At the end
of the network, we round the output to the nearest integer.
We discussed its necessity at the beginning of this section.
Note that the feature, canonical conjugator, is con-
sidered as a 4-dimensional input to the neural network.

Proposition 2.1 indicates that q gonality bounds are
easier to obtain than exact q gonality values. To utilize
all available data, we trained the FNN using weakly super-
vised learning, which constructs predictive models when
labeling resources are limited or labels are noisy/uncertain
(Zhou, 2018; Scudder, 1965; Blum & Mitchell, 1998;
Collins & Singer, 1999). This approach is particularly suit-
able here since computing exact q gonality for many
modular curves is difficult, while q gonality bounds
provide interval constraints rather than precise outputs.
Weakly supervised learning has proven effective in physics
(Dery et al., 2017) and medical imaging (Ren et al., 2023).

To implement this weakly supervised learning strategy, we
split the Dbounds dataset into three subsets: Dbounds train

(80%), Dbounds val (10%), and Dbounds test (10%). Simi-
larly, Dexact is split into Dtrain and Dval using the same
ratio as Di

train.

Training proceeds in two phases: during the first 2000
epochs, the FNN is trained solely on Dtrain (accurately
labeled data) using the standard MSE loss. In the subse-
quent 2000 epochs, we combine Dtrain and Dbounds train

into D′
train, and Dval and Dbounds val into D′

val, training
and evaluating the FNN on these merged datasets.

For the combined datasets, the loss function gener-
alizes the MSE to accommodate interval labels from
q gonality bounds. Specifically, for data points with
bounds [ai, bi], we define

ℓ(y, [a,b]) =

N∑
i=1

distance(yi, [ai, bi])
2

where y is the vector of predicted q gonality values,

4

Machine Learning for Predicting Q-Gonality of Modular Curves

[a,b] is the list of interval bounds, and N is the number of
samples. The function distance(yi, [ai, bi]) computes the
shortest distance from yi to the interval [ai, bi], which is
zero if yi ∈ [ai, bi]. The learning rate is fixed at 0.0001 and
the batch size is 32 throughout training.

Figure 2. Example of Training and validation loss curves for neural
network model in the first 2000 epochs

Figure 3. Example of Accuracy curves for for all 4000 epochs

We choose the model with the best valid loss (the above loss
function ℓ) among the last 2000 epochs, which happened in
3878-th epoch. The performance of this model is given by
Table 4.

Table 4. Performance metrics for the Feedforward Neural Network
model across different datasets using weakly supervised learning
strategy

Dataset Accuracy R2 RMSE
Dtrain 91.55% 0.9992 0.3259
Dval 89.17% 0.9981 0.3899
Dtest 87.94% 0.9997 0.4020

Dbounds 98.53% – –
Dbounds train 98.79% – –
Dbounds val 98.86% – –
Dbounds test 98.21% – –

As a comparison, Table 5 shows the model trained only on
Dtrain for 2000 epochs. This shows that the second half of
the training roughly kept the accuracy on Dtest, and signif-
icantly improved the accuracy on Dbounds test (see Figure
3), while it did not significantly affects the performances on
other datasets.

Table 5. Performance metrics for the Neural Network model across
different datasets

Dataset Acc. (%) R2 RMSE

Di
train 92.70± 0.30 0.9991± 0.0001 0.360± 0.007

Di
val 90.79± 0.44 0.9983± 0.0012 0.422± 0.019

Dbounds 89.29± 1.29 – –

The classical neural network model above has better accu-
racies on Dbounds and on its splitted subsets, even if with-
out applying weakly supervised learning strategy, which
suggests that the neural network has good generalization
performance. Unfortunately, the neural network model per-
forms less well than the XGBoost model on the accurately
labeled datasets, which also inspired our experiments on
other models.

4.2.4. FEATURE TOKENIZER TRANSFORMER
(FT-TRANSFORMER)

The Feature Tokenizer Transformer (FT-Transformer) was
introduced by (Gorishniy et al., 2021) as an adaptation of
the transformer architecture specifically designed for tab-
ular datasets. This approach combines the representation
learning capabilities of transformers with specialized tok-
enization techniques to effectively process heterogeneous
feature types commonly found in structured data.

The FT-Transformer architecture has demonstrated strong
performance across various tabular prediction tasks, partic-
ularly those involving complex nonlinear relationships be-
tween features. In this work, we employ an FT-Transformer
specifically adapted for predicting arithmetic invariants in
modular curve datasets, leveraging its ability to handle
the mixed numerical, categorical, and list-valued features
present in our LMFDB data.

Figure 4 illustrates the FT-Transformer architecture used in
our implementation.

Our FT-Transformer implementation uses a fea-
ture tokenizer to convert heterogeneous inputs
into unified embeddings. Numerical features in-
cluding 8 core invariants (level, genus, rank,
cusps, rational cusps, log conductor,
coarse class num, coarse level) are linearly
projected to dmodel = 128 dimensions. Three boolean cate-
gorical features are embedded using standard embedding

5

Machine Learning for Predicting Q-Gonality of Modular Curves

Numerical
Features

Categorical
Features

List
Features

Linear
Layer

Embedding
Layers

Linear
Layer

Token
Concatenation

Positional
Encoding

4×
Transformer

Encoders

Global
Pooling

3-Layer
MLP

Q-gonality
Prediction

Feature Tokenizer

8 features 3 categories 2 lists

Figure 4. FT-Transformer architecture for q-gonality prediction.
The model processes 8 numerical features, 3 categorical features,
and 2 list features through a feature tokenizer, followed by posi-
tional encoding, transformer encoders, and a multi-layer percep-
tron (MLP) output head.

layers, while 2 list features (canonical conjugator,
conductor) are processed through linear projection
layers.

The architecture consists of 4 transformer encoder layers
with 8 attention heads, feedforward dimension 512, and
GELU activation. We use AdamW optimizer with learning
rate 5× 10−4, train for 270 epochs with batch size 64, and
apply early stopping with patience 50.

We also apply dropout with rate 0.08 to prevent overfitting.

The performance results for the FT-Transformer model are
summarized in Table 6.

Table 6. Performance metrics for the FT-Transformer model across
different datasets

Dataset Acc. (%) R2 RMSE

Di
train 95.62± 0.70 0.9389± 0.0325 2.813± 0.972

Di
val 93.17± 0.58 0.9971± 0.1079 3.770± 4.001

Dtest 93.64± 0.63 0.9968± 0.0007 0.496± 0.055

Dbounds 93.46± 0.82 – –

4.3. Discussion of Results

Across all splits, XGBoost demonstrated the most consis-
tent and reliable point-wise accuracy, achieving the low-
est RMSE (0.258 ± 0.021 on Di

train and 0.302 ± 0.012
on Di

test), and near-perfect R2 scores (≥ 0.9988). The
drop in accuracy from train to test was modest (95.12%→
93.84%). The Feedforward Neural Network performed
slightly worse, with a test-set RMSE approximately 40%

Figure 5. Example of Training and validation loss curves for FT-
Transformer model

Figure 6. Example of Training and validation accuracy curves for
FT-Transformer model

higher (0.425 ± 0.009) and a 2–3% decrease in accuracy,
but still maintained strong generalization (R2 = 0.9977).
In contrast, the FT-Transformer matched the other mod-
els in accuracy for in-distribution splits, but exhibited a
substantially higher RMSE (2.813± 0.972 on Di

train and
3.770 ± 4.001 on Di

val), likely due to difficulty modeling
rare, large-magnitude targets in the training data. However,
when these extreme cases are excluded—as in Dtest and
Dbounds—its RMSE drops sharply (0.496± 0.055), and it
achieves the highest accuracy on the boundary set (93.46%).
This suggests that self-attention may provide robustness
near decision boundaries, even if calibration suffers for
large q gonality values.

4.4. Out-of-Distribution (OOD) Test

To evaluate the generalization capability of our models, we
conduct an out-of-distribution (OOD) assessment. Specifi-
cally, we partition Dexact into two subsets: Dlevel≤59, con-
taining modular curves with level ≤ 59, and Dlevel>59,
containing those with level > 59. This split allows us to
train models exclusively on Dlevel≤59 and then evaluate
their performance on the more challenging, higher-level set
Dlevel>59, thereby rigorously testing each model’s robust-
ness to distributional shifts.

6

Machine Learning for Predicting Q-Gonality of Modular Curves

Dlevel>59 comprises 10.04% of Dexact. We further divide
Dlevel≤59 into training and validation sets, denoted Dood

train

and Dood
val , using an 8:1 ratio. For XGBoost and FNN, we

use the same hyperparameters as in the previous sections,
while for FT-Transformer, we increase dropout to 0.175 to
improve generalization.

Table 7. Performance metrics for XGBoost under OOD evaluation

Dataset Accuracy R2 RMSE

Dood
train 96.86% 0.9994 0.185

Dood
val 95.45% 0.9991 0.2526

Dlevel>59 80.96% 0.7206 16.0031
Dbounds 87.57% – –

Table 8. Performance metrics for FNN under OOD evaluation

Dataset Accuracy R2 RMSE

Dood
train 92.81% 0.9979 0.354

Dood
val 91.59% 0.9979 0.377

Dlevel>59 68.71% 0.9950 2.141
Dbounds 91.93% – –

Table 9. Performance metrics for FT-Transformer under OOD eval-
uation

Dataset Accuracy R2 RMSE

Dood
train 93.00% 0.9398 1.906

Dood
val 91.94% 0.9933 0.676

Dlevel>59 82.98% 0.3486 24.435
Dbounds 89.74% – –

The out-of-distribution (OOD) results show that all models
perform well on the training and validation sets, but their ac-
curacy drops on the harder Dlevel>59 set. XGBoost achieves
the high accuracy (80.96%) but has a large RMSE, indicat-
ing difficulty with high-level curves. The FT-Transformer
has the highest accuracy(82.98%) but also struggles with
calibration and has high RMSE. The neural network has
the lowest accuracy (68.71%) but a lower RMSE, suggest-
ing it captures general trends but not exact values. Figure
7 illustrates these results. Overall, XGBoost is the most
robust, while the other models perform well only within
the training distribution. Generalizing to rare, high-gonality
cases remains challenging.

5. Symbolic Regression for Q-Gonality
Prediction Using LLM-Boost

Our second objective is to uncover an explicit symbolic
expression that accurately models the Q-gonality of modu-
lar curves. While high-precision predictive models—such
as those produced by black-box machine learning meth-
ods—can capture complex patterns in the data, they often
lack interpretability and insight into the underlying math-
ematical structure. In contrast, symbolic regression (SR)
aims to identify concise, human-readable formulas that ap-
proximate the true functional relationship. Given a training
dataset Dtrain = (xi, yi)

n
i=1, where each xi encodes curve-

specific features and yi denotes the associated Q-gonality,
our goal is to discover a symbolic function f̃ such that
f̃(xi) ≈ yi for all i, while preserving interpretability and
the potential for generalization to unseen instances. By re-
covering such an expression, we aim not only to achieve
accurate predictions, but also to shed light on the latent
mathematical principles governing Q-gonality.

Traditional SR approaches, such as genetic programming
and sparse regression, operate over structured equation
spaces defined by expression trees or grammars (Cranmer,
2023; Brence et al., 2020), while more recent work has incor-
porated language models to generate program-like hypothe-
ses that offer greater expressiveness (Biggio et al., 2021;
Petersen et al., 1912). Despite progress, these methods often
struggle with scalability and efficiency in high-dimensional
or scientific domains, where the relevant features are neither
obvious nor given. To address this challenge, we introduce
LLM-boost, a novel SR framework that combines symbolic
regression with LLM-driven feature construction and itera-
tive model refinement. Our method leverages the generative
capabilities of LLMs to propose candidate features, evalu-
ates their utility in improving predictive accuracy, and se-
lectively incorporates them into a growing symbolic model.
Below, we detail the core components of this algorithm
and demonstrate how this iterative boosting framework en-
ables efficient exploration of symbolic feature space while
preserving interpretability and accuracy.

5.1. LLM-boost Methodology

To recover an interpretable symbolic expression, we assume
that the true functional relationship can be approximated by
an additive model of the form

f̃(x) =

k∑
i=1

wifi(x),

where each fi is a simple, non-linear feature function. These
candidate features are generated by a pre-trained language
model πθ, conditioned on dynamically updated prompts pi,
i.e., fi = πθ(· | pi). The prompts are adaptively modified
to make sure no repeated feature is produced.

7

Machine Learning for Predicting Q-Gonality of Modular Curves

(a) Neural Network OOD Test Predictions (b) FT-Transformer OOD Test Predictions

(c) XGBoost OOD Test Predictions

Figure 7. Out-of-distribution test predictions for different models. The plots show predicted vs. true Q-gonality values, with accuracy
scores displayed in the titles. Red dashed lines indicate perfect predictions. Blue points indicate wrong predictions.

To construct the ensemble of features, we adopt a boosting-
inspired approach similar to AdaBoost. The pipeline is
listed in figure 8. At each iteration k, we compute the
residual of the current model f̃k =

∑k
i=1 wifi, and query

the LLM to generate additional candidate features. These
features are stored in a memory buffer. We then fit the
residual using each feature in the buffer and select the one
that yields the greatest improvement in predictive accuracy.
This selected feature is incorporated into the model, and
the process is repeated. This process is equivalent to linear
regression on seleted features by Frisch-Waugh-Lovell The-
orem if our initial factor model is linear regression model.
However, this viewpoint allows us to generalize further. See
Appendix C for more details. Unlike standard regression
models optimized purely for mean squared error, our final
model prioritizes interpretability and accuracy, often result-
ing in lower bias and more meaningful symbolic expressions.
The greedy selection strategy balances the exploitation of
promising features with the exploration of novel ones, en-
abling efficient and interpretable symbolic discovery. A
more detailed discussion can be found in Appendix C.

5.2. Experiments

In our experiment, we use GPT 4-o mini (via OpenAI api)
as our feature generator. We choose the base additive model
f̃0 to be the polynomial model of order at most 3. We set
the iteration to be 100 with the memory buffer of 20. The

LLM

Model f1 Model f2 · · · Model fn

Ensemble with all predecessors

generate generate generate

weight residual weight residual

Figure 8. LLM-Boost

training and accuracy can be seen in figure 9. As it is shown
in the figure 9, at the training stage, several flat regions
indicate the LLM is trying to construct the feature that can
significantly improve the accuracy. During 100 iterations,
we found 19 significant features, which will be listed in the
Appendix D.

The performance results of LLM-Boost are summarized in
10. We also compare the symbolic regression results with
the baseline LLM-SR (Shojaee et al., 2024), PySR and GP-
learn. The results are summarized in table 16 ,12 and 13.
Our LLM-Boost model outperformeds the standard baseline
in both accuracy and R2. In particular, our model shows a

8

Machine Learning for Predicting Q-Gonality of Modular Curves

strong predictive power on the Dbounds, which even catch
up the predictive power of the above “black box” models.

Figure 9. Training and Accuracy figure for LLM-Boost training

Table 10. Performance metrics for the LLM-Boost model across
different datasets

Dataset Accuracy R2 RMSE
Dtrain 73.49% 0.9973 0.5913
Dval 72.91% 0.9945 0.6718
Dtest 73.50% 0.9895 1.9814

Dbounds 81.52% – –

Table 11. Performance metrics for the LLM-SR model across dif-
ferent datasets

Dataset Accuracy R2 RMSE
Dtrain 36.98% 0.9919 1.0153
Dval 37.86% 0.9871 0.6718
Dtest 35.88% 0.9973 0.9874

Dbounds 56.47% – –

Table 12. Performance metrics for the PySR model across different
datasets

Dataset Accuracy R2 RMSE
Dtrain 64.14% 0.9815 1.5359
Dval 65.10% 0.9877 1.0095
Dtest 64.09% 0.9732 3.1606

Dbounds 68.00% – –

Among the 19 features that is generated by LLM,
we found that most features has coefficients roughly
0. However, there is an interesting feature that
has a comparatively large linear regression coeffi-
cient (around 0.4) log(cusps+1) log(rank+1)

exp(genus) , (around 0.5)
log(cusps+1) log(rank+1)

exp(genus+1) , (around 0.8) log(cusps + 1) ×
rank2 × exp(genus/(level + 1)). This new finding may

Table 13. Performance metrics for the GP-learn model across dif-
ferent datasets

Dataset Accuracy R2 RMSE
Dtrain 68.48% 0.9293 3.0022
Dval 68.07% 0.9421 2.1877
Dtest 70.32% 0.9208 5.4378

Dbounds 62.17% – –

give some interesting insight into mathematical conjectures
and proofs.

6. Conclusion and Future Work
This work shows that machine learning can effectively pre-
dict the Q-gonality of modular curves, a challenging in-
variant in arithmetic geometry. We evaluated XGBoost,
feedforward neural networks, and Feature Tokenizer Trans-
formers, all achieving over 90% exact-match accuracy on
known cases. Our LLM-Boost method outperformed sym-
bolic regression baselines while remaining interpretable,
producing accurate, human-readable equations. The model
also identified new features that may shed light on interac-
tions between arithmetic invariants.

Future work includes incorporating more non-numerical
features, exploring the predictability of bounded features,
and optimizing the LLM-Boost approach as outlined in
Appendix C, such as dynamic prompt management and
improved search strategies.

Acknowledgements
We thank the anonymous reviewers for their constructive
feedback and suggestions, which have improved the qual-
ity of this work. The first author gratefully acknowledges
Nathan Kaplan, the first author’s advisor, for insightful
discussions on modular curves and the applications of AI
to mathematics, as well as Zeyi Xu for introducing the
AI4MATH workshop and providing valuable suggestions
on drafting the paper.

Impact Statement
This paper aims to advance the field of Machine Learning
as applied to pure mathematics, specifically by employing
machine learning techniques to predict arithmetic invariants
of modular curves. The research is focused on expanding
mathematical knowledge and computational methods within
the specialized domain of arithmetic geometry. There are no
apparent negative societal consequences or ethical concerns
associated with this work.

9

Machine Learning for Predicting Q-Gonality of Modular Curves

References
Abramovich, D. A linear lower bound on the gonality of

modular curves. International Mathematics Research
Notices, 1996(20):1005–1011, 01 1996. ISSN 1073-7928.
doi: 10.1155/S1073792896000621. URL https://
doi.org/10.1155/S1073792896000621.

Alessandretti, L., Baronchelli, A., and He, Y.-H. Machine
learning meets number theory: the data science of birch–
swinnerton-dyer. In Machine Learning: In Pure Mathe-
matics And Theoretical Physics, pp. 1–39. World Scien-
tific, 2023.

Babei, A., Charton, F., Costa, E., Huang, X., Lee, K.-H.,
Lowry-Duda, D., Narayanan, A., and Pozdnyakov, A.
Learning euler factors of elliptic curves. arXiv preprint
arXiv:2502.10357, 2025.

Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., and Paras-
candolo, G. Neural symbolic regression that scales. In
International Conference on Machine Learning, pp. 936–
945. Pmlr, 2021.

Blum, A. and Mitchell, T. Combining labeled and unlabeled
data with co-training. In Proceedings of the eleventh
annual conference on Computational learning theory, pp.
92–100, 1998.

Brence, J., Todorovski, L., and Džeroski, S. Probabilis-
tic grammars for equation discovery. arXiv preprint
arXiv:2012.00428, 2020.

Charton, F., Ellenberg, J. S., Wagner, A. Z., and Williamson,
G. Patternboost: Constructions in mathematics with a
little help from ai. arXiv preprint arXiv:2411.00566,
2024.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785–794, 2016.

Collins, M. and Singer, Y. Unsupervised models for named
entity classification. In 1999 Joint SIGDAT conference
on empirical methods in natural language processing and
very large corpora, 1999.

Cranmer, M. Interpretable machine learning for science
with pysr and symbolicregression. jl. arXiv preprint
arXiv:2305.01582, 2023.

Derickx, M. and van Hoeij, M. Gonality of
the modular curve x1(n). Journal of Alge-
bra, 417:52–71, 2014. ISSN 0021-8693. doi:
https://doi.org/10.1016/j.jalgebra.2014.06.026.
URL https://www.sciencedirect.com/
science/article/pii/S0021869314003585.

Dery, L. M., Nachman, B., Rubbo, F., and Schwartzman, A.
Weakly supervised classification in high energy physics.
Journal of High Energy Physics, 2017(5):1–11, 2017.

Dong, B., He, X., Jin, P., Schremmer, F., and Yu, Q. Ma-
chine learning assisted exploration for affine deligne–
lusztig varieties. Peking Mathematical Journal, pp. 1–50,
2024.

Ellenberg, J. S., Fraser-Taliente, C. S., Harvey, T. R.,
Srivastava, K., and Sutherland, A. V. Generative
modeling for mathematical discovery. arXiv preprint
arXiv:2503.11061, 2025.

Fan, W., Liu, K., Liu, H., Wang, P., Ge, Y., and Fu, Y.
Autofs: Automated feature selection via diversity-aware
interactive reinforcement learning. In 2020 IEEE Inter-
national Conference on Data Mining (ICDM), pp. 1008–
1013. IEEE, 2020.

Gorishniy, Y., Rubachev, I., Khrulkov, V., and Babenko,
A. Revisiting deep learning models for tabular data.
Advances in neural information processing systems, 34:
18932–18943, 2021.

Hashemi, B., Corominas, R. G., and Giacchetto, A. Can
transformers do enumerative geometry? In The Thir-
teenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/
forum?id=4X9RpKH4Ls.

He, Y.-H. Machine-learning mathematical structures. In-
ternational Journal of Data Science in the Mathematical
Sciences, 1(01):23–47, 2023.

He, Y.-H., Lee, K.-H., Oliver, T., and Pozdnyakov, A. Mur-
murations of elliptic curves. Experimental Mathematics,
pp. 1–13, 2024a.

He, Y.-H., Yao, Z.-G., and Yau, S.-T. Distinguishing calabi-
yau topology using machine learning. arXiv preprint
arXiv:2408.05076, 2024b.

LMFDB Collaboration, T. The L-functions and mod-
ular forms database, home page of modular curve.
https://www.lmfdb.org/knowledge/show/modcurve,
2025. [Online; accessed 27 May 2025].

Merler, M., Dainese, N., and Haitsiukevich, K. In-context
symbolic regression: Leveraging language models for
function discovery. CoRR, 2024.

Orlić, P. Gonality of modular curves and their quotients.
PhD thesis, University of Zagreb. Faculty of Science.
Department of Mathematics, 2025.

Petersen, B. K., Landajuela, M., Mundhenk, T. N., Santiago,
C. P., Kim, S. K., and Kim, J. T. Deep symbolic regres-
sion: Recovering mathematical expressions from data via

10

https://doi.org/10.1155/S1073792896000621
https://doi.org/10.1155/S1073792896000621
https://www.sciencedirect.com/science/article/pii/S0021869314003585
https://www.sciencedirect.com/science/article/pii/S0021869314003585
https://openreview.net/forum?id=4X9RpKH4Ls
https://openreview.net/forum?id=4X9RpKH4Ls
https://www.lmfdb.org/knowledge/show/modcurve

Machine Learning for Predicting Q-Gonality of Modular Curves

risk-seeking policy gradients. arxiv 2021. arXiv preprint
arXiv:1912.04871, 1912.

Poonen, B. Gonality of modular curves in characteristic p.
arXiv preprint math/0601141, 2006.

Ren, Z., Wang, S., and Zhang, Y. Weakly supervised ma-
chine learning. CAAI Transactions on Intelligence Tech-
nology, 8(3):549–580, 2023.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J., Ellenberg, J. S.,
Wang, P., Fawzi, O., et al. Mathematical discoveries from
program search with large language models. Nature, 625
(7995):468–475, 2024.

Scudder, H. Probability of error of some adaptive pattern-
recognition machines. IEEE Transactions on Information
Theory, 11(3):363–371, 1965.

Shojaee, P., Meidani, K., Gupta, S., Farimani, A. B., and
Reddy, C. K. Llm-sr: Scientific equation discovery via
programming with large language models. arXiv preprint
arXiv:2404.18400, 2024.

Zhou, Z.-H. A brief introduction to weakly supervised
learning. National science review, 5(1):44–53, 2018.

11

Machine Learning for Predicting Q-Gonality of Modular Curves

A. Mathematical Background
We begin by recalling the classical definition of a modular curve. Let

H := {z = x+ yi ∈ C | y > 0}

denote the upper half-plane. An element γ ∈ GL2(R) acts on H by Möbius transformation. Specifically, for z ∈ H and

γ =

[
a b

c d

]
,

the action is given by

γ · z :=
az + b

cz + d
.

Let Γ be a subgroup of the discrete group SL2(Z), and consider the quotient space

Y (Γ) := Γ\H,

which can be given a complex structure to be a complex manifold. In number theory, one often considers the following
standard congruence subgroups of SL2(Z) for a positive integer N :

Γ(N) :=

{
γ ∈ SL2(Z)

∣∣∣∣ γ ≡ [1 0

0 1

]
mod N

}
,

Γ0(N) :=

{
γ ∈ SL2(Z)

∣∣∣∣ γ ≡ [∗ ∗0 ∗

]
mod N

}
,

Γ1(N) :=

{
γ ∈ SL2(Z)

∣∣∣∣ γ ≡ [1 ∗
0 1

]
mod N

}
.

These subgroups satisfy the inclusions

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z).

Sometimes, one considers subgroups Γ ⊂ GL2(Z) that contain Γ(N) for some N . In such cases, the largest integer N
for which Γ ⊃ Γ(N) is called the level of Γ. These special types of subgroups are of particular interest because the
quotient space Γ\H often admits a natural interpretation as a moduli space of elliptic curves with additional structure. This
moduli-theoretic viewpoint is one of the main reasons why modular curves are central objects in arithmetic geometry.

Although the quotient space Y (Γ) = Γ\H is a complex manifold, it is not compact. However, one can compactify it
by adding a finite set of additional points, called cusps, to obtain a compact complex manifold denoted by X(Γ). This
compactification X(Γ) is known as the modular curve associated to Γ. There exists a natural map from the modular curve
to the Riemann sphere,

j : X(Γ)→ P1,

called the j-invariant map. The preimage of the point at infinity under this map corresponds precisely to the set of cusps.
The genus of the compact Riemann surface X(Γ) is also referred to as the genus of the group Γ.

Up to this point, we viewed modular curves as complex manifolds over the field C. However, modular curves can also
be regarded as algebraic varieties defined over number fields. For instance, when Γ = Γ0(N) or Γ1(N), the associated
modular curve X(Γ) admits a model defined over the rational field Q. In other words, X(Γ) can be described as the zero
locus of a system of polynomial equations with coefficients in Q. Moreover, the j-invariant map

j : X(Γ)→ P1

can also be defined over Q. A natural arithmetic question is to determine the minimal degree of non-constant morphisms
from X(Γ) to P1 defined over a given number field K. This minimal degree is called the K-gonality of X(Γ) and serves as
a measure of the arithmetic complexity of the modular curve over the field K.

12

Machine Learning for Predicting Q-Gonality of Modular Curves

In general, the gonality of a modular curve is difficult to compute explicitly, and there is no known formula that expresses
it in terms of invariants of modular forms. However, one can often obtain upper and lower bounds for the gonality using
various techniques, and in some cases, these bounds allow for the exact determination of the gonality.

In the above discussion, we considered subgroups Γ ⊂ SL2(Z). However, in number theory, it is common to study such
objects from a p-adic perspective. The inverse limit Zp = lim←−n

Z/pnZ defines the ring of p-adic integers. More generally,

taking the inverse limit over all positive integers yields the profinite completion of Z: Ẑ := lim←−n
Z/nZ. One can consider

subgroups Γ ⊂ GL2(Ẑ), which encode congruence information at all primes simultaneously.

The database LMFDB adopts this adelic viewpoint in its definition of modular curves, by considering subgroups of GL2(Ẑ)
(LMFDB Collaboration, 2025). Although certain invariants of modular curves may be defined differently in the LMFDB
framework, they agree with the classical definitions.

13

Machine Learning for Predicting Q-Gonality of Modular Curves

B. LLM-boost Feature Generation Prompt
The following prompt was used for generating features in our LLM-boost approach:

DATA DESCRIPTION
You are given a table with the following features:
• level: the level of the modular curve
• cusps: the number of cusps of the modular curve
• rational cusps: number of cusps defined over Q
• genus: genus of the modular curve
• rank: Mordell-Weil rank of the Jacobian
• log conductor: The natural logarithm of the conductor of the modular curve
• coarse class num: The number of isomorphism classes in the coarse moduli space associated with the modular curve
• coarse level: The level parameter associated with the coarse moduli space of the modular curve
• Q-gonality: a property indicating the minimal degree of a nonconstant map to P1 defined over Q (your prediction target)

These invariants are known to interact non-linearly. For example, genus and gonality often grow together but not proportionally; cusps
and rational cusps relate to modular parametrization; and level is often positively associated with complexity, but not strictly.
Example input row:
{’level’: 2, ’cusps’: 1, ’rational cusps’: 0, ’genus’: 0, ’rank’: 0,
’log conductor’: 0, ’coarse class num’: 0, ’coarse level’: 0}
TASK

• Return EXACTLY 1 Python function, ≤ 120 characters, that computes a NEW numeric feature from ONE data row. DO NOT
return trivial functions.

• Do NOT return any feature that is already listed in the SAVED FEATURES sections below.

• Do NOT return any feature that is equivalent to the features listed in the SAVED FEATURES sections below.

• Do NOT include any Markdown code block markers in your response.

• For each function you generate, also provide a short reason (1-2 sentences) explaining why this feature could help predict
Q-gonality.

• Try to use transcendental functions like log and exp more. Not just rational functions.

FORMAT
def f1(row): return ...
Reason: <your reason here>
SAVED FEATURES
{{saved features}}

14

Machine Learning for Predicting Q-Gonality of Modular Curves

C. Detailed LLM-Boost Methdology
Traditional symbolic regression typically employs genetic programming and transformer-based next-symbol prediction.
These token-level prediction methods are useful when the underlying mechanism is simple. However, the limitation is that
token-level prediction only captures “local” expression patterns but fails to understand the “global” meaning. An output
with good performance may suffer from poor interpretability, especially when the actual underlying relation is unknown and
highly complex.

One approach is to use LLMs to generate possible relations and evaluate the output for self-evolution. This idea has appeared
in prior work (Shojaee et al., 2024). However, in our case, the relation is highly nonlinear with many variables. Another
issue is that q gonality is—although not mathematically proven but demonstrated in the dataset—uniquely determined
by the 8 features. Simply using LLMs to generate the true relation tends to use only a few features, and the output is overly
simplified compared to the true relation. Another difficulty is that we use accuracy as our metric, which is often zero, as the
output resembles “random guessing” with very high MSE. Consequently, the method fails to converge.

To address these problems, we propose LLM-Boost, which combines LLM-generated features with the AdaBoost idea.
Instead of using LLMs to predict the complicated equation directly, we assume that the true relation satisfies the additive
model:

f̃(x) =

k∑
i=1

wifi(x),

where each fi is a simple, nonlinear function of features. These candidate features are generated by a pre-trained language
model πθ, conditioned on dynamically updated prompts pi, i.e., fi = πθ(·|pi). The prompts are adaptively modified to
ensure that no repeated features are produced.

To construct the ensemble of features, we adopt a boosting-inspired approach similar to AdaBoost. At each iteration k, the
algorithm consists of four stages:

• Residual stage: Compute the residual of the current model f̃k =
∑k

i=1 wifi:

ϵ̃k(x) = y − f̃k(x)

• Feature orthogonalization stage: Extract an LLM-produced feature from a buffer of length 20. For each feature, we
first regress it against the previous features:

ϵk(x) = fk(x)−
k−1∑
i=1

aifi(x)

Then we fit the residual with the orthogonalized feature and update the model:

f̃k(x) = f̃k−1(x) + bkϵk(x)

= f̃k−1(x) + bk

(
fk(x)−

k−1∑
i=1

aifi(x)

)

where ϵ̃k(x) = bkϵk(x)+δ represents the linear regression model. This eliminates confounding effects from previously
generated features and focuses only on the orthogonal direction. Note that this model differs from direct linear
regression using features {fi(x)} since all linear coefficients of fi for i < k are frozen.

• Feature selection stage: Compute the accuracy of the ensemble model for each candidate feature in the buffer, and use
a greedy method to select the feature that improves accuracy the most. Remove the selected feature from the buffer.

• Feature generation stage: Use the LLM to generate additional features to maintain the buffer size.

15

Machine Learning for Predicting Q-Gonality of Modular Curves

Theoretically, suppose at iteration k − 1, the subspace spanned by the previously generated model is Ek−1 and the subspace
spanned by the memory buffer Bk is Fk. Since our model is linear, the residual ϵ̃k has an Ek−1 component, which measures
how much the model f̃k−1 deviates from the linear regression, and an E⊥k−1 component:

ϵ̃k = ϵ̃Ek
+ ϵ̃⊥k

Ideally, a model with 100% accuracy would have zero MSE. As k increases, ϵ̃⊥k dominates and ϵ̃Ek
→ 0. Thus, our

optimization at each step can be formulated as:

fk(x) = arg max
v∈E⊥

k−1

Acc(f̃k−1(x) + v)

As long as the new LLM-produced feature fk is not in Ek−1, the perpendicular direction ϵk contributes to the actual residual,
ensuring Fk ∩ E⊥k−1 ̸= ∅. In LLM-boost:

fk(x) ≈ arg max
v∈Fk∩E⊥

k−1

Acc(f̃k−1(x) + v)

Based on the knowledge of pre-trained LLMs, we can generate numerous potentially useful highly nonlinear features that
human experts might not consider. With a sufficiently large function space Fk to explore, we can select the feature with the
largest projection on the residual. To reduce computational complexity, we use:

fk(x) ≈ arg max
fb∈Bk

Acc(f̃k−1(x) + f⊥
b)

This approach offers potential for future optimization using methods like steepest descent.

To initialize the additive model, we use the 8 base features and their polynomials up to degree 3. Experimental results show
that degree 3 achieves the highest accuracy while maintaining balanced R2 scores. Beyond degree 3, the model appears to
overfit, suggesting the final model should not exceed degree 3.

Table 14. Polynomial regression performance across different degrees

Degree Accuracy R2 RMSE
1 40.55% 0.9880 1.0924
2 63.59% 0.9927 0.8517
3 68.66% 0.9876 1.1085
4 62.46% 0.8769 3.4970
5 62.70% 0.0288 9.8215
6 51.54% -42.4290 65.6755

A major challenge affecting performance is that as more features are generated and integrated into the model, it becomes
increasingly difficult to find features with large perpendicular components in E⊥k . Most LLM-generated features (e.g.,
genus/(level + 1)2) are highly correlated. To address this, when accuracy improvement becomes negligible (< 0.1%), we
generate additional features (5 at a time, maximum 3 attempts) and explore among these new candidates. We also increase
the size of Bk, though the resulting computational complexity is a drawback requiring the LLM to find effective features
through exploration.

Potential solutions include continuously updating prompts to encourage more aggressive feature generation (e.g., incorporat-
ing more transcendental functions like log or exp) and implementing adaptive buffer sizes based on current accuracy and
improvement from previous iterations. These optimizations remain for future work.

This process is equivalent to linear regression on seleted features by Frisch-Waugh-Lovell Theorem, if the additive model
we start with is a linear regression model. The prove is not hard. Intuitively speaking, suppose f̃k−1 is the linear regression
model, then the residual ϵ̃k is orthogonal to Ek−1. Everytime we add a new feature, our orthonogonalization process
is adjusting the coefficients in the previous generated features as well, make the overall model such that the residual is
orthogonal to the Ek, hence it is a linear regression model as long as the linear model we start with is the linear regression

16

Machine Learning for Predicting Q-Gonality of Modular Curves

Figure 10. Polynomial degree versus accuracy

model. Although in our case, since the polynomial fitted model is linear regression, makes our final model nothing but the
linear regression with greedy feature selecting, the advantage is that we can plug in any linear model as our base model and
combine this with LLM-Boost frame work, which will, in the end, deviate from linear regression if our base model is some
explainable model which is not linear regression. We will explore this method further for more applications with base model
which is not linear regression model.

We explored alternative approaches for integrating LLMs into symbolic regression. One successful variant, pool boost,
generates a large feature set (approximately 175 features) initially and then applies boosting ensemble. This method achieved
higher accuracy (77.20%) on the training set due to having a larger initial memory buffer (175 vs. 20), enabling better
optimization directions. However, the computational complexity is prohibitive, as our greedy method requires n2 linear
regressions, and the search space shrinks as good features are removed from the buffer. As shown in Figure 11, accuracy
plateaus after approximately 100 iterations, highlighting the insufficient feature generation problem.

Table 15. Performance metrics for Pool Boost across different datasets

Dataset Accuracy R2 RMSE
Dtrain 77.20% 0.9979 0.5533

Figure 11. Iteration versus accuracy for pool boost method

One may wonder using the newly generated feature for regression directly, just like the original boosting using the weak
learning fitting the residual. We have done the experiments to compare the boosting with orthogonalization (we call it
linear regression) and without orthogonalization (we call it residual boosting), we have the following comparison result
for the accuracy in Figure 12. We have observed the fact that residual boosting method have a relative slow speed of
accuracy increasing compare to the linear regression. One possible explanation is that since the newly added feature is
highly correlated to the previous model, the fitted residual will have the component in the space of Ek, which will destroy

17

Machine Learning for Predicting Q-Gonality of Modular Curves

the fitted model fk and make the whole fitting process unstable. So we do not use this way.

Figure 12. Iteration versus accuracy for pool boost method

Another approach involved LLM-based feature generation combined with reinforcement learning (RL) for feature selection.
Optimal subset selection requires 2n linear regressions, and approximately 100 generated features are needed to avoid bias,
making naive feature selection computationally infeasible. We implemented RL-based feature selection following prior
work (Fan et al., 2020), incorporating polynomial features up to degree 3 (over 300 total features). This achieved reasonable
accuracy (74%), but convergence was slow and scalability limited, leading us to abandon this approach.

We also compare our method with LLM-SR in (Shojaee et al., 2024). The major difference between our method and
LLM-SR is that LLM-SR is using LLM to produce the whole equation containing the nonlinear features, with undetermined
coefficients, and fit the equation using the training data, while our method use LLM to produce each individual feature at a
time, and ensemble them dynamically. We run the LLM-SR 100 rounds use GPT 4-o mini via OpenAI api. The result is as
follow:

Table 16. Performance metrics for the LLM-SR model across different datasets

Dataset Accuracy R2 RMSE
Dtrain 36.98% 0.9919 1.0153
Dval 37.86% 0.9871 0.6718
Dtest 35.88% 0.9973 0.9874

Dbounds 56.47% – –

The produced equation:

Q-gonality = 0.113× genus
− 0.347× log(level + 1)

− 0.760× (rational cusps/(1 + genus))
+ 0.202× exp(−rank)
+ 0.027× log conductor
+ 0.011× (cusps/(1 + rank))
− 0.026× sqrt(coarse class num + 1)

+ 0.003× coarse level
+ 2.834

We can see that R2 score and RMSE are within satisfying level, but the accuracy is not that good for this task. There are
several causes. One is that, unlike the usual SR task, our task is very complicated, with no certain obvious solution. The
LLM-SR is trying to solve the problem as a whole with no other context, so LLM is trying to produce the output out of the
pre-trained parameters. In the LLM’s pre-trained data, there are no ”super-long” equations, so LLM tends to output short
and concise equation. The R2 is high, which indicates it captures the pattern of the data. But our task is subtle, high R2

score and low RMSE are not enough. Another cause is that even if we have a good output equation at some round, it is hard

18

Machine Learning for Predicting Q-Gonality of Modular Curves

to let LLM to recognize it and do the self-evolve. One possible scenario is that one out of ten factor in the equation has
the major contribution, but the model is hard to extract that factor out and keep it. Instead, the model just forget the this
equation completely and enter the next round. Thus, it makes LLM-SR hard to converge in our task. In addition, LLM often
suffers from the hallucination for the long-structured output. Most of the time during the LLM-SR training, the output will
have errors, even for the SOTA model.

Our LLM-Boost model partially solved the above shortcomings of LLM-SR: Due to the nature of boosting, our model can
produce as- long-as-possible factor models, which is more flexible for complicated problems; We greedily kept all the good
produced features and searching for the new features, make LLM to search for the features that we haven’t seen before
besides the generated good features; Our structured output is relatively short, which makes the LLM makes less mistake and
generate more valuable solutions instead of stuck in the hallucination. Another advantage is that our model can leverage the
a prior knowledge of the problem. In our example, we combine the polynomial regression up to degree 3 to the LLM-boost
and achieve a nice result. We can combine LLM-Boost model with any model that have good performance and improve the
model via new feature generating procedure.

19

Machine Learning for Predicting Q-Gonality of Modular Curves

D. The Generated Features and Coefficients

poly_level -1.327062015118409963e-05
poly_genus 1.823347690467706349e-04
poly_rank -2.076470839180304150e-05
poly_cusps 1.340799089602361821e-04
poly_rational_cusps -2.609911410237986319e-05
poly_log_conductor 6.248694805191864089e-04
poly_coarse_class_num 5.636849755390863775e-03
poly_coarse_level 6.708807306380486256e-05
poly_levelˆ2 -1.195814052239893305e-03
poly_level genus 1.862740451982679030e-03
poly_level rank -8.841007439528143601e-04
poly_level cusps 9.833585879028660780e-04
poly_level rational_cusps -2.190313095123194850e-04
poly_level log_conductor 2.049228649813721222e-03
poly_level coarse_class_num -4.121849647903544963e-04
poly_level coarse_level 5.097574401708673169e-04
poly_genusˆ2 -1.534202285711756906e-05
poly_genus rank -4.676882655741077612e-05
poly_genus cusps 1.029784661520296825e-03
poly_genus rational_cusps 1.972805877782021766e-04
poly_genus log_conductor -9.383440531478978936e-04
poly_genus coarse_class_num 1.457099679979013962e-04
poly_genus coarse_level 1.102500902109483649e-03
poly_rankˆ2 2.181740936330784655e-04
poly_rank cusps -5.042013758272134456e-04
poly_rank rational_cusps -2.044770115067380630e-06
poly_rank log_conductor 9.345158559204242918e-04
poly_rank coarse_class_num 5.232302109540386644e-05
poly_rank coarse_level -1.030793328823869943e-03
poly_cuspsˆ2 3.126149915010396820e-03
poly_cusps rational_cusps -1.107899075650206936e-04
poly_cusps log_conductor 5.590599292031519108e-04
poly_cusps coarse_class_num -2.561388874679910153e-04
poly_cusps coarse_level 7.136032158511422356e-04
poly_rational_cuspsˆ2 -9.910577691374199269e-05
poly_rational_cusps log_conductor 8.547352050544935890e-04
poly_rational_cusps coarse_class_num 6.593289326506223812e-06
poly_rational_cusps coarse_level -2.175898873615241105e-05
poly_log_conductorˆ2 4.979681423365633799e-05
poly_log_conductor coarse_class_num 7.259466475130400040e-06
poly_log_conductor coarse_level -1.982542652373057816e-03
poly_coarse_class_numˆ2 -9.475333273964632076e-07
poly_coarse_class_num coarse_level 1.862178310965380214e-04
poly_coarse_levelˆ2 5.611850888484727021e-04
poly_levelˆ3 1.680092543237133446e-05
poly_levelˆ2 genus 2.020787844345689629e-04
poly_levelˆ2 rank 1.771447656564843504e-05
poly_levelˆ2 cusps -1.948633330835962754e-05
poly_levelˆ2 rational_cusps -6.978797251483502117e-05
poly_levelˆ2 log_conductor -5.996978102596058850e-05
poly_levelˆ2 coarse_class_num 4.235857521143931154e-06
poly_levelˆ2 coarse_level -2.782126352434376171e-06
poly_level genusˆ2 -5.651256831389802606e-04
poly_level genus rank 4.682424996181275842e-04
poly_level genus cusps 2.697470188116504568e-04
poly_level genus rational_cusps -1.234418368317621558e-03
poly_level genus log_conductor 5.966035629675626702e-05
poly_level genus coarse_class_num -6.808476917525402815e-07
poly_level genus coarse_level -3.582118937474009467e-04
poly_level rankˆ2 -1.522938683644250578e-04
poly_level rank cusps 4.541620674624330124e-05
poly_level rank rational_cusps 7.400183648088708849e-04
poly_level rank log_conductor -6.522603632815835188e-05
poly_level rank coarse_class_num -2.097862978457524022e-06
poly_level rank coarse_level -8.676257791191593067e-06
poly_level cuspsˆ2 -5.136442002745767116e-05
poly_level cusps rational_cusps 2.705536148815437217e-04
poly_level cusps log_conductor -3.245307788265713346e-05
poly_level cusps coarse_class_num 1.494642725522539635e-06
poly_level cusps coarse_level -2.056897306573524402e-05
poly_level rational_cuspsˆ2 3.967030219352915684e-04
poly_level rational_cusps log_conductor 1.476008966897829279e-04
poly_level rational_cusps coarse_class_num 4.219322940853618823e-06
poly_level rational_cusps coarse_level 8.265842031454741559e-05
poly_level log_conductorˆ2 3.907935106155094665e-06
poly_level log_conductor coarse_class_num -6.713531461182992849e-07
poly_level log_conductor coarse_level 8.263550015080245795e-05
poly_level coarse_class_numˆ2 1.871361652553034383e-08
poly_level coarse_class_num coarse_level 3.325068389520215596e-06
poly_level coarse_levelˆ2 -1.069062705021128247e-05
poly_genusˆ3 -6.140611517552104501e-04
poly_genusˆ2 rank -4.185284753619091663e-04
poly_genusˆ2 cusps 9.468317629571724580e-04
poly_genusˆ2 rational_cusps 8.531671128145793459e-04
poly_genusˆ2 log_conductor 2.614474560909644130e-04
poly_genusˆ2 coarse_class_num 1.746774292347177916e-06
poly_genusˆ2 coarse_level 4.161452192520024391e-04
poly_genus rankˆ2 -8.590321427641646641e-04
poly_genus rank cusps 2.165962950255898392e-04

20

Machine Learning for Predicting Q-Gonality of Modular Curves

poly_genus rank rational_cusps -5.913591116760164848e-04
poly_genus rank log_conductor 2.094172624711568330e-04
poly_genus rank coarse_class_num -1.525260857742961635e-06
poly_genus rank coarse_level -2.017133432759710826e-04
poly_genus cuspsˆ2 -5.166428988814865961e-04
poly_genus cusps rational_cusps 2.535268294424324140e-03
poly_genus cusps log_conductor -2.510163624197777384e-04
poly_genus cusps coarse_class_num -5.417190126548015452e-07
poly_genus cusps coarse_level 1.250320847756399500e-04
poly_genus rational_cuspsˆ2 2.262765426519916740e-04
poly_genus rational_cusps log_conductor -3.133232319251227785e-04
poly_genus rational_cusps coarse_class_num -1.835399585809588917e-06
poly_genus rational_cusps coarse_level 7.167793619273178304e-04
poly_genus log_conductorˆ2 -3.990199434816409270e-05
poly_genus log_conductor coarse_class_num -4.224972972050467911e-07
poly_genus log_conductor coarse_level -3.164465594356589973e-05
poly_genus coarse_class_numˆ2 2.295841533051824757e-09
poly_genus coarse_class_num coarse_level -3.435154013564254913e-06
poly_genus coarse_levelˆ2 1.557440463059202578e-04
poly_rankˆ3 -2.206169087159739453e-04
poly_rankˆ2 cusps 2.517885953645471815e-04
poly_rankˆ2 rational_cusps 1.435723120960826285e-03
poly_rankˆ2 log_conductor 1.536868641116519076e-04
poly_rankˆ2 coarse_class_num -4.049148360572418087e-07
poly_rankˆ2 coarse_level 2.305645664616038845e-04
poly_rank cuspsˆ2 -1.780908232557274211e-05
poly_rank cusps rational_cusps -1.399488565329560889e-03
poly_rank cusps log_conductor -6.143193556064204745e-05
poly_rank cusps coarse_class_num -5.472420474846961640e-07
poly_rank cusps coarse_level -1.858053573996192997e-04
poly_rank rational_cuspsˆ2 -4.457549453913680834e-04
poly_rank rational_cusps log_conductor 1.713337418581490702e-04
poly_rank rational_cusps coarse_class_num -3.278395076792683244e-06
poly_rank rational_cusps coarse_level -7.063667005366433896e-04
poly_rank log_conductorˆ2 -2.269729923120889252e-05
poly_rank log_conductor coarse_class_num 3.080169304154820042e-07
poly_rank log_conductor coarse_level 8.715710579810013146e-06
poly_rank coarse_class_numˆ2 9.644428142392691417e-10
poly_rank coarse_class_num coarse_level 6.201416059487864247e-07
poly_rank coarse_levelˆ2 6.670462052678306428e-05
poly_cuspsˆ3 2.426451657160626088e-05
poly_cuspsˆ2 rational_cusps -3.303768496306857486e-04
poly_cuspsˆ2 log_conductor 7.184591038730792599e-05
poly_cuspsˆ2 coarse_class_num 8.815975974839698748e-07
poly_cuspsˆ2 coarse_level -6.091966072038286939e-05
poly_cusps rational_cuspsˆ2 -4.052370387305384396e-04
poly_cusps rational_cusps log_conductor -2.845870018524358390e-04
poly_cusps rational_cusps coarse_class_num -4.755042330045302951e-06
poly_cusps rational_cusps coarse_level -3.669348233298918606e-04
poly_cusps log_conductorˆ2 1.757027521795363409e-05
poly_cusps log_conductor coarse_class_num -5.731519852930806735e-08
poly_cusps log_conductor coarse_level -1.893331655588952316e-05
poly_cusps coarse_class_numˆ2 -2.192525030237854611e-09
poly_cusps coarse_class_num coarse_level 5.152260939854922707e-06
poly_cusps coarse_levelˆ2 3.294999944746538007e-05
poly_rational_cuspsˆ3 -5.380117282533443705e-04
poly_rational_cuspsˆ2 log_conductor -1.317512773506196498e-04
poly_rational_cuspsˆ2 coarse_class_num 2.064413742234347086e-06
poly_rational_cuspsˆ2 coarse_level -4.217178836495345134e-05
poly_rational_cusps log_conductorˆ2 1.826462539568149000e-05
poly_rational_cusps log_conductor coarse_class_num 6.774077077548526504e-07
poly_rational_cusps log_conductor coarse_level -4.273842231197209137e-05
poly_rational_cusps coarse_class_numˆ2 1.000364584680286939e-09
poly_rational_cusps coarse_class_num coarse_level -4.564056715353407407e-06
poly_rational_cusps coarse_levelˆ2 -5.539825979886093909e-05
poly_log_conductorˆ3 2.169038422645327025e-06
poly_log_conductorˆ2 coarse_class_num 2.614113313488541923e-08
poly_log_conductorˆ2 coarse_level -3.752324467664420668e-06
poly_log_conductor coarse_class_numˆ2 -2.376287694448673410e-10
poly_log_conductor coarse_class_num coarse_level 6.466201835009970436e-07
poly_log_conductor coarse_levelˆ2 -2.692637075745932642e-05
poly_coarse_class_numˆ3 -1.759003370477990602e-12
poly_coarse_class_numˆ2 coarse_level 1.803167395698088496e-09
poly_coarse_class_num coarse_levelˆ2 -5.512427022435909332e-06
poly_coarse_levelˆ3 -2.541701157208304477e-06
poly_intercept 2.270603522010218533e+00
residual_log_conductor_times_rational_cusps_plus_1_pow_genus_plus_1 2.125453516202150744e-81
residual_log_conductor_times_rational_cusps_plus_1_pow_genus_plus_1_intercept -1.560876998090132420e-10
residual_log1p_cusps_times_rank_plus_1_div_genus_plus_1 -9.431426813113684415e-02
residual_log1p_cusps_times_rank_plus_1_div_genus_plus_1_intercept -1.155422786162470794e-15
residual_log_cusps_plus_1_times_rank_plus_1_pow_genus_div_log_cond... 1.663068729889676314e-02
residual_log_cusps_plus_1_times_rank_plus_1_pow_genus_div_log_cond..._intercept 8.170596954779466015e-02
residual_log_level_plus_1_times_cusps_div_1_plus_exp_genus -4.543345200118077687e-02
residual_log_level_plus_1_times_cusps_div_1_plus_exp_genus_intercept -5.874919639991264125e-02
residual_sqrt_rank_plus_1_times_log_cusps_plus_2_times_1_plus_log_... -2.456167637006575078e-03
residual_sqrt_rank_plus_1_times_log_cusps_plus_2_times_1_plus_log_..._intercept 3.080135601525816127e-02
residual_log_rank_plus_2_times_cusps_plus_1_times_exp_log_conducto... 6.254214190697941487e-08
residual_log_rank_plus_2_times_cusps_plus_1_times_exp_log_conducto..._intercept 2.406059646315631545e-02
residual_log_level_plus_1_times_exp_cusps_div_genus_plus_1_times_rank 3.598737095194208248e-05
residual_log_level_plus_1_times_exp_cusps_div_genus_plus_1_times_rank_intercept -1.180706106149719773e-03
residual_log_cusps_plus_1_times_log_rank_plus_1_div_exp_genus_plus_1 -5.550697620205004013e-01
residual_log_cusps_plus_1_times_log_rank_plus_1_div_exp_genus_plus_1_intercept -2.871006324652216734e-03

21

Machine Learning for Predicting Q-Gonality of Modular Curves

residual_log_cusps_plus_1_times_log_rank_plus_1_pow_level_div_genu... 1.261556578140371563e-03
residual_log_cusps_plus_1_times_log_rank_plus_1_pow_level_div_genu..._intercept 2.786023631543484928e-03
residual_log_cusps_plus_1_times_log_rank_plus_2_times_sqrt_log_con... -8.839838205827403172e-05
residual_log_cusps_plus_1_times_log_rank_plus_2_times_sqrt_log_con..._intercept -7.953905943618128777e-03
residual_log_level_plus_1_times_rational_cusps_plus_1_pow_cusps_di... 3.638553241282403204e-07
residual_log_level_plus_1_times_rational_cusps_plus_1_pow_cusps_di..._intercept 7.733073585172101777e-03
residual_log_cusps_plus_1_times_rank_pow_2_times_exp_minus_genus_d... 8.283711254881680475e-01
residual_log_cusps_plus_1_times_rank_pow_2_times_exp_minus_genus_d..._intercept 4.587086701158018566e-03
residual_log_level_plus_1_times_cusps_plus_1_pow_rank_div_genus_pl... 1.131454876248520194e-03
residual_log_level_plus_1_times_cusps_plus_1_pow_rank_div_genus_pl..._intercept -1.630387507343124265e-02
residual_log_cusps_plus_1_times_exp_rational_cusps_times_level_pow... 3.466594030675131557e-06
residual_log_cusps_plus_1_times_exp_rational_cusps_times_level_pow..._intercept -9.030533716229771982e-03
residual_log_cusps_plus_1_times_level_pow_2_div_1_plus_exp_genus 1.719657885779295295e-05
residual_log_cusps_plus_1_times_level_pow_2_div_1_plus_exp_genus_intercept -4.686295023792148634e-04
residual_log_cusps_plus_1_times_log_rank_plus_1_div_exp_genus -4.457097529787848456e-01
residual_log_cusps_plus_1_times_log_rank_plus_1_div_exp_genus_intercept -1.529775841075178182e-03
residual_log_cusps_plus_1_times_log_rank_plus_2_times_level_pow_1_... 7.600173918310741900e-04
residual_log_cusps_plus_1_times_log_rank_plus_2_times_level_pow_1_..._intercept 6.081123812528642369e-03
residual_log_cusps_plus_1_times_log_genus_plus_2_times_rank_pow_1_... -6.223470179041177327e-04
residual_log_cusps_plus_1_times_log_genus_plus_2_times_rank_pow_1_..._intercept -5.827411362441617740e-03

22

Machine Learning for Predicting Q-Gonality of Modular Curves

E. Evaluate Feature Importance for q gonality

In this section, we present the results of linear regression for features that exhibit a strong linear relationship with
q gonality, as well as the performance of XGBoost when using only coarse features or when excluding them.

Figure 13 shows the correlation matrix of numerical features, while Figure 14 illustrates the relationship between individual
features and q gonality. These figures indicate that genus, rank, log conductor, and psl2Index are strongly
correlated with q gonality. However, Table 17 demonstrates that linear regression does not achieve high predictive
performance, suggesting that these features do not directly encode q gonality.

We also evaluate the performance of XGBoost using only coarse features, as shown in Table 19. The results indicate poor
predictive power, implying that coarse features alone do not capture sufficient information about q gonality. In contrast,
when coarse features are excluded and only six numerical features are used (Table 18), the predictive performance improves
significantly. This demonstrates that coarse features contribute little to the prediction of q gonality.

Table 17. Linear regression performance for individual features predicting q gonality

Feature R2 Accuracy (%) RMSE Accuracy within bounds (%)
rank 0.9171 28.05 2.5468 39.52
psl2Index 0.9731 8.06 1.4505 15.74
genus 0.9659 22.91 1.6342 10.64
log conductor 0.9635 24.30 1.6895 26.97

Table 18. XGBoost performance using six numerical features (excluding coarse features) for q gonality prediction

Features R2 Accuracy (%) RMSE
6 numerical features 0.9985 92.61 0.3379

Table 19. XGBoost performance using coarse level and coarse class num features for q gonality prediction

Features R2 Accuracy (%) RMSE
coarse level, coarse class num 0.2487 24.69 7.6685

23

Machine Learning for Predicting Q-Gonality of Modular Curves

Figure 13. Correlation matrix of numerical features for modular curves from the LMFDB dataset.

Figure 14. Relationship between individual features and q gonality.

24

Machine Learning for Predicting Q-Gonality of Modular Curves

Figure 15. Distribution of feature values.

25

