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Abstract

Neural fields (NeFs) have recently emerged as a state-of-the-art method for en-1

coding spatio-temporal signals of various modalities. Despite the success of NeFs2

in reconstructing individual signals, their use as representations in downstream3

tasks, such as classification or segmentation, is hindered by the complexity of the4

parameter space and its underlying symmetries, in addition to the lack of powerful5

and scalable conditioning mechanisms. In this work, we draw inspiration from the6

principles of connectionism to design a new architecture based on MLPs, which7

we term NeoMLP. We start from an MLP, viewed as a graph, and transform it8

from a multi-partite graph to a complete graph of input, hidden, and output nodes,9

equipped with high-dimensional features. We perform message passing on this10

graph and employ weight-sharing via self-attention among all the nodes. NeoMLP11

has a built-in mechanism for conditioning through the hidden and output nodes,12

which function as a set of latent codes, and as such, NeoMLP can be used straight-13

forwardly as a conditional neural field. We demonstrate the effectiveness of our14

method by fitting high-resolution signals, including multi-modal audio-visual data.15

Furthermore, we fit datasets of neural representations, by learning instance-specific16

sets of latent codes using a single backbone architecture, and then use them for17

downstream tasks, outperforming recent state-of-the-art methods.18

1 Introduction19

The omnipresence of neural networks in the last decade has recently given rise to neural fields20

(NeFs) (cf. Xie et al. [46]) as a powerful and scalable method to encode continuous signals of various21

modalities. These range from shapes [29], scenes [24], and images, [40], to physical fields [17], CT22

scans [27, 8], and partial differential equations [48, 16]. Consequently, the popularity of NeFs has23

spurred interest in neural representations, i.e. using NeFs as representations for downstream tasks.24

Existing neural representations, however, suffer from notable drawbacks. Representations based on25

unconditional neural fields, i.e. independent multi-layer perceptrons (MLPs) fitted on each signal,26

are subject to parameter symmetries [11], which lead to extremely poor performance in downstream27

tasks if left unattended [25]. Many recent works [25, 55, 18, 21, 28] have proposed architectures that28

respect the underlying symmetries; the performance, however, leaves much to be desired. Another29

line of works [29, 9] has proposed conditional neural fields with a single latent code per signal that30

modulates the activations of a shared MLP through concatenation, FiLM [30], or hypernetworks [10],31

while, recently, other works [35, 45] have proposed set-latent conditional neural fields—conditional32

neural fields with a set of latent codes—that condition the signal through attention [44]. Whilst33

the study of Rebain et al. [33] showed that set-latent neural fields outperform single latent code34

methods as conditioning mechanisms, existing set-latent neural fields are based on cross-attention,35

which limits their scalability and expressivity: coordinates are only used as queries in attention, and36

cross-attention is limited to a single layer.37
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We argue that many of these drawbacks stem from the lack of a unified native architecture that38

integrates the necessary properties of neural representations and eliminates the shortcomings of39

current approaches. To address these concerns, we draw inspiration from connectionism and the40

long history of MLPs to design a new architecture that functions as a standard machine learning41

model—akin to an MLP—as well as a conditional neural field. The paradigm of neural networks,42

from the early days of Perceptron [23], to MLPs with hidden neurons trained with backpropagation43

[34], to modern transformers [44], shares the connectionist principle: cognitive processes can be44

described by interconnected networks of simple and often uniform units.45

This principle is lacking from current conditional neural field architectures, since conditioning is46

added to the network as an ad-hoc mechanism. In contrast, motivated by this principle, we take a47

closer look at MLPs; more specifically, we look at MLPs as a graph— similar to a few recent works48

[18, 21, 26]— and design a novel architecture that operates on this graph using message passing. First,49

we convert the graph from a multi-partite graph to a fully-connected graph with self-edges. Instead of50

using edge-specific weights, we employ weight-sharing via self-attention among all the nodes. We51

initialize the hidden and output nodes with noise and optimize their values with backpropagation.52

Finally, we use high-dimensional features for all nodes to make self-attention and the network as a53

whole more scalable.54

We make the following contributions. First, we propose a new architecture, which we term NeoMLP,55

by viewing MLPs as a graph, and convert this graph to a complete graph of input, hidden, and56

output nodes with high-dimensional features. We employ message passing on that graph through57

self-attention among the input, hidden, and output nodes. The hidden and output nodes can be used58

as a learnable set of latent codes, and thus, our method can function as a conditional neural field.59

We introduce new neural representations that use sets of latent codes for each signal, which we60

term ν-reps, as well as datasets of neural representations, which we term ν-sets. We fit datasets of61

signals using a single backbone architecture, and then use the latent codes for downstream tasks,62

outperforming recent state-of-the-art methods. We also demonstrate the effectiveness of our method63

by fitting high-resolution audio and video signals, as well as multi-modal audio-visual data.64

1.1 Background on Neural Fields65

Neural fields (NeFs), often referred to as Implicit Neural Representations (INRs), are a class of neural66

networks that parameterize fields using neural networks (cf. Xie et al. [46]). In their simplest form,67

they are MLPs that take as input a single coordinate (e.g. an x− y coordinate) and output the field68

value for that coordinate (e.g. an RGB value). By feeding batches of coordinates to the network, and69

training to reconstruct the target values with backpropagation, the neural field learns to encode the70

target signal, without being bound to a specific resolution.71

Conditional neural fields introduce a conditioning mechanism to neural fields through latent variables,72

often referred to as latent codes. This conditioning mechanism can be used to encode instance-specific73

information (e.g. encode a single image) and disentangle it from the backbone architecture, which74

now carries dataset-wide information.75

2 NeoMLP76

2.1 From MLP to NeoMLP77

We begin the exposition of our method with MLPs, since our architecture is influenced by MLPs78

and builds on them. Without loss of generality, a multi-layer perceptron takes as input a set of scalar79

variables {xi}Ii=1, xi ∈ R, coalesced into a single high-dimensional array x ∈ RI . Through a series80

of non-linear transformations, the input array is progressively transformed into intermediate (hidden)81

representations, with the final transformation leading to the output array y ∈ RO.82

Akin to other recent works [18, 22, 26], we look at an MLP as a graph; an MLP is an L+ 1-partite83

graph, where L is the number of layers. The nodes represent the input, hidden, and output neurons,84

and have scalar features that correspond to individual inputs, the hidden features at each layer, and85

the individual outputs, respectively. We perform message passing on that graph, after making it86

more amenable for learning. First, we convert the connectivity graph from an L+ 1-partite graph87

to a fully-connected graph with self-edges. Since the forward pass now includes message passing88

from all nodes to all nodes at each step, we create learnable parameters for the initial values of the89
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Figure 1: The connectivity graphs of MLP and NeoMLP. NeoMLP performs message passing on the
MLP graph. Going from MLP to NeoMLP, we use a fully connected graph and high-dimensional
node features. In NeoMLP, the traditional notion of layers of neurons, as well as the asynchronous
layer-wise propagation, cease to exist. Instead, we use synchronous message passing with weight-
sharing via self-attention among all the nodes. NeoMLP has three types of nodes: input, hidden, and
output nodes. The input is fed to NeoMLP through the input nodes, while the output nodes capture
the output of the network.

hidden and output node features. We initialize them with Gaussian noise, and optimize their values90

with backpropagation, simultaneously with the network parameters. Next, we observe that having91

dedicated edge-specific weights for all node pairs would result in an intractable spatial complexity.92

As such, in order to reduce the memory footprint, we follow the standard practice of graph neural93

networks and Transformers [44], and employ weight-sharing between the nodes, specifically via94

self-attention. In other words, the weights for each node pair are computed as a function of the95

incoming and outgoing node features, in conjunction with weights that are shared across nodes. As a96

by-product of the self-attention mechanism, which is permutation invariant, we use node-specific97

embeddings that allow us to differentiate between different nodes. Finally, instead of having scalar98

node features, we increase the dimensionality of node features, which makes self-attention more99

scalable and expressive.100

We show the connectivity graph of NeoMLP and its conversion from a standard MLP in Figure 1. We101

also show the equations of the forward pass for a single layer of an MLP and a simplified version of102

NeoMLP (without softmax normalization, scaling, or multi-head attention) in Equation (1).103
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We note that throughout this work, we retain the nomenclature of input, hidden, and output nodes,104

but repurpose them for NeoMLP. More specifically, these nodes refer to the connectivity graph105

of NeoMLP, i.e. the graph on which we perform message passing, shown in Figure 1, and not its106

computational graph, which would include layers of all the nodes. The input is fed to NeoMLP107

through the input nodes before any information propagation, while the output nodes are the ones that108

will capture the output of the network, after a number of message passing layers. Every other node109

that is not used for input or output is a hidden node. The number of hidden nodes in NeoMLP does110

not need to correspond one-to-one to the MLP hidden nodes.111

2.2 NeoMLP Architecture112

After establishing the connection with MLPs, we now discuss the architecture of our method in113

detail. The inputs comprise a set of scalar variables {xi}Ii=1, xi ∈ R. We employ random Fourier114

features [42] as a non-learnable method to project each scalar input (each dimension separately) to115

a high-dimensional space RDRFF . This is followed by a linear layer that projects it to RD. We then116

add learnable positional embeddings to the inputs. These embeddings are required for the model to117

differentiate between input variables, since self-attention is a permutation invariant operation. We use118

similar learnable embeddings for each scalar output dimension (referred to as output embeddings), as119

well as H learnable embeddings for each hidden node (referred to as hidden embeddings), where H120
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Figure 2: The architecture of NeoMLP. We pass each input dimension through an RFF layer followed
by a linear layer, and then add individual input embeddings to each input. The transformed inputs,
alongside the embeddings for the hidden and output nodes, comprise the inputs to NeoMLP. NeoMLP
has L layers of residual self-attention and non-linear transformations. We capture the output that
corresponds to the output nodes and pass it through a linear layer to get the final output of the network.

is chosen as a hyperparameter. We concatenate the transformed inputs with the hidden and output121

embeddings along the node (token) dimension, before feeding them to NeoMLP. We denote the122

concatenated tokens as T(0) ∈ R(I+H+O)×D, where O is the number of output dimensions. The123

input, hidden, and output embeddings are initialized with Gaussian noise. We use a variance σ2
i for the124

input embeddings and σ2
o for the hidden and output embeddings; both are chosen as hyperparameters.125

Each NeoMLP layer comprises a multi-head self-attention layer among the tokens, and a feed-forward126

network that non-linearly transforms each token independently. The output of each layer consists127

of the transformed tokens T(l) ∈ R(I+H+O)×D. We use pre-LN transformer blocks [47], but omit128

LayerNorm [1], since we observed it does not lead to better performance or faster convergence. This129

also makes our method conceptually simpler. Thus, a NeoMLP layer is defined as follows:130

T̃(l) = T(l−1) + SelfAttention
(
T(l−1)

)
(2)

T(l) = T̃(l) + FeedForwardNetwork
(
T̃(l)

)
(3)

We explore different variants of self-attention and find that linear attention [14, 39] performs slightly131

better and results in a faster model, while simultaneously requiring fewer parameters. Specifically,132

we use the version of Shen et al. [39] from a publicly available implementation of linear attention1.133

After L NeoMLP layers, we only keep the final tokens that correspond to the output embeddings, and134

pass them through a linear layer that projects them back to scalars. We then concatenate all outputs135

together, which gives us the final output array y ∈ RO. The full pipeline of our method is shown in136

Figure 2, while the forward pass is mathematically described as follows:137

ii = Linear(RFF(xi)) + InputEmbedding(i), i ∈ {1, . . . , I}, ii ∈ RD (4)

hj = HiddenEmbedding(j), j ∈ {1, . . . ,H}, hj ∈ RD (5)

ok = OutputEmbedding(k), k ∈ {1, . . . , O}, ok ∈ RO×D (6)

T(0) =
[
{ii}Ii=1, {hj}Hj=1, {ok}Ok=1

]
, T(0) ∈ R(I+H+O)×D (7)

T(l) = NeoMLPLayer
(
T(l−1)

)
, l ∈ {1, . . . , L}, T(l) ∈ R(I+H+O)×D (8)

y = Linear
(
T

(L)
I+H:I+H+O

)
, y ∈ RO×1 (9)

1https://github.com/lucidrains/linear-attention-transformer

4

https://github.com/lucidrains/linear-attention-transformer


2.3 NeoMLP as an auto-decoding conditional neural field138

One of the advantages of our method is its adaptability, since it has a built-in mechanism for139

conditioning, through the hidden and output embeddings. In the context of neural fields, this140

mechanism enables our method to function as an auto-decoding conditional neural field [29], while141

the embeddings can be used as neural representations for downstream tasks, shown schematically in142

Figure 3. We refer to these representations as ν-reps (nu-reps), and similarly, we refer to the datasets143

of neural representations obtained with our method as ν-sets (nu-sets).144

Figure 3: The hidden and output embeddings consti-
tute a set of latent codes for each signal, and can be
used as neural representations for downstream tasks.
We term these neural representations as ν-reps, and
the datasets of neural representations as ν-sets.

As a conditional neural field, the NeoMLP145

backbone encodes the neural field parame-146

ters, while the latent variables, i.e. the hid-147

den and output embeddings, encode instance-148

specific information. Each instance (e.g.149

each image in an image dataset) is repre-150

sented with its own set of latent codes Zn =151 [{
hn
j

}H

j=1
, {on

k}
O
k=1

]
. We optimize the latent152

codes for a particular signal by feeding them153

to the network as inputs alongside a coordinate154

x
(n)
p , compute the field value ŷ

(n)
p and the re-155

construction loss, and backpropagate the loss156

to Zn to take one optimization step.157

Our method operates in two distinct stages: fitting and finetuning. During fitting, our goal is to158

optimize the backbone architecture, i.e. the parameters of the model. We sample latent codes for159

all the signals of a fitting dataset and optimize them simultaneously with the backbone architecture.160

When the fitting stage is complete, after a predetermined set of epochs, we freeze the parameters of161

the backbone architecture and discard the latent codes. Then, during finetuning, given a new signal,162

we sample new latent codes for it and optimize them to minimize the reconstruction error for a number163

of epochs. We finetune the training, validation, and test sets of the downstream task from scratch,164

even if we used the training set to fit the model, in order to make the distance of representations165

between splits as small as possible.166

In both the fitting and the finetuning stage, we sample completely random points from random signals.167

This ensures i.i.d. samples, and speeds up the training of our method. During the fitting stage, we168

also sample points with replacement, as we observed a spiky behaviour in the training loss otherwise.169

We provide the detailed algorithms of the fitting and the finetuning stage in Algorithms 1 and 2 in170

Appendix A, respectively. We provide further implementation details in Appendix D.171

2.4 Using ν-reps for downstream tasks172

After finetuning neural representations, our goal is to use them in downstream tasks, e.g. to train a173

downstream model for classification or segmentation. Our ν-reps comprise a set of latent codes for174

each signal, corresponding to the finetuned hidden and output embeddings. While the space of ν-reps175

is subject to permutation symmetries, which we discuss in Appendix B, we use a simple downstream176

model that first concatenates and flattens the hidden and output embeddings in a single vector, and177

then process it with an MLP. We leave more elaborate methods that exploit the inductive biases178

present in ν-reps for future work.179

3 Experiments180

We gauge the effectiveness of our approach by fitting individual high-resolution signals, as well as181

datasets of signals. We also evaluate our method on downstream tasks on the fitted datasets. We refer182

to the appendix for more details. The code is included in the supplementary material and will be183

open-sourced to facilitate reproduction of the results.184

3.1 Fitting high-resolution signals185

First, we evaluate our method at fitting high-resolution signals. We compare our method against186

Siren [40], an MLP with sinusoidal activations, RFFNet [42], an MLP with random Fourier features187
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and ReLU activations, and SPDER [38], an MLP with sublinear damping activations combined with188

sinusoids. Our goal is to assess the effectiveness of our method in signals of various modalities,189

and especially in multimodal signals, which have been underexplored in the context of neural fields.190

Hence, we choose signals that belong to two different modalities, namely an audio clip and a video191

clip, as well as a multi-modal signal, namely video with audio.192

For audio, we follow Siren [40] and use the first 7 seconds from Bach’s cello suite No. 1 in G Major:193

Prelude. The audio clip is sampled at 44.1 kHz, resulting in 308,700 points. For video, we use the194

“bikes" video from the scikit-video Python library, available online2. This video clip lasts for 10195

seconds and is sampled at 25 fps, with a spatial resolution of 272 × 640, resulting in 43,520,000196

points. Finally, we explore multimodality using the “Big Buck Bunny" video from scikit-video.197

This clip lasts for 5.3 seconds. The audio is sampled at 48 kHz and has 6 channels. The original198

spatial resolution is 1280× 720 at 25 fps. We subsample the spatial resolution by 2, which results199

in a resolution of 640 × 360. Overall, this results in 30,667,776 points (254,976 from audio and200

30,412,800 from video).201

Training details For audio, we follow Siren [40] and scale the time domain to t ∈ [−100, 100]202

instead of [−1, 1], to account for the high sampling rate of the signal. For the audio-visual data, we203

model the signal as f : R3 → R9, i.e. we have 3 input dimensions (x, y, t), and 9 output dimensions:204

3 from video (RGB) and 6 from audio (6 audio channels). Similar to the audio clip, we also scale the205

time domain, which is now used as the time coordinate for both the audio and the video points. For the206

points corresponding to audio, we fill their xy coordinates with zeros. Furthermore, since all points207

come from either the video or the audio modality, we fill the output dimensions that correspond to208

the other modality with zeros. Finally, during training, we mask these placeholder output dimensions,209

i.e. we compute the loss for the video coordinates using only the RGB outputs, and the loss for the210

audio coordinates using only the 6-channel audio outputs.211

To ensure fairness, for every signal, NeoMLP has approximately the same number of parameters212

as the baselines. We describe the architecture details for each experiment in Appendix E. We show213

the results in Table 1, measuring the reconstruction PSNR. We observe that NeoMLP comfortably214

outperforms the baselines in all three signals. Interestingly, the performance gap is increased in the215

more difficult setup of multimodal data, which suggests the suitability of our method for multimodal216

signals. We hypothesize that this can be attributed to our method’s ability to learn faster from217

minibatches with i.i.d. elements, which is something we observed empirically during training and218

hyperparameter tuning. We visualize example frames for the video clips in Figure 4, and in Figure 6219

in Appendix G. We provide further qualitative results in Appendix G and include reconstructions of220

all signals in the supplementary material.221

Figure 4: Examples frames from fitting the “bikes" video clip. The first row shows the groundtruth,
while the second and the third row show the reconstructions obtained using NeoMLP and Siren,
respectively. We observe that NeoMLP learns to reconstruct the video with much greater fidelity.

3.2 Fitting ν-sets & Downstream tasks on ν-sets222

Next, we evaluate our method on fitting ν-sets, i.e. fitting datasets of neural representations of signals223

with NeoMLP, as well as performing downstream tasks on ν-sets. We compare our method against224

Functa [9], DWSNet [25], Neural Graphs [18], and Fit-a-NeF [28]. Functa is a conditional neural225

field that uses an MLP backbone and conditioning by bias modulation. DWSNet, Neural Graphs,226

2https://www.scikit-video.org/stable/datasets.html
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Table 1: Performance on fitting high resolution signals. We report the PSNR (higher is better).
Method Dataset

Bach Bikes Big Buck Bunny

Audio Video

RFFNet [42] 54.62 27.00 32.88 24.59
Siren [40] 51.65 37.02 31.55 24.82

SPDER [38] 48.06 33.82 28.45 20.90
NeoMLP (ours) 54.71 39.06 39.00 34.17

Table 2: Performance on fitting neural datasets and downstream classification for neural datasets.
Experiments on MNIST, CIFAR10, and ShapeNet10. Results from methods marked with † were
taken from Fit-a-NeF [28]. The | symbols that appear above and below a number denote that this
number is shared for these three methods. For classification, we run the experiments for 3 random
seeds and report the mean and standard deviation.

Method MNIST CIFAR10 ShapeNet

PSNR (↑) Accuracy (%) PSNR (↑) Accuracy (%) IoU (↑) Accuracy (%)

Functa [9] 33.07 98.73±0.05 31.90 68.30±0.00 0.434 95.23±0.13

DWSNet [25] † | 85.70±0.60 | 44.01±0.48 | 91.06±0.25

Neural Graphs [18] † 14.66 92.40±0.30 20.45 44.11±0.20 0.559 90.31±0.15

Fit-a-NeF [28] † | 96.40±0.11 | 39.83±1.70 | 82.96±0.02

NeoMLP (ours) 33.98 98.78±0.04 33.16 73.40±0.12 0.934 95.30±0.08

and Fit-a-NeF, on the other hand, are equivariant downstream models for processing datasets of227

unconditional neural fields. For these three methods, the process of creating datasets of neural228

representations corresponds to fitting separate MLPs for each signal in a dataset, a process that is229

independent of the downstream models themselves. Since these methods have the step of generating230

the neural datasets in common, we use shared datasets for these methods, provided by Fit-a-NeF.231

We consider three datasets, namely MNIST [20], CIFAR10 [19], and ShapeNet10 [4]. We evaluate232

reconstruction quality for MNIST and CIFAR10 with PSNR, and for ShapeNet with IoU. For233

CIFAR10, we follow the setup of Functa [9], and use 50 augmentations for all training and validation234

images during finetuning. For all datasets, we only use the training set as a fitting set, since this235

closely mimics the real-world conditions for auto-decoding neural fields, namely that test set data can236

appear after the backbone is frozen, and should be finetuned without changing the backbone.237

After fitting the neural datasets, we optimize the downstream model for the downstream tasks, which238

corresponds to classification for MNIST, CIFAR10, and ShapeNet10. We perform a hyperparameter239

search for NeoMLP to find the best downstream model. Specifically, we use Bayesian hyperparameter240

search from Wandb [2] to find the best performing hyperparameters for CIFAR10, and reuse these241

hyperparameters for all datasets.242

While neural datasets can easily reach excellent reconstruction quality, it is often at the expense of rep-243

resentation power. This was shown in the case of unconditional neural fields by Papa et al. [28], where244

optimal downstream performance was often achieved with medium quality reconstructions. Since our245

goal in this experiment is to optimize the performance of neural representations in downstream tasks,246

we report the reconstruction quality of the models that achieved the best downstream performance.247

We report the results in Table 2. We observe that NeoMLP comfortably outperforms DWSNet [25],248

Neural Graphs [18] and Fit-a-NeF [28], i.e. all methods that process unconditional neural fields, both249

in terms of representation quality and downstream performance. Further, these two quantities seem to250

be positively correlated for NeoMLP, in contrast to the findings of Papa et al. [28] for unconditional251

neural fields. Our method also outperforms Functa [9] on all three datasets regarding the classification252

accuracy, while maintaining an excellent reconstruction quality.253
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3.3 Ablation studies254

Importance of hyperparameters We perform a large ablation study to assess the importance of the255

latent codes, and the impact of the duration of fitting and finetuning to the quality of reconstruction256

and representation power. Specifically, we run two studies on CIFAR10; the first study monitors the257

number and the dimensionality of the latent codes, as well as the number of finetuning epochs. The258

second study monitors the number and the dimensionality of the latent codes, as well as the number259

of fitting epochs. In both studies, all other hyperparameters are fixed. We report the fitting PSNR, the260

test PSNR and the downstream accuracy. We summarize our findings in Tables 3 and 4.261

In both studies, we observe that increasing the number of latents and their dimensionality also262

increases the reconstruction quality. However, the higher number of latents seems to lead to decreased263

downstream performance. Furthermore, we notice that increasing the number of finetuning epochs264

also increases the test PSNR and accuracy. Finally, somewhat surprisingly, while fitting for more265

epochs leads to noticeably better fitting PSNR, this translates to negligible gain in the test PSNR and266

accuracy, and even degrades performance in some cases.267

Table 3: Ablation study on the importance of the number of latents, the dimensionality of the latents,
and the number of finetuning epochs. The backbone is fitted for 50 epochs. Experiment on CIFAR10;
no augmentations are used in this study.

Num. latents Latent dim. Fit PSNR (↑) Finetune for 5 epochs Finetune for 10 epochs

Test PSNR (↑) Accuracy (%) Test PSNR (↑) Accuracy (%)

6 64 27.04 24.67 51.23 26.00 50.86
128 30.01 26.46 53.30 28.41 53.25
256 33.10 28.17 53.76 30.82 54.52
512 37.49 30.89 54.66 34.98 56.23

14 64 30.58 26.28 49.36 28.58 49.69
128 34.59 28.34 50.74 31.52 51.28
256 37.65 29.63 53.35 33.70 54.06
512 39.30 30.77 53.26 33.99 53.65

Table 4: Ablation study on the importance of the number of latents, the dimensionality of the latents,
and the number of fitting epochs. The latents are finetuned for 5 epochs. Experiment on CIFAR10;
no augmentations are used in this study.

Num. latents Latent dim. Fit 20 epochs Fit 50 epochs

Fit PSNR (↑) Test PSNR (↑) Accuracy (%) Fit PSNR (↑) Test PSNR (↑) Accuracy (%)

6 64 25.68 24.68 51.03 27.04 24.67 51.23
128 28.05 26.40 52.67 30.01 26.46 53.30
256 30.04 28.17 54.56 33.10 28.17 53.76
512 33.91 30.84 55.14 37.49 30.89 54.66

14 64 28.34 26.18 49.67 30.58 26.28 49.36
128 31.63 28.03 52.12 34.59 28.34 50.74
256 33.02 29.24 53.52 37.65 29.63 53.35
512 31.94 30.54 54.42 39.30 30.77 53.26

Importance of RFF As shown by Rahaman et al. [31], neural networks suffer from spectral bias,268

i.e. they prioritize learning low frequency components, and have difficulties learning high frequency269

functions. We expect that these spectral biases would also be present in NeoMLP if left unattended.270

To that end, we employed Random Fourier Features (RFF) [42] to project our scalar inputs to higher271

dimensions. Compared to alternatives like sinusoidal activations [40], RFFs allow our architecture to272

use a standard transformer.273

To examine the spectral bias hypothesis, we train NeoMLP without RFF, using a learnable linear274

layer instead. We train this new model on the “bikes” video, and on MNIST. We present the results in275

Table 5. The study shows that RFFs clearly help with reconstruction quality, both in reconstructing276

a high-resolution video signal, and on a dataset of images. Interestingly, the reconstruction quality277

drop from removing RFFs does not translate to downstream performance drop, where, in fact, the278

model without Fourier features is marginally better than the original.279
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Table 5: Ablation study on the importance of random Fourier features on (a) the bikes video, (b) on
MNIST.

(a) “Bikes" video

Method PSNR (↑)
NeoMLP (without RFF) 35.92

NeoMLP 39.06

(b) MNIST

Method PSNR (↑) Accuracy (%)

NeoMLP (without RFF) 30.33 98.81±0.03

NeoMLP 33.98 98.78±0.04

4 Related work280

Neural representations An increasingly large body of works [25, 55, 18, 21, 28, 43, 13] has281

proposed downstream methods that process datasets of unconditional neural fields, i.e. the parameters282

and the architectures of MLPs. They are all addressing the parameter symmetries present in MLPs,283

and while the performance of such methods is constantly increasing, it still leaves much to be284

desired. Closer to our work is another body of works [29, 9, 35, 6, 52, 54, 45] that proposes285

neural representations through conditional neural fields. Of those, Sajjadi et al. [35], Zhang et al.286

[52], Wessels et al. [45] have proposed set-latent conditional neural fields that condition the signal287

through attention [44]. Zhang et al. [52] proposed 3DShape2VecSet, an architecture that employs288

cross-attention and self-attention to encode shapes into sets of latent vectors and decode them. Our289

method differs from this method, since it does not rely on cross-attention to fully encode a coordinate290

in a set of latents. Instead, it employs self-attention, which allows for better information propagation291

and enables the model to scale to multiple layers.292

MLPs as graphs A few recent works [18, 21, 22, 26, 13] have viewed neural networks as graphs293

and proposed methods that leverage the graph structure. Kofinas et al. [18] focus on the task294

of processing the parameters of neural networks and represent neural networks as computational295

graphs of parameters. Their method includes applications to downstream tasks on neural fields.296

Lim et al. [22] investigate the impact of parameter symmetries, and introduce new neural network297

architectures that have reduced parameter space symmetries. Nikolentzos et al. [26] show that MLPs298

can be formalized as GNNs with asynchronous message passing, and propose a model that employs299

synchronous message passing on a nearly complete graph. Similar to this work, we use a complete300

graph and employ a synchronous message passing scheme. In contrast to this work, we employ301

weight-sharing via self-attention and high-dimensional node features. Further, we focus on NeF302

applications instead of tabular data, and explore conditioning via the hidden and output embeddings.303

5 Conclusion304

In this work, we presented NeoMLP, a novel architecture inspired by the principles of connectionism305

and the graph perspective of MLPs. We perform message passing on the graph of MLPs, after306

transforming it to a complete graph of input, hidden, and output nodes equipped with high-dimensional307

features. We also employ weight-sharing through self-attention among all the nodes. NeoMLP is308

a transformer architecture that uses individual input and output dimensions as tokens, along with309

a number of hidden tokens. We also introduced new neural representations based on the hidden310

and output embeddings, as well as datasets of neural representations. Our method achieves state-of-311

the-art performance in fitting high-resolution signals, including multimodal audio-visual data, and312

outperforms state-of-the-art methods in downstream tasks on neural representations.313

Limitations Our ν-reps are subject to permutation symmetries, indicating that inductive biases can314

be leveraged to increase downstream performance. Namely, while the output embeddings are already315

ordered, as they correspond to individual outputs, the hidden embeddings are subject to permutation316

symmetries. Future work can explore more elaborate methods based on set neural networks, such as317

Deep Sets [51], that exploit the inductive biases present in ν-reps. Further, the latent codes used in318

ν-reps, namely the hidden and output embeddings, carry global information. Instilling locality in319

latent codes can be useful for fine-grained downstream tasks, such as segmentation. Future work can320

explore equivariant neural fields [45], which would localize the latent codes by augmenting them321

with positions or orientations.322
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A Fitting and finetuning ν-sets455

Algorithm 1 Fit NeoMLP as a conditional neural field

Require: Randomly initialized backbone network fΘ

Require: Fitting dataset: Dfit =

{{
x
(n)
p ,y

(n)
p

}Pn

p=1

}Nfit

n=1

▷ Nfit signals, Coordinate x
(n)
p ∈ RI

▷ Field value y
(n)
p ∈ RO

Require: Randomly initialized latents: Zfit = {Zn}Nfit
n=1

Require: Initialized optimizer: Ofit ▷ Adam [15]
Require: Number of fitting epochs E
Require: Fitting minibatch size B ▷ Number of points per minibatch

P ←
∑Nfit

n=1 Pn ▷ Total number of points in the dataset
M ← ⌊PB ⌋ ▷ Number of iterations per epoch. We drop incomplete minibatches
function FITNEOMLP

for epoch ∈ {1, . . . , E} do
for iteration ∈ {1, . . . ,M} do

Sample point indices P = {pb}Bb=1

Sample signal indices S = {nb}Bb=1 ▷ Sample P and S with replacement

B ←
{
x
(nb)
pb ,y

(nb)
pb ,Znb

}B

b=1

ŷ
(nb)
pb ← fΘ

(
x
(nb)
pb ,Znb

)
▷ In parallel ∀ b ∈ {1, . . . , B}

L ← 1
B

∑B
b=1

∥∥∥y(nb)
pb − ŷ

(nb)
pb

∥∥∥2
2

Θ← Θ−Ofit(∇ΘL)
Znb
← Znb

−Ofit

(
∇Znb

L
)

▷ In parallel ∀ b ∈ {1, . . . , B}
end for

end for
Freeze Θ
Discard Zfit
return Θ

end function

B NeoMLP symmetries456

Our ν-reps, and more specifically, the hidden embeddings, are subject to permutation symmetries.457

Intuitively, when we permute two hidden embeddings from a randomly initialized or a trained458

model, we expect the behaviour of the network to remain the same. In this section, we formalize459

the permutation symmetries present in our method. NeoMLP is a function f : R(I+H+O)×D →460

R(I+H+O)×D that comprises self-attention and feed-forward networks applied interchangeably461

for a number of layers, following Equations (2) and (3). As a transformer architecture, it is a462

permutation equivariant function. Thus, the following property holds: f(PX) = Pf(X), where P463

is a permutation matrix, and X is a set of tokens fed as input to the transformer.464

Now consider the input to NeoMLP: T(0) =
[
{ii}Ii=1, {hj}Hj=1, {ok}Ok=1

]
,T(0) ∈ R(I+H+O)×D.465

We look at two cases of permutations, namely permuting only the hidden neurons, and permuting only466

the output neurons. The permutation matrix for the first case, i.e. permuting only the hidden neurons,467

is P1 = II×I ⊕PH×H ⊕ IO×O, where I is the identity matrix, PH×H is a permutation matrix, and468

⊕ denotes the direct sum operator, i.e. stacking matrix blocks diagonally, with zero matrices in the469

off-diagonal blocks. Each P1 corresponds to a permutation π1 ∈ SH .470

Applying this permutation to T(0) permutes only the hidden neurons:471

P1T
(0) =

[
{ii}Ii=1,

{
hπ−1

1 (j)

}H

j=1
, {ok}Ok=1

]
(10)

13



Algorithm 2 Finetune NeoMLP as a conditional neural field

Require: Frozen backbone network fΘ
Require: Train, validation, test datasets: Dtrain,Dvalidation,Dtest
Require: Randomly initialized latents: Ztrain,Zvalidation,Ztest
Require: Initialized optimizers: Otrain, Ovalidation, Otest ▷ Adam [15]
Require: Number of finetuning epochs E′

Require: Finetuning minibatch size B′

function FINETUNENEOMLP
for split ∈ {train, validation, test} do

Msplit ← ⌈
∑Nsplit

n=1 Pn

B′ ⌉
for epoch ∈ {1, . . . , E′} do

for iteration ∈ {1, . . . ,Msplit} do
Sample point indices P = {pb}B

′

b=1

Sample signal indices S = {nb}B
′

b=1 ▷ Sample P and S without replacement

B ←
{
x
(nb)
pb ,y

(nb)
pb ,Znb

}B′

b=1

ŷ
(nb)
pb ← fΘ

(
x
(nb)
pb ,Znb

)
▷ In parallel ∀ b ∈ {1, . . . , B′}

L ← 1
B′

∑B′

b=1

∥∥∥y(nb)
pb − ŷ

(nb)
pb

∥∥∥2
2

Znb
← Znb

−Osplit

(
∇Znb

L
)

▷ In parallel ∀ b ∈ {1, . . . , B′}
end for

end for
end for
return Ztrain,Zvalidation,Ztest

end function

Next, we apply NeoMLP on the permuted inputs. Making use of the equivariance property, the output472

of the function applied to the permuted inputs is equivalent to the permutation of the output of the473

function applied to the original inputs.474

f
(
P1T

(0)
)
= P1f

(
T(0)

)
(11)

Since the network is only using the output tokens in the final step as an output of the network, the475

overall behaviour of NeoMLP is invariant to the permutations of the hidden nodes.476

We can follow the same principle to show that permuting the output nodes results in different outputs.477

The permutation matrix in this case is P2 = II×I ⊕ IH×H ⊕PO×O. The equivariance property still478

holds, namely f
(
P2T

(0)
)
= P2f

(
T(0)

)
. However, the output tokens are now used as the output479

of the network. This means that permuting the output tokens would result in permuting the output480

dimensions of a signal, which is clearly not equivalent to the original signal.481

A corollary of the permutation symmetries is that if we start with a randomly initialized model,482

apply a permutation on the hidden nodes to create another model, and then train the two models483

independently, these two trained models would be identical up to the permutation of the hidden nodes.484

This observation is important for downstream tasks, as it shows the existence of equivalence classes485

that should be taken into account by the downstream models.486

C Computational complexity487

While NeoMLP comfortably outperforms Siren in the task of fitting high-resolution signals, it is488

also more computationally expensive. We quantitatively measure the computational complexity489

of our method using the fvcore library3. We evaluate on the “bikes" video signal, and use the490

hyperparameters described in Appendix E. We report the FLOPs for 1 input (i.e. 1 coordinate) in491

the forward pass. NeoMLP has 51.479 MFLOPs, out of which 17.83 MFLOPs correspond to the492

3https://github.com/facebookresearch/fvcore
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attention itself and 33.55 MFLOPs correspond to the FFNs. In the same setup, Siren [40] has 3.15493

MFLOPs.494

Despite having a higher computational complexity compared to the baselines, NeoMLP can actually495

fit high resolution signals faster, and does so while having a smaller memory footprint, since it can496

make use of small batch sizes. Figure 5 shows the runtime of NeoMLP for fitting high-resolution497

signals, compared to the baselines. The x-axis represents wall time in seconds and the y-axis498

represents the reconstruction quality (PSNR). Table 6 shows the corresponding GPU memory and499

batch size, along with the total runtime for fitting high resolution signals.500

Finally, despite the large difference in FLOPs, the forward pass of NeoMLP is almost as fast as501

the forward pass of Siren, considering the same batch size. Namely, we ran a full evaluation on502

the “bikes" signal, on an Nvidia H100 GPU, using a batch size of 32,768. NeoMLP takes 139.74503

seconds, while Siren takes 131.01 seconds. NeoMLP, however, cannot fit larger batch sizes in504

memory, while Siren can fit as big as 1,048,576. With this batch size, Siren requires 79.18 seconds505

for a full evaluation.506

(a) Bach (b) Bikes (c) BigBuckBunny

Figure 5: Runtime for fitting high-resolution signals. The x-axis represents wall time in seconds and
the y-axis represents the reconstruction quality (PSNR). NeoMLP fits signals faster and with better
reconstruction quality.

Table 6: Runtime, GPU memory, and batch size on fitting high resolution signals. For each dataset,
we trained all methods for the same amount of time for fair comparison.

(a) Bach

Method GPU memory (GB) Batch size Runtime (hours)

RFFNet [42] 3.7 308,207 2.33
Siren [40] 3.9 308,207 |

SPDER [38] 6.0 308,207 |
NeoMLP (ours) 2.2 4,096 |

(b) Bikes

Method GPU memory (GB) Batch size Runtime (hours)

RFFNet [42] 11.2 262,144 19.07
Siren [40] 16.8 262,144 |

SPDER [38] 37.3 262,144 |
NeoMLP (ours) 11.1 4,096 |

(c) BigBuckBunny

Method GPU memory (GB) Batch size Runtime (hours)

RFFNet [42] 13.9 262,144 24.73
Siren [40] 18.7 262,144 |

SPDER [38] 39.2 262,144 |
NeoMLP (ours) 13.2 4,096 |

We also monitor the runtime of NeoMLP on fitting datasets of signals, and compare against Functa [9].507

We report the results in Table 7. NeoMLP consistently exhibits lower runtimes for the fitting stage,508
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while Functa is much faster during the finetuning stage, which can be attributed to the meta-learning509

employed for finetuning, and the highly efficient JAX [3] implementation. As noted by Dupont et al.510

[9], however, meta-learning may come at the expense of limiting reconstruction accuracy for more511

complex datasets, since the latent codes lie within a few gradient steps from the initialization.512

Table 7: Runtime on fitting datasets of signals. The finetuning runtime is measured on the test set
only. The runtime for fitting is measured in minutes, while the runtime for finetuning is measured in
seconds.

(a) MNIST

Method Fitting Finetuning

Num. epochs Runtime (min.) Num. epochs Runtime (sec.)

Functa [9] 192 240 3 16
NeoMLP (ours) 20 63 10 318

(b) CIFAR10

Method Fitting Finetuning

Num. epochs Runtime (min.) Num. epochs Runtime (sec.)

Functa [9] 213 418 3 16
NeoMLP (ours) 50 305 10 646

(c) ShapeNet

Method Fitting Finetuning

Num. epochs Runtime (min.) Num. epochs Runtime (sec.)

Functa [9] 20 1002 3 250
NeoMLP (ours) 20 713 2 1680

D Implementation details513

D.1 Embedding initialization514

Fitting high-resolution signals We initialize input embeddings by sampling from a normal distri-515

bution with variance σ2
i = 1. For hidden and output embeddings, we use a variance σ2

o = 1e− 3.516

Fitting ν-sets During fitting, we initialize the input, hidden, and output embeddings by sampling a517

normal distribution with variance σ2
i = σ2

o = 1e− 3. During finetuning, we sample embeddings for518

new signals from a normal distribution with variance σ2
o = 1e− 3.519

D.2 Weight initialization520

We initialize the bias of the final output linear layer to zeros, as we observe this leads to faster521

convergence and better stability at the beginning of training. Further, we initialize the weights of522

the linear projection following the random Fourier features by sampling from a normal distribution523

N
(
0, 2

DRFF

)
. This results in a unit normal distribution of the inputs after the linear projection.524

E Experiment details525

E.1 High-resolution signals526

Below we provide the hyperparameters for NeoMLP.527

• Audio (Bach)528
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– Number of parameters: 182, 017529

– FFN hidden dim: 256530

– Token dimensionality D: 64531

– Number of self-attention heads: 4532

– Number of layers: 3533

– RFF dimensionality DRFF: 512534

– RFF σ: 20535

– Total number of nodes: 8536

– Number of epochs: 5, 000537

– Batch size: 4, 096538

– Learning rate: 0.005539

• Video (Bikes) & Video with audio (Big Buck Bunny)540

– Number of parameters: 3, 189, 249541

– FFN hidden dim: 1, 024542

– Token dimensionality D: 256543

– Number of self-attention heads: 8544

– Number of layers: 4545

– RFF dimensionality DRFF: 128546

– RFF σ: 20547

– Total number of nodes: 16548

– Number of epochs: 200 (400 for BigBuckBunny)549

– Batch size: 4, 096550

– Learning rate: 0.0005551

For the audio fitting, Siren [40] has 198,145 parameters. It is a 5-layer MLP, with a hidden dimension552

of 256, and it is trained with full batch training and a learning rate of 5e− 5.553

For the video fitting, Siren has 3,155,971 parameters, and for the audio-visual data, Siren has554

3,162,121 parameters. It both settings, it is using the exact same architecture with 5 layers and a555

hidden dimension of 1024. We train it with a learning rate of 1e− 4 and a batch size of 262,144.556

E.2 Fitting ν-sets557

For ShapeNet10 [4], we fit the dataset for 20 epochs. In each epoch, we stop when we have used558

10% of the available points, which effectively results in 2 epochs in total. We finetune for 2 epochs,559

and use the 20% of the available points. We use a minibatch size of 32,768 points, and a learning rate560

of 0.005. The backbone has the following hyperparameters:561

• FFN hidden dim: 512562

• Token dimensionality D: 256563

• Number of self-attention heads: 4564

• Number of layers: 3565

• RFF dimensionality DRFF: 512566

• RFF σ: 20567

• Total number of nodes: 8568

For MNIST, we fit the dataset for 20 epochs and finetune for 10 epochs. We use a minibatch of 12,288569

points (the equivalent of 16 images), and a learning rate of 0.005. The backbone has the following570

hyperparameters:571

• FFN hidden dim: 512572

• Token dimensionality D: 256573

• Number of self-attention heads: 4574
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• Number of layers: 3575

• RFF dimensionality DRFF: 512576

• RFF σ: 20577

• Total number of nodes: 8578

For CIFAR10, we fit the dataset for 50 epochs and finetune for 20 epochs. We use a minibatch of579

16,384 points (the equivalent of 16 images), and a learning rate of 0.005. The backbone has the580

following hyperparameters:581

• FFN hidden dim: 128582

• Token dimensionality D: 512583

• Number of self-attention heads: 4584

• Number of layers: 3585

• RFF dimensionality DRFF: 128586

• RFF σ: 20587

• Total number of nodes: 8588

E.3 Downstream tasks on ν-sets589

We perform a hyperparameter search for NeoMLP to find the best downstream model. Specifically,590

we use Bayesian hyperparameter search from Wandb [2] to find the best performing hyperparameters591

for CIFAR10, and reuse these hyperparameters for all datasets. We perform our search over the choice592

of Mixup [53], batch size, learning rate, noise added to the data, data dropout, hidden dimension and593

model dropout [41].594

Our downstream model is a 3 layer MLP with SiLU activations [32], a hidden dimension of 2048,595

and dropout of 0.3. We train the model with a learning rate of 8e − 3, and batch size of 256. We596

use Mixup, weight decay with λ = 0.05, and add noise to the data with scale 0.05. Finally, we use597

weight averaging with exponential moving average (EMA).598

For CIFAR10 [19], the model takes as input 6 embeddings (the NeoMLP had 8 nodes in total). We599

train for 100 epochs.600

For ShapeNet10 [4], the model takes as input 13 embeddings (the NeoMLP had 16 nodes in total).601

We use a higher weight decay λ = 0.25 to further prevent overfitting, and train for 500 epochs.602

For MNIST [20], the model takes as input 6 embeddings (the NeoMLP had 8 nodes in total). We use603

a higher weight decay λ = 0.2 and train for 500 epochs.604

F Dataset details605

F.1 ShapeNet10606

We use the following 10 classes for ShapeNet10 classification: loudspeaker, bench, watercraft, lamp,607

rifle, sofa, cap, airplane, chair, table.608

The dataset comprises 35,984 shapes. We use 29,000 shapes for training, 2,000 as a validation set,609

and 4,984 as a test set.610

For CIFAR10, following Functa [9], we use 50 augmentations per training and validation image. This611

results in a total of 2,500,000 training and validation images. We use 5,000 of those for validation.612

G Qualitative results613

We show example frame for the “BigBuckBunny" video clip in Figure 6.614

We show the reconstructions for the “Bach" audio clip in Figure 7, and the errors between the615

groundtruth signal and reconstructions in Figure 8.616
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Figure 6: Examples frames from fitting the “BigBuckBunny" video clip. The first row shows the
groundtruth, while the following rows show the reconstructions obtained using NeoMLP, RFFNet,
Siren, and SPDER, respectively. We observe that NeoMLP learns to reconstruct the video with much
greater fidelity.

Figure 7: Predictions for the “Bach" audio clip. The first row shows the groundtruth signal, while the
second and third row show the reconstructions from NeoMLP and Siren, respectively.

H Visualizations617

I Latent space618

We visualize the learned MNIST data manifold for a two-dimensional latent space (with a single619

embedding) in Figure 10, following Kingma and Ba [15], Park et al. [29]. We assume that the latent620

Figure 8: Errors ϵ = y − ŷ between predictions y and groundtruth ŷ. The top row shows the error
for NeoMLP, while the bottom row shows the error for Siren. Both the x-axis and the y-axis are
shared in this figure, but the y-axis is different from Figure 7 . We see that the errors from Siren have
a much larger amplitude, and still seem to capture signal components.
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Figure 9: Test accuracy vs. reconstruction quality (PSNR). Experiments on CIFAR10, with different
hyperparameters, without augmentations.

(a) Epoch 1 (b) Epoch 10 (c) Epoch 20

Figure 10: The data manifold of NeoMLP with a 2D latent space and a single embedding, i.e.
O = 1, H = 0, D = 2. We visualize the manifold as the fitting stage progresses.

space is Gaussian, with a sample mean and variance estimated from the latents of the training set. We621

sample linearly spaced coordinates on the unit square and transform them through the Percent Point622

Function (PPF) of the Gaussian to produce the values of the latent variables.623

We also visualize random samples from the latent space of NeoMLP across hyperparameter configu-624

rations varying in the number of embeddings and dimensionality of the latents in Figure 11, as well625

as the corresponding reconstruction quality and downstream performance in Table 8.626
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(a) H = 0, O = 1, D = 2

(b) H = 0, O = 1, D = 8

(c) H = 1, O = 1, D = 4

(d) H = 0, O = 1, D = 32

Epoch 1

(e) H = 3, O = 1, D = 8

Epoch 10 Epoch 20

Figure 11: Random samples from the latent space of NeoMLP, as the fitting stage progresses. We
visualize various configurations of the number of embeddings and the dimension of the latents.

Table 8: Reconstruction quality and downstream performance for the configurations corresponding to
Figure 11.

Num. latents Latent dim. Fit PSNR (↑) Accuracy (%)

1 2 15.61 23.7
1 8 20.47 48.2
2 4 20.19 49.3
1 32 24.75 76.2
4 8 24.44 72.5
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NeurIPS Paper Checklist627

1. Claims628

Question: Do the main claims made in the abstract and introduction accurately reflect the629

paper’s contributions and scope?630

Answer: [Yes]631

Justification: See Section 3.632

Guidelines:633

• The answer NA means that the abstract and introduction do not include the claims634

made in the paper.635

• The abstract and/or introduction should clearly state the claims made, including the636

contributions made in the paper and important assumptions and limitations. A No or637

NA answer to this question will not be perceived well by the reviewers.638

• The claims made should match theoretical and experimental results, and reflect how639

much the results can be expected to generalize to other settings.640

• It is fine to include aspirational goals as motivation as long as it is clear that these goals641

are not attained by the paper.642

2. Limitations643

Question: Does the paper discuss the limitations of the work performed by the authors?644

Answer: [Yes]645

Justification: See Section 5.646

Guidelines:647

• The answer NA means that the paper has no limitation while the answer No means that648

the paper has limitations, but those are not discussed in the paper.649

• The authors are encouraged to create a separate "Limitations" section in their paper.650

• The paper should point out any strong assumptions and how robust the results are to651

violations of these assumptions (e.g., independence assumptions, noiseless settings,652

model well-specification, asymptotic approximations only holding locally). The authors653

should reflect on how these assumptions might be violated in practice and what the654

implications would be.655

• The authors should reflect on the scope of the claims made, e.g., if the approach was656

only tested on a few datasets or with a few runs. In general, empirical results often657

depend on implicit assumptions, which should be articulated.658

• The authors should reflect on the factors that influence the performance of the approach.659

For example, a facial recognition algorithm may perform poorly when image resolution660

is low or images are taken in low lighting. Or a speech-to-text system might not be661

used reliably to provide closed captions for online lectures because it fails to handle662

technical jargon.663

• The authors should discuss the computational efficiency of the proposed algorithms664

and how they scale with dataset size.665

• If applicable, the authors should discuss possible limitations of their approach to666

address problems of privacy and fairness.667

• While the authors might fear that complete honesty about limitations might be used by668

reviewers as grounds for rejection, a worse outcome might be that reviewers discover669

limitations that aren’t acknowledged in the paper. The authors should use their best670

judgment and recognize that individual actions in favor of transparency play an impor-671

tant role in developing norms that preserve the integrity of the community. Reviewers672

will be specifically instructed to not penalize honesty concerning limitations.673

3. Theory assumptions and proofs674

Question: For each theoretical result, does the paper provide the full set of assumptions and675

a complete (and correct) proof?676

Answer: [Yes]677
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Justification: We discuss the permutation symmetries of NeoMLP in Appendix B.678

Guidelines:679

• The answer NA means that the paper does not include theoretical results.680

• All the theorems, formulas, and proofs in the paper should be numbered and cross-681

referenced.682

• All assumptions should be clearly stated or referenced in the statement of any theorems.683

• The proofs can either appear in the main paper or the supplemental material, but if684

they appear in the supplemental material, the authors are encouraged to provide a short685

proof sketch to provide intuition.686

• Inversely, any informal proof provided in the core of the paper should be complemented687

by formal proofs provided in appendix or supplemental material.688

• Theorems and Lemmas that the proof relies upon should be properly referenced.689

4. Experimental result reproducibility690

Question: Does the paper fully disclose all the information needed to reproduce the main ex-691

perimental results of the paper to the extent that it affects the main claims and/or conclusions692

of the paper (regardless of whether the code and data are provided or not)?693

Answer: [Yes]694

Justification: Equations (2) and (4) mathematically describe our method. Further, we de-695

scribe the algorithms for fitting and finetuning NeoMLP in Algorithms 1 and 2, respectively.696

We report details regarding the implementation in Appendix D, dataset details in Appendix F,697

and details about the hyperparameters used in each experiment in Appendix E.698

Guidelines:699

• The answer NA means that the paper does not include experiments.700

• If the paper includes experiments, a No answer to this question will not be perceived701

well by the reviewers: Making the paper reproducible is important, regardless of702

whether the code and data are provided or not.703

• If the contribution is a dataset and/or model, the authors should describe the steps taken704

to make their results reproducible or verifiable.705

• Depending on the contribution, reproducibility can be accomplished in various ways.706

For example, if the contribution is a novel architecture, describing the architecture fully707

might suffice, or if the contribution is a specific model and empirical evaluation, it may708

be necessary to either make it possible for others to replicate the model with the same709

dataset, or provide access to the model. In general. releasing code and data is often710

one good way to accomplish this, but reproducibility can also be provided via detailed711

instructions for how to replicate the results, access to a hosted model (e.g., in the case712

of a large language model), releasing of a model checkpoint, or other means that are713

appropriate to the research performed.714

• While NeurIPS does not require releasing code, the conference does require all submis-715

sions to provide some reasonable avenue for reproducibility, which may depend on the716

nature of the contribution. For example717

(a) If the contribution is primarily a new algorithm, the paper should make it clear how718

to reproduce that algorithm.719

(b) If the contribution is primarily a new model architecture, the paper should describe720

the architecture clearly and fully.721

(c) If the contribution is a new model (e.g., a large language model), then there should722

either be a way to access this model for reproducing the results or a way to reproduce723

the model (e.g., with an open-source dataset or instructions for how to construct724

the dataset).725

(d) We recognize that reproducibility may be tricky in some cases, in which case726

authors are welcome to describe the particular way they provide for reproducibility.727

In the case of closed-source models, it may be that access to the model is limited in728

some way (e.g., to registered users), but it should be possible for other researchers729

to have some path to reproducing or verifying the results.730

5. Open access to data and code731
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Question: Does the paper provide open access to the data and code, with sufficient instruc-732

tions to faithfully reproduce the main experimental results, as described in supplemental733

material?734

Answer: [Yes]735

Justification: Our source code is included in the supplementary material. We use publicly736

available data and datasets, which are described in Section 3.737

Guidelines:738

• The answer NA means that paper does not include experiments requiring code.739

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/740

public/guides/CodeSubmissionPolicy) for more details.741

• While we encourage the release of code and data, we understand that this might not be742

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not743

including code, unless this is central to the contribution (e.g., for a new open-source744

benchmark).745

• The instructions should contain the exact command and environment needed to run to746

reproduce the results. See the NeurIPS code and data submission guidelines (https:747

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.748

• The authors should provide instructions on data access and preparation, including how749

to access the raw data, preprocessed data, intermediate data, and generated data, etc.750

• The authors should provide scripts to reproduce all experimental results for the new751

proposed method and baselines. If only a subset of experiments are reproducible, they752

should state which ones are omitted from the script and why.753

• At submission time, to preserve anonymity, the authors should release anonymized754

versions (if applicable).755

• Providing as much information as possible in supplemental material (appended to the756

paper) is recommended, but including URLs to data and code is permitted.757

6. Experimental setting/details758

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-759

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the760

results?761

Answer: [Yes]762

Justification: We report details regarding the implementation in Appendix D, dataset de-763

tails in Appendix F, and details about the hyperparameters used in each experiment in764

Appendix E.765

Guidelines:766

• The answer NA means that the paper does not include experiments.767

• The experimental setting should be presented in the core of the paper to a level of detail768

that is necessary to appreciate the results and make sense of them.769

• The full details can be provided either with the code, in appendix, or as supplemental770

material.771

7. Experiment statistical significance772

Question: Does the paper report error bars suitably and correctly defined or other appropriate773

information about the statistical significance of the experiments?774

Answer: [Yes]775

Justification: See Table 2.776

Guidelines:777

• The answer NA means that the paper does not include experiments.778

• The authors should answer "Yes" if the results are accompanied by error bars, confi-779

dence intervals, or statistical significance tests, at least for the experiments that support780

the main claims of the paper.781
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• The factors of variability that the error bars are capturing should be clearly stated (for782

example, train/test split, initialization, random drawing of some parameter, or overall783

run with given experimental conditions).784

• The method for calculating the error bars should be explained (closed form formula,785

call to a library function, bootstrap, etc.)786

• The assumptions made should be given (e.g., Normally distributed errors).787

• It should be clear whether the error bar is the standard deviation or the standard error788

of the mean.789

• It is OK to report 1-sigma error bars, but one should state it. The authors should790

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis791

of Normality of errors is not verified.792

• For asymmetric distributions, the authors should be careful not to show in tables or793

figures symmetric error bars that would yield results that are out of range (e.g. negative794

error rates).795

• If error bars are reported in tables or plots, The authors should explain in the text how796

they were calculated and reference the corresponding figures or tables in the text.797

8. Experiments compute resources798

Question: For each experiment, does the paper provide sufficient information on the com-799

puter resources (type of compute workers, memory, time of execution) needed to reproduce800

the experiments?801

Answer: [Yes]802

Justification: See Appendix C.803

Guidelines:804

• The answer NA means that the paper does not include experiments.805

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,806

or cloud provider, including relevant memory and storage.807

• The paper should provide the amount of compute required for each of the individual808

experimental runs as well as estimate the total compute.809

• The paper should disclose whether the full research project required more compute810

than the experiments reported in the paper (e.g., preliminary or failed experiments that811

didn’t make it into the paper).812

9. Code of ethics813

Question: Does the research conducted in the paper conform, in every respect, with the814

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?815

Answer: [Yes]816

Justification: Neither our work nor our data involve human subjects.817

Guidelines:818

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.819

• If the authors answer No, they should explain the special circumstances that require a820

deviation from the Code of Ethics.821

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-822

eration due to laws or regulations in their jurisdiction).823

10. Broader impacts824

Question: Does the paper discuss both potential positive societal impacts and negative825

societal impacts of the work performed?826

Answer: [NA]827

Justification: This paper presents work whose goal is to advance the field of Machine828

Learning. There are many potential societal consequences of our work, none which we feel829

must be specifically highlighted here.830

Guidelines:831

• The answer NA means that there is no societal impact of the work performed.832
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• If the authors answer NA or No, they should explain why their work has no societal833

impact or why the paper does not address societal impact.834

• Examples of negative societal impacts include potential malicious or unintended uses835

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations836

(e.g., deployment of technologies that could make decisions that unfairly impact specific837

groups), privacy considerations, and security considerations.838

• The conference expects that many papers will be foundational research and not tied839

to particular applications, let alone deployments. However, if there is a direct path to840

any negative applications, the authors should point it out. For example, it is legitimate841

to point out that an improvement in the quality of generative models could be used to842

generate deepfakes for disinformation. On the other hand, it is not needed to point out843

that a generic algorithm for optimizing neural networks could enable people to train844

models that generate Deepfakes faster.845

• The authors should consider possible harms that could arise when the technology is846

being used as intended and functioning correctly, harms that could arise when the847

technology is being used as intended but gives incorrect results, and harms following848

from (intentional or unintentional) misuse of the technology.849

• If there are negative societal impacts, the authors could also discuss possible mitigation850

strategies (e.g., gated release of models, providing defenses in addition to attacks,851

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from852

feedback over time, improving the efficiency and accessibility of ML).853

11. Safeguards854

Question: Does the paper describe safeguards that have been put in place for responsible855

release of data or models that have a high risk for misuse (e.g., pretrained language models,856

image generators, or scraped datasets)?857

Answer: [NA]858

Justification:859

Guidelines:860

• The answer NA means that the paper poses no such risks.861

• Released models that have a high risk for misuse or dual-use should be released with862

necessary safeguards to allow for controlled use of the model, for example by requiring863

that users adhere to usage guidelines or restrictions to access the model or implementing864

safety filters.865

• Datasets that have been scraped from the Internet could pose safety risks. The authors866

should describe how they avoided releasing unsafe images.867

• We recognize that providing effective safeguards is challenging, and many papers do868

not require this, but we encourage authors to take this into account and make a best869

faith effort.870

12. Licenses for existing assets871

Question: Are the creators or original owners of assets (e.g., code, data, models), used in872

the paper, properly credited and are the license and terms of use explicitly mentioned and873

properly respected?874

Answer: [Yes]875

Justification: See Section 3.876

Guidelines:877

• The answer NA means that the paper does not use existing assets.878

• The authors should cite the original paper that produced the code package or dataset.879

• The authors should state which version of the asset is used and, if possible, include a880

URL.881

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.882

• For scraped data from a particular source (e.g., website), the copyright and terms of883

service of that source should be provided.884
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• If assets are released, the license, copyright information, and terms of use in the885

package should be provided. For popular datasets, paperswithcode.com/datasets886

has curated licenses for some datasets. Their licensing guide can help determine the887

license of a dataset.888

• For existing datasets that are re-packaged, both the original license and the license of889

the derived asset (if it has changed) should be provided.890

• If this information is not available online, the authors are encouraged to reach out to891

the asset’s creators.892

13. New assets893

Question: Are new assets introduced in the paper well documented and is the documentation894

provided alongside the assets?895

Answer: [NA]896

Justification:897

Guidelines:898

• The answer NA means that the paper does not release new assets.899

• Researchers should communicate the details of the dataset/code/model as part of their900

submissions via structured templates. This includes details about training, license,901

limitations, etc.902

• The paper should discuss whether and how consent was obtained from people whose903

asset is used.904

• At submission time, remember to anonymize your assets (if applicable). You can either905

create an anonymized URL or include an anonymized zip file.906

14. Crowdsourcing and research with human subjects907

Question: For crowdsourcing experiments and research with human subjects, does the paper908

include the full text of instructions given to participants and screenshots, if applicable, as909

well as details about compensation (if any)?910

Answer: [NA]911

Justification:912

Guidelines:913

• The answer NA means that the paper does not involve crowdsourcing nor research with914

human subjects.915

• Including this information in the supplemental material is fine, but if the main contribu-916

tion of the paper involves human subjects, then as much detail as possible should be917

included in the main paper.918

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,919

or other labor should be paid at least the minimum wage in the country of the data920

collector.921

15. Institutional review board (IRB) approvals or equivalent for research with human922

subjects923

Question: Does the paper describe potential risks incurred by study participants, whether924

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)925

approvals (or an equivalent approval/review based on the requirements of your country or926

institution) were obtained?927

Answer: [NA]928

Justification:929

Guidelines:930

• The answer NA means that the paper does not involve crowdsourcing nor research with931

human subjects.932

• Depending on the country in which research is conducted, IRB approval (or equivalent)933

may be required for any human subjects research. If you obtained IRB approval, you934

should clearly state this in the paper.935

27

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions936

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the937

guidelines for their institution.938

• For initial submissions, do not include any information that would break anonymity (if939

applicable), such as the institution conducting the review.940

16. Declaration of LLM usage941

Question: Does the paper describe the usage of LLMs if it is an important, original, or942

non-standard component of the core methods in this research? Note that if the LLM is used943

only for writing, editing, or formatting purposes and does not impact the core methodology,944

scientific rigorousness, or originality of the research, declaration is not required.945

Answer: [NA]946

Justification:947

Guidelines:948

• The answer NA means that the core method development in this research does not949

involve LLMs as any important, original, or non-standard components.950

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)951

for what should or should not be described.952
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