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Abstract

Neural fields (NeFs) have recently emerged as a state-of-the-art method for en-
coding spatio-temporal signals of various modalities. Despite the success of NeFs
in reconstructing individual signals, their use as representations in downstream
tasks, such as classification or segmentation, is hindered by the complexity of the
parameter space and its underlying symmetries, in addition to the lack of powerful
and scalable conditioning mechanisms. In this work, we draw inspiration from the
principles of connectionism to design a new architecture based on MLPs, which
we term NeoMLP. We start from an MLP, viewed as a graph, and transform it
from a multi-partite graph to a complete graph of input, hidden, and output nodes,
equipped with high-dimensional features. We perform message passing on this
graph and employ weight-sharing via self-attention among all the nodes. NeoMLP
has a built-in mechanism for conditioning through the hidden and output nodes,
which function as a set of latent codes, and as such, NeoMLP can be used straight-
forwardly as a conditional neural field. We demonstrate the effectiveness of our
method by fitting high-resolution signals, including multi-modal audio-visual data.
Furthermore, we fit datasets of neural representations, by learning instance-specific
sets of latent codes using a single backbone architecture, and then use them for
downstream tasks, outperforming recent state-of-the-art methods.

1 Introduction

The omnipresence of neural networks in the last decade has recently given rise to neural fields
(NeFs) (cf. Xie et al. [46]) as a powerful and scalable method to encode continuous signals of various
modalities. These range from shapes [29], scenes [24], and images, [40], to physical fields [17], CT
scans [27, 8], and partial differential equations [48, 16]. Consequently, the popularity of NeFs has
spurred interest in neural representations, i.e. using NeFs as representations for downstream tasks.

Existing neural representations, however, suffer from notable drawbacks. Representations based on
unconditional neural fields, i.e. independent multi-layer perceptrons (MLPs) fitted on each signal,
are subject to parameter symmetries [1 1], which lead to extremely poor performance in downstream
tasks if left unattended [25]. Many recent works [25, 55, 18, 21, 28] have proposed architectures that
respect the underlying symmetries; the performance, however, leaves much to be desired. Another
line of works [29, 9] has proposed conditional neural fields with a single latent code per signal that
modulates the activations of a shared MLP through concatenation, FiLM [30], or hypernetworks [10],
while, recently, other works [35, 45] have proposed set-latent conditional neural fields—conditional
neural fields with a set of latent codes—that condition the signal through attention [44]. Whilst
the study of Rebain et al. [33] showed that set-latent neural fields outperform single latent code
methods as conditioning mechanisms, existing set-latent neural fields are based on cross-attention,
which limits their scalability and expressivity: coordinates are only used as queries in attention, and
cross-attention is limited to a single layer.
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We argue that many of these drawbacks stem from the lack of a unified native architecture that
integrates the necessary properties of neural representations and eliminates the shortcomings of
current approaches. To address these concerns, we draw inspiration from connectionism and the
long history of MLPs to design a new architecture that functions as a standard machine learning
model—akin to an MLP—as well as a conditional neural field. The paradigm of neural networks,
from the early days of Perceptron [23], to MLPs with hidden neurons trained with backpropagation
[34], to modern transformers [44], shares the connectionist principle: cognitive processes can be
described by interconnected networks of simple and often uniform units.

This principle is lacking from current conditional neural field architectures, since conditioning is
added to the network as an ad-hoc mechanism. In contrast, motivated by this principle, we take a
closer look at MLPs; more specifically, we look at MLPs as a graph— similar to a few recent works
[18, 21, 26]— and design a novel architecture that operates on this graph using message passing. First,
we convert the graph from a multi-partite graph to a fully-connected graph with self-edges. Instead of
using edge-specific weights, we employ weight-sharing via self-attention among all the nodes. We
initialize the hidden and output nodes with noise and optimize their values with backpropagation.
Finally, we use high-dimensional features for all nodes to make self-attention and the network as a
whole more scalable.

We make the following contributions. First, we propose a new architecture, which we term NeoMLP,
by viewing MLPs as a graph, and convert this graph to a complete graph of input, hidden, and
output nodes with high-dimensional features. We employ message passing on that graph through
self-attention among the input, hidden, and output nodes. The hidden and output nodes can be used
as a learnable set of latent codes, and thus, our method can function as a conditional neural field.
We introduce new neural representations that use sets of latent codes for each signal, which we
term v-reps, as well as datasets of neural representations, which we term v-sets. We fit datasets of
signals using a single backbone architecture, and then use the latent codes for downstream tasks,
outperforming recent state-of-the-art methods. We also demonstrate the effectiveness of our method
by fitting high-resolution audio and video signals, as well as multi-modal audio-visual data.

1.1 Background on Neural Fields

Neural fields (NeFs), often referred to as Implicit Neural Representations (INRs), are a class of neural
networks that parameterize fields using neural networks (cf. Xie et al. [46]). In their simplest form,
they are MLPs that take as input a single coordinate (e.g. an x — y coordinate) and output the field
value for that coordinate (e.g. an RGB value). By feeding batches of coordinates to the network, and
training to reconstruct the target values with backpropagation, the neural field learns to encode the
target signal, without being bound to a specific resolution.

Conditional neural fields introduce a conditioning mechanism to neural fields through latent variables,
often referred to as latent codes. This conditioning mechanism can be used to encode instance-specific
information (e.g. encode a single image) and disentangle it from the backbone architecture, which
now carries dataset-wide information.

2 NeoMLP

2.1 From MLP to NeoMLP

We begin the exposition of our method with MLPs, since our architecture is influenced by MLPs
and builds on them. Without loss of generality, a multi-layer perceptron takes as input a set of scalar
variables {z;}/_,, z; € R, coalesced into a single high-dimensional array x € R’. Through a series
of non-linear transformations, the input array is progressively transformed into intermediate (hidden)
representations, with the final transformation leading to the output array y € R©.

Akin to other recent works [18, 22, 26], we look at an MLP as a graph; an MLP is an L + 1-partite
graph, where L is the number of layers. The nodes represent the input, hidden, and output neurons,
and have scalar features that correspond to individual inputs, the hidden features at each layer, and
the individual outputs, respectively. We perform message passing on that graph, after making it
more amenable for learning. First, we convert the connectivity graph from an L + 1-partite graph
to a fully-connected graph with self-edges. Since the forward pass now includes message passing
from all nodes to all nodes at each step, we create learnable parameters for the initial values of the
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Figure 1: The connectivity graphs of MLP and NeoMLP. NeoMLP performs message passing on the
MLP graph. Going from MLP to NeoMLP, we use a fully connected graph and high-dimensional
node features. In NeoMLP, the traditional notion of layers of neurons, as well as the asynchronous
layer-wise propagation, cease to exist. Instead, we use synchronous message passing with weight-
sharing via self-attention among all the nodes. NeoMLP has three types of nodes: input, hidden, and
output nodes. The input is fed to NeoMLP through the input nodes, while the output nodes capture
the output of the network.
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hidden and output node features. We initialize them with Gaussian noise, and optimize their values
with backpropagation, simultaneously with the network parameters. Next, we observe that having
dedicated edge-specific weights for all node pairs would result in an intractable spatial complexity.
As such, in order to reduce the memory footprint, we follow the standard practice of graph neural
networks and Transformers [44], and employ weight-sharing between the nodes, specifically via
self-attention. In other words, the weights for each node pair are computed as a function of the
incoming and outgoing node features, in conjunction with weights that are shared across nodes. As a
by-product of the self-attention mechanism, which is permutation invariant, we use node-specific
embeddings that allow us to differentiate between different nodes. Finally, instead of having scalar
node features, we increase the dimensionality of node features, which makes self-attention more
scalable and expressive.

We show the connectivity graph of NeoMLP and its conversion from a standard MLP in Figure 1. We
also show the equations of the forward pass for a single layer of an MLP and a simplified version of
NeoMLP (without softmax normalization, scaling, or multi-head attention) in Equation (1).

MLP: bV =5
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We note that throughout this work, we retain the nomenclature of input, hidden, and output nodes,
but repurpose them for NeoMLP. More specifically, these nodes refer to the connectivity graph
of NeoMLP, i.e. the graph on which we perform message passing, shown in Figure 1, and not its
computational graph, which would include layers of all the nodes. The input is fed to NeoMLP
through the input nodes before any information propagation, while the output nodes are the ones that
will capture the output of the network, after a number of message passing layers. Every other node
that is not used for input or output is a hidden node. The number of hidden nodes in NeoMLP does
not need to correspond one-to-one to the MLP hidden nodes.

2.2 NeoMLP Architecture

After establishing the connection with MLPs, we now discuss the architecture of our method in
detail. The inputs comprise a set of scalar variables {z;}._,, z; € R. We employ random Fourier
features [42] as a non-learnable method to project each scalar input (each dimension separately) to
a high-dimensional space RP®*_ This is followed by a linear layer that projects it to R”. We then
add learnable positional embeddings to the inputs. These embeddings are required for the model to
differentiate between input variables, since self-attention is a permutation invariant operation. We use
similar learnable embeddings for each scalar output dimension (referred to as output embeddings), as
well as H learnable embeddings for each hidden node (referred to as hidden embeddings), where H
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Figure 2: The architecture of NeoMLP. We pass each input dimension through an RFF layer followed
by a linear layer, and then add individual input embeddings to each input. The transformed inputs,
alongside the embeddings for the hidden and output nodes, comprise the inputs to NeoMLP. NeoMLP
has L layers of residual self-attention and non-linear transformations. We capture the output that
corresponds to the output nodes and pass it through a linear layer to get the final output of the network.

is chosen as a hyperparameter. We concatenate the transformed inputs with the hidden and output
embeddings along the node (token) dimension, before feeding them to NeoMLP. We denote the
concatenated tokens as T(?) ¢ RUFH+O)XD where O is the number of output dimensions. The
input, hidden, and output embeddings are initialized with Gaussian noise. We use a variance o2 for the
input embeddings and o2 for the hidden and output embeddings; both are chosen as hyperparameters.

Each NeoMLP layer comprises a multi-head self-attention layer among the tokens, and a feed-forward
network that non-linearly transforms each token independently. The output of each layer consists
of the transformed tokens T(") € RUTH+T0)XD We use pre-LN transformer blocks [47], but omit
LayerNorm [1], since we observed it does not lead to better performance or faster convergence. This
also makes our method conceptually simpler. Thus, a NeoMLP layer is defined as follows:

T® — 70=1) 4 SelfAttention (T(l_l)) )

7O = 7O 4 FeedForwardNetWOrk(’i‘(l)) v

We explore different variants of self-attention and find that linear attention [14, 39] performs slightly
better and results in a faster model, while simultaneously requiring fewer parameters. Specifically,
we use the version of Shen et al. [39] from a publicly available implementation of linear attention'.

After L NeoMLP layers, we only keep the final tokens that correspond to the output embeddings, and
pass them through a linear layer that projects them back to scalars. We then concatenate all outputs
together, which gives us the final output array y € R?. The full pipeline of our method is shown in
Figure 2, while the forward pass is mathematically described as follows:

i; = Linear(RFF(z;)) + InputEmbedding (i), i€ {1,...,I},i; € R” “)
h; = HiddenEmbedding(j), je{l,....,H}, h; e R” )
o, = OutputEmbedding(k), ke{l,...,0}, 0, € RO*P ©)

T(O) = [{ii}lea {hj}f:p {Ok}kozl} ) T(O) S RUJFHJFO)XD 7)
TO = NeoMLPLayer(T”—l)), le{l,...,L}, TV ¢ RUFHFOIXD gy
y= Linear(T%)H:IHLIJFO>7 y € ROX! )

"https://github.com/lucidrains/linear-attention-transformer
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2.3 NeoMLP as an auto-decoding conditional neural field

One of the advantages of our method is its adaptability, since it has a built-in mechanism for
conditioning, through the hidden and output embeddings. In the context of neural fields, this
mechanism enables our method to function as an auto-decoding conditional neural field [29], while
the embeddings can be used as neural representations for downstream tasks, shown schematically in
Figure 3. We refer to these representations as v-reps (nu-reps), and similarly, we refer to the datasets
of neural representations obtained with our method as v-sets (nu-sets).

As a conditional neural field, the NeoMLP
backbone encodes the neural field parame- [

ters, while the latent variables, i.e. the hid-
den and output embeddings, encode instance- N 0 [ > OO0 O ] ¢>

NeoMLP ]

specific information.  Each instance (e.g.  Tput embeddings

each image in an image dataset) is repre- (shared) : -
sented with its own set of latent codes Z,, = [<> - O Q- O]¢‘>E

H O .. Hidden & output embeddings (per signal)
n n
[{hj }j:1’ {of }k:1:| . We optimize the latent

codes for a particular signal by feeding them Figure 3: The hidden and output embeddings consti-

to the network as inputs alongside a coordinate ~tute a set of latent codes for each signal, and can be
A (n) used as neural representations for downstream tasks.

x,(,n), compute the field value §, ' and the re- .
on 1 d back he 1 We term these neural representations as v-reps, and
construction loss, and backpropagate the loss . )
the datasets of neural representations as v-sets.

to Z,, to take one optimization step.

Our method operates in two distinct stages: fitting and finetuning. During fitting, our goal is to
optimize the backbone architecture, i.e. the parameters of the model. We sample latent codes for
all the signals of a fitting dataset and optimize them simultaneously with the backbone architecture.
When the fitting stage is complete, after a predetermined set of epochs, we freeze the parameters of
the backbone architecture and discard the latent codes. Then, during finetuning, given a new signal,
we sample new latent codes for it and optimize them to minimize the reconstruction error for a number
of epochs. We finetune the training, validation, and test sets of the downstream task from scratch,
even if we used the training set to fit the model, in order to make the distance of representations
between splits as small as possible.

In both the fitting and the finetuning stage, we sample completely random points from random signals.
This ensures ¢.i.d. samples, and speeds up the training of our method. During the fitting stage, we
also sample points with replacement, as we observed a spiky behaviour in the training loss otherwise.
We provide the detailed algorithms of the fitting and the finetuning stage in Algorithms 1 and 2 in
Appendix A, respectively. We provide further implementation details in Appendix D.

2.4 Using v-reps for downstream tasks

After finetuning neural representations, our goal is to use them in downstream tasks, e.g. to train a
downstream model for classification or segmentation. Our v-reps comprise a set of latent codes for
each signal, corresponding to the finetuned hidden and output embeddings. While the space of v-reps
is subject to permutation symmetries, which we discuss in Appendix B, we use a simple downstream
model that first concatenates and flattens the hidden and output embeddings in a single vector, and
then process it with an MLP. We leave more elaborate methods that exploit the inductive biases
present in v-reps for future work.

3 Experiments

We gauge the effectiveness of our approach by fitting individual high-resolution signals, as well as
datasets of signals. We also evaluate our method on downstream tasks on the fitted datasets. We refer
to the appendix for more details. The code is included in the supplementary material and will be
open-sourced to facilitate reproduction of the results.

3.1 Fitting high-resolution signals

First, we evaluate our method at fitting high-resolution signals. We compare our method against
Siren [40], an MLP with sinusoidal activations, RFFNet [42], an MLP with random Fourier features
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and ReLU activations, and SPDER [38], an MLP with sublinear damping activations combined with
sinusoids. Our goal is to assess the effectiveness of our method in signals of various modalities,
and especially in multimodal signals, which have been underexplored in the context of neural fields.
Hence, we choose signals that belong to two different modalities, namely an audio clip and a video
clip, as well as a multi-modal signal, namely video with audio.

For audio, we follow Siren [40] and use the first 7 seconds from Bach’s cello suite No. 1 in G Major:
Prelude. The audio clip is sampled at 44.1 kHz, resulting in 308,700 points. For video, we use the
“bikes" video from the scikit-video Python library, available online’. This video clip lasts for 10
seconds and is sampled at 25 fps, with a spatial resolution of 272 x 640, resulting in 43,520,000
points. Finally, we explore multimodality using the “Big Buck Bunny" video from scikit-video.
This clip lasts for 5.3 seconds. The audio is sampled at 48 kHz and has 6 channels. The original
spatial resolution is 1280 x 720 at 25 fps. We subsample the spatial resolution by 2, which results
in a resolution of 640 x 360. Overall, this results in 30,667,776 points (254,976 from audio and
30,412,800 from video).

Training details For audio, we follow Siren [40] and scale the time domain to ¢t € [—100, 100]
instead of [—1, 1], to account for the high sampling rate of the signal. For the audio-visual data, we
model the signal as f : R? — R, i.e. we have 3 input dimensions (x, ¥, t), and 9 output dimensions:
3 from video (RGB) and 6 from audio (6 audio channels). Similar to the audio clip, we also scale the
time domain, which is now used as the time coordinate for both the audio and the video points. For the
points corresponding to audio, we fill their xy coordinates with zeros. Furthermore, since all points
come from either the video or the audio modality, we fill the output dimensions that correspond to
the other modality with zeros. Finally, during training, we mask these placeholder output dimensions,
i.e. we compute the loss for the video coordinates using only the RGB outputs, and the loss for the
audio coordinates using only the 6-channel audio outputs.

To ensure fairness, for every signal, NeoMLP has approximately the same number of parameters
as the baselines. We describe the architecture details for each experiment in Appendix E. We show
the results in Table 1, measuring the reconstruction PSNR. We observe that NeoMLP comfortably
outperforms the baselines in all three signals. Interestingly, the performance gap is increased in the
more difficult setup of multimodal data, which suggests the suitability of our method for multimodal
signals. We hypothesize that this can be attributed to our method’s ability to learn faster from
minibatches with i.:.d. elements, which is something we observed empirically during training and
hyperparameter tuning. We visualize example frames for the video clips in Figure 4, and in Figure 6
in Appendix G. We provide further qualitative results in Appendix G and include reconstructions of
all signals in the supplementary material.

Figure 4: Examples frames from fitting the “bikes" video clip. The first row shows the groundtruth,
while the second and the third row show the reconstructions obtained using NeoMLP and Siren,
respectively. We observe that NeoMLP learns to reconstruct the video with much greater fidelity.

3.2 Fitting v-sets & Downstream tasks on v-sets

Next, we evaluate our method on fitting v-sets, i.e. fitting datasets of neural representations of signals
with NeoMLP, as well as performing downstream tasks on v-sets. We compare our method against
Functa [9], DWSNet [25], Neural Graphs [18], and Fit-a-NeF [28]. Functa is a conditional neural
field that uses an MLP backbone and conditioning by bias modulation. DWSNet, Neural Graphs,

Zhttps://www.scikit-video.org/stable/datasets.html
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Table 1: Performance on fitting high resolution signals. We report the PSNR (higher is better).
Method Dataset
Bach  Bikes Big Buck Bunny
Audio  Video

RFFNet [42] 54.62 27.00 32.88  24.59
Siren [40] 51.65 37.02 31.55  24.82
SPDER [38] 48.06 33.82 28.45  20.90
NeoMLP (ours) 54.71 39.06 39.00 34.17

Table 2: Performance on fitting neural datasets and downstream classification for neural datasets.
Experiments on MNIST, CIFAR10, and ShapeNet10. Results from methods marked with  were
taken from Fit-a-NeF [28]. The | symbols that appear above and below a number denote that this
number is shared for these three methods. For classification, we run the experiments for 3 random
seeds and report the mean and standard deviation.

Method MNIST CIFAR10 ShapeNet
PSNR (1) Accuracy (%) PSNR (1) Accuracy (%) IoU (1) Accuracy (%)
Functa [9] 33.07 98.73+0.05 31.90 68.30+0.00 0.434 95.23+0.13
DWSNet [25] t ‘ 85.70+0.60 | 44.01+0.48 | 91.06+0.25
Neural Graphs [18] { 14.66 92.40+0.30 20.45 44.11+0.20 0.559 90.31+0.15
Fit-a-NeF [28] T ‘ 96.40+0.11 ‘ 39.83+1.70 | 82.96+0.02
NeoMLP (ours) 33.98 98.78+0.02 33.16 73.40+0.12 0.934 95.30+0.08

and Fit-a-NeF, on the other hand, are equivariant downstream models for processing datasets of
unconditional neural fields. For these three methods, the process of creating datasets of neural
representations corresponds to fitting separate MLPs for each signal in a dataset, a process that is
independent of the downstream models themselves. Since these methods have the step of generating
the neural datasets in common, we use shared datasets for these methods, provided by Fit-a-NeF.

We consider three datasets, namely MNIST [20], CIFAR10 [19], and ShapeNet10 [4]. We evaluate
reconstruction quality for MNIST and CIFAR10 with PSNR, and for ShapeNet with IoU. For
CIFAR10, we follow the setup of Functa [9], and use 50 augmentations for all training and validation
images during finetuning. For all datasets, we only use the training set as a fitting set, since this
closely mimics the real-world conditions for auto-decoding neural fields, namely that test set data can
appear after the backbone is frozen, and should be finetuned without changing the backbone.

After fitting the neural datasets, we optimize the downstream model for the downstream tasks, which
corresponds to classification for MNIST, CIFAR10, and ShapeNet10. We perform a hyperparameter
search for NeoMLP to find the best downstream model. Specifically, we use Bayesian hyperparameter
search from Wandb [2] to find the best performing hyperparameters for CIFAR10, and reuse these
hyperparameters for all datasets.

While neural datasets can easily reach excellent reconstruction quality, it is often at the expense of rep-
resentation power. This was shown in the case of unconditional neural fields by Papa et al. [28], where
optimal downstream performance was often achieved with medium quality reconstructions. Since our
goal in this experiment is to optimize the performance of neural representations in downstream tasks,
we report the reconstruction quality of the models that achieved the best downstream performance.

We report the results in Table 2. We observe that NeoMLP comfortably outperforms DWSNet [25],
Neural Graphs [18] and Fit-a-NeF [28], i.e. all methods that process unconditional neural fields, both
in terms of representation quality and downstream performance. Further, these two quantities seem to
be positively correlated for NeoMLP, in contrast to the findings of Papa et al. [28] for unconditional
neural fields. Our method also outperforms Functa [9] on all three datasets regarding the classification
accuracy, while maintaining an excellent reconstruction quality.
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3.3 Ablation studies

Importance of hyperparameters We perform a large ablation study to assess the importance of the
latent codes, and the impact of the duration of fitting and finetuning to the quality of reconstruction
and representation power. Specifically, we run two studies on CIFAR10; the first study monitors the
number and the dimensionality of the latent codes, as well as the number of finetuning epochs. The
second study monitors the number and the dimensionality of the latent codes, as well as the number
of fitting epochs. In both studies, all other hyperparameters are fixed. We report the fitting PSNR, the
test PSNR and the downstream accuracy. We summarize our findings in Tables 3 and 4.

In both studies, we observe that increasing the number of latents and their dimensionality also
increases the reconstruction quality. However, the higher number of latents seems to lead to decreased
downstream performance. Furthermore, we notice that increasing the number of finetuning epochs
also increases the test PSNR and accuracy. Finally, somewhat surprisingly, while fitting for more
epochs leads to noticeably better fitting PSNR, this translates to negligible gain in the test PSNR and
accuracy, and even degrades performance in some cases.

Table 3: Ablation study on the importance of the number of latents, the dimensionality of the latents,
and the number of finetuning epochs. The backbone is fitted for 50 epochs. Experiment on CIFAR10;
no augmentations are used in this study.

Num. latents Latent dim.  Fit PSNR (1) Finetune for 5 epochs Finetune for 10 epochs
Test PSNR (1)  Accuracy (%) Test PSNR (1)  Accuracy (%)

6 64 27.04 24.67 51.23 26.00 50.86

128 30.01 26.46 53.30 28.41 53.25

256 33.10 28.17 53.76 30.82 54.52

512 37.49 30.89 54.66 34.98 56.23

14 64 30.58 26.28 49.36 28.58 49.69

128 34.59 28.34 50.74 31.52 51.28

256 37.65 29.63 53.35 33.70 54.06

512 39.30 30.77 53.26 33.99 53.65

Table 4: Ablation study on the importance of the number of latents, the dimensionality of the latents,
and the number of fitting epochs. The latents are finetuned for 5 epochs. Experiment on CIFAR10;
no augmentations are used in this study.

Num. latents  Latent dim. Fit 20 epochs Fit 50 epochs
Fit PSNR (1) Test PSNR (1) Accuracy (%) FitPSNR (1) Test PSNR (1) Accuracy (%)

6 64 25.68 24.68 51.03 27.04 24.67 51.23

128 28.05 26.40 52.67 30.01 26.46 53.30

256 30.04 28.17 54.56 33.10 28.17 53.76

512 33.91 30.84 55.14 37.49 30.89 54.66

14 64 28.34 26.18 49.67 30.58 26.28 49.36

128 31.63 28.03 52.12 34.59 28.34 50.74

256 33.02 29.24 53.52 37.65 29.63 53.35

512 31.94 30.54 54.42 39.30 30.77 53.26

Importance of RFF  As shown by Rahaman et al. [31], neural networks suffer from spectral bias,
i.e. they prioritize learning low frequency components, and have difficulties learning high frequency
functions. We expect that these spectral biases would also be present in NeoMLP if left unattended.
To that end, we employed Random Fourier Features (RFF) [42] to project our scalar inputs to higher
dimensions. Compared to alternatives like sinusoidal activations [40], RFFs allow our architecture to
use a standard transformer.

To examine the spectral bias hypothesis, we train NeoMLP without RFF, using a learnable linear
layer instead. We train this new model on the “bikes” video, and on MNIST. We present the results in
Table 5. The study shows that RFFs clearly help with reconstruction quality, both in reconstructing
a high-resolution video signal, and on a dataset of images. Interestingly, the reconstruction quality
drop from removing RFFs does not translate to downstream performance drop, where, in fact, the
model without Fourier features is marginally better than the original.
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Table 5: Ablation study on the importance of random Fourier features on (a) the bikes video, (b) on
MNIST.

(a) “Bikes" video (b) MNIST
Method PSNR (1) Method PSNR (1)  Accuracy (%)
NeoMLP (without RFF) 35.92 NeoMLP (without RFF) 30.33 98.81+0.08
NeoMLP 39.06 NeoMLP 33.98 98.78+0.04

4 Related work

Neural representations An increasingly large body of works [25, 55, 18, 21, 28, 43, 13] has
proposed downstream methods that process datasets of unconditional neural fields, i.e. the parameters
and the architectures of MLPs. They are all addressing the parameter symmetries present in MLPs,
and while the performance of such methods is constantly increasing, it still leaves much to be
desired. Closer to our work is another body of works [29, 9, 35, 6, 52, 54, 45] that proposes
neural representations through conditional neural fields. Of those, Sajjadi et al. [35], Zhang et al.
[52], Wessels et al. [45] have proposed set-latent conditional neural fields that condition the signal
through attention [44]. Zhang et al. [52] proposed 3DShape2VecSet, an architecture that employs
cross-attention and self-attention to encode shapes into sets of latent vectors and decode them. Our
method differs from this method, since it does not rely on cross-attention to fully encode a coordinate
in a set of latents. Instead, it employs self-attention, which allows for better information propagation
and enables the model to scale to multiple layers.

MLPs as graphs A few recent works [18, 21, 22, 26, 13] have viewed neural networks as graphs
and proposed methods that leverage the graph structure. Kofinas et al. [18] focus on the task
of processing the parameters of neural networks and represent neural networks as computational
graphs of parameters. Their method includes applications to downstream tasks on neural fields.
Lim et al. [22] investigate the impact of parameter symmetries, and introduce new neural network
architectures that have reduced parameter space symmetries. Nikolentzos et al. [26] show that MLPs
can be formalized as GNNs with asynchronous message passing, and propose a model that employs
synchronous message passing on a nearly complete graph. Similar to this work, we use a complete
graph and employ a synchronous message passing scheme. In contrast to this work, we employ
weight-sharing via self-attention and high-dimensional node features. Further, we focus on NeF
applications instead of tabular data, and explore conditioning via the hidden and output embeddings.

5 Conclusion

In this work, we presented NeoMLP, a novel architecture inspired by the principles of connectionism
and the graph perspective of MLPs. We perform message passing on the graph of MLPs, after
transforming it to a complete graph of input, hidden, and output nodes equipped with high-dimensional
features. We also employ weight-sharing through self-attention among all the nodes. NeoMLP is
a transformer architecture that uses individual input and output dimensions as tokens, along with
a number of hidden tokens. We also introduced new neural representations based on the hidden
and output embeddings, as well as datasets of neural representations. Our method achieves state-of-
the-art performance in fitting high-resolution signals, including multimodal audio-visual data, and
outperforms state-of-the-art methods in downstream tasks on neural representations.

Limitations Our v-reps are subject to permutation symmetries, indicating that inductive biases can
be leveraged to increase downstream performance. Namely, while the output embeddings are already
ordered, as they correspond to individual outputs, the hidden embeddings are subject to permutation
symmetries. Future work can explore more elaborate methods based on set neural networks, such as
Deep Sets [51], that exploit the inductive biases present in v-reps. Further, the latent codes used in
v-reps, namely the hidden and output embeddings, carry global information. Instilling locality in
latent codes can be useful for fine-grained downstream tasks, such as segmentation. Future work can
explore equivariant neural fields [45], which would localize the latent codes by augmenting them
with positions or orientations.
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A Fitting and finetuning v-sets

Algorithm 1 Fit NeoMLP as a conditional neural field

Require: Randomly initialized backbone network fg
Require: Fitting dataset: Dy, = {{ o yén)} } & Ny signals, Coordinate x.") € RZ
p=1) =

> Field value y") € RO
N m

Require: Randomly initialized latents: Zg = {Z,}, "
Require: Initialized optimizer: Og, > Adam [15]
Require: Number of fitting epochs E
Require: Fitting minibatch size B > Number of points per minibatch
P+ ZN‘“ P, > Total number of points in the dataset
M L | > Number of iterations per epoch. We drop incomplete minibatches
functlon FITNEOMLP
for epoch € {1,...,F} do
for iteration € {1,..., M} do
Sample point indices P = {p}Z_,
Sample signal indices S = {ny}Z_, > Sample P and S with replacement

B
B {x v 2, )
o fo (Xé’i”%znb) > In parallel Vb € {1,..., B}
(no) _ o (np)

‘C — % Zf:l‘ ypb ypb
0+ 06— Oﬁ[(V@L)
Zon, < Zn, — Ogy (Vz”bﬁ) > In parallel ¥ b € {1,..., B}
end for
end for
Freeze ©
Discard Zg;

return ©
end function

B NeoMLP symmetries

Our v-reps, and more specifically, the hidden embeddings, are subject to permutation symmetries.
Intuitively, when we permute two hidden embeddings from a randomly initialized or a trained
model, we expect the behaviour of the network to remain the same. In this section, we formalize
the permutation symmetries present in our method. NeoMLP is a function f : RUTH+O)xD _,
RUHH+O)IXD that comprises self-attention and feed-forward networks applied interchangeably
for a number of layers, following Equations (2) and (3). As a transformer architecture, it is a
permutation equivariant function. Thus, the following property holds: f(PX) = P f(X), where P
is a permutation matrix, and X is a set of tokens fed as input to the transformer.

Now consider the input to NeoMLP: T(®) = [{11}z 1 {hJ}J 1 {ok}k 1], T ¢ RUFH+O)xD,

We look at two cases of permutations, namely permuting only the hidden neurons, and permuting only
the output neurons. The permutation matrix for the first case, i.e. permuting only the hidden neurons,
isP1 =174 ® Puxg & Ioxo, where 1 is the identity matrix, Pz, j7 is a permutation matrix, and
@ denotes the direct sum operator, i.e. stacking matrix blocks diagonally, with zero matrices in the
off-diagonal blocks. Each P corresponds to a permutation 1 € Spg.

Applying this permutation to T(?) permutes only the hidden neurons:

H
PlT(O) = |:{iz}111’ {hwfl(j) }j:l7 {Ok}k01:| "
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Algorithm 2 Finetune NeoMLP as a conditional neural field

Require: Frozen backbone network fg
Require: Train, validation, test datasets: Diain, Dvatidation Prest
Require: Randomly initialized latents: Ziain, Zvatidation, Ztest
Require: Initialized optimizers: Oyin, Ovalidation, Otest > Adam [15]
Require: Number of finetuning epochs E’
Require: Finetuning minibatch size B’
function FINETUNENEOMLP
for split € {train, validation, test} do

Ngoli
split
Py,

Msplit — [&T&]
for epoch € {1,...,E'} do
for iteration € {1,..., Mgy} do
Sample point indices P = {p,} &,

Sample signal indices S = {nb}fil > Sample P and S without replacement
B/
B {xi i B}
For)  fo (xé’Zb), Zm,) > Inparallel Vb € {1,..., B’}
B’ n A~(n 2
L % Zb:l ygbb) - Z(7bb)
Z,, < Zy, — Ogpiit (Vznb£> > In parallel Vb € {1,..., B’}
end for
end for

end for
return Ztrainv Zvalidationa Ztest
end function

Next, we apply NeoMLP on the permuted inputs. Making use of the equivariance property, the output
of the function applied to the permuted inputs is equivalent to the permutation of the output of the
function applied to the original inputs.

f(PlT(O)) - Plf(T(0)> (11)

Since the network is only using the output tokens in the final step as an output of the network, the
overall behaviour of NeoMLP is invariant to the permutations of the hidden nodes.

We can follow the same principle to show that permuting the output nodes results in different outputs.
The permutation matrix in this case is Po = I7x1 & Iy x g & Poxo. The equivariance property still
holds, namely f (PQT(O)) =Psf (T(O)). However, the output tokens are now used as the output
of the network. This means that permuting the output tokens would result in permuting the output
dimensions of a signal, which is clearly not equivalent to the original signal.

A corollary of the permutation symmetries is that if we start with a randomly initialized model,
apply a permutation on the hidden nodes to create another model, and then train the two models
independently, these two trained models would be identical up to the permutation of the hidden nodes.
This observation is important for downstream tasks, as it shows the existence of equivalence classes
that should be taken into account by the downstream models.

C Computational complexity

While NeoMLP comfortably outperforms Siren in the task of fitting high-resolution signals, it is
also more computationally expensive. We quantitatively measure the computational complexity
of our method using the fvcore library’. We evaluate on the “bikes" video signal, and use the
hyperparameters described in Appendix E. We report the FLOPs for 1 input (i.e. 1 coordinate) in
the forward pass. NeoMLP has 51.479 MFLOPs, out of which 17.83 MFLOPs correspond to the

*https://github.com/facebookresearch/fvcore
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attention itself and 33.55 MFLOPs correspond to the FFNs. In the same setup, Siren [40] has 3.15
MFLOPs.

Despite having a higher computational complexity compared to the baselines, NeoMLP can actually
fit high resolution signals faster, and does so while having a smaller memory footprint, since it can
make use of small batch sizes. Figure 5 shows the runtime of NeoMLP for fitting high-resolution
signals, compared to the baselines. The x-axis represents wall time in seconds and the y-axis
represents the reconstruction quality (PSNR). Table 6 shows the corresponding GPU memory and
batch size, along with the total runtime for fitting high resolution signals.

Finally, despite the large difference in FLOPs, the forward pass of NeoMLP is almost as fast as
the forward pass of Siren, considering the same batch size. Namely, we ran a full evaluation on
the “bikes" signal, on an Nvidia H100 GPU, using a batch size of 32,768. NeoMLP takes 139.74
seconds, while Siren takes 131.01 seconds. NeoMLP, however, cannot fit larger batch sizes in
memory, while Siren can fit as big as 1,048,576. With this batch size, Siren requires 79.18 seconds
for a full evaluation.

(a) Bach (b) Bikes (c) BigBuckBunny

Figure 5: Runtime for fitting high-resolution signals. The z-axis represents wall time in seconds and
the y-axis represents the reconstruction quality (PSNR). NeoMLP fits signals faster and with better
reconstruction quality.

Table 6: Runtime, GPU memory, and batch size on fitting high resolution signals. For each dataset,
we trained all methods for the same amount of time for fair comparison.

(a) Bach

Method GPU memory (GB) Batchsize Runtime (hours)

RFFNet [42] 3.7 308,207 2.33
Siren [40] 3.9 308,207 |
SPDER [38] 6.0 308,207 |
NeoMLP (ours) 2.2 4,096 |
(b) Bikes

Method GPU memory (GB) Batchsize Runtime (hours)

RFFNet [42] 11.2 262,144 19.07
Siren [40] 16.8 262,144 |
SPDER [38] 37.3 262,144 |
NeoMLP (ours) 11.1 4,096 |

(c) BigBuckBunny
Method GPU memory (GB) Batch size Runtime (hours)

RFFNet [42] 13.9 262,144 24.73
Siren [40] 18.7 262,144 |
SPDER [38] 39.2 262,144 |
NeoMLP (ours) 13.2 4,096 |
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We also monitor the runtime of NeoMLP on fitting datasets of signals, and compare against Functa [9].
We report the results in Table 7. NeoMLP consistently exhibits lower runtimes for the fitting stage,
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while Functa is much faster during the finetuning stage, which can be attributed to the meta-learning
employed for finetuning, and the highly efficient JAX [3] implementation. As noted by Dupont et al.
[9], however, meta-learning may come at the expense of limiting reconstruction accuracy for more
complex datasets, since the latent codes lie within a few gradient steps from the initialization.

Table 7: Runtime on fitting datasets of signals. The finetuning runtime is measured on the test set
only. The runtime for fitting is measured in minutes, while the runtime for finetuning is measured in
seconds.

(a) MNIST
Method Fitting Finetuning
Num. epochs Runtime (min.) Num. epochs Runtime (sec.)
Functa [9] 192 240 3 16
NeoMLP (ours) 20 63 10 318
(b) CIFAR10
Method Fitting Finetuning
Num. epochs Runtime (min.) Num. epochs Runtime (sec.)
Functa [9] 213 418 3 16
NeoMLP (ours) 50 305 10 646
(c) ShapeNet
Method Fitting Finetuning
Num. epochs Runtime (min.) Num. epochs Runtime (sec.)
Functa [9] 20 1002 3 250
NeoMLP (ours) 20 713 2 1680

D Implementation details

D.1 Embedding initialization

Fitting high-resolution signals We initialize input embeddings by sampling from a normal distri-
bution with variance o7 = 1. For hidden and output embeddings, we use a variance o2 = le — 3.

Fitting v-sets During fitting, we initialize the input, hidden, and output embeddings by sampling a
normal distribution with variance 0? = 02 = le — 3. During finetuning, we sample embeddings for
new signals from a normal distribution with variance o2 = le — 3.

D.2 Weight initialization

We initialize the bias of the final output linear layer to zeros, as we observe this leads to faster
convergence and better stability at the beginning of training. Further, we initialize the weights of
the linear projection following the random Fourier features by sampling from a normal distribution

N (0, ﬁ) This results in a unit normal distribution of the inputs after the linear projection.

E Experiment details

E.1 High-resolution signals
Below we provide the hyperparameters for NeoMLP.

¢ Audio (Bach)
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Number of parameters: 182,017
FFN hidden dim: 256

Token dimensionality D: 64

— Number of self-attention heads: 4
Number of layers: 3

RFF dimensionality Dggp: 512
RFF o: 20

Total number of nodes: 8
Number of epochs: 5, 000

Batch size: 4,096

Learning rate: 0.005

* Video (Bikes) & Video with audio (Big Buck Bunny)

Number of parameters: 3,189, 249
FFN hidden dim: 1,024

Token dimensionality D: 256
Number of self-attention heads: 8
Number of layers: 4

RFF dimensionality Dggp: 128
RFF o: 20

Total number of nodes: 16
Number of epochs: 200 (400 for BigBuckBunny)
Batch size: 4,096

Learning rate: 0.0005

For the audio fitting, Siren [40] has 198,145 parameters. It is a 5-layer MLP, with a hidden dimension
of 256, and it is trained with full batch training and a learning rate of 5e — 5.

For the video fitting, Siren has 3,155,971 parameters, and for the audio-visual data, Siren has
3,162,121 parameters. It both settings, it is using the exact same architecture with 5 layers and a
hidden dimension of 1024. We train it with a learning rate of 1e — 4 and a batch size of 262,144.

E.2 Fitting v-sets

For ShapeNet10 [4], we fit the dataset for 20 epochs. In each epoch, we stop when we have used
10% of the available points, which effectively results in 2 epochs in total. We finetune for 2 epochs,
and use the 20% of the available points. We use a minibatch size of 32,768 points, and a learning rate
of 0.005. The backbone has the following hyperparameters:

* FFN hidden dim: 512

* Token dimensionality D: 256

* Number of self-attention heads: 4

* Number of layers: 3

» RFF dimensionality Dggg: 512

* RFF o: 20

* Total number of nodes: 8

For MNIST, we fit the dataset for 20 epochs and finetune for 10 epochs. We use a minibatch of 12,288
points (the equivalent of 16 images), and a learning rate of 0.005. The backbone has the following
hyperparameters:

* FFN hidden dim: 512

» Token dimensionality D: 256

¢ Number of self-attention heads: 4
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* Number of layers: 3

* RFF dimensionality Drpg: 512

* RFF o: 20

* Total number of nodes: 8

For CIFARI10, we fit the dataset for 50 epochs and finetune for 20 epochs. We use a minibatch of
16,384 points (the equivalent of 16 images), and a learning rate of 0.005. The backbone has the
following hyperparameters:

* FFN hidden dim: 128

* Token dimensionality D: 512

* Number of self-attention heads: 4

* Number of layers: 3

» RFF dimensionality Dgpp: 128

* RFF o: 20

¢ Total number of nodes: 8

E.3 Downstream tasks on v-sets

We perform a hyperparameter search for NeoMLP to find the best downstream model. Specifically,
we use Bayesian hyperparameter search from Wandb [2] to find the best performing hyperparameters
for CIFAR10, and reuse these hyperparameters for all datasets. We perform our search over the choice
of Mixup [53], batch size, learning rate, noise added to the data, data dropout, hidden dimension and
model dropout [41].

Our downstream model is a 3 layer MLP with SiL.U activations [32], a hidden dimension of 2048,
and dropout of 0.3. We train the model with a learning rate of 8e — 3, and batch size of 256. We
use Mixup, weight decay with A = 0.05, and add noise to the data with scale 0.05. Finally, we use
weight averaging with exponential moving average (EMA).

For CIFAR10 [19], the model takes as input 6 embeddings (the NeoMLP had 8 nodes in total). We
train for 100 epochs.

For ShapeNet10 [4], the model takes as input 13 embeddings (the NeoMLP had 16 nodes in total).
We use a higher weight decay A = 0.25 to further prevent overfitting, and train for 500 epochs.

For MNIST [20], the model takes as input 6 embeddings (the NeoMLP had 8 nodes in total). We use
a higher weight decay A = 0.2 and train for 500 epochs.

F Dataset details

F.1 ShapeNetl10

We use the following 10 classes for ShapeNet10 classification: loudspeaker, bench, watercraft, lamp,
rifle, sofa, cap, airplane, chair, table.

The dataset comprises 35,984 shapes. We use 29,000 shapes for training, 2,000 as a validation set,
and 4,984 as a test set.

For CIFAR10, following Functa [9], we use 50 augmentations per training and validation image. This
results in a total of 2,500,000 training and validation images. We use 5,000 of those for validation.

G Qualitative results

We show example frame for the “BigBuckBunny" video clip in Figure 6.

We show the reconstructions for the “Bach" audio clip in Figure 7, and the errors between the
groundtruth signal and reconstructions in Figure 8.
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Figure 6: Examples frames from fitting the “BigBuckBunny" video clip. The first row shows the
groundtruth, while the following rows show the reconstructions obtained using NeoMLP, RFFNet,
Siren, and SPDER, respectively. We observe that NeoMLP learns to reconstruct the video with much
greater fidelity.

NeoMLP
)

Siren
o

Figure 7: Predictions for the “Bach" audio clip. The first row shows the groundtruth signal, while the
second and third row show the reconstructions from NeoMLP and Siren, respectively.

H Visualizations

I Latent space

We visualize the learned MNIST data manifold for a two-dimensional latent space (with a single
embedding) in Figure 10, following Kingma and Ba [15], Park et al. [29]. We assume that the latent

0.02
0.00
-0.02

NeoMLP

Siren

Figure 8: Errors € = y — ¥ between predictions y and groundtruth §. The top row shows the error
for NeoMLP, while the bottom row shows the error for Siren. Both the x-axis and the y-axis are
shared in this figure, but the y-axis is different from Figure 7 . We see that the errors from Siren have
a much larger amplitude, and still seem to capture signal components.
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Test accuracy vs. Reconstruction quality on CIFAR10. p = 0.65
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Figure 9: Test accuracy vs. reconstruction quality (PSNR). Experiments on CIFAR10, with different

hyperparameters, without augmentations.
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(b) Epoch 10 (c) Epoch 20

(a) Epoch 1

Figure 10: The data manifold of NeoMLP with a 2D latent space and a single embedding, i.e.

0

1, H =0, D = 2. We visualize the manifold as the fitting stage progresses.

space is Gaussian, with a sample mean and variance estimated from the latents of the training set. We
sample linearly spaced coordinates on the unit square and transform them through the Percent Point

Function (PPF) of the Gaussian to produce the values of the latent variables.

621
622
623

We also visualize random samples from the latent space of NeoMLP across hyperparameter configu-
rations varying in the number of embeddings and dimensionality of the latents in Figure 11, as well

as the corresponding reconstruction quality and downstream performance in Table 8.
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Figure 11: Random samples from the latent space of NeoMLP, as the fitting stage progresses. We

visualize various configurations of the number of embeddings and the dimension of the latents.

Table 8: Reconstruction quality and downstream performance for the configurations corresponding to

Figure 11.

Fit PSNR (1)  Accuracy (%)

Latent dim.

Num. latents
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Section 3.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See Section 5.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We discuss the permutation symmetries of NeoMLP in Appendix B.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Equations (2) and (4) mathematically describe our method. Further, we de-
scribe the algorithms for fitting and finetuning NeoMLP in Algorithms 1 and 2, respectively.
We report details regarding the implementation in Appendix D, dataset details in Appendix F,
and details about the hyperparameters used in each experiment in Appendix E.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our source code is included in the supplementary material. We use publicly
available data and datasets, which are described in Section 3.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We report details regarding the implementation in Appendix D, dataset de-
tails in Appendix F, and details about the hyperparameters used in each experiment in
Appendix E.

Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See Table 2.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix C.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Neither our work nor our data involve human subjects.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: See Section 3.
Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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936 * We recognize that the procedures for this may vary significantly between institutions

937 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
938 guidelines for their institution.

939 * For initial submissions, do not include any information that would break anonymity (if
940 applicable), such as the institution conducting the review.

941 16. Declaration of LLM usage

942 Question: Does the paper describe the usage of LLMs if it is an important, original, or
943 non-standard component of the core methods in this research? Note that if the LLM is used
944 only for writing, editing, or formatting purposes and does not impact the core methodology,
945 scientific rigorousness, or originality of the research, declaration is not required.

946 Answer: [NA]

947 Justification:

948 Guidelines:

949 * The answer NA means that the core method development in this research does not
950 involve LLMs as any important, original, or non-standard components.

951 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
952 for what should or should not be described.
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