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ABSTRACT

We introduce Generative-Semantic Entropy Estimation (GSEE), a model-
agnostic algorithm that efficiently estimates the generative uncertainty associated
with foundation models, while requiring no additional auxiliary model inference
steps. In principle, for any foundation model input data, GSEE numerically es-
timates the uncertainty encapsulated in the internal, semantic manifold of the
LLM generated responses to the input data. In this way, high uncertainty is in-
dicative of hallucinations and low generative confidence. Through experiments,
we demonstrate the superior performance of GSEE for uncertainty quantifica-
tion (UQ) amongst state-of-the-art methods across a variety of models, datasets
and problem settings, including: unbounded language prompting, constrained
language prompting, variable generative stochasticity, acute semantic diversity
prompting and as a barometer for hallucinations and predictive accuracy.

1 INTRODUCTION

In recent years, powerful foundation models, including Large Language Models (LLMs) (Naveed
et al., 2023; Minaee et al., 2024) and Large Multi-Modal Models (LMMs) (Cui et al., 2024; Liu
et al., 2023a) have ushered in a new epoch of multi-faceted, intelligent conversational agents. De-
spite their significant early successes and widespread use, foundation models nevertheless currently
suffer from several critical shortcomings, including their lack of transparency and predilection for
“hallucinations.” (Huang et al., 2023) These deficiencies severely limit the trustworthiness and po-
tential deployment of LLMs for real-world applications, particular in safety-critical domains. The
widespread adoption and future success of LLMs and related models is critically dependent upon
efforts to improve their transparency and explainability.

While the problem of uncertainty quantification (UQ) has enjoyed a rich and extensive research
focus across many classical machine learning and deep learning (Gawlikowski et al., 2023) applica-
tions, LLM and related natural language generation (NLG) problem settings pose unique challenges
to UQ. This difficulty primarily stems from: (i) the unbounded character of NLG and (ii) complexi-
ties surrounding efforts to effectively and reliably quantify semantic structure (Kuhn et al., 2023). In
the former case, reliable uncertainty quantification for variable-length NLG tasks is complicated by
a variety of issues, including ambiguity of model confidence probing, e.g., which output token(s) are
most representative of model confidence, (Chen et al., 2024) and sensitivity to generative text length
(Bengio et al., 2003) – to name but two critical issues. In addition, precise methods to capture model
uncertainty are also complicated by the problem of how to ascertain semantic self-consistency for
NLG (Malinin & Gales, 2021).

With these challenges in mind, we introduce Generative-Semantic Entropy Estimation (GSEE) a
lightweight, model-agnostic algorithm to estimate UQ for LLM and other generative models. Our
method renders predictive uncertainty in a mathematically-principled fashion, by numerically esti-
mating the uncertainty encapsulated in the internal, semantic manifold of the LLM generated re-
sponses to the input data. GSEE follows a series of straightforward steps: (1) Given an input datum
(text/text + image), we render multiple text outputs with the generative model through a single for-
ward pass; (2) we then extract latent embeddings for each of these generated outputs; (3) next, we
calculate the covariance matrix with respect to these mean-centered semantic embeddings; (4) lastly,
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we define the model predictive uncertainty as the spectral-entropy of this covariance matrix, viz., the
entropy of the distribution of eigenvlues of the principal components of the generated outputs of
the model. This measure is known to approximate the effective dimension of the semantic manifold
spanned by the generated outputs (Zhang et al., 2024). Hence, here, larger spectral-entropy corre-
sponds with larger semantic diversity in the generated outputs, and thus higher model uncertainty.

The current work provides the following contributions:

• We define a novel, mathematically-principled algorithm, GSEE, to approximate uncertainty
quantification for LLM and related foundation models. GSEE operates on the internal states
of an LLM, yielding a holistic measure of semantic self-consistency in model responses.
Concretely, we leverage spectral-entropy to estimate the information content in the seman-
tic manifold of generated responses.

• We test our algorithm against established UQ methods on a variety of essential experimen-
tal settings, including across LLM and LMM model types.

• We introduce several nuanced experimental conditions to benefit UQ understanding and
hallucination detection for LLMs, including what we term: constrained language prompt-
ing and high stochaticity conditioning.

At a high level, improving uncertainty quantification for LLMs and related models can greatly ex-
pand the usefulness and applicability of these nascent models Zhao et al. (2024); Liu et al. (2023b).
In particular, reliable UQ can help facilitate better LLM performance, enhance LLM-related hu-
man interaction and help foster trust in foundational model dependent systems. In terms of core
algorithm advantages, GSEE does not require additional natural language inference (NLI) (Welleck
et al., 2019) or related auxiliary model processing steps – boosting its relevance for real-time and
computationally-constrained environments; GSEE is moreover model-agnostic and outperforms
other baseline techniques on many challenging UQ tasks, as we show in our experimental results.

2 BACKGROUND AND PRIOR WORK

Much of the prior art for uncertainty quantification and hallucination detection with LLMs and re-
lated foundation models relies on the thesis that when a model is uncertain about its generated out-
put, this answer distribution tends to exhibit high variability. In the domain of language generation
specifically, this variation can be codified with respect to the notion of semantic consistency (Raj
et al., 2023), predictive uncertainty, or entropy. As such, for example, a semantically differentiated
answer distribution is more likely to be erroneous (or hallucinatory) than a semantically consistent
distribution.

UQ methods for LLMs generally fall into two broad categories of black-box and white-box tech-
niques for measuring semantic consistency, predictive uncertainty and variability in the generated
answer distribution. Black-box techniques rely on analyzing these quantities with respect to the
model outputs – this is to say, in the textual domain. Many such techniques exist (Lin et al., 2022;
Wang et al., 2022), including, notably, Lexical Similarity (Liu et al., 2023a) which leverages a sim-
ilarity measure using a bespoke natural language inference (NLI) model (e.g., BERT (Devlin et al.,
2018)) to assess semantic consistency across generated outputs by averaging similarity over gener-
ated output pairs. In this vein, much previous related work leverages NLI models to compare the
semantic similarity of LLM-generated responses or some other NLI-related measure, including en-
tailment, equivalence and consistency (Bowman et al., 2015). Two basic drawbacks of these prior
methods are that they (i) require additional model compute/inference to approximate semantic simi-
larity and (ii) the semantic similarity measure relies on extrinsic uncertainty estimates, independent
of the LLM itself, thus adding undesirable noise to the UQ estimation process.

White-box models by contrast directly leverage internal representations of the generative process
(e.g., hidden layer activations) to estimate predictive uncertainty. Perplexity (Ren et al., 2023) de-
fines predictive uncertainty as the joint probability of output tokens for a single generated output.
While Perplexity is an effective and widely-used measure of semantic consistency in literature, it is
nevertheless known to suffer from brittleness due to the instability of token-level likelihoods (Wang
et al., 2024). To mitigate these deficiencies, other techniques rely on multiple output NLG, where
semantic diversity and related metrics account for larger sample outputs. The works closest to the
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current work include (Chen et al., 2024) and (Wei et al., 2024). The former differs from the current
work in two fundamental ways: (1) we include length normalization directly into our UQ metric in
order to reduce semantic consistency sensitivity to output length; (2) because GSEE is calculated
from spectral-entropy, our measure of uncertainty accounts for the (comparatively richer) holistic
distribution of the semantic manifold and not simply the aggregation of eigenvalues over the NLG
samples. While Wei et al. (2024) also calculate entropy, their metric is used with respect to the
model latent space (whereas ours reflects entropy in generated model outputs); moreover they lever-
age this UQ metric to assess the information content in training datasets for LLMs, and not UQ for
NLG prediction.

3 GENERATIVE-SEMANTIC ENTROPY ESTIMATION

Formally, suppose we wish to approximate the predictive uncertainty (for hallucination detection,
improved generative performance, etc.) of a large language – or multi-modal – foundational model,
denoted f(·) with respect to an input language (or multi-modal) datum x. To estimate predictive
UQ, we generate multiple language outputs for the input data and then approximate the semantic
diversity of the low-dimensional manifold encapsulating these generated outputs. A large semantic
diversity indicates high model uncertainty. GSEE proceeds in four total steps:

(1) Generate a set of M language responses for the input data (modulated via the temperature pa-
rameter of the model):

f(x) → {ŷ(i)}
i=M

i=1 (1)

(2) Next, we extract latent embeddings, denoted z ∈ Rl, where l denotes the latent embedding
dimension, from f for each of these generated outputs:

{ŷ(i)}
i=M

i=1 → {z(i)}
i=M

i=1 (2)

GSEE is agnostic to the locus of latent embedding extraction for f . However, following current best
practices, we extract rich semantic embeddings by averaging penultimate layer representations of
generated output tokens.

(3) Next, we center these embeddings by mean-subtracting; we then calculate the covariance of
these centered embeddings, where Z ∈ RM×l represents the corresponding centered data matrix:

Cov
(
{z(i)}i=M

i=1

)
= ZT Z (3)

We denote the covariance matrix above as Σ ∈ RM×M .

(4) Finally, we define the uncertainty quantification of f with respect to the input x as the length-
normalized spectral-entropy of Σ, which we define as the entropy of the normalized spectrum of
Σ, denoted H(ΣN ):

UQ(f(x)) = H(ΣN )/µy (4)

Above, µy is defined as the mean length of the generated output set {ŷ(i)}i=M
i=1 . We include length-

normalization in 4 to reduce our UQ formulation sensitivity to textual length (Raj et al., 2023).

To gain a better intuition as to why the calculation above helps quantify model uncertainty, recall that
resolving the eigendecomposition of a centered covariance matrix is equivalent to solving the for-
mal principal components analysis (PCA) problem for dimensionality reduction (Abdi & Williams,
2010). Thus in 4, we compute the entropy of the spectrum of Σ, which is to say we are approxi-
mating the “information content”, viz., the effective subspace rank of the semantic manifold (Roy &
Vetterli, 2007) encapsulated by the set: {z(i)}i=M

i=1 }. Simply put, the more “semantically diverse”
the set of outputs for the generative model, the higher the predictive uncertainty.
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Figure 1: Conceptualization of non-Isotropic/Isotropic Semantic Manifolds for UQ. (Left) Non-
Isotropic semantic manifold indicating differentiated principal components, yielding low spectral-
entropy; (Right) Isotropic semantic manifold exhibiting large spectral entropy.

It is helpful to visualize an idealization of the preceding ideas; we provide this visualization in
Figure 1; experimental evidence supporting this postulate is given in Figure 2. When an LLM is
more certain of its response to input data, it tends to produce a set of semantically unified responses
(this result is well-known in research literature (Lin et al., 2022)). Conversely, much like their
human counterparts, LLMs tend to “flub” when they are uncertain. Thus, when a generative model
is confident in its reply, a small number of differentiated, principal axes emerge in the semantic
feature space, giving rise to a non-isotropic semantic manifold (yielding small spectral-entropy),
whereas the absence of major semantic axes tends to give rise to isotropic manifolds exhibiting
large spectral-entropy.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

To validate the effectiveness of GSEE, we ran a variey of UQ-related experiments, including: con-
ventional experiments aimed to evaluate UQ performance against baseline LLM UQ methods (Sec-
tion 4.2), novel, supplemental UQ experiments (Section 4.3) and ablation studies (Section 4.4).

Models. Our experiments comprise four different open-source LLM and LMM model types, includ-
ing: GPT2-xl (Radford et al., 2019) and GPT3 (Brown et al., 2020) LLMs, and TinyLLaVA-3.1B
(Jia et al., 2024) (with Phi-2 LLM backbone), TinyLLaVA-2.0B (with Stable-LM2 LLM backbone)
LMMs. In each case, we employ pre-trained Hugging Face instances of these models, with no
fine-tuning applied.

Datasets. We use four standard datasets for our experimental evaluations: Stanford Question An-
swering Dataset (SQuAD) (Rajpurkar et al., 2016), a reading comprehension dataset consisting of
question-answer pairs culled from Wikipedia articles, Conversational Question Answering Dataset
(CoQA) (Reddy et al., 2019), consisting of question-answer pairs generated from conversations, as
well as the MM-Vet benchmark (Yu et al., 2023) and LAVA-Bench (in-the-wild) datasets (Li et al.,
2024) which evaluate LMMs in terms of their integrated vision-language capabilities.

Evaluation Metrics. We use standard evaluation metrics from uncertainty estimation literature
(Lin, 2004). In particular, we calculate the semantic agreement between the NLG output of the
aforementioned LLM and LMMs with the ground-truth answer from the preceding dataset question-
answer and question+image-answer pairs as a measure of correct NLG prediction. Concretely, we
use both Rouge-L (Lin, 2004) and Semantic Similarity (SS) (Reimers & Gurevych, 2019) metrics to
quantify agreement between NLG prediction (ŷ) and ground-truth answers (y), i.e., Rouge-L(y, ŷ)
and SS(y, ŷ). Next, we report the absolute magnitude of the Pearson Correlation Coefficient (PCC)
between these Rouge-L and Semantic Similarity scores and the model uncertainty score, respec-
tively. A large magnitude PCC value indicates strong correlation between the UQ method and the
(in-)correctness of the NLG prediction; thus, large correlation implies that the UQ method is a good
predictor of hallucinations and generative accuracy.
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Figure 2: Visualizations of normalized eigenvalue distributions and corresponding GSEE-based UQ
scores, using TinyLLaVA-3.1B with test examples culled from the MM-Vet dataset, where M = 5.
(Left column) represents “good” prompt results; (Right column) shows “bad” prompt results from
constrained language prompting experiments. In the former case, we observe instances of stronger
semantic self-consistency as evidenced by a non-isotropic morphology.

Baseline Methods. We compare GSEE with the several popular UQ techniques, including: Eigen-
Score (Chen et al., 2024), Lexical Similarity , Perplexity and Length-Normalized Entropy (LN-
Entropy). Of note, we evaluate Eigenscore without test time clipping, as this technique is more or
less orthogonal to the core technique presented in (Chen et al., 2024), and thus can be applied to
potentially enhance any UQ method, including GSEE.

Supplemental and Ablation Experiments. In addition to the principal evaluation metric disclosed
above, we furthermore evaluate GSEE in more diverse NLG settings, including with constrained lan-
guage prompting and high stochaticity conditioning, that we detail below. We also perform ablation
studies with respect to the number of generated responses (M) and generative model temperature.

Implementation. Experiments are executed using Pytorch and transformers libraries and open-
source, pre-trained models and tokenizers provided by Hugging Face. We use the following param-
eter settings for our baseline experiments: top-p= 0.99, num-beams= 1, M = 5, temperature= 0.5
and max-new-tokens= 512.

4.2 MAIN RESULTS

In Table 1 we report results for LMM UQ comparison with baseline techniques on the MM-Vet
dataset. In each case, GSEE outperformed the baseline methods.

Despite these promising results, it is well-known that Rouge-L and Perplexity frequently generate
noisy outcomes, sometimes yielding unreliable measures of semantic similarity, particular in cases
involving long and/or complex textual passages. As evidence, we found the PCC measure between
Rouge-L and Semantic Similarity on the MM-Vet ground-truth answers themselves to be only 0.68.
To better understand the performance of GSEE for uncertainty quantification in a broader setting, we
therefore devised a novel set of additional experiments that capture more lucid distinctions between
hallucination rendering and correct/incorrect generative results. We designate these experiments
“constrained language prompting” and “high stochasticity conditioning.”
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Table 1: Experimental results for PCC between UQ methods and predictive “correctness” using
Semantic Similarity and Rouge-L similarity on the MM-Vet dataset.

Dataset: MM-Vet
UQ Method TinyLLaVA-3.1B TinyLLaVA-2.0B
Perplexity 0.09 0.09 0.07 0.02

LN-Entropy 0.29 0.24 0.11 0.02
EigenScore 0.04 0.17 0.04 0.16

Lexical Similarity 0.23 0.04 0.16 0.08
GSEE (ours) 0.35 0.24 0.30 0.18

4.3 CONSTRAINED LANGUAGE PROMPTING AND HIGH STOCHASTICITY CONDITIONING

For constrained language prompting, we alter the prompting strategy so that for each ground-truth
prompt-answer (or prompt+image-answer) pair in a dataset, we augment the prompt set with both
“good” and “bad” prompts. More precisely, we stipulate:

• Good prompt: ground-truth prompt from dataset
• Bad prompt: “(You should ignore the input image). Say something random and incoherent

in 1-2 sentences.”

The purpose of introducing this constrained language prompting paradigm is to more directly control
against noisy hallucination detection and errors in generative prediction correctness that otherwise
degrade UQ evaluation processes. We assert that using this dichotomized prompting strategy sup-
ports this aim, as it enables a clearer delineation between correct and incorrect NLG responses.
Tables 2 and 3 summarize GSEE performance for constrained language prompting experiments.
Overall, GSEE demonstrated best performance compared to baseline models across the test datasets,
with particularly strong results on the MM-Vet and CoQA datasets. On the Lava-Bench (in-the-wild)
dataset, however, GSEE results were somewhat degraded. We believe that this phenomenon can be
attributed, in part, to the relatively small size of this dataset.

To further assess the ability of GSEE to differentiate correct vs. incorrect NLG, we record summary
statistics of the UQ score across the preceding experiments. These results are shown in Table 4. Our
experiments demonstrate the ability of GSEE to capture semantic self-consistency (and its absence)
in a generalized setting, across all four of our diverse experimental datasets.

We also tested the effectiveness of GSEE in a large semantic diversity setting, which we term high
stochasticity conditioning. Concretely, we use the following prompt strategy:

• Good prompt: “In 1-2 sentences: describe in fine detail what you see in the image.” (for
single input image)

• Bad prompt: “In 1-2 sentences: describe in fine detail what you see in the image.” (for M
randomly sampled image from the dataset)

The results of these experiments are shown in Table 5; GSEE provides a strong signal for testing
semantic self-consistency with high stochasticity conditioning. For “bounded” NLG length experi-
ments, we constrain both good and bad prompts to 1-2 sentences, whereas with “unbounded” NLG
length experiments, we do not include this stipulation. These experiments are intended to evalu-
ate GSEE under conditions of acute semantic diversity and to furthermore test robustness to NLG
length.

4.4 ABLATION EXPERIMENTS

We additionally performed ablation studies with respect to generative model temperature and M , the
number of language samples produced by the NLG model from the input data, see Table 6. From
these experiments, we note that as the temperature increases, the correlation between the GSEE-
based uncertainty score and “correct” NLG response generally increases. However, for very high
temperatures (e.g., t = 1.0) this correlation improvement saturates. For ablation on M, we observe
that GSEE performance generally scales favorably as M increases, which we believe to be sensible,

6
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Table 2: Experimental results for PCC between UQ methods and predictive “correctness” using
Semantic Similarity and Rouge-L similarity with constrained language prompting for LMMs on the
MM-Vet and Lava-Bench (in-the-wild) datasets.

Dataset: MM-Vet
UQ Method TinyLLaVA-3.1B TinyLLaVA-2.0B

SS Rouge-L SS Rouge-L
Perplexity 0.17 0.23 0.23 0.28

LN-Entropy 0.36 0.33 0.31 0.40
EigenScore 0.07 0.04 0.05 0.15

Lexical Similarity 0.20 0.24 0.20 0.26
GSEE (ours) 0.56 0.52 0.52 0.53

Dataset: Lava-Bench (in-the-wild)
UQ Method TinyLLaVA-3.1B TinyLLaVA-2.0B

SS Rouge-L SS Rouge-L
Perplexity 0.20 0.18 0.53 0.27

LN-Entropy 0.73 0.32 0.66 0.65
EigenScore 0.16 0.56 0.22 0.60

Lexical Similarity 0.54 0.84 0.60 0.82
GSEE (ours) 0.56 0.76 0.61 0.70

Table 3: Experimental results for PCC between UQ methods and predictive “correctness” using
Semantic Similarity and Rouge-L similarity with constrained language prompting for LLMs on the
SQuAD and CoQA datasets.

Dataset: SQuAD
UQ Method GPT2-xl GPT3

SS Rouge-L SS Rouge-L
Perplexity 0.31 0.06 0.54 0.12

LN-Entropy 0.40 0.03 0.41 0.10
EigenScore 0.08 0.10 0.18 0.06

Lexical Similarity 0.52 0.09 0.53 0.12
GSEE (ours) 0.59 0.08 0.54 0.12

Dataset: CoQA
UQ Method GPT2-xl GPT3

SS Rouge-L SS Rouge-L
Perplexity 0.22 0.07 0.27 0.05

LN-Entropy 0.53 0.01 0.62 0.08
EigenScore 0.37 0.05 0.26 0.02

Lexical Similarity 0.65 0.07 0.66 0.11
GSEE (ours) 0.75 0.09 0.73 0.12

as the detection of semantic self-consistency should naturally improve with larger generative sam-
ples (comparable gains were however less pronounced for baseline UQ methods). We understand
this favorable relationship between GSEE UQ efficacy and generative sample size as an auspicious
feature for GSEE. We plan to further explore and optimize the interplay between sample generation
size and UQ quality for GSEE in future work.

5 CONCLUSION

We presented Generative-Semantic Entropy Estimation, a lightweight, model-agnostic algorithm to
estimate UQ for LLM/LMM and other generative models through the spectral-entropy of generated
outputs. Per our experiments, GSEE performed best overall against baseline UQ methods in a vari-
ety of essential and diverse settings, including unbounded language prompting, constrained language
prompting, high/low generative stochasticity and as a barometer for hallucination/predictive accu-
racy. With the growing need to improve trust and explainability for foundation models, we believe
that GSEE and related methods can help facilitate better LLM performance, enhance LLM-related
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Table 4: Results for summary statistics, including the mean and standard deviations of constrained
language prompting experiments across datasets.

Dataset UQ(µ) UQ(σ)
Good Prompt Bad Prompt Good Prompt Bad Prompt

MM-Vet 0.51 2.05 0.47 0.50
Lava-Bench (in-the-wild) 0.88 1.09 0.21 0.14

SQuAD 0.14 0.22 0.05 0.02
CoQA 0.15 0.22 0.02 0.02

Table 5: High stochasticity conditioning experimental results; we perform two core sets of experi-
ments: with and without bounded NLG length.

Experiment: Bounded NLG Length
Prompt Type UQ(µ) UQ(σ) Avg NLG length
Good Prompt 1.75 0.65 134.6
Bad Prompt 3.82 0.23 138.4

Experiment: Unbounded NLG Length
Good Prompt 2.50 0.62 945.6
Bad Prompt 3.79 0.29 944.1

human interaction and bolster confidence in real-world, foundational model dependent systems. As
computational resources become more streamlined and plentiful for the operation of foundation
models in the near future, we believe that such scalable XAI solutions will become a sine qua non
for deployed AI systems.

Table 6: Ablation study results on MM-Vet using TinyLLaVA-3.1B. (Left) Ablation on generative
temperature; (Right) ablation on the number of NLG outputs (M).

Temperature SS Rouge-L
0.1 0.08 0.24
0.3 0.22 0.32
0.5 0.24 0.35
1.0 0.24 0.32

M SS Rouge-L
5 0.24 0.35

10 0.27 0.35
20 0.27 0.34
50 0.30 0.40
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