
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RETHINKING LLM-BASED RAG FROM A DECOUPLED
PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper aims to investigate a fundamental question in LLM-based RAG
(Retrieval-augmented Generation): what is the key bottleneck limiting the per-
formance improvement of current RAG systems. This paper thereby proposes a
decoupled perspective to separately analyze the potentials in retrieval and genera-
tion stages. Specifically, we design a simple method to approximating the effects
of the oracle metric in retrieval stage and the oracle way to utilizing the retrieved
documents in generation stage in RAG. On six classic question-answering bench-
mark tasks, by comparing the performance of standard RAG and its oracle vari-
ants, we observe several valuable findings: First, even with the oracle retrieval,
the improvement they bring to RAG performance is not as significant as expected.
Second, figuring out how to enable generation models to make good use of the
retrieved documents holds greater potential for boosting RAG.

1 INTRODUCTION

Currently, Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) serves as a core paradigm
for alleviating the hallucination (Roller et al., 2021) problem of large language models (LLMs)
(Brown et al., 2020). This paradigm comprises two key steps: retrieval and generation. First, it
retrieves documents from an external knowledge base(?) that are most relevant to the query; sec-
ond, it leverages these retrieved results to enable the LLM to generate more accurate responses. To
improve the overall performance of RAG systems, researchers have explored various optimization
paths, including the introduction of vector semantic retrieval (Karpukhin et al., 2020) and hybrid
retrieval mechanisms (Sawarkar et al., 2024), re-ranking of retrieval results (Yu et al., 2024), and
integration of structured knowledge sources (such as knowledge graphs) (Edge et al., 2024) to en-
hance the accuracy of retrieval and question-answering (Borgeaud et al., 2022). While these efforts
have improved RAG performance to varying degrees, a fundamental question remains unsystemati-
cally addressed: what is the key bottleneck limiting the performance improvement of current RAG
systems—does it stem from the retrieval module or the generation module? In other words, between
the two core dimensions—”enhancing the quality of retrieved documents” in the retrieval stage and
”enabling the LLM to better utilize retrieved documents” in the generation stage—which one offers
greater potential for performance improvement and broader room for development?

To answer this question, this paper proposes a decoupled perspective to quantitatively analyze the
potentials in retrieval and generation stages. This essentially requires to measure the effects of the
oracle retrieval and the oracle way to utilize retrieved documents for prompting LLMs in RAG.
Unfortunately, it is challenging to achieve the oracle retrieval metric and the oracle way to utilize re-
trieved documents. To this end, we first develop a rigorous simulation strategy to approximate both
oracle effects via two simple simulation methods. Subsequently, we conduct systematic experiments
on six widely used knowledge-based QA benchmark datasets with six mainstream LLMs, compre-
hensively assessing the actual gains of the two optimization pathways. Finally, by comparing their
performances, we derive a valuable conclusion that making good use of the retrieved documents is
more promising than improving the retrieval metric in RAG.

The main contributions of this paper can be summarized as follows:

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We propose, for the first time, a decoupled perspective to investigate the potentials of re-
trieval and generation for RAG. This is achieved by two simple simulated methods to ap-
proximate the effects of the oracle metric in retrieval and generation stages.

• Through large-scale empirical research, we draw a key empirical conclusion: even under
the ideal condition where the quality of retrieved documents reaches an optimal level, the
marginal improvement in overall system performance remains relatively limited, and mak-
ing good use of retrieved documents is promising to improve RAG.

2 QUANTIFYING THE POTENTIAL OF RAG FROM A DECOUPLED
PERSPECTIVE

RAG includes two stages: it firstly retrieve some relevant documents from a knowledge base in
retrieval stage and then it generates the response by utilizing the retrieved documents to prompt
the generator such as LLM. Hence, the entire performance of RAG depends on the quality of the
retrieved documents and how to utilize the retrieved documents as the prompt. Generally, the higher
the quality of the retrieved documents, the better generation performance the RAG system achieves;
and a good utilization method can help the generator deal with the informative knowledge in the
retrieved documents.

2.1 DECOUPLED PERSPECTIVE

In this section, we aim to quantify the potential of RAG from a decoupled perspective. In other
words, we propose to quantify the potentials of the retrieval and generation stages, from which we
can see the bottleneck in RAG as well as future directions to optimize RAG. Specifically, we mainly
discuss two questions in both retrieval and generation stages:

• Oracle metric in retrieval stage: How to obtain the retrieved documents via the oracle
metric which leads to the best RAG performance?

• Oracle prompt in generation stage: How to design the oracle prompt based on the re-
trieved documents which leads to the best RAG performance?

knowledge 

source

retriever

List an open-source 
model proposed before 
the Llama series models.

Doc1:The Llama series models are not 
the earliest open-source models.
Doc2:Both the Llama series models 
and the Qwen series models are 
open-source models.

Doc1:The GLM series models were 
proposed earlier than the Llama 
series models.
Doc2: The Llama series models are 
not the earliest open-source 
models.

LLM

Only

query

List an open-source 
model proposed before 
the Llama series models.

The GLM series models.

Query

+answer

The results I need are 

not found in the 

provided document.

The GLM series 

models.

a

knowledge 

source

retriever

List an open-source 
model proposed before 
the Llama series models.

Doc1:The Llama series models are not 
the earliest open-source models.
Doc2:Both the Llama series models 
and the Qwen series models are 
open-source models.
Doc3:The GLM series models were 
proposed earlier than the Llama series 
models.
Doc4:The Qwen series models were 
proposed earlier than the Llama series 
models.

Doc1:The Llama series models are not 
the earliest open-source models.
Doc2:Both the Llama series models 
and the Qwen series models are open-
source models.
Doc3:The GLM series models were 
proposed earlier than the Llama series 
models.
Doc4:The Qwen series models were 
proposed earlier than the Llama series 
models.

LLM

Only

query

The Qwen series 

models.

The GLM series 

models.

b

List an open-source 
model proposed before 
the Llama series models.

Only

query

Oracle Doc: The GLM series 
models were proposed earlier 
than the Llama series models.

Figure 1: RAG with simulated oracle metric in retrieval stage and simulated oracle prompt in gen-
eration stage.

In the standard RAG paradigm, the retrieved documents are organized sequentially into a retrieved
content according to their retrieval scores and then the standard prompt in generation is the concate-
nation of the query and the retrieved content. Once we obtain the oracle retrieval metric and oracle
prompt, we calculate the performance gaps among the standard RAG, RAG with the oracle metric

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and RAG with the oracle prompt, and we can conclude that the potential of RAG lies in the retrieval
stage or utilizing the retrieved documents to prompt LLM. For example, if RAG with the oracle
metric is much worse than RAG with the oracle prompt, the potential of RAG would lie in how to
make good use of the retrieved documents for prompting instead of optimizing the retrieval model
for RAG.

Unfortunately, it is intractable to obtain the oracle metric in retrieval stage and the oracle prompt in
generation stage. Therefore, we propose two simple approximate methods to simulate the effects of
the oracle metric and the oracle prompt in the rest of this section.

2.2 SIMULATING THE EFFECT OF ORACLE METRIC IN RETRIEVAL

To reach effect of the oracle retrieval in the RAG system, we believe that under the condition that the
retriever and the retrieval knowledge base are fixed, the upper bound of retrieved content optimiza-
tion is mainly related to the retrieval query. A good query can often yield more relevant documents.
Therefore, we simulate this upper bound by merging the original query with the answer to form a
new query. Figure 1a shows our method.

Formally, for a certain question-answer pair (question, answer), the retrieverR uses the question and
answer as the query Q to retrieve relevant documents D from the knowledge base K. D includes
multiple document segments sorted by relevance: {d1, d2, ..., dtopk}. These relevant documents,
together with the question 1, are concatenated in a certain order as the prompt to the model M .
Then, the probability that the model infers the correct answer for this question-answer pair is:

Pcorrect = P (M(concat(D, question)) = answer) (1)

D = {d1, d2, ..., dtopk} = R(K, Q) (2)

Where Pcorrect denotes the probability that the model answers correctly using the retrieved docu-
ments, then ”topk” refers to the top k document segments sorted by relevance, and ”cat” denotes the
concatenation of texts. The modification we make to simulate the oracle retrieval is actually merging
the answer into the query for retrieval, i.e.:

Q = cat(question, answer) (3)

In fact, considering the actual situation, we control the probability of using the merged original query
and answer as the new query to be 80% to make the effect or this oracle retrieval more achievable.
In addition, for cases where there are multiple answers, to ensure convenience and fairness, we
uniformly select the first one in the answer list as the standard answer.

2.3 SIMULATING THE EFFECT OF ORACLE PROMPT IN GENERATION

To enable more efficient utilization of retrieved documents, we hypothesize that when a sufficient
number of retrieved documents are obtained, we often only need to use a small part of the key
information to complete the task, while the remaining document content is often redundant, invalid,
or even harmful. Therefore, we split multiple documents into independent documents and prompt
the large language model to perform question-answering separately for each document. If any one of
the documents can guide the model to answer correctly, we consider that there exists key information
in this series of documents that can complete the task. We use this method to simulate the effect of
the oracle prompt in utilizing retrieved documents.Figure 1b shows our idea. Similarly, compared
with the paradigm of the naive retrieval-augmented generation system mentioned, Q is equal to the
question, but the probability that the model infers the correct answer for this question-answer pair
is:

Pcorrect = 1−
top k∏
i=1

(1− P (M(di) = answer)) (4)

Here, Pcorrect denotes the probability that the model answers correctly using all retrieved documents,
and di represents the retrieved sub-document utilized by the model.The probability that the model

1Some LLMs may need a system prompt besides the retrieved documents and the question, we skip the
system prompt for notational simplicity.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

answers correctly using all retrieved documents in this Method is equal to 1 minus the product of
the probabilities that it answers incorrectly for each sub-document. It is easy to see from Equation 4
that, with other conditions fixed, the probability of the model answering the given question correctly
increases as the top-k value rises.

3 EXPERIMENTS AND MAIN RESULTS

3.1 EXPERIMENTAL SETTINGS

Datasets. We use six classic question-answering datasets as benchmarks. For each dataset, we only
select 500 samples from the test set (if there is no test set, we use the validation set; if the number
of samples in the set is less than 500, we use the entire dataset directly). The datasets include 2Wiki
(Ho et al., 2020), Bamboogle (Press et al., 2023), HotpotQA (Yang et al., 2018), Musique (Trivedi
et al., 2022), NQ (Kwiatkowski et al., 2019), and TriviaQA (Joshi et al., 2017).The knowledge base
we use is composed of open-source and downloadable Wikipedia data. We merge contents with the
same title and randomly select 1,500,000 pieces of data as our knowledge base, where each piece of
data includes an ID, a title, and content.

Retrievers. We mainly use the BM25 retrieval method to recall the top 20 retrieved documents. To
conduct more in-depth analysis and obtain more convincing results, we also include the results of
models using other retrievers. These retrievers include BGE-Large-EN-V1.5 (Xiao et al., 2024) and
Contriever. After BM25 retrieves 1,000 documents, we calculate the similarity between the query
and these retrieved documents, and then select the top 20 results by ranking as the final retrieved
results.

Models. The models we use include the following six open-source models: DeepSeek-R1-Distill-
Qwen-7B, DeepSeek-R1-0528-Qwen3-8B, Qwen2.5-7B-Instruct, Qwen3-8B, ChatGLM-9B-Chat,
and Llama-3.1-8B-Instruct, all of which are mainstream open-source models.

For other experimental settings, please refer to the appendix.

3.2 MAIN RESULTS

Performance Gap of RAG Before and After Optimizing Retrieved Documents Our experi-
mental results include the results of direct model inference and inference with prompts using re-
trieved documents. We set the number of retrieved documents to five standards: 1, 2, 5, 10, and 20,
and present the best results in the table 1.

It can be seen from the Table 1 that the average accuracy improvement of each model on the six
datasets when using the RAG system before and after optimization ranges from 9.1% to 13.4%.
This result indicates that there is a significant gap in the performance of the naive RAG system
when using retrieved documents before and after optimization. However, it still cannot help the
model reach a level of at least 50% accuracy in most cases, which also shows that the performance
improvement brought by this optimization is limited.

Performance Gap of RAG Before and After Optimizing the Model’s Utilization of Retrieved
Documents for Generation Our experimental results include the results of direct model inference
and inference with prompts using retrieved documents. We set the number of retrieved documents
to five standards: 1, 2, 5, 10, and 20, and present the best results in the Table 1. The experimen-
tal results show that the upper bound to be achieved this time is much higher. We calculated the
average performance improvement of each model on different datasets, which ranges from 15.0%
to 26.3%. This is a significant performance improvement, and it also indicates that even if we use
ordinary queries and obtain average-quality retrieved documents, the model can make better use of
the retrieved documents and achieve considerable improvement if we can accurately capture the key
information.

Looking back and examining the entire Table 1, an obvious conclusion can be drawn: the per-
formance gains from reach oracle retrieval are significantly less than those from oracle prompt in
generation. In that case, in a complete RAG system, which is more important—an oracle retrieval

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Experimental results of the two optimization upper bounds across six datasets and six
models. Here, ”direct” denotes direct inference, ”rag” represents the unoptimized RAG system,
”rag (q+a)” refers to the method mentioned in Section 2.2, and ”rag (s+g)” refers to the method
described in Section 2.3. The numbers in the table indicate the accuracy performance of the models
on the corresponding datasets.

Model Method Dataset
2wiki bamboogle hotpotqa musique nq triviaqa average

deepseek
-r1-distill
-qwen-7b

direct 0.214 0.112 0.098 0.020 0.068 0.166 0.113
rag 0.220 0.136 0.206 0.036 0.110 0.298 0.168

rag(q+a) 0.238 0.240 0.296 0.156 0.232 0.402 0.261
rag(s+g) 0.536 0.320 0.412 0.130 0.262 0.580 0.373

qwen2.5
-7b

-instruct

direct 0.268 0.312 0.222 0.086 0.256 0.448 0.265
rag 0.214 0.288 0.282 0.102 0.220 0.448 0.259

rag(q+a) 0.294 0.432 0.360 0.228 0.366 0.550 0.372
rag(s+g) 0.368 0.504 0.452 0.196 0.398 0.652 0.428

deepseek
-r1-0528

-qwen3-8b

direct 0.272 0.280 0.250 0.080 0.220 0.436 0.256
rag 0.210 0.280 0.286 0.106 0.204 0.464 0.258

rag(q+a) 0.292 0.392 0.392 0.258 0.358 0.538 0.372
rag(s+g) 0.506 0.544 0.462 0.210 0.386 0.704 0.469

qwen3-8b

direct 0.308 0.392 0.254 0.088 0.268 0.500 0.302
rag 0.212 0.240 0.322 0.116 0.184 0.502 0.263

rag(q+a) 0.288 0.416 0.418 0.270 0.382 0.604 0.396
rag(s+g) 0.422 0.456 0.452 0.186 0.286 0.672 0.412

chatglm
-9b-chat

direct 0.252 0.336 0.230 0.120 0.284 0.480 0.284
rag 0.152 0.248 0.244 0.094 0.144 0.404 0.214

rag(q+a) 0.166 0.336 0.346 0.186 0.344 0.516 0.316
rag(s+g) 0.394 0.504 0.398 0.204 0.316 0.604 0.403

llama-3.1
-8b

-instruct

direct 0.158 0.328 0.230 0.076 0.300 0.428 0.253
rag 0.152 0.224 0.244 0.080 0.216 0.380 0.216

rag(q+a) 0.200 0.312 0.336 0.186 0.336 0.470 0.307
rag(s+g) 0.442 0.608 0.478 0.248 0.550 0.546 0.479

or an oracle prompt in generation? In other words, which gaps can be compensated for and which
are difficult to compensate for?

Competitive Relationship Between the Benefits of oracle prompt in generation and oracle re-
trieval After excluding other optimization items from the RAG system, the final choice is to reach
oracle retrieval or oracle prompt in generation. In that case, the only factor to consider here is the
number of retrieval-related documents. We compared the benefits of the two optimization directions
based on the number of retrieved relevant documents. We compared the performance gaps of the
two directions on the six datasets: if the gap difference is more than 2%, the better one gets 1 point,
and the worse one gets 0 points; if the gap difference is less than 2%, it is a tie, and each gets 0.5
points. This is used to describe the performance of the better and worse directions under different
numbers of documents docnum. As shown in the Figure 2,

It can be seen from the figure that the intersection points corresponding to the number of retrieved
documents for the two optimization upper bounds of different models are all below 10. This indicates
that when we retrieve a sufficient number of texts, the benefits of oracle retrieval are no longer
advantageous compared with oracle prompt in generation. At this point, the system has fallen into a
bottleneck, and the model should focus more on the oracle prompt in generation.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1 2 5 10 20
num_doc

0

1

2

3

4

5

6

sc
or

e

5.5

0.5

5

1

2.5
3.5

0

6

0

6

deepseek-r1-distill-qwen-7b

rag(q+a)
rag(s+g)

1 2 5 10 20
num_doc

0

1

2

3

4

5

6

sc
or

e

6

0

5

1

3.5

2.5 2

4

1

5

qwen2.5-7b-instruct

rag(q+a)
rag(s+g)

1 2 5 10 20
num_doc

0

1

2

3

4

5

6

sc
or

e

6

0

4.5

1.5

3

3

1.5

4.5

1

5

deepseek-r1-distill-qwen3-8b

rag(q+a)
rag(s+g)

1 2 5 10 20
num_doc

0

1

2

3

4

5

6

sc
or

e

6

0

5.5

0.5

4.5

1.5

3

3
2

4

qwen3-8b

rag(q+a)
rag(s+g)

1 2 5 10 20
num_doc

0

1

2

3

4

5

6

sc
or

e

6

0

5.5

0.5

3.5

2.5 2

4

1

5

glm-9b-chat

rag(q+a)
rag(s+g)

1 2 5 10 20
num_doc

0

1

2

3

4

5

6

sc
or

e

6

0

4.5

1.5
0.5

5.5

0

6

0

6

llama3.1-8b-instruct

rag(q+a)
rag(s+g)

Figure 2: Relationship Between Win-Loss Scores of Performance Upper Bounds (from Two Opti-
mization Methods) and the Number of Retrieved Documents Across Different Models.

4 FURTHER ANALYSIS

4.1 PERFORMANCE GAP CAUSED BY THE QUALITY OF RETRIEVED DOCUMENT CONTENT

Reasons for the Limited Improvement from oracle retrieval. We want to know whether our
queries can always recall high-quality documents. Therefore, we count the proportion of dataset
samples that can recall different numbers of valid documents (herein defined as documents contain-
ing answers) in different datasets. We set six ranges for the proportion of documents containing
answers among the 20 retrieved documents triggered by a dataset sample, which are 0 (0%), 1 (5%),
2 (10%), 3-5 (15%-25%), 6-10 (30%-50%), and 11-20 (55%-100%). As shown in the Table 2, we
can clearly see that the queries generated by some samples in certain datasets cannot find any usable
knowledge documents at all. This indicates that the knowledge base fails to function to a certain
extent, which is understandable in fact, because we cannot guarantee that the knowledge base can
always meet complex queries. Therefore, even if we optimize the quality of retrieved documents in
any way, the potential for improvement is very limited.

Table 2: The proportional distribution of each data entry across different datasets, categorized by
the number of answers contained in its retrieved documents

Dataset
Percent 0

(0%)
1

(5%)
2

(10%)
3∼5

(15∼25%)
6∼10

(30∼50%)
11∼20

(55∼100%)

2wiki 0.434 0.156 0.08 0.12 0.104 0.106
Bamboogle 0.344 0.12 0.056 0.12 0.128 0.232
Hotpotqa 0.22 0.15 0.102 0.134 0.164 0.23
Musique 0.25 0.16 0.088 0.174 0.174 0.154

Nq 0.204 0.146 0.048 0.158 0.166 0.278
Triviaqa 0.692 0.078 0.042 0.056 0.042 0.09

Changes in Retrieved Documents. We separately calculated the proportion of newly retrieved
documents across each dataset before and after reach oracle retrieval, and attempted to identify
the relationship between this proportion and the performance improvement achieved by the model
on each dataset (also measured before and after optimization). Results from multiple retrievers in
the Figure 3 indicate that a higher proportion of newly retrieved documents corresponds to greater

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

performance improvement. This confirms that the new documents obtained by adjusting the input
query—compared to the old documents they replace—indeed contribute to enhancing model perfor-
mance.

Relationship with the Number of Retrieved Documents. We actually set five standards for the
number of retrieved documents (1, 2, 5, 10, and 20) to perform retrieval and return the accuracy,
and counted the specific performance of the six models using retrieved documents before and after
optimization. If we only focus on the performance gap caused by retrieved documents before and
after optimization, the results shown in Figure 4 c indicate that a larger number of documents cannot
deterministically compensate for the performance gap caused by the oracle retrieval. In other words,
the performance gap here is independent of the number of documents. Therefore, the attempt to
improve performance by increasing the number of documents is subject to more restrictions, and
extremely long context also poses a challenge to the model’s ability to understand long texts. It is
worth mentioning that Figures 4 a and b show that long texts themselves cannot bring consistently
better results.

2wiki

bamboogle
hotpotqa

musique nq
triviaqa

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

im
pr

ov
em

en
t

BM25

2wiki

bamboogle
hotpotqa

musique nq
triviaqa

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

im
pr

ov
em

en
t

BM25+bge

2wiki

bamboogle
hotpotqa

musique nq
triviaqa

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

im
pr

ov
em

en
t

BM25+contriever

2wiki

bamboogle
hotpotqa

musique nq
triviaqa

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pe
rc

en
t

BM25

2wiki

bamboogle
hotpotqa

musique nq
triviaqa

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pe
rc

en
t

BM25+bge

2wiki

bamboogle
hotpotqa

musique nq
triviaqa

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pe
rc

en
t

BM25+contriever

Figure 3: Average performance improvement before and after retrieved document optimization (top)
and proportion of new retrieved documents before and after optimization (bottom).

1 2 5 10 20
doc_num

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ac
c

a

unimproved document
deepseek-r1-distill-qwen-7b
qwen2.5-7b-instruct
deepseek-r1-distill-qwen3-8b
qwen3-8b
glm-9b-chat
llama3.1-8b-instruct

1 2 5 10 20
doc_num

0.1

0.2

0.3

0.4

0.5

0.6

ac
c

b

improved document
deepseek-r1-distill-qwen-7b
qwen2.5-7b-instruct
deepseek-r1-distill-qwen3-8b
qwen3-8b
glm-9b-chat
llama3.1-8b-instruct

1 2 5 10 20
doc_num

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

im
pr

ov
em

en
t

c

the gap
deepseek-r1-distill-qwen-7b
qwen2.5-7b-instruct
deepseek-r1-distill-qwen3-8b
qwen3-8b
glm-9b-chat
llama3.1-8b-instruct

Figure 4: Accuracy of the model as a function of the number of retrieved texts before (a) and after
(b) retrieved document optimization, and changes in their gap (c).

Relationship with Retrievers. For the sake of rigor, we tested the results of two other retrievers
on the Qwen2.5-7B-Instruct and Qwen3-8B models, and also present the relationship between the
performance improvement difference (after optimization) and the number of retrieved documents
under the influence of different retrievers. As shown in the Figure 5, it can be found that after re-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

placing the retriever, the number of retrieved documents still cannot compensate for the performance
gap caused by this optimization. However, it is worth noting that replacing with a more excellent
retriever can significantly reduce this performance gap. This indicates that if our retriever is more
excellent, the quality of retrieved documents is more likely to be guaranteed, and thus the benefit of
oracle retrieval to improve the quality of retrieved documents will be further reduced.

1 2 5 10 20
doc_num

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
im

pr
ov

em
en

t
qwen2.5-7b-instruct

qwen2.5-7b-instruct(bm25)
qwen2.5-7b-instruct(bm25+contriever)
qwen2.5-7b-instruct(bm25+bge)

1 2 5 10 20
doc_num

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

im
pr

ov
em

en
t

qwen3-8b
qwen3-8b(bm25)
qwen3-8b(bm25+contriever)
qwen3-8b(bm25+bge)

Figure 5: Changes in the gap between different retrievers before and after retrieved document opti-
mization, as a function of the number of retrieved texts.

4.2 PERFORMANCE GAP CAUSED BY THE QUALITY OF RETRIEVED DOCUMENT
UTILIZATION METHODS

Relationship with the Number of Retrieved Documents. We counted the improvement level of the
simulated retrieved document utilization method under different numbers of documents doc num.
It can be clearly seen from Figures 6 b and c that as the number of retrieved documents increases,
the gap between before and after optimization becomes larger. This indicates that if oracle prompt
in generation can be used, we can obtain more and more improvements by expanding the number
of retrieved documents, although the degree of improvement gradually decreases. At the same time,
such results indicate that blindly concatenating retrieved document content to help the large language
model answer questions is far less accurate than extracting the most useful part. This also indirectly
reflects that the large language model will be interfered by more irrelevant or incorrect information
in the retrieved documents, leading to incorrect answers.

1 2 5 10 20
doc_num

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ac
c

a

unimproved using
deepseek-r1-distill-qwen-7b
qwen2.5-7b-instruct
deepseek-r1-distill-qwen3-8b
qwen3-8b
glm-9b-chat
llama3.1-8b-instruct

1 2 5 10 20
doc_num

0.1

0.2

0.3

0.4

0.5

ac
c

b

improved using

deepseek-r1-distill-qwen-7b
qwen2.5-7b-instruct
deepseek-r1-distill-qwen3-8b
qwen3-8b
glm-9b-chat
llama3.1-8b-instruct

1 2 5 10 20
doc_num

0.00

0.05

0.10

0.15

0.20

0.25

0.30

im
pr

ov
em

en
t

c

the gap

deepseek-r1-distill-qwen-7b
qwen2.5-7b-instruct
deepseek-r1-distill-qwen3-8b
qwen3-8b
glm-9b-chat
llama3.1-8b-instruct

Figure 6: Accuracy of the model as a function of the number of retrieved texts before (a) and after
(b) retrieved text utilization methods optimization, and changes in their gap (c).

Stability of the Upper Bound of Document Utilization-Guided Generation. Here, we consider
the benefits brought by the upper bound of document utilization-guided generation and how much
this upper bound will decrease if additional constraints are added. For example, when we require the
model to use two documents simultaneously to be considered as answering correctly, we calculate
how much the performance decreases compared with the case where using one document is con-
sidered correct. In the Table 3,we counted the results of the Qwen2.5-7B-Instruct and Qwen3-8B

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

models under this scenario: This indicates that a large part of the results obtained from the retrieved

Table 3: Variation in document utilization performance upper bounds of two models under strict
constraints

Model
Dataset 2wiki Bamboogle Hotpotqa Musique Nq Triviaqa

qwen2.5-7b
-instruct

0.232
(-0.136)

0.416
(-0.088)

0.274
(-0.178)

0.116
(-0.08)

0.314
(-0.084)

0.54
(-0.112)

qwen3-8b 0.262
(-0.16)

0.368
(-0.088)

0.284
(-0.168)

0.114
(-0.072)

0.218
(-0.068)

0.546
(-0.126)

documents comes from a very specific document. Therefore, to reach the upper bound of utilization
method optimization, we must accurately identify the most useful document. Similarly, based on
the previous conclusions, we can also understand that although more retrieved documents increase
the probability of utilizing useful documents, they also pose a challenge to the ability to find useful
documents.

Relationship with Retrievers. Similarly, we analyzed the relationship between the performance
gap of the RAG system (before and after optimizing the document utilization method) and the use of
different retrievers on the Qwen2.5-7B-Instruct and Qwen3-8B models. As shown in the Figure 7,
it can be seen that regardless of which retriever is used, their performance improvement gaps are
almost the same. This indicates that the retriever does not significantly affect the performance gap
caused by the model’s retrieved document utilization method. In fact, from the previous conclusions,
we can infer that a more excellent retriever can bring better retrieved documents, but the quality of
document utilization is irrelevant to the quality of retrieved documents. In other words, even for
low-quality retrieved documents, a sufficiently good utilization method can bring stable performance
benefits.

1 2 5 10 20
doc_num

0.00

0.05

0.10

0.15

0.20

0.25

0.30

im
pr

ov
em

en
t

qwen2.5-7b-instruct
qwen2.5-7b-instruct(bm25)
qwen2.5-7b-instruct(bm25+contriever)
qwen2.5-7b-instruct(bm25+bge)

1 2 5 10 20
doc_num

0.00

0.05

0.10

0.15

0.20

0.25

0.30

im
pr

ov
em

en
t

qwen3-8b
qwen3-8b(bm25)
qwen3-8b(bm25+contriever)
qwen3-8b(bm25+bge)

Figure 7: Changes in the gap between different retrievers before and after retrieved text utilization
methods optimization, as a function of the number of retrieved texts.

5 CONCLUSIONS

In this work, we discussed whether the classic RAG should focus on the excellent performance of
retrieved texts in terms of metrics or on how the model utilizes the documents obtained through
retrieval. We drew an empirical conclusion: the bottleneck of the retrieval-augmented generation
system lies in the failure to enable the model to make better use of the documents obtained through
retrieval for generation. Therefore, if future work can further optimize the alignment between the
long texts obtained through retrieval and the documents required for large language model question-
answering, and make the model’s utilization of retrieved documents more reasonable, it will be
expected to break through the bottleneck of existing retrieval-augmented generation systems.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716–
23736, 2022.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-
domain questions. In Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 1870–1879, 2017.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
tillation. CoRR, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. Glm:
General language model pretraining with autoregressive blank infilling. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 320–335, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
CoRR, 2024.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
graph rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130, 2024.

Shangbin Feng, Weijia Shi, Yuyang Bai, Vidhisha Balachandran, Tianxing He, and Yulia Tsvetkov.
Knowledge card: Filling llms’ knowledge gaps with plug-in specialized language models. In
ICLR, 2024.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics, pp. 6609–6625, 2020.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
Transactions on Machine Learning Research.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601–1611,
2017.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pp. 6769–6781, 2020.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. CoRR, 2024.

Joel Ruben Antony Moniz, Soundarya Krishnan, Melis Ozyildirim, Prathamesh Saraf, Halim Cagri
Ates, Yuan Zhang, and Hong Yu. Realm: Reference resolution as language modeling. In Pro-
ceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue,
pp. 51–65, 2024.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 5687–5711, 2023.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle
Ott, Eric Michael Smith, Y-Lan Boureau, et al. Recipes for building an open-domain chatbot.
In Proceedings of the 16th Conference of the European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pp. 300–325, 2021.

Kunal Sawarkar, Abhilasha Mangal, and Shivam Raj Solanki. Blended rag: Improving rag (retriever-
augmented generation) accuracy with semantic search and hybrid query-based retrievers. In 2024
IEEE 7th international conference on multimedia information processing and retrieval (MIPR),
pp. 155–161. IEEE, 2024.

David Silver and Richard S Sutton. Welcome to the era of experience. Google AI, 1, 2025.

Mingyang Song and Mao Zheng. A survey of query optimization in large language models. arXiv
preprint arXiv:2412.17558, 2024.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zihao Wang, Anji Liu, Haowei Lin, Jiaqi Li, Xiaojian Ma, and Yitao Liang. Rat: Retrieval aug-
mented thoughts elicit context-aware reasoning in long-horizon generation. CoRR, 2024.

Junde Wu, Jiayuan Zhu, and Yunli Qi. Medical graph rag: Towards safe medical large language
model via graph retrieval-augmented generation. CoRR, 2024.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
Packed resources for general chinese embeddings. In Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, pp. 641–649, 2024.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling. Corrective retrieval augmented generation.
arXiv preprint arXiv:2401.15884, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, 2018.

Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan You, Chao Zhang, Mohammad Shoeybi, and
Bryan Catanzaro. Rankrag: Unifying context ranking with retrieval-augmented generation in
llms. Advances in Neural Information Processing Systems, 37:121156–121184, 2024.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
ments. arXiv preprint arXiv:2504.03160, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A RELATED WORKS

A.1 RETRIEVER

The earliest retrievers were dominated by sparse vector retrieval. As a word-level retrieval paradigm,
it primarily employs TF-IDF to rank documents according to their relevance. Among them, the
BM25 retriever (Robertson et al., 2009) is the most representative and remains a strong benchmark
for many modern retrieval systems to this day. Its advantage lies in its effective keyword matching,
which played a pivotal role in early-stage retrieval tasks.

Dense vector retrieval is a more modern information retrieval method that embeds queries and docu-
ments into a continuous vector space. Such retrievers are often transformer-based models (Vaswani
et al., 2017) trained on large amounts of data and directly used as embedding models for retrieval
(e.g., BERT (Devlin et al., 2019)). They adopt a dual-encoding architecture, encoding queries and
documents separately, and achieve efficient retrieval based on vector similarity calculation. Com-
pared with sparse vector retrieval, dense vector retrieval can better capture semantic relationships,
even for sources in different languages. Moreover, with the improvement of model performance,
the capabilities of retrievers have also been enhanced, leading to the emergence of more powerful
retrievers such as Contriever (Izacard et al.) and BGE-M3 (Chen et al., 2024).

Hybrid retrieval combines sparse vector retrieval and dense vector retrieval, and is an effective
method that can focus on both the central theme of text segments and global features. Feng et al.
(2024) have proposed first defining the knowledge domain required for a query as a fixed profes-
sional domain, and then using dense retrieval within this domain to recall supplementary informa-
tion. This retrieval method not only ensures that the retrieved content is relevant to the domain but
also guarantees that the retrieved documents are close to the semantics of the query.

A.2 GENERATION MODEL

The origin of existing generation models can be attributed to the establishment of the transformer
architecture in the early days. The pioneering attention mechanism has changed the structural
paradigm of all subsequent generation models. GPT-2 (Radford et al., 2019) is regarded as the
starting point of early generative pre-trained models. Later, this series of models underwent pre-
training and fine-tuning with larger datasets and more parameters, leading to the release of the
closed-source GPT-3 model (Brown et al., 2020). Such closed-source models can achieve quite
excellent performance on downstream tasks without additional training, which also promotes the
further development of models towards ultra-large-scale language models.

In recent years, open-source large language models have achieved rapid progress both in quantity
and performance, including the well-known Llama (Touvron et al., 2023a;b; Dubey et al., 2024),
Qwen (Bai et al., 2023; Team, 2024), and GLM (Du et al., 2022) series. These models have achieved
quite outstanding performance in knowledge question-answering, instruction following, mathemati-
cal capabilities, and code writing. Among them, the DeepSeek-R1 model (Liu et al., 2024), as a rea-
soning model, has achieved performance comparable to that of the then most powerful closed-source
GPT-4 (Achiam et al., 2023) series through training methods based on reinforcement learning. This
further reveals the importance of reinforcement learning in the training of large language generation
models, leading to the emergence of a large number of reasoning models that output intermediate
thinking processes and possess quite strong reasoning capabilities.

Silver & Sutton (2025) have shown that the existing training data has approached the boundary
of human knowledge. Therefore, the focus of current model training has shifted from large-scale
pre-training and fine-tuning to methods such as reinforcement learning and distillation, and the
scale expansion of generation models has gradually ceased. These models meet the needs of daily
development and lay the foundation for the construction of various LLM systems.

A.3 RETRIEVAL-AUGMENTED GENERATION SYSTEM

A Retrieval-Augmented Generation system is a hybrid architecture that includes two key compo-
nents: a retrieval system and a generation system. RAG aims to address the respective limitations of

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

retrieval systems and generation systems. Retrieval systems lack the ability to integrate documents
for accurate and organized description, while generation systems often produce inaccurate results.

Early attempts by researchers can be traced back to studies such as DrQA (Chen et al., 2017), which
used retrieval technology to obtain relevant documents for question-answering tasks, but the role
of the generation model was negligible. It was not until studies like REALM (Moniz et al., 2024)
proposed the alignment of retrieval and generation components that the basic paradigm of RAG was
basically established.

Subsequent researchers have carried out a great deal of optimization work on RAG: in terms of per-
formance, optimization measures include decomposing retrieval queries (Song & Zheng, 2024) to
make retrieved documents more accurate, re-ranking (Yu et al., 2024), filtering (Yan et al., 2024),
and screening the retrieved documents for model training, and optimizing the reasoning process
(Wang et al., 2024) of the generation model for question-answering; the combination of RAG sys-
tems with specific domain tasks (such as medical-related tasks (Wu et al., 2024)) has also achieved
considerable performance improvement; at the same time, the RAG field can be extended to multi-
modal information (Alayrac et al., 2022), becoming a key direction for optimizing the multi-modal
question-answering capabilities of models. Nowadays, Deep Research (Zheng et al., 2025), as a
more advanced system based on the RAG system, can handle more complex and challenging appli-
cation scenarios.

B USE OF LLMS

We utilized a variety of large language models (LLMs) to assist in polishing our paper and correcting
flaws, with the goal of presenting readers with a more idiomatic English academic manuscript. To
achieve this, we conducted a brief comparison of different LLMs and the use of various prompts.
Additionally, when handling the extensive table content in the appendix, we adopted LaTeX outputs
generated by LLMs efficiently, rather than performing repetitive manual operations.

C SUPPLEMENTARY EXPERIMENTAL MATERIALS

C.1 PROMPT TEMPLATES USED FOR THE MODEL

1. Direct Inference

Please answer the following question. You should think step
by step to solve it.
Provide your final answer in the format \boxed{YOUR_ANSWER}.
Question:
{question}

2. RAG

Please answer the following question. You should think step
by step to solve it.
You are a knowledgeable assistant that uses the provided
documents to answer the user’s question.
Question:
{question}
Documents:
{documents}

C.2 APPROXIMATE RELATIONSHIP BETWEEN THE NUMBER OF RETRIEVED DOCUMENTS
AND THEIR AVERAGE TOKEN CONSUMPTION

This section presents the number of tokens that the model needs to process, corresponding to differ-
ent quantities of retrieved documents. In our experiments, the maximum length of each document is

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

uniformly set to 30k tokens—this value falls within the context length range supported by all partic-
ipating models. As shown in the table 4 5 below, 30k tokens is a reasonable setting that exceeds the
average context length level.

Table 4: Models and their corresponding maximum context lengths

Model Max len
deepseek-r1-distill-qwen-7b 131072

qwen2.5-7b-instruct 32768
deepseek-r1-0528-qwen3-8b 131072

qwen3-8b 40960
chatglm-9b-chat 131072

llama-3.1-8b-instruct 131072

Table 5: Token consumption counts corresponding to each dataset

Dataset
Doc num 1 2 5 10 20

2wiki 841 1757 4488 9132 18576
Bamboogle 1266 2684 6490 12376 25516
Hotpotqa 1378 2690 6612 13251 26573
Musique 1309 2554 6540 13188 25867

Nq 1165 2317 6111 12138 24303
Triviaqa 1381 2699 6467 13198 26334
Average 1233 2450 6118 12213 24528

C.3 ALL COMPLETE EXPERIMENTAL RESULTS

This section documents all experimental results of our model’s inference accuracy. Here, a doc num
of 0 indicates direct inference. Consistent with the previous context, ”rag” represents the standard
RAG method, ”rag (q+a)” denotes the simulation of reaching the upper bound mentioned in Sec-
tion 4.1, and ”rag (s+g)” denotes the simulation of reaching the upper bound described in Section 4.2.
Each table is labeled with the format ”Model,Retriever” to facilitate cross-reference and review.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: deepseek-r1-distill-qwen-7b,bm25

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.214 0.220 0.184 0.152 0.150 0.150

rag(q+a) 0.214 0.220 0.236 0.238 0.232 0.192
rag(s+g) 0.214 0.220 0.270 0.422 0.496 0.536

bamboogle
rag 0.112 0.120 0.128 0.136 0.088 0.048

rag(q+a) 0.112 0.232 0.240 0.208 0.176 0.080
rag(s+g) 0.112 0.120 0.184 0.208 0.248 0.320

hotpotqa
rag 0.098 0.180 0.206 0.180 0.126 0.078

rag(q+a) 0.098 0.278 0.296 0.254 0.200 0.130
rag(s+g) 0.098 0.180 0.236 0.326 0.370 0.412

musique
rag 0.020 0.032 0.036 0.030 0.026 0.002

rag(q+a) 0.020 0.138 0.154 0.156 0.076 0.048
rag(s+g) 0.020 0.032 0.058 0.072 0.096 0.130

nq
rag 0.068 0.110 0.096 0.082 0.050 0.028

rag(q+a) 0.068 0.210 0.232 0.222 0.162 0.092
rag(s+g) 0.068 0.110 0.160 0.180 0.224 0.262

triviaqa
rag 0.166 0.280 0.298 0.272 0.218 0.110

rag(q+a) 0.166 0.394 0.402 0.368 0.286 0.124
rag(s+g) 0.166 0.280 0.350 0.446 0.516 0.580

Table 7: qwen2.5-7b-instruct,bm25

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.268 0.128 0.142 0.192 0.200 0.214

rag(q+a) 0.268 0.200 0.184 0.230 0.286 0.294
rag(s+g) 0.268 0.128 0.174 0.232 0.312 0.368

bamboogle
rag 0.312 0.240 0.256 0.264 0.288 0.240

rag(q+a) 0.312 0.304 0.304 0.432 0.352 0.368
rag(s+g) 0.312 0.240 0.296 0.368 0.408 0.504

hotpotqa
rag 0.222 0.236 0.228 0.278 0.282 0.220

rag(q+a) 0.222 0.310 0.330 0.346 0.360 0.358
rag(s+g) 0.222 0.236 0.288 0.362 0.410 0.452

musique
rag 0.086 0.074 0.076 0.100 0.102 0.075

rag(q+a) 0.086 0.156 0.168 0.194 0.212 0.228
rag(s+g) 0.086 0.074 0.096 0.148 0.164 0.196

nq
rag 0.256 0.158 0.172 0.198 0.220 0.172

rag(q+a) 0.256 0.270 0.294 0.304 0.366 0.34
rag(s+g) 0.256 0.158 0.212 0.298 0.354 0.398

triviaqa
rag 0.448 0.364 0.404 0.414 0.448 0.312

rag(q+a) 0.448 0.442 0.492 0.494 0.550 0.516
rag(s+g) 0.448 0.364 0.430 0.526 0.602 0.652

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: qwen2.5-7b-instruct,bm25+contriever

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.268 0.108 0.164 0.198 0.234 0.274

rag(q+a) 0.268 0.140 0.198 0.234 0.282 0.346
rag(s+g) 0.268 0.108 0.178 0.274 0.342 0.420

bamboogle
rag 0.312 0.296 0.312 0.328 0.264 0.280

rag(q+a) 0.312 0.336 0.352 0.384 0.416 0.392
rag(s+g) 0.312 0.296 0.368 0.432 0.520 0.560

hotpotqa
rag 0.222 0.188 0.224 0.242 0.254 0.282

rag(q+a) 0.222 0.258 0.298 0.342 0.328 0.356
rag(s+g) 0.222 0.188 0.252 0.324 0.370 0.416

musique
rag 0.086 0.084 0.088 0.100 0.126 0.106

rag(q+a) 0.086 0.154 0.176 0.184 0.222 0.204
rag(s+g) 0.086 0.084 0.130 0.164 0.186 0.216

nq
rag 0.256 0.208 0.220 0.226 0.236 0.206

rag(q+a) 0.256 0.306 0.340 0.368 0.362 0.372
rag(s+g) 0.256 0.208 0.270 0.346 0.390 0.422

triviaqa
rag 0.448 0.400 0.438 0.470 0.476 0.464

rag(q+a) 0.448 0.474 0.516 0.520 0.552 0.550
rag(s+g) 0.448 0.400 0.486 0.578 0.628 0.672

Table 9: qwen2.5-7b-instruct,bm25+bge

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.268 0.132 0.204 0.230 0.248 0.256

rag(q+a) 0.268 0.164 0.198 0.262 0.280 0.324
rag(s+g) 0.268 0.132 0.196 0.308 0.384 0.464

bamboogle
rag 0.312 0.256 0.288 0.320 0.304 0.288

rag(q+a) 0.312 0.296 0.368 0.320 0.304 0.368
rag(s+g) 0.312 0.256 0.344 0.416 0.528 0.592

hotpotqa
rag 0.222 0.236 0.272 0.296 0.278 0.300

rag(q+a) 0.222 0.284 0.338 0.350 0.352 0.340
rag(s+g) 0.222 0.236 0.298 0.368 0.434 0.452

musique
rag 0.086 0.084 0.126 0.124 0.120 0.136

rag(q+a) 0.086 0.184 0.198 0.226 0.210 0.214
rag(s+g) 0.086 0.084 0.144 0.188 0.198 0.228

nq
rag 0.256 0.220 0.234 0.242 0.248 0.234

rag(q+a) 0.256 0.310 0.344 0.360 0.342 0.338
rag(s+g) 0.256 0.220 0.284 0.354 0.406 0.448

triviaqa
rag 0.448 0.458 0.476 0.490 0.488 0.482

rag(q+a) 0.448 0.526 0.554 0.580 0.584 0.554
rag(s+g) 0.448 0.458 0.550 0.630 0.660 0.696

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 10: deepseek-r1-0528-qwen3-8b,bm25

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.272 0.188 0.164 0.196 0.206 0.210

rag(q+a) 0.272 0.230 0.240 0.240 0.252 0.292
rag(s+g) 0.272 0.188 0.290 0.372 0.438 0.506

bamboogle
rag 0.280 0.224 0.264 0.280 0.216 0.224

rag(q+a) 0.280 0.328 0.392 0.352 0.376 0.296
rag(s+g) 0.280 0.224 0.312 0.384 0.456 0.544

hotpotqa
rag 0.250 0.228 0.268 0.284 0.282 0.286

rag(q+a) 0.250 0.324 0.370 0.392 0.378 0.348
rag(s+g) 0.250 0.228 0.296 0.370 0.420 0.462

musique
rag 0.080 0.078 0.090 0.094 0.102 0.106

rag(q+a) 0.080 0.190 0.236 0.228 0.258 0.232
rag(s+g) 0.080 0.078 0.108 0.150 0.182 0.210

nq
rag 0.220 0.172 0.188 0.188 0.198 0.204

rag(q+a) 0.220 0.294 0.324 0.358 0.350 0.342
rag(s+g) 0.220 0.172 0.244 0.304 0.346 0.386

triviaqa
rag 0.436 0.434 0.454 0.450 0.464 0.412

rag(q+a) 0.436 0.502 0.538 0.532 0.522 0.492
rag(s+g) 0.436 0.434 0.528 0.604 0.656 0.704

Table 11: qwen3-8b,bm25

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.308 0.140 0.162 0.180 0.184 0.212

rag(q+a) 0.308 0.204 0.192 0.238 0.264 0.288
rag(s+g) 0.308 0.140 0.186 0.272 0.348 0.422

bamboogle
rag 0.392 0.160 0.224 0.232 0.240 0.240

rag(q+a) 0.392 0.320 0.344 0.400 0.416 0.392
rag(s+g) 0.392 0.160 0.248 0.344 0.400 0.456

hotpotqa
rag 0.254 0.218 0.256 0.272 0.304 0.322

rag(q+a) 0.254 0.336 0.350 0.390 0.418 0.410
rag(s+g) 0.254 0.218 0.294 0.358 0.402 0.452

musique
rag 0.088 0.066 0.058 0.100 0.104 0.116

rag(q+a) 0.088 0.178 0.194 0.222 0.256 0.270
rag(s+g) 0.088 0.066 0.092 0.134 0.158 0.186

nq
rag 0.268 0.124 0.118 0.124 0.150 0.184

rag(q+a) 0.268 0.218 0.270 0.322 0.356 0.382
rag(s+g) 0.268 0.124 0.158 0.208 0.244 0.286

triviaqa
rag 0.500 0.384 0.382 0.426 0.470 0.502

rag(q+a) 0.500 0.482 0.492 0.556 0.570 0.604
rag(s+g) 0.500 0.384 0.448 0.544 0.622 0.672

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 12: qwen3-8b,bm25+contriever

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.308 0.136 0.146 0.194 0.210 0.238

rag(q+a) 0.308 0.190 0.210 0.246 0.278 0.326
rag(s+g) 0.308 0.136 0.162 0.282 0.372 0.456

bamboogle
rag 0.392 0.232 0.256 0.280 0.232 0.272

rag(q+a) 0.392 0.312 0.336 0.360 0.392 0.424
rag(s+g) 0.392 0.232 0.296 0.360 0.464 0.504

hotpotqa
rag 0.254 0.216 0.234 0.262 0.292 0.288

rag(q+a) 0.254 0.302 0.350 0.378 0.386 0.400
rag(s+g) 0.254 0.216 0.254 0.330 0.392 0.448

musique
rag 0.088 0.066 0.076 0.096 0.112 0.114

rag(q+a) 0.088 0.166 0.230 0.226 0.236 0.266
rag(s+g) 0.088 0.066 0.102 0.134 0.172 0.212

nq
rag 0.268 0.172 0.204 0.224 0.238 0.252

rag(q+a) 0.268 0.312 0.346 0.392 0.408 0.408
rag(s+g) 0.268 0.172 0.234 0.278 0.324 0.354

triviaqa
rag 0.500 0.408 0.440 0.492 0.534 0.546

rag(q+a) 0.500 0.524 0.562 0.596 0.640 0.646
rag(s+g) 0.500 0.408 0.492 0.586 0.606 0.704

Table 13: qwen3-8b,bm25+bge

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.308 0.148 0.200 0.222 0.236 0.258

rag(q+a) 0.308 0.176 0.212 0.264 0.332 0.332
rag(s+g) 0.308 0.148 0.222 0.316 0.400 0.468

bamboogle
rag 0.392 0.280 0.312 0.272 0.304 0.312

rag(q+a) 0.392 0.312 0.368 0.384 0.384 0.416
rag(s+g) 0.392 0.280 0.312 0.368 0.448 0.504

hotpotqa
rag 0.254 0.244 0.250 0.304 0.330 0.320

rag(q+a) 0.254 0.320 0.344 0.364 0.380 0.390
rag(s+g) 0.254 0.244 0.298 0.384 0.432 0.468

musique
rag 0.088 0.100 0.126 0.146 0.146 0.142

rag(q+a) 0.088 0.192 0.260 0.254 0.294 0.274
rag(s+g) 0.088 0.100 0.142 0.174 0.194 0.236

nq
rag 0.268 0.200 0.234 0.230 0.252 0.270

rag(q+a) 0.268 0.336 0.370 0.386 0.394 0.406
rag(s+g) 0.268 0.200 0.248 0.304 0.346 0.392

triviaqa
rag 0.500 0.480 0.520 0.542 0.562 0.568

rag(q+a) 0.500 0.576 0.610 0.620 0.626 0.642
rag(s+g) 0.500 0.480 0.562 0.626 0.662 0.712

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 14: glm-9b-chat,bm25

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.252 0.076 0.100 0.114 0.152 0.128

rag(q+a) 0.252 0.110 0.118 0.136 0.150 0.166
rag(s+g) 0.252 0.076 0.108 0.204 0.286 0.394

bamboogle
rag 0.336 0.144 0.216 0.248 0.240 0.232

rag(q+a) 0.336 0.256 0.288 0.336 0.320 0.296
rag(s+g) 0.336 0.144 0.224 0.328 0.408 0.504

hotpotqa
rag 0.230 0.170 0.208 0.226 0.244 0.240

rag(q+a) 0.230 0.266 0.290 0.308 0.288 0.346
rag(s+g) 0.230 0.170 0.236 0.298 0.346 0.398

musique
rag 0.120 0.058 0.060 0.090 0.090 0.094

rag(q+a) 0.120 0.156 0.170 0.174 0.186 0.184
rag(s+g) 0.120 0.058 0.094 0.136 0.166 0.204

nq
rag 0.284 0.092 0.104 0.120 0.144 0.144

rag(q+a) 0.284 0.228 0.250 0.298 0.296 0.344
rag(s+g) 0.284 0.092 0.138 0.202 0.270 0.316

triviaqa
rag 0.480 0.298 0.346 0.392 0.404 0.402

rag(q+a) 0.480 0.410 0.448 0.476 0.514 0.516
rag(s+g) 0.480 0.298 0.386 0.458 0.538 0.604

Table 15: llama3.1-8b-instruct,bm25

Dataset Method num docs
0 1 2 5 10 20

2wiki
rag 0.158 0.118 0.138 0.124 0.152 0.130

rag(q+a) 0.158 0.156 0.200 0.166 0.160 0.154
rag(s+g) 0.158 0.118 0.178 0.266 0.360 0.442

bamboogle
rag 0.328 0.200 0.224 0.208 0.192 0.184

rag(q+a) 0.328 0.288 0.304 0.304 0.280 0.312
rag(s+g) 0.328 0.200 0.288 0.432 0.552 0.608

hotpotqa
rag 0.230 0.200 0.224 0.238 0.244 0.220

rag(q+a) 0.230 0.312 0.316 0.306 0.310 0.336
rag(s+g) 0.230 0.200 0.286 0.368 0.424 0.478

musique
rag 0.076 0.072 0.078 0.080 0.072 0.076

rag(q+a) 0.076 0.150 0.186 0.154 0.144 0.138
rag(s+g) 0.076 0.072 0.124 0.170 0.202 0.248

nq
rag 0.300 0.200 0.216 0.172 0.168 0.156

rag(q+a) 0.300 0.274 0.336 0.316 0.284 0.294
rag(s+g) 0.300 0.200 0.290 0.424 0.488 0.550

triviaqa
rag 0.428 0.354 0.378 0.380 0.330 0.350

rag(q+a) 0.428 0.470 0.442 0.418 0.440 0.428
rag(s+g) 0.428 0.354 0.470 0.598 0.688 0.730

20


	Introduction
	Quantifying the Potential of RAG from a Decoupled Perspective
	Decoupled Perspective
	Simulating the Effect of Oracle Metric in Retrieval
	Simulating the Effect of Oracle Prompt in Generation

	Experiments and Main Results
	Experimental Settings
	Main Results

	Further Analysis
	Performance Gap Caused by the Quality of Retrieved Document Content
	Performance Gap Caused by the Quality of Retrieved Document Utilization Methods

	Conclusions
	Related Works
	Retriever
	Generation Model
	Retrieval-Augmented Generation System

	Use of LLMs
	Supplementary Experimental Materials
	Prompt Templates Used for the Model
	Approximate Relationship Between the Number of Retrieved Documents and Their Average Token Consumption
	All Complete Experimental Results


