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ABSTRACT

This paper aims to investigate a fundamental question in LLM-based RAG
(Retrieval-augmented Generation): what is the key bottleneck limiting the per-
formance improvement of current RAG systems. This paper thereby proposes a
decoupled perspective to separately analyze the potentials in retrieval and genera-
tion stages. Specifically, we design a simple method to approximating the effects
of the oracle metric in retrieval stage and the oracle way to utilizing the retrieved
documents in generation stage in RAG. On six classic question-answering bench-
mark tasks, by comparing the performance of standard RAG and its oracle vari-
ants, we observe several valuable findings: First, even with the oracle retrieval,
the improvement they bring to RAG performance is not as significant as expected.
Second, figuring out how to enable generation models to make good use of the
retrieved documents holds greater potential for boosting RAG.

1 INTRODUCTION

Currently, Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) serves as a core paradigm
for alleviating the hallucination (Roller et al., 2021) problem of large language models (LLMs)
(Brown et al., 2020). This paradigm comprises two key steps: retrieval and generation. First, it
retrieves documents from an external knowledge base(?) that are most relevant to the query; sec-
ond, it leverages these retrieved results to enable the LLM to generate more accurate responses. To
improve the overall performance of RAG systems, researchers have explored various optimization
paths, including the introduction of vector semantic retrieval (Karpukhin et al., 2020) and hybrid
retrieval mechanisms (Sawarkar et al., 2024), re-ranking of retrieval results (Yu et al., 2024), and
integration of structured knowledge sources (such as knowledge graphs) (Edge et al., 2024) to en-
hance the accuracy of retrieval and question-answering (Borgeaud et al., 2022). While these efforts
have improved RAG performance to varying degrees, a fundamental question remains unsystemati-
cally addressed: what is the key bottleneck limiting the performance improvement of current RAG
systems—does it stem from the retrieval module or the generation module? In other words, between
the two core dimensions—”enhancing the quality of retrieved documents” in the retrieval stage and
”enabling the LLM to better utilize retrieved documents” in the generation stage—which one offers
greater potential for performance improvement and broader room for development?

To answer this question, this paper proposes a decoupled perspective to quantitatively analyze the
potentials in retrieval and generation stages. This essentially requires to measure the effects of the
oracle retrieval and the oracle way to utilize retrieved documents for prompting LLMs in RAG.
Unfortunately, it is challenging to achieve the oracle retrieval metric and the oracle way to utilize re-
trieved documents. To this end, we first develop a rigorous simulation strategy to approximate both
oracle effects via two simple simulation methods. Subsequently, we conduct systematic experiments
on six widely used knowledge-based QA benchmark datasets with six mainstream LLMs, compre-
hensively assessing the actual gains of the two optimization pathways. Finally, by comparing their
performances, we derive a valuable conclusion that making good use of the retrieved documents is
more promising than improving the retrieval metric in RAG.

The main contributions of this paper can be summarized as follows:
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• We propose, for the first time, a decoupled perspective to investigate the potentials of re-
trieval and generation for RAG. This is achieved by two simple simulated methods to ap-
proximate the effects of the oracle metric in retrieval and generation stages.

• Through large-scale empirical research, we draw a key empirical conclusion: even under
the ideal condition where the quality of retrieved documents reaches an optimal level, the
marginal improvement in overall system performance remains relatively limited, and mak-
ing good use of retrieved documents is promising to improve RAG.

2 QUANTIFYING THE POTENTIAL OF RAG FROM A DECOUPLED
PERSPECTIVE

RAG includes two stages: it firstly retrieve some relevant documents from a knowledge base in
retrieval stage and then it generates the response by utilizing the retrieved documents to prompt
the generator such as LLM. Hence, the entire performance of RAG depends on the quality of the
retrieved documents and how to utilize the retrieved documents as the prompt. Generally, the higher
the quality of the retrieved documents, the better generation performance the RAG system achieves;
and a good utilization method can help the generator deal with the informative knowledge in the
retrieved documents.

2.1 DECOUPLED PERSPECTIVE

In this section, we aim to quantify the potential of RAG from a decoupled perspective. In other
words, we propose to quantify the potentials of the retrieval and generation stages, from which we
can see the bottleneck in RAG as well as future directions to optimize RAG. Specifically, we mainly
discuss two questions in both retrieval and generation stages:

• Oracle metric in retrieval stage: How to obtain the retrieved documents via the oracle
metric which leads to the best RAG performance?

• Oracle prompt in generation stage: How to design the oracle prompt based on the re-
trieved documents which leads to the best RAG performance?
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Figure 1: RAG with simulated oracle metric in retrieval stage and simulated oracle prompt in gen-
eration stage.

In the standard RAG paradigm, the retrieved documents are organized sequentially into a retrieved
content according to their retrieval scores and then the standard prompt in generation is the concate-
nation of the query and the retrieved content. Once we obtain the oracle retrieval metric and oracle
prompt, we calculate the performance gaps among the standard RAG, RAG with the oracle metric
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and RAG with the oracle prompt, and we can conclude that the potential of RAG lies in the retrieval
stage or utilizing the retrieved documents to prompt LLM. For example, if RAG with the oracle
metric is much worse than RAG with the oracle prompt, the potential of RAG would lie in how to
make good use of the retrieved documents for prompting instead of optimizing the retrieval model
for RAG.

Unfortunately, it is intractable to obtain the oracle metric in retrieval stage and the oracle prompt in
generation stage. Therefore, we propose two simple approximate methods to simulate the effects of
the oracle metric and the oracle prompt in the rest of this section.

2.2 SIMULATING THE EFFECT OF ORACLE METRIC IN RETRIEVAL

To reach effect of the oracle retrieval in the RAG system, we believe that under the condition that the
retriever and the retrieval knowledge base are fixed, the upper bound of retrieved content optimiza-
tion is mainly related to the retrieval query. A good query can often yield more relevant documents.
Therefore, we simulate this upper bound by merging the original query with the answer to form a
new query. Figure 1a shows our method.

Formally, for a certain question-answer pair (question, answer), the retrieverR uses the question and
answer as the query Q to retrieve relevant documents D from the knowledge base K. D includes
multiple document segments sorted by relevance: {d1, d2, ..., dtopk}. These relevant documents,
together with the question 1, are concatenated in a certain order as the prompt to the model M .
Then, the probability that the model infers the correct answer for this question-answer pair is:

Pcorrect = P (M(concat(D, question)) = answer) (1)

D = {d1, d2, ..., dtopk} = R(K, Q) (2)

Where Pcorrect denotes the probability that the model answers correctly using the retrieved docu-
ments, then ”topk” refers to the top k document segments sorted by relevance, and ”cat” denotes the
concatenation of texts. The modification we make to simulate the oracle retrieval is actually merging
the answer into the query for retrieval, i.e.:

Q = cat(question, answer) (3)

In fact, considering the actual situation, we control the probability of using the merged original query
and answer as the new query to be 80% to make the effect or this oracle retrieval more achievable.
In addition, for cases where there are multiple answers, to ensure convenience and fairness, we
uniformly select the first one in the answer list as the standard answer.

2.3 SIMULATING THE EFFECT OF ORACLE PROMPT IN GENERATION

To enable more efficient utilization of retrieved documents, we hypothesize that when a sufficient
number of retrieved documents are obtained, we often only need to use a small part of the key
information to complete the task, while the remaining document content is often redundant, invalid,
or even harmful. Therefore, we split multiple documents into independent documents and prompt
the large language model to perform question-answering separately for each document. If any one of
the documents can guide the model to answer correctly, we consider that there exists key information
in this series of documents that can complete the task. We use this method to simulate the effect of
the oracle prompt in utilizing retrieved documents.Figure 1b shows our idea. Similarly, compared
with the paradigm of the naive retrieval-augmented generation system mentioned, Q is equal to the
question, but the probability that the model infers the correct answer for this question-answer pair
is:

Pcorrect = 1−
top k∏
i=1

(1− P (M(di) = answer)) (4)

Here, Pcorrect denotes the probability that the model answers correctly using all retrieved documents,
and di represents the retrieved sub-document utilized by the model.The probability that the model

1Some LLMs may need a system prompt besides the retrieved documents and the question, we skip the
system prompt for notational simplicity.
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answers correctly using all retrieved documents in this Method is equal to 1 minus the product of
the probabilities that it answers incorrectly for each sub-document. It is easy to see from Equation 4
that, with other conditions fixed, the probability of the model answering the given question correctly
increases as the top-k value rises.

3 EXPERIMENTS AND MAIN RESULTS

3.1 EXPERIMENTAL SETTINGS

Datasets. We use six classic question-answering datasets as benchmarks. For each dataset, we only
select 500 samples from the test set (if there is no test set, we use the validation set; if the number
of samples in the set is less than 500, we use the entire dataset directly). The datasets include 2Wiki
(Ho et al., 2020), Bamboogle (Press et al., 2023), HotpotQA (Yang et al., 2018), Musique (Trivedi
et al., 2022), NQ (Kwiatkowski et al., 2019), and TriviaQA (Joshi et al., 2017).The knowledge base
we use is composed of open-source and downloadable Wikipedia data. We merge contents with the
same title and randomly select 1,500,000 pieces of data as our knowledge base, where each piece of
data includes an ID, a title, and content.

Retrievers. We mainly use the BM25 retrieval method to recall the top 20 retrieved documents. To
conduct more in-depth analysis and obtain more convincing results, we also include the results of
models using other retrievers. These retrievers include BGE-Large-EN-V1.5 (Xiao et al., 2024) and
Contriever. After BM25 retrieves 1,000 documents, we calculate the similarity between the query
and these retrieved documents, and then select the top 20 results by ranking as the final retrieved
results.

Models. The models we use include the following six open-source models: DeepSeek-R1-Distill-
Qwen-7B, DeepSeek-R1-0528-Qwen3-8B, Qwen2.5-7B-Instruct, Qwen3-8B, ChatGLM-9B-Chat,
and Llama-3.1-8B-Instruct, all of which are mainstream open-source models.

For other experimental settings, please refer to the appendix.

3.2 MAIN RESULTS

Performance Gap of RAG Before and After Optimizing Retrieved Documents Our experi-
mental results include the results of direct model inference and inference with prompts using re-
trieved documents. We set the number of retrieved documents to five standards: 1, 2, 5, 10, and 20,
and present the best results in the table 1.

It can be seen from the Table 1 that the average accuracy improvement of each model on the six
datasets when using the RAG system before and after optimization ranges from 9.1% to 13.4%.
This result indicates that there is a significant gap in the performance of the naive RAG system
when using retrieved documents before and after optimization. However, it still cannot help the
model reach a level of at least 50% accuracy in most cases, which also shows that the performance
improvement brought by this optimization is limited.

Performance Gap of RAG Before and After Optimizing the Model’s Utilization of Retrieved
Documents for Generation Our experimental results include the results of direct model inference
and inference with prompts using retrieved documents. We set the number of retrieved documents
to five standards: 1, 2, 5, 10, and 20, and present the best results in the Table 1. The experimen-
tal results show that the upper bound to be achieved this time is much higher. We calculated the
average performance improvement of each model on different datasets, which ranges from 15.0%
to 26.3%. This is a significant performance improvement, and it also indicates that even if we use
ordinary queries and obtain average-quality retrieved documents, the model can make better use of
the retrieved documents and achieve considerable improvement if we can accurately capture the key
information.

Looking back and examining the entire Table 1, an obvious conclusion can be drawn: the per-
formance gains from reach oracle retrieval are significantly less than those from oracle prompt in
generation. In that case, in a complete RAG system, which is more important—an oracle retrieval
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Table 1: Experimental results of the two optimization upper bounds across six datasets and six
models. Here, ”direct” denotes direct inference, ”rag” represents the unoptimized RAG system,
”rag (q+a)” refers to the method mentioned in Section 2.2, and ”rag (s+g)” refers to the method
described in Section 2.3. The numbers in the table indicate the accuracy performance of the models
on the corresponding datasets.

Model Method Dataset
2wiki bamboogle hotpotqa musique nq triviaqa average

deepseek
-r1-distill
-qwen-7b

direct 0.214 0.112 0.098 0.020 0.068 0.166 0.113
rag 0.220 0.136 0.206 0.036 0.110 0.298 0.168

rag(q+a) 0.238 0.240 0.296 0.156 0.232 0.402 0.261
rag(s+g) 0.536 0.320 0.412 0.130 0.262 0.580 0.373

qwen2.5
-7b

-instruct

direct 0.268 0.312 0.222 0.086 0.256 0.448 0.265
rag 0.214 0.288 0.282 0.102 0.220 0.448 0.259

rag(q+a) 0.294 0.432 0.360 0.228 0.366 0.550 0.372
rag(s+g) 0.368 0.504 0.452 0.196 0.398 0.652 0.428

deepseek
-r1-0528

-qwen3-8b

direct 0.272 0.280 0.250 0.080 0.220 0.436 0.256
rag 0.210 0.280 0.286 0.106 0.204 0.464 0.258

rag(q+a) 0.292 0.392 0.392 0.258 0.358 0.538 0.372
rag(s+g) 0.506 0.544 0.462 0.210 0.386 0.704 0.469

qwen3-8b

direct 0.308 0.392 0.254 0.088 0.268 0.500 0.302
rag 0.212 0.240 0.322 0.116 0.184 0.502 0.263

rag(q+a) 0.288 0.416 0.418 0.270 0.382 0.604 0.396
rag(s+g) 0.422 0.456 0.452 0.186 0.286 0.672 0.412

chatglm
-9b-chat

direct 0.252 0.336 0.230 0.120 0.284 0.480 0.284
rag 0.152 0.248 0.244 0.094 0.144 0.404 0.214

rag(q+a) 0.166 0.336 0.346 0.186 0.344 0.516 0.316
rag(s+g) 0.394 0.504 0.398 0.204 0.316 0.604 0.403

llama-3.1
-8b

-instruct

direct 0.158 0.328 0.230 0.076 0.300 0.428 0.253
rag 0.152 0.224 0.244 0.080 0.216 0.380 0.216

rag(q+a) 0.200 0.312 0.336 0.186 0.336 0.470 0.307
rag(s+g) 0.442 0.608 0.478 0.248 0.550 0.546 0.479

or an oracle prompt in generation? In other words, which gaps can be compensated for and which
are difficult to compensate for?

Competitive Relationship Between the Benefits of oracle prompt in generation and oracle re-
trieval After excluding other optimization items from the RAG system, the final choice is to reach
oracle retrieval or oracle prompt in generation. In that case, the only factor to consider here is the
number of retrieval-related documents. We compared the benefits of the two optimization directions
based on the number of retrieved relevant documents. We compared the performance gaps of the
two directions on the six datasets: if the gap difference is more than 2%, the better one gets 1 point,
and the worse one gets 0 points; if the gap difference is less than 2%, it is a tie, and each gets 0.5
points. This is used to describe the performance of the better and worse directions under different
numbers of documents docnum. As shown in the Figure 2,

It can be seen from the figure that the intersection points corresponding to the number of retrieved
documents for the two optimization upper bounds of different models are all below 10. This indicates
that when we retrieve a sufficient number of texts, the benefits of oracle retrieval are no longer
advantageous compared with oracle prompt in generation. At this point, the system has fallen into a
bottleneck, and the model should focus more on the oracle prompt in generation.
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Figure 2: Relationship Between Win-Loss Scores of Performance Upper Bounds (from Two Opti-
mization Methods) and the Number of Retrieved Documents Across Different Models.

4 FURTHER ANALYSIS

4.1 PERFORMANCE GAP CAUSED BY THE QUALITY OF RETRIEVED DOCUMENT CONTENT

Reasons for the Limited Improvement from oracle retrieval. We want to know whether our
queries can always recall high-quality documents. Therefore, we count the proportion of dataset
samples that can recall different numbers of valid documents (herein defined as documents contain-
ing answers) in different datasets. We set six ranges for the proportion of documents containing
answers among the 20 retrieved documents triggered by a dataset sample, which are 0 (0%), 1 (5%),
2 (10%), 3-5 (15%-25%), 6-10 (30%-50%), and 11-20 (55%-100%). As shown in the Table 2, we
can clearly see that the queries generated by some samples in certain datasets cannot find any usable
knowledge documents at all. This indicates that the knowledge base fails to function to a certain
extent, which is understandable in fact, because we cannot guarantee that the knowledge base can
always meet complex queries. Therefore, even if we optimize the quality of retrieved documents in
any way, the potential for improvement is very limited.

Table 2: The proportional distribution of each data entry across different datasets, categorized by
the number of answers contained in its retrieved documents

Dataset
Percent 0

(0%)
1

(5%)
2

(10%)
3∼5

(15∼25%)
6∼10

(30∼50%)
11∼20

(55∼100%)

2wiki 0.434 0.156 0.08 0.12 0.104 0.106
Bamboogle 0.344 0.12 0.056 0.12 0.128 0.232
Hotpotqa 0.22 0.15 0.102 0.134 0.164 0.23
Musique 0.25 0.16 0.088 0.174 0.174 0.154

Nq 0.204 0.146 0.048 0.158 0.166 0.278
Triviaqa 0.692 0.078 0.042 0.056 0.042 0.09

Changes in Retrieved Documents. We separately calculated the proportion of newly retrieved
documents across each dataset before and after reach oracle retrieval, and attempted to identify
the relationship between this proportion and the performance improvement achieved by the model
on each dataset (also measured before and after optimization). Results from multiple retrievers in
the Figure 3 indicate that a higher proportion of newly retrieved documents corresponds to greater

6
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performance improvement. This confirms that the new documents obtained by adjusting the input
query—compared to the old documents they replace—indeed contribute to enhancing model perfor-
mance.

Relationship with the Number of Retrieved Documents. We actually set five standards for the
number of retrieved documents (1, 2, 5, 10, and 20) to perform retrieval and return the accuracy,
and counted the specific performance of the six models using retrieved documents before and after
optimization. If we only focus on the performance gap caused by retrieved documents before and
after optimization, the results shown in Figure 4 c indicate that a larger number of documents cannot
deterministically compensate for the performance gap caused by the oracle retrieval. In other words,
the performance gap here is independent of the number of documents. Therefore, the attempt to
improve performance by increasing the number of documents is subject to more restrictions, and
extremely long context also poses a challenge to the model’s ability to understand long texts. It is
worth mentioning that Figures 4 a and b show that long texts themselves cannot bring consistently
better results.
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Figure 3: Average performance improvement before and after retrieved document optimization (top)
and proportion of new retrieved documents before and after optimization (bottom).
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Figure 4: Accuracy of the model as a function of the number of retrieved texts before (a) and after
(b) retrieved document optimization, and changes in their gap (c).

Relationship with Retrievers. For the sake of rigor, we tested the results of two other retrievers
on the Qwen2.5-7B-Instruct and Qwen3-8B models, and also present the relationship between the
performance improvement difference (after optimization) and the number of retrieved documents
under the influence of different retrievers. As shown in the Figure 5, it can be found that after re-
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placing the retriever, the number of retrieved documents still cannot compensate for the performance
gap caused by this optimization. However, it is worth noting that replacing with a more excellent
retriever can significantly reduce this performance gap. This indicates that if our retriever is more
excellent, the quality of retrieved documents is more likely to be guaranteed, and thus the benefit of
oracle retrieval to improve the quality of retrieved documents will be further reduced.
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Figure 5: Changes in the gap between different retrievers before and after retrieved document opti-
mization, as a function of the number of retrieved texts.

4.2 PERFORMANCE GAP CAUSED BY THE QUALITY OF RETRIEVED DOCUMENT
UTILIZATION METHODS

Relationship with the Number of Retrieved Documents. We counted the improvement level of the
simulated retrieved document utilization method under different numbers of documents doc num.
It can be clearly seen from Figures 6 b and c that as the number of retrieved documents increases,
the gap between before and after optimization becomes larger. This indicates that if oracle prompt
in generation can be used, we can obtain more and more improvements by expanding the number
of retrieved documents, although the degree of improvement gradually decreases. At the same time,
such results indicate that blindly concatenating retrieved document content to help the large language
model answer questions is far less accurate than extracting the most useful part. This also indirectly
reflects that the large language model will be interfered by more irrelevant or incorrect information
in the retrieved documents, leading to incorrect answers.
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Figure 6: Accuracy of the model as a function of the number of retrieved texts before (a) and after
(b) retrieved text utilization methods optimization, and changes in their gap (c).

Stability of the Upper Bound of Document Utilization-Guided Generation. Here, we consider
the benefits brought by the upper bound of document utilization-guided generation and how much
this upper bound will decrease if additional constraints are added. For example, when we require the
model to use two documents simultaneously to be considered as answering correctly, we calculate
how much the performance decreases compared with the case where using one document is con-
sidered correct. In the Table 3,we counted the results of the Qwen2.5-7B-Instruct and Qwen3-8B
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models under this scenario: This indicates that a large part of the results obtained from the retrieved

Table 3: Variation in document utilization performance upper bounds of two models under strict
constraints

Model
Dataset 2wiki Bamboogle Hotpotqa Musique Nq Triviaqa

qwen2.5-7b
-instruct

0.232
(-0.136)

0.416
(-0.088)

0.274
(-0.178)

0.116
(-0.08)

0.314
(-0.084)

0.54
(-0.112)

qwen3-8b 0.262
(-0.16)

0.368
(-0.088)

0.284
(-0.168)

0.114
(-0.072)

0.218
(-0.068)

0.546
(-0.126)

documents comes from a very specific document. Therefore, to reach the upper bound of utilization
method optimization, we must accurately identify the most useful document. Similarly, based on
the previous conclusions, we can also understand that although more retrieved documents increase
the probability of utilizing useful documents, they also pose a challenge to the ability to find useful
documents.

Relationship with Retrievers. Similarly, we analyzed the relationship between the performance
gap of the RAG system (before and after optimizing the document utilization method) and the use of
different retrievers on the Qwen2.5-7B-Instruct and Qwen3-8B models. As shown in the Figure 7,
it can be seen that regardless of which retriever is used, their performance improvement gaps are
almost the same. This indicates that the retriever does not significantly affect the performance gap
caused by the model’s retrieved document utilization method. In fact, from the previous conclusions,
we can infer that a more excellent retriever can bring better retrieved documents, but the quality of
document utilization is irrelevant to the quality of retrieved documents. In other words, even for
low-quality retrieved documents, a sufficiently good utilization method can bring stable performance
benefits.
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Figure 7: Changes in the gap between different retrievers before and after retrieved text utilization
methods optimization, as a function of the number of retrieved texts.

5 CONCLUSIONS

In this work, we discussed whether the classic RAG should focus on the excellent performance of
retrieved texts in terms of metrics or on how the model utilizes the documents obtained through
retrieval. We drew an empirical conclusion: the bottleneck of the retrieval-augmented generation
system lies in the failure to enable the model to make better use of the documents obtained through
retrieval for generation. Therefore, if future work can further optimize the alignment between the
long texts obtained through retrieval and the documents required for large language model question-
answering, and make the model’s utilization of retrieved documents more reasonable, it will be
expected to break through the bottleneck of existing retrieval-augmented generation systems.
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A RELATED WORKS

A.1 RETRIEVER

The earliest retrievers were dominated by sparse vector retrieval. As a word-level retrieval paradigm,
it primarily employs TF-IDF to rank documents according to their relevance. Among them, the
BM25 retriever (Robertson et al., 2009) is the most representative and remains a strong benchmark
for many modern retrieval systems to this day. Its advantage lies in its effective keyword matching,
which played a pivotal role in early-stage retrieval tasks.

Dense vector retrieval is a more modern information retrieval method that embeds queries and docu-
ments into a continuous vector space. Such retrievers are often transformer-based models (Vaswani
et al., 2017) trained on large amounts of data and directly used as embedding models for retrieval
(e.g., BERT (Devlin et al., 2019)). They adopt a dual-encoding architecture, encoding queries and
documents separately, and achieve efficient retrieval based on vector similarity calculation. Com-
pared with sparse vector retrieval, dense vector retrieval can better capture semantic relationships,
even for sources in different languages. Moreover, with the improvement of model performance,
the capabilities of retrievers have also been enhanced, leading to the emergence of more powerful
retrievers such as Contriever (Izacard et al.) and BGE-M3 (Chen et al., 2024).

Hybrid retrieval combines sparse vector retrieval and dense vector retrieval, and is an effective
method that can focus on both the central theme of text segments and global features. Feng et al.
(2024) have proposed first defining the knowledge domain required for a query as a fixed profes-
sional domain, and then using dense retrieval within this domain to recall supplementary informa-
tion. This retrieval method not only ensures that the retrieved content is relevant to the domain but
also guarantees that the retrieved documents are close to the semantics of the query.

A.2 GENERATION MODEL

The origin of existing generation models can be attributed to the establishment of the transformer
architecture in the early days. The pioneering attention mechanism has changed the structural
paradigm of all subsequent generation models. GPT-2 (Radford et al., 2019) is regarded as the
starting point of early generative pre-trained models. Later, this series of models underwent pre-
training and fine-tuning with larger datasets and more parameters, leading to the release of the
closed-source GPT-3 model (Brown et al., 2020). Such closed-source models can achieve quite
excellent performance on downstream tasks without additional training, which also promotes the
further development of models towards ultra-large-scale language models.

In recent years, open-source large language models have achieved rapid progress both in quantity
and performance, including the well-known Llama (Touvron et al., 2023a;b; Dubey et al., 2024),
Qwen (Bai et al., 2023; Team, 2024), and GLM (Du et al., 2022) series. These models have achieved
quite outstanding performance in knowledge question-answering, instruction following, mathemati-
cal capabilities, and code writing. Among them, the DeepSeek-R1 model (Liu et al., 2024), as a rea-
soning model, has achieved performance comparable to that of the then most powerful closed-source
GPT-4 (Achiam et al., 2023) series through training methods based on reinforcement learning. This
further reveals the importance of reinforcement learning in the training of large language generation
models, leading to the emergence of a large number of reasoning models that output intermediate
thinking processes and possess quite strong reasoning capabilities.

Silver & Sutton (2025) have shown that the existing training data has approached the boundary
of human knowledge. Therefore, the focus of current model training has shifted from large-scale
pre-training and fine-tuning to methods such as reinforcement learning and distillation, and the
scale expansion of generation models has gradually ceased. These models meet the needs of daily
development and lay the foundation for the construction of various LLM systems.

A.3 RETRIEVAL-AUGMENTED GENERATION SYSTEM

A Retrieval-Augmented Generation system is a hybrid architecture that includes two key compo-
nents: a retrieval system and a generation system. RAG aims to address the respective limitations of
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retrieval systems and generation systems. Retrieval systems lack the ability to integrate documents
for accurate and organized description, while generation systems often produce inaccurate results.

Early attempts by researchers can be traced back to studies such as DrQA (Chen et al., 2017), which
used retrieval technology to obtain relevant documents for question-answering tasks, but the role
of the generation model was negligible. It was not until studies like REALM (Moniz et al., 2024)
proposed the alignment of retrieval and generation components that the basic paradigm of RAG was
basically established.

Subsequent researchers have carried out a great deal of optimization work on RAG: in terms of per-
formance, optimization measures include decomposing retrieval queries (Song & Zheng, 2024) to
make retrieved documents more accurate, re-ranking (Yu et al., 2024), filtering (Yan et al., 2024),
and screening the retrieved documents for model training, and optimizing the reasoning process
(Wang et al., 2024) of the generation model for question-answering; the combination of RAG sys-
tems with specific domain tasks (such as medical-related tasks (Wu et al., 2024)) has also achieved
considerable performance improvement; at the same time, the RAG field can be extended to multi-
modal information (Alayrac et al., 2022), becoming a key direction for optimizing the multi-modal
question-answering capabilities of models. Nowadays, Deep Research (Zheng et al., 2025), as a
more advanced system based on the RAG system, can handle more complex and challenging appli-
cation scenarios.

B USE OF LLMS

We utilized a variety of large language models (LLMs) to assist in polishing our paper and correcting
flaws, with the goal of presenting readers with a more idiomatic English academic manuscript. To
achieve this, we conducted a brief comparison of different LLMs and the use of various prompts.
Additionally, when handling the extensive table content in the appendix, we adopted LaTeX outputs
generated by LLMs efficiently, rather than performing repetitive manual operations.

C SUPPLEMENTARY EXPERIMENTAL MATERIALS

C.1 PROMPT TEMPLATES USED FOR THE MODEL

1. Direct Inference

Please answer the following question. You should think step
by step to solve it.
Provide your final answer in the format \boxed{YOUR_ANSWER}.
Question:
{question}

2. RAG

Please answer the following question. You should think step
by step to solve it.
You are a knowledgeable assistant that uses the provided
documents to answer the user’s question.
Question:
{question}
Documents:
{documents}

C.2 APPROXIMATE RELATIONSHIP BETWEEN THE NUMBER OF RETRIEVED DOCUMENTS
AND THEIR AVERAGE TOKEN CONSUMPTION

This section presents the number of tokens that the model needs to process, corresponding to differ-
ent quantities of retrieved documents. In our experiments, the maximum length of each document is
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uniformly set to 30k tokens—this value falls within the context length range supported by all partic-
ipating models. As shown in the table 4 5 below, 30k tokens is a reasonable setting that exceeds the
average context length level.

Table 4: Models and their corresponding maximum context lengths

Model Max len
deepseek-r1-distill-qwen-7b 131072

qwen2.5-7b-instruct 32768
deepseek-r1-0528-qwen3-8b 131072

qwen3-8b 40960
chatglm-9b-chat 131072

llama-3.1-8b-instruct 131072

Table 5: Token consumption counts corresponding to each dataset

Dataset
Doc num 1 2 5 10 20

2wiki 841 1757 4488 9132 18576
Bamboogle 1266 2684 6490 12376 25516
Hotpotqa 1378 2690 6612 13251 26573
Musique 1309 2554 6540 13188 25867

Nq 1165 2317 6111 12138 24303
Triviaqa 1381 2699 6467 13198 26334
Average 1233 2450 6118 12213 24528

C.3 ALL COMPLETE EXPERIMENTAL RESULTS

This section documents all experimental results of our model’s inference accuracy. Here, a doc num
of 0 indicates direct inference. Consistent with the previous context, ”rag” represents the standard
RAG method, ”rag (q+a)” denotes the simulation of reaching the upper bound mentioned in Sec-
tion 4.1, and ”rag (s+g)” denotes the simulation of reaching the upper bound described in Section 4.2.
Each table is labeled with the format ”Model,Retriever” to facilitate cross-reference and review.
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Table 6: deepseek-r1-distill-qwen-7b,bm25

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.214 0.220 0.184 0.152 0.150 0.150

rag(q+a) 0.214 0.220 0.236 0.238 0.232 0.192
rag(s+g) 0.214 0.220 0.270 0.422 0.496 0.536

bamboogle
rag 0.112 0.120 0.128 0.136 0.088 0.048

rag(q+a) 0.112 0.232 0.240 0.208 0.176 0.080
rag(s+g) 0.112 0.120 0.184 0.208 0.248 0.320

hotpotqa
rag 0.098 0.180 0.206 0.180 0.126 0.078

rag(q+a) 0.098 0.278 0.296 0.254 0.200 0.130
rag(s+g) 0.098 0.180 0.236 0.326 0.370 0.412

musique
rag 0.020 0.032 0.036 0.030 0.026 0.002

rag(q+a) 0.020 0.138 0.154 0.156 0.076 0.048
rag(s+g) 0.020 0.032 0.058 0.072 0.096 0.130

nq
rag 0.068 0.110 0.096 0.082 0.050 0.028

rag(q+a) 0.068 0.210 0.232 0.222 0.162 0.092
rag(s+g) 0.068 0.110 0.160 0.180 0.224 0.262

triviaqa
rag 0.166 0.280 0.298 0.272 0.218 0.110

rag(q+a) 0.166 0.394 0.402 0.368 0.286 0.124
rag(s+g) 0.166 0.280 0.350 0.446 0.516 0.580

Table 7: qwen2.5-7b-instruct,bm25

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.268 0.128 0.142 0.192 0.200 0.214

rag(q+a) 0.268 0.200 0.184 0.230 0.286 0.294
rag(s+g) 0.268 0.128 0.174 0.232 0.312 0.368

bamboogle
rag 0.312 0.240 0.256 0.264 0.288 0.240

rag(q+a) 0.312 0.304 0.304 0.432 0.352 0.368
rag(s+g) 0.312 0.240 0.296 0.368 0.408 0.504

hotpotqa
rag 0.222 0.236 0.228 0.278 0.282 0.220

rag(q+a) 0.222 0.310 0.330 0.346 0.360 0.358
rag(s+g) 0.222 0.236 0.288 0.362 0.410 0.452

musique
rag 0.086 0.074 0.076 0.100 0.102 0.075

rag(q+a) 0.086 0.156 0.168 0.194 0.212 0.228
rag(s+g) 0.086 0.074 0.096 0.148 0.164 0.196

nq
rag 0.256 0.158 0.172 0.198 0.220 0.172

rag(q+a) 0.256 0.270 0.294 0.304 0.366 0.34
rag(s+g) 0.256 0.158 0.212 0.298 0.354 0.398

triviaqa
rag 0.448 0.364 0.404 0.414 0.448 0.312

rag(q+a) 0.448 0.442 0.492 0.494 0.550 0.516
rag(s+g) 0.448 0.364 0.430 0.526 0.602 0.652
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Table 8: qwen2.5-7b-instruct,bm25+contriever

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.268 0.108 0.164 0.198 0.234 0.274

rag(q+a) 0.268 0.140 0.198 0.234 0.282 0.346
rag(s+g) 0.268 0.108 0.178 0.274 0.342 0.420

bamboogle
rag 0.312 0.296 0.312 0.328 0.264 0.280

rag(q+a) 0.312 0.336 0.352 0.384 0.416 0.392
rag(s+g) 0.312 0.296 0.368 0.432 0.520 0.560

hotpotqa
rag 0.222 0.188 0.224 0.242 0.254 0.282

rag(q+a) 0.222 0.258 0.298 0.342 0.328 0.356
rag(s+g) 0.222 0.188 0.252 0.324 0.370 0.416

musique
rag 0.086 0.084 0.088 0.100 0.126 0.106

rag(q+a) 0.086 0.154 0.176 0.184 0.222 0.204
rag(s+g) 0.086 0.084 0.130 0.164 0.186 0.216

nq
rag 0.256 0.208 0.220 0.226 0.236 0.206

rag(q+a) 0.256 0.306 0.340 0.368 0.362 0.372
rag(s+g) 0.256 0.208 0.270 0.346 0.390 0.422

triviaqa
rag 0.448 0.400 0.438 0.470 0.476 0.464

rag(q+a) 0.448 0.474 0.516 0.520 0.552 0.550
rag(s+g) 0.448 0.400 0.486 0.578 0.628 0.672

Table 9: qwen2.5-7b-instruct,bm25+bge

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.268 0.132 0.204 0.230 0.248 0.256

rag(q+a) 0.268 0.164 0.198 0.262 0.280 0.324
rag(s+g) 0.268 0.132 0.196 0.308 0.384 0.464

bamboogle
rag 0.312 0.256 0.288 0.320 0.304 0.288

rag(q+a) 0.312 0.296 0.368 0.320 0.304 0.368
rag(s+g) 0.312 0.256 0.344 0.416 0.528 0.592

hotpotqa
rag 0.222 0.236 0.272 0.296 0.278 0.300

rag(q+a) 0.222 0.284 0.338 0.350 0.352 0.340
rag(s+g) 0.222 0.236 0.298 0.368 0.434 0.452

musique
rag 0.086 0.084 0.126 0.124 0.120 0.136

rag(q+a) 0.086 0.184 0.198 0.226 0.210 0.214
rag(s+g) 0.086 0.084 0.144 0.188 0.198 0.228

nq
rag 0.256 0.220 0.234 0.242 0.248 0.234

rag(q+a) 0.256 0.310 0.344 0.360 0.342 0.338
rag(s+g) 0.256 0.220 0.284 0.354 0.406 0.448

triviaqa
rag 0.448 0.458 0.476 0.490 0.488 0.482

rag(q+a) 0.448 0.526 0.554 0.580 0.584 0.554
rag(s+g) 0.448 0.458 0.550 0.630 0.660 0.696

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 10: deepseek-r1-0528-qwen3-8b,bm25

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.272 0.188 0.164 0.196 0.206 0.210

rag(q+a) 0.272 0.230 0.240 0.240 0.252 0.292
rag(s+g) 0.272 0.188 0.290 0.372 0.438 0.506

bamboogle
rag 0.280 0.224 0.264 0.280 0.216 0.224

rag(q+a) 0.280 0.328 0.392 0.352 0.376 0.296
rag(s+g) 0.280 0.224 0.312 0.384 0.456 0.544

hotpotqa
rag 0.250 0.228 0.268 0.284 0.282 0.286

rag(q+a) 0.250 0.324 0.370 0.392 0.378 0.348
rag(s+g) 0.250 0.228 0.296 0.370 0.420 0.462

musique
rag 0.080 0.078 0.090 0.094 0.102 0.106

rag(q+a) 0.080 0.190 0.236 0.228 0.258 0.232
rag(s+g) 0.080 0.078 0.108 0.150 0.182 0.210

nq
rag 0.220 0.172 0.188 0.188 0.198 0.204

rag(q+a) 0.220 0.294 0.324 0.358 0.350 0.342
rag(s+g) 0.220 0.172 0.244 0.304 0.346 0.386

triviaqa
rag 0.436 0.434 0.454 0.450 0.464 0.412

rag(q+a) 0.436 0.502 0.538 0.532 0.522 0.492
rag(s+g) 0.436 0.434 0.528 0.604 0.656 0.704

Table 11: qwen3-8b,bm25

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.308 0.140 0.162 0.180 0.184 0.212

rag(q+a) 0.308 0.204 0.192 0.238 0.264 0.288
rag(s+g) 0.308 0.140 0.186 0.272 0.348 0.422

bamboogle
rag 0.392 0.160 0.224 0.232 0.240 0.240

rag(q+a) 0.392 0.320 0.344 0.400 0.416 0.392
rag(s+g) 0.392 0.160 0.248 0.344 0.400 0.456

hotpotqa
rag 0.254 0.218 0.256 0.272 0.304 0.322

rag(q+a) 0.254 0.336 0.350 0.390 0.418 0.410
rag(s+g) 0.254 0.218 0.294 0.358 0.402 0.452

musique
rag 0.088 0.066 0.058 0.100 0.104 0.116

rag(q+a) 0.088 0.178 0.194 0.222 0.256 0.270
rag(s+g) 0.088 0.066 0.092 0.134 0.158 0.186

nq
rag 0.268 0.124 0.118 0.124 0.150 0.184

rag(q+a) 0.268 0.218 0.270 0.322 0.356 0.382
rag(s+g) 0.268 0.124 0.158 0.208 0.244 0.286

triviaqa
rag 0.500 0.384 0.382 0.426 0.470 0.502

rag(q+a) 0.500 0.482 0.492 0.556 0.570 0.604
rag(s+g) 0.500 0.384 0.448 0.544 0.622 0.672
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Table 12: qwen3-8b,bm25+contriever

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.308 0.136 0.146 0.194 0.210 0.238

rag(q+a) 0.308 0.190 0.210 0.246 0.278 0.326
rag(s+g) 0.308 0.136 0.162 0.282 0.372 0.456

bamboogle
rag 0.392 0.232 0.256 0.280 0.232 0.272

rag(q+a) 0.392 0.312 0.336 0.360 0.392 0.424
rag(s+g) 0.392 0.232 0.296 0.360 0.464 0.504

hotpotqa
rag 0.254 0.216 0.234 0.262 0.292 0.288

rag(q+a) 0.254 0.302 0.350 0.378 0.386 0.400
rag(s+g) 0.254 0.216 0.254 0.330 0.392 0.448

musique
rag 0.088 0.066 0.076 0.096 0.112 0.114

rag(q+a) 0.088 0.166 0.230 0.226 0.236 0.266
rag(s+g) 0.088 0.066 0.102 0.134 0.172 0.212

nq
rag 0.268 0.172 0.204 0.224 0.238 0.252

rag(q+a) 0.268 0.312 0.346 0.392 0.408 0.408
rag(s+g) 0.268 0.172 0.234 0.278 0.324 0.354

triviaqa
rag 0.500 0.408 0.440 0.492 0.534 0.546

rag(q+a) 0.500 0.524 0.562 0.596 0.640 0.646
rag(s+g) 0.500 0.408 0.492 0.586 0.606 0.704

Table 13: qwen3-8b,bm25+bge

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.308 0.148 0.200 0.222 0.236 0.258

rag(q+a) 0.308 0.176 0.212 0.264 0.332 0.332
rag(s+g) 0.308 0.148 0.222 0.316 0.400 0.468

bamboogle
rag 0.392 0.280 0.312 0.272 0.304 0.312

rag(q+a) 0.392 0.312 0.368 0.384 0.384 0.416
rag(s+g) 0.392 0.280 0.312 0.368 0.448 0.504

hotpotqa
rag 0.254 0.244 0.250 0.304 0.330 0.320

rag(q+a) 0.254 0.320 0.344 0.364 0.380 0.390
rag(s+g) 0.254 0.244 0.298 0.384 0.432 0.468

musique
rag 0.088 0.100 0.126 0.146 0.146 0.142

rag(q+a) 0.088 0.192 0.260 0.254 0.294 0.274
rag(s+g) 0.088 0.100 0.142 0.174 0.194 0.236

nq
rag 0.268 0.200 0.234 0.230 0.252 0.270

rag(q+a) 0.268 0.336 0.370 0.386 0.394 0.406
rag(s+g) 0.268 0.200 0.248 0.304 0.346 0.392

triviaqa
rag 0.500 0.480 0.520 0.542 0.562 0.568

rag(q+a) 0.500 0.576 0.610 0.620 0.626 0.642
rag(s+g) 0.500 0.480 0.562 0.626 0.662 0.712
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Table 14: glm-9b-chat,bm25

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.252 0.076 0.100 0.114 0.152 0.128

rag(q+a) 0.252 0.110 0.118 0.136 0.150 0.166
rag(s+g) 0.252 0.076 0.108 0.204 0.286 0.394

bamboogle
rag 0.336 0.144 0.216 0.248 0.240 0.232

rag(q+a) 0.336 0.256 0.288 0.336 0.320 0.296
rag(s+g) 0.336 0.144 0.224 0.328 0.408 0.504

hotpotqa
rag 0.230 0.170 0.208 0.226 0.244 0.240

rag(q+a) 0.230 0.266 0.290 0.308 0.288 0.346
rag(s+g) 0.230 0.170 0.236 0.298 0.346 0.398

musique
rag 0.120 0.058 0.060 0.090 0.090 0.094

rag(q+a) 0.120 0.156 0.170 0.174 0.186 0.184
rag(s+g) 0.120 0.058 0.094 0.136 0.166 0.204

nq
rag 0.284 0.092 0.104 0.120 0.144 0.144

rag(q+a) 0.284 0.228 0.250 0.298 0.296 0.344
rag(s+g) 0.284 0.092 0.138 0.202 0.270 0.316

triviaqa
rag 0.480 0.298 0.346 0.392 0.404 0.402

rag(q+a) 0.480 0.410 0.448 0.476 0.514 0.516
rag(s+g) 0.480 0.298 0.386 0.458 0.538 0.604

Table 15: llama3.1-8b-instruct,bm25

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.158 0.118 0.138 0.124 0.152 0.130

rag(q+a) 0.158 0.156 0.200 0.166 0.160 0.154
rag(s+g) 0.158 0.118 0.178 0.266 0.360 0.442

bamboogle
rag 0.328 0.200 0.224 0.208 0.192 0.184

rag(q+a) 0.328 0.288 0.304 0.304 0.280 0.312
rag(s+g) 0.328 0.200 0.288 0.432 0.552 0.608

hotpotqa
rag 0.230 0.200 0.224 0.238 0.244 0.220

rag(q+a) 0.230 0.312 0.316 0.306 0.310 0.336
rag(s+g) 0.230 0.200 0.286 0.368 0.424 0.478

musique
rag 0.076 0.072 0.078 0.080 0.072 0.076

rag(q+a) 0.076 0.150 0.186 0.154 0.144 0.138
rag(s+g) 0.076 0.072 0.124 0.170 0.202 0.248

nq
rag 0.300 0.200 0.216 0.172 0.168 0.156

rag(q+a) 0.300 0.274 0.336 0.316 0.284 0.294
rag(s+g) 0.300 0.200 0.290 0.424 0.488 0.550

triviaqa
rag 0.428 0.354 0.378 0.380 0.330 0.350

rag(q+a) 0.428 0.470 0.442 0.418 0.440 0.428
rag(s+g) 0.428 0.354 0.470 0.598 0.688 0.730
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