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ABSTRACT

Membrane potential perturbation dynamic (MPPD) is an emerging approach to
capture perturbation intensity and stabilize the performance of spiking neural net-
works (SNN). It discards the neuronal reset part to intuitively reduce fluctuations
of dynamics, but this treatment may be insufficient in perturbation characteriza-
tion. In this study, we prove that MPPD is total variation (TV), which is a widely-
used methodology for robust signal reconstruction. Moreover, we propose a novel
TV-ℓ1 framework for MPPD, which allows for a wider range of network functions
and has better denoising advantage than the existing TV-ℓ2 framework, based on
the coarea formula. Experiments show that MPPD-TV-ℓ1 achieves robust perfor-
mance in both Gaussian noise training and adversarial training for image classifi-
cation tasks. This finding may provide a new insight into the essence of perturba-
tion characterization.

1 INTRODUCTION

Spiking neural networks (SNN, Maass 1997) are a main category of NNs that have caught more and
more attention these years (Shen et al., 2023; Li et al., 2024; Song et al., 2024). Since they have
sparse activation features (Yao et al., 2025), they require less computational complexity and power
in training and operating than the NNs with dense activation features (Fang et al., 2023), making it
an advantage in deep learning scenarios (Pei et al., 2019; Perez-Nieves & Goodman, 2021). A key
concept to convey binary information in the SNN is the membrane potential (Xu et al., 2023; Zhu
et al., 2024; Ding et al., 2024a), which imitates the complex dynamics in the brain (Zhang & Li,
2020; Shi et al., 2024b; Yao et al., 2022). Such a concept bridges the computational properties of
the SNN with those of the biological neural system, which opens up a promising research topic for
future works.

Similar to other categories of NNs, SNNs are vulnerable to attacks from adversarial examples
(Goodfellow et al., 2015; Kundu et al., 2021; Ding et al., 2022; Bu et al., 2023; Hao et al., 2024).
It holds back applications of SNNs to scenarios with strict security needs (Yamazaki et al., 2022;
Liang et al., 2023; Wu et al., 2024; Sharmin et al., 2019; Ding et al., 2024a;b; Geng & Li, 2025).
One solution to this problem is to effectively identify the adversarial perturbations. By observing
that membrane potentials contain adversarial perturbation information in the leaky integrate-and-fire
(LIF) neuron based SNNs (Sharmin et al., 2020), a kind of membrane potential perturbation dynam-
ics (MPPD) is proposed to analyze the dynamic properties of such perturbation information (Ding
et al., 2024a). It further proposes to use the mean square of MPPD (MS-MPPD) as a regularizer to
stabilize the performance of SNNs against adversarial examples.

To better highlight our motivation, we first provide the formula of MPPD (Ding et al., 2024a):
ϑli[t]︸︷︷︸

full MPPD

= λϑli[t− 1] +
∑
jw

l
ij(s

l−1
j [t]− s̃l−1

j [t])︸ ︷︷ ︸
MPPD

−λ(vli[t− 1]sli[t− 1]− ṽli[t− 1]s̃li[t− 1])︸ ︷︷ ︸
neuronal reset

,

(1)
where vli[t] and sli[t] denote the pure membrane potential and spike of neuron i in layer l at time t,
respectively. The notation with the tilde superscript is the perturbed version of the corresponding
variable. The full MPPD is defined as the difference between the pure and the perturbed membrane
potential: ϑli[t] = vli[t]− ṽli[t], which equals the MPPD part on the right side of (1) when this neuron
does not fire a spike. However, if the neuron fires a spike, there will be an additional neuronal reset
part, which might cause fluctuations in ϑli[t]. Hence this neuronal reset part is discarded by (Ding
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et al., 2024a) and only the MPPD part is used. Though intuitive, this treatment may be insufficient
in perturbation characterization.

In this study, we discover and prove that MPPD is total variation (TV), which is a widely-used
methodology in robust signal reconstruction (Rudin et al., 1992; Chan et al., 2006; Chen et al.,
2006), function approximation (Chan & Esedoglu, 2005), and invariant risk minimization (Lai &
Wang, 2024; Wang et al., 2025). TV accumulates the increments of a function with respect to (w.r.t.)
its arguments, which well fits the perturbation of membrane potential. The proposed methodology
requires only one fundamental condition that the perturbation is a measurable function of the node
index and the time-step of an SNN. This means that the temporal and neuronal evolutions of the
SNN should be able to capture such a perturbation and then yield significant TV. This finding may
provide a new insight into the essence of characterizing perturbations.

Our main contributions can be summarized as follows: 1. We prove that MPPD is TV and verify
that the existing MS-MPPD regularized SNN training model is a standard TV-ℓ2 framework. 2. We
further propose a novel TV-ℓ1 framework for MPPD (MPPD-TV-ℓ1). It has at least two advantages
over the TV-ℓ2 framework: a) The L1 function space is larger than the L2 function space in general
deep learning settings, which allows for more classes of functions to be membrane potentials. b)
Based on the coarea formula, TV-ℓ1 performs better than TV-ℓ2 in robust signal reconstruction
against adversarial perturbations, which better fits the architectures of SNNs. 3. We deduce the
coarea formula, the dominated TV property, and the subgradient calculation for MPPD-TV-ℓ1. Our
methodology is applicable to most SNN architectures where a TV term is used to stabilize layer-wise
internal state.

2 PRELIMINARIES AND RELATED WORKS

We introduce some preliminaries and related works on SNNs, MPPD, TV, and adversarial attacks.

2.1 MEMBRANE POTENTIAL PERTURBATION DYNAMICS

Different from typical analog neural networks (ANNs), SNNs use spike sequences to send temporal
binary information. This mechanism imitates the dynamic communications of biological neural
systems. To exploit temporal spike information, the LIF model (Wu et al., 2019; Kim et al., 2022; Shi
et al., 2024a) can be used to characterize how neurons work in SNNs. The discrete-form differential
equations of LIF are as follows:

vli[t] = λuli[t− 1] +
∑
j

wlijs
l−1
j [t], sli[t] = H(vli[t]− uth), u

l
i[t] = vli[t](1− sli[t]), (2)

where vli[t] denotes the membrane potential of neuron i in layer l at time-step t before firing (i ∈
[N l] := {1, 2, · · · , N l}; t ∈ [T ]; l ∈ [L];uli[0] = 0). H is the Heaviside function such that if vli[t]
is no less than the threshold uth, then the spike function sli[t] = 1; else sli[t] = 0. wlij denotes the
weight of the edge connecting neurons i and j, where j is from the preceding layer (l − 1). uli[t]
denotes the membrane potential after firing, which resumes to the resting potential (i.e., 0) and waits
for being transferred to the succeeding time-step with a decaying leaky factor λ ∈ [0, 1).

As introduced in Section 1 and (1), the MPPD is defined as (Ding et al., 2024a):
ϵli[t] = λϵli[t− 1] +

∑
jw

l
ij∆s

l−1
j [t], t = 1, 2, · · · , T, (3)

where ∆sl−1
j [t] := sl−1

j [t]− s̃l−1
j [t] denotes the difference of the presynaptic spike, and the neuronal

reset part in (1) is discarded. Then the MS-MPPD regularized SNN training model is (Ding et al.,
2024a):

min
w

{L := Ltask + α · LMS-MPPD} (4)

s.t. Ltask := χCE(fSNN (x), y) + (1− χ)CE(fSNN (x̃), y),

LMS-MPPD :=

NL∑
i=1

T∑
t=1

(ϵLi [t])
2, (5)

where x ∈ Rd (or x̃) and y ∈ Y denote the pure (or perturbed) input and the corresponding ground-
truth output of the training samples, respectively. fSNN denotes the function induced by the SNN,
and CE denotes the cross-entropy classifier. χ is a mixing hyperparameter with a default value
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of 0.5, and α ⩾ 0 is a regularization hyperparameter for LMS-MPPD. NL denotes the number
of neurons in the L-th layer (the last layer). To summarize, model (4) sums up the mean squared
perturbations with a factor α to the task loss, in order to suppress such perturbations in the train-
ing process. The training algorithm is a standard Spatio-Temporal BackproPagation (STBP) with
the triangle-like surrogate function (Deng et al., 2022) in place of the non-differentiable Heaviside
function with ω = 1 by default:

∂sli[t]

∂vli[t]
=

1

ω2
max(ω − |vli[t]− uth|, 0). (6)

2.2 ADVERSARIAL ATTACKS

It is widely-recognized that NNs are vulnerable to adversarial attacks. These attacks deliberately
change the input data for a little bit, in order to make the NNs give incorrect results. The SNN also
suffers from this problem, although it has a higher activation sparsity than the ANN. A common
attack strategy is to maximize the network loss when the classifier f : Rd 7→ Y makes an incorrect
classification after receiving a perturbed input (x+ δ):

max
∥δ∥p⩽ζ

Ltask(f(x+ δ), y), (7)

where ∥δ∥p ⩽ ζ means that the attack is imperceptible with ℓp norm no more than an intensity
hyperparameter ζ ⩾ 0. For images, ζ is often set as an integer multiplied by 1/255.

Fast Gradient Sign Method (FGSM, Goodfellow et al. 2015) is a fundamental attack technique to
generate adversarial examples by adding a small component in the same direction of the gradient
sign:

x̃ = x+ ζ ′ · sign(∇xLtask(f(x), y)), (8)

where 0 ⩽ ζ ′ ⩽ ζ/∥sign(∇xLtask(f(x), y))∥p. Based on FGSM, the Projected Gradient Descent
(PGD, Madry et al. 2018) attack technique is further proposed to achieve a stronger attack of “first-
order adversary”:

x̃(k+1) = projBp[x;ζ](x̃(k) + η · sign(∇xLtask(f(x̃(k)), y))), (9)
where η represents the step size for a single PGD iteration, and projBp[x;ζ] denotes the projection
operator onto the closed neighborhood of x with a radius of ζ. Besides the above gradient-based
attack schemes, C&W is also a popular optimization-based attack mechanism (Carlini & Wagner,
2017).

2.3 TOTAL VARIATION

TV (Rudin et al., 1992) is a widely-used operator that measures the degree of variation in a function.
We consider an open set Ω ⊆ Rd and denote L1(Ω) as the corresponding Lebesgue-integrable
function space. The TV of any f ∈ L1(Ω) is originally defined as (Chan et al., 2006):∫

Ω

|∇f | := sup{
∫
Ω

f(x)divg(x) dx : g ∈ C1
c (Ω,Rd), ∥g∥L∞(Ω) ⩽ 1}, (10)

where divg denotes the divergence of a differentiable function g. g has a compact support contained
in Ω and an essential supremum no larger than 1. TV quantifies the local variations of f across
all dimensions of x, and then accumulates these variations over the entire domain Ω. If f is non-
differentiable, then |∇f | is characterized via divg. But when f is differentiable, |∇f | is exactly the
magnitude (i.e., the ℓ2 norm) of the gradient ∇f .

In practice, only functions with bounded variation (BV) can be calculated, which constitute the BV
function space {f ∈ L1(Ω) :

∫
Ω
|∇f | <∞}. Hence a TV function actually refers to a BV function

in this paper. TV has an important property that can be represented by the following coarea formula
(Chan et al., 2006): ∫

Ω

|∇f | :=
∫ ∞

−∞

∫
f−1(ψ)

dφdψ, (11)

where f−1(ψ) := {x ∈ Ω : f(x) = ψ} represents the level set (or preimage) of f at the value ψ.
(11) indicates that this integral is calculated by aggregating all contours of f−1(ψ) for every ψ where
the differential dψ exists. Hence if f has a more blocky (piecewise-constant) landscape, its TV will
be smaller. Based on this property, minimizing TV helps to preserve discontinuous features of f ,
while effectively reducing noise and other unwanted fine-scale details. The TV-ℓ1 model (Rudin
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et al., 1992) is proposed to this end:

inf
f̂∈L2(Ω)

{∫
Ω

|∇f̂ |+ λ

∫
Ω

(f − f̂)2 dx

}
, (12)

where f̂ ∈ L2(Ω) denotes the recovery of the target function f , and λ is a hyperparameter that
controls the approximation accuracy. This model aims to preserve the sharp discontinuities in the
recovery f̂ while using the residual (f − f̂) to capture and retain noise as well as other unwanted
fine-scale details.

If f̂ has a stronger TV condition that
∫
Ω
|∇f̃ |2 < ∞, then the following TV-ℓ2 framework can also

be used (Mumford & Shah, 1985):

inf
f̂∈L2(Ω)

{∫
Ω

|∇f̂ |2 + λ

∫
Ω

(f − f̂)2 dx

}
. (13)

Compared with TV-ℓ1, TV-ℓ2 uses the squared TV term
∫
Ω
|∇f̂ |2, which does not have the coarea

formula (11) and thus lacks robustness to sharp noises.

3 METHODOLOGY

We observe that MPPD accords with the concept of TV not only by its formulation of (3) but also by
its motivation to suppress perturbations. Hence we aim to establish a complete theory and method-
ology for the TV based MPPD, in order to improve its robustness to adversarial perturbations.

3.1 TOTAL VARIATION FORMULATION OF MEMBRANE POTENTIAL PERTURBATION DYNAM-
ICS

(3) has a natural form of differences in both dimensions of time-step and node index. In the time-
step dimension, the perturbation term ϵli[t] is influenced by its one-step-forward term ϵli[t − 1]. In
the node index dimension, ϵli[t] is influenced by its preceding nodes

∑
jw

l
ij∆s

l−1
j [t]. Since the

preceding nodes of a given node i are fixed, we can omit the layer notation l to simplify expressions.
Then we need to verify that both sides of (3) are well-defined in the framework of TV.

Part (a): We first examine the left side of (3). By taking the node index i, the time-step t, and the
input x as arguments, the perturbation term intends to approximate the difference between the pure
and the perturbed membrane potential:

ϵ(i, t, x) ≈ v(i, t, x)− v(i, t, x̃) = v(i, t, x)− v(i, t, x+ δ), (14)
where δ denotes the perturbation added to the input x. We find that if δ can be represented by i and
t: δ := δ(i, t), then the right side of (14) is exactly local variation of v w.r.t. (i, t) at x, which can
be directly defined as ϵ(i, t, x):

ϵ(i, t, x) := ∇(i,t)v(i, t, x) := v(i, t, x)− v(i, t, x+ δ(i, t)). (15)
The reason is that the perturbation δ(i, t) can be embedded into the SNN at node i and time-step t.
The symbol ∇(i,t) means that this difference is performed in the unified dimensions (i, t) via δ(i, t).
Then LMS-MPPD in (5) is exactly a TV-ℓ2 term:∫ NL

1

∫ T

1

ϵ2(i, t, x) dtdi =

∫ NL

1

∫ T

1

|∇(i,t)v(i, t, x)|2 dtdi, ∀x ∈ Rd, (16)

where the integrations w.r.t. i and t take the discrete form for a discrete-time SNN.

Part (b): The right side of (3) actually re-calculates the local variation of v by exploiting the infor-
mation flow based on the network structure. Similar to (15), the local variation of the spike function
s can be represented by:

∆s(j, t, x) = s(j, t, x)− s(j, t, x+ δ(i, t)) =: ∇(j,t)s(j, t, x). (17)

Then the right side of (3) can be transformed into the following local variation:

λ∇(i,t)v(i, t− 1, x) +

∫
J (i)

∇(j,t)s(j, t, x) dw(i, j(i)), (18)

where J (i) denotes the index set of the nodes preceding i, and the weight w(i, j(i)) serves as a
measure for the integral. w(i, j(i)) is assumed to be a finite measure in this paper, which is the
case in general practice of neural networks. To simplify notations, we use

∫
J (i)

dw(i, j(i)) for the

univariate integral w.r.t. j with fixed i and
∫ N
1

∫
J (i)

dw(i, j(i)) for the bivariate integral w.r.t. the
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entire (i, j(i)), respectively. After integrating on j, the second term of (18) is still local variation at
(i, t, x). By joining both sides of (3), we can directly well define MPPD in the form of TV without
entailing the neuronal reset part in (1). By this means, the perturbation δ can be fully conveyed by
the MPPD throughout different nodes and time-steps of an SNN.
Theorem 1. If the perturbation δ is a measurable function of (i, t), then the following equations on
local variation and TV hold:

∇(i,t)v(i, t, x) = λ∇(i,t)v(i, t− 1, x) +

∫
J (i)

∇(j,t)s(j, t, x) dw(i, j(i)), ∀(i, t, x), (19)

∫ NL

1

∫ T

1

|∇(i,t)v(i, t, x)|2 dtdi

=

∫ NL

1

∫ T

1

∣∣∣∣∣λ∇(i,t)v(i, t− 1, x) +

∫
J (i)

∇(j,t)s(j, t, x) dw(i, j(i))

∣∣∣∣∣
2

dtdi, ∀x. (20)

The above integrals allow for any feasible measure types for i and t in the mathematical form,
including both discrete and continuous measures.

The proof is provided in Appendix A.1. This appendix also verifies that the integral on the right side
of (19) is finite, which is necessary for the dominated TV property of Theorem 4, in order to control
the overall stability of an SNN. (20) is the TV-ℓ2 version of LMS-MPPD, denoted by MPPD-TV-ℓ2.
This MPPD-TV-ℓ2 term is finite in general situations, as stated in Theorem 4. Therefore, adding
α · LMS-MPPD in (4) actually suppresses the squared TV of membrane potential throughout the
entire SNN, in order to suppress the adversarial perturbations inside the TV. To do this, the condition
that δ is measurable of (i, t) is fundamental, otherwise δ cannot be fully identified by the SNN and
yield significant TV. An intuitive interpretation of the term measurable is that different magnitudes
of δ can be discriminated via different combinations of nodes and time-steps. This accords with
the common sense that using more nodes and time-steps may improve the accuracy of identifying
adversarial perturbations.

3.2 MPPD-TV-ℓ1

In the previous subsection, we prove that MPPD is TV and the corresponding LMS-MPPD is equiv-
alent to a TV-ℓ2 model. Without loss of generality, we can assume ∇(i,t)v(i, 0, x) = 0 and t being
an integer. Then (19) can be aggregated w.r.t. all the k < t as follows:

∇(i,t)v(i, t, x) =

t−1∑
k=0

λk
∫
J (i)

∇(j,t)s(j, t−k, x) dw(i, j(i)), (21)

which reveals a difference evolution process along the node (i) and the time-step (k) dimensions.
Besides, ∇(i,t)v(i, t, x) is directly the sum of spike perturbations, thus its absolute value (instead
of the squared value) quantifies the exact magnitude of these perturbations. Moreover, TV-ℓ1 has at
least two advantages over TV-ℓ2: 1) TV-ℓ1 can exploit the coarea formula to suppress adversarial
perturbations. 2) With a finite measure, an L2 integrable function is also an L1 integrable function,
but the converse is not true (see Appendix A.3). Hence the L1 function space is larger than the
L2 function space with finite measures for i and t (for example, when i ∈ [N ], t ∈ [T ], and the
counting measure is used), which allows for more classes of functions to be membrane potentials,
and expands the applicability and flexibility of TV-ℓ1. These findings and advantages motivate us to
develop a novel TV-ℓ1 framework for MPPD (MPPD-TV-ℓ1).

The first step is to establish the coarea formula for the membrane potential v. We denote the unified
domain of (i, t) by Θ and the corresponding measure by µ. For example, Θ = [N ] × [T ] and
µ({(i, t)}) = 1, ∀(i, t) ∈ Θ can be used for a standard discrete SNN.
Theorem 2 (Coarea Formula). If the perturbation δ is a measurable function of (i, t), the following
coarea formula holds for both continuous and discrete settings:∫

Θ

|∇(i,t)v(i, t, x)|dµ =

∫ ∞

−∞

∫
{(i,t)∈Θ:v(i,t,x)=ψ}

dφdψ, ∀x, (22)

where φ denotes the Hausdorff measure induced by µ.
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The proof is provided in Appendix A.2. Taking the above standard discrete SNN as an example, the
coarea formula counts the number of points (i, t) at which v(·, ·, x) equals a fixed ψ, then aggregates
all the infinitesimal surface areas along ψ ∈ (−∞,∞):

∑
ψ φ({(i, t) ∈ Θ : v(i, t, x) = ψ}) ·∆ψ.

In brief, the TV will increase significantly if the Hausdorff measure φ({(i, t) ∈ Θ : v(i, t, x) = ψ})
corresponding to the interval [ψ,ψ + ∆ψ) is large. Such intervals and points may contain target
perturbations and thus could be suppressed in the objective. Based on this property, we can develop
the MPPD-TV-ℓ1 framework as follows.
Theorem 3. If the perturbation δ is a measurable function of (i, t), then the following MPPD-TV-ℓ1
is well-defined:∫

Θ

|∇(i,t)v(i, t, x)|dµ =

∫
Θ

∣∣∣∣∣
t−1∑
k=0

λk
∫
J (i)

∇(j,t)s(j, t−k, x) dw(i, j(i))

∣∣∣∣∣ dµ, ∀x. (23)

The above integrals allow for any feasible measure types µ in the mathematical form, including both
discrete and continuous measures.

The proof is provided in Appendix A.3. This TV formulation penalizes the total accumulation of
potential changes over time, not just the potential at the moment of a spike. The membrane potential
v(i, t, x) evolves continuously based on input currents, even when no spike occurs. Replacing the
LMS-MPPD term in (4) by the MPPD-TV-ℓ1 term in (23), the new MPPD-TV-ℓ1 framework can be
used for different tasks.

3.3 PROPERTIES OF MPPD-TV-ℓ1

We investigate two useful properties of MPPD-TV-ℓ1 in this subsection. First, an important property
of SNN is that the perturbation dynamics should be dominated by the spikes (Khalil, 2002). We
verify that this property also holds in both MPPD-TV-ℓ1 and MPPD-TV-ℓ2 frameworks.
Theorem 4 (Dominated TV Property). To simplify notation, assume every node i in layer l uses the
same set of preceding nodes J in layer (l− 1). Then for MPPD-TV-ℓ1 defined in (21) and (23) and
MPPD-TV-ℓ2 defined in (20), the following dominated TV property holds:∫ N l

1

∫ T

1

|∇(i,t)v(i, t, x)|dtdi ⩽ ∥wl∥1 logλ(
1

e
)

∫
J

∫ T

1

|∇(j,t)s(j, t, x)|dtdj, (24)∫ N l

1

∫ T

1

|∇(i,t)v(i, t, x)|2 dtdi ⩽ ∥wl∥2F log2λ(
1

e
)

∫
J

∫ T

1

|∇(j,t)s(j, t, x)|2 dtdj, ∀l,∀x, (25)

where ∥wl∥1 and ∥wl∥F denote the 1-norm and the Frobenius norm of the weight matrix wl con-
necting layers l and (l−1), respectively. (24) also holds in the discrete form by replacing the scaling
factor ∥wl∥1 logλ( 1e ) by ∥wl∥1

1−λ .

The proof is provided in Appendix A.4. For general situations such as sparse or skip-connected
SNN architectures, the weight matrix wl simply has zero entries corresponding to non-connections,
and the set of preceding nodes J (i) is a proper subset of the entire layer (l−1). The proof structure
and the fundamental dominating bound remain valid. Note that |∇(j,t)s(j, t, x)| ⩽ 1 from the
definition of the Heaviside function, and the integration limits for t and j are also finite. Hence the
integral on the right side of (24) or (25) is finite, which is able to control the left side. This theorem
indicates that the TV of membrane potential v is dominated by the TV of spike s up to a factor of
∥wl∥1 logλ( 1e ). In this factor, ∥wl∥1 indicates the spectral energy spread caused by the edge weight,
while logλ(

1
e ) indicates the scaling effect caused by temporal evolution. The closer λ is set to 1, the

larger scaling of spike TV is required to dominate the membrane potential TV. Nevertheless, λ is
usually set very close to 1 to simultaneously keep the smoothness of temporal evolution and ensure
the above dominated TV property.

The right side of (23) is nondifferentiable w.r.t. the weight w(i, j(i)), thus w(i, j(i)) cannot be
trained by mainstream learning architectures like Pytorch1. To solve this problem, we complete the
backpropagation module with a closed-form subgradient calculation of (23). This strategy is widely-
used to deal with nondifferentiable terms in general machine learning tasks (Lin et al., 2024a;b).

1https://pytorch.org/
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Proposition 5 (Subgradient Calculation). A subgradient of (23) w.r.t. the weight w(i, j(i)) can be
calculated as follows:∫

Θ

∂w(i,j(i))

∣∣∣∣∣
t−1∑
k=0

λk
∫
J (i)

∇(j,t)s(j, t−k, x) dw(i, j(i))

∣∣∣∣∣ dµ
=

∫
Θ

sign(

t−1∑
k=0

λk
∫
J (i)

∇(j,t)s(j, t−k, x) dw(i, j(i)))·(
t−1∑
k=0

λk∇(j,t)s(j, t−k, x)) dµ. (26)

The proof is provided in Appendix A.5. It can be seen that this subgradient calculation works as
a standard gradient calculation and will not cause additional computational complexity. Based on
this property, the MPPD-TV-ℓ1 framework is compatible with mainstream learning architectures and
enables the training of SNNs. Moreover, this subgradient captures the sensitivity of the TV to the
weights at every timestep t, regardless of whether the potential crosses the threshold and is reset.
By minimizing the TV, the model weights are enforced to produce membrane potential trajectories
that are globally smoother and less responsive to small changes in the input (noise). This inherent
smoothness regulates the weight updates such that even small, sub-threshold input perturbations are
suppressed by a less-sensitive weight profile.

4 EXPERIMENTS

To test the performance of the proposed MPPD-TV-ℓ1 framework in improving the robustness of
SNNs, we basically follow the evaluation baseline of (Ding et al., 2022; 2024a) to conduct image
classification experiments.

4.1 EXPERIMENTAL SETUP

In the training stage, VGG11 (Simonyan & Zisserman, 2015) and WRN16 (WideResNet-16-
4,(Zagoruyko & Komodakis, 2017)) with Dynamic LIF (DLIF, (Ding et al., 2024a)) neurons are
used as backbones of SNNs, while CIFAR 10, CIFAR 100 (Krizhevsky et al., 2009), and Tiny Im-
ageNet (Le & Yang, 2015) are used as data sets. CIFAR 10 and CIFAR 100 have 60000 32 × 32
images, categorized into 10 and 100 classes, respectively. Tiny ImageNet is a large-scale data set
with 500 64 × 64 downsized images for each of the 200 classes. In the training procedure, the
time-step for SNN to infer forward is set to 8. Gaussian noise and adversarial noise (AT, Wong
et al. 2020) are used as perturbations to construct training samples. In addition, the adversarial noise
together with the regularizer of (Ding et al., 2022) is also used (AT+Reg). Perturbation strengths are
set to ζ = 10/255 for Gaussian noise, ζ = 6/255 for AT, and ζ = 7/255 for AT+Reg. The SGD
optimizer is used with a starting learning rate of 0.01, then the learning rate is reduced to zero via
cosine annealing.

In the test stage, the FGSM (Goodfellow et al., 2015), C&W (Carlini & Wagner, 2017), PGD
(Madry et al., 2018), Auto-PGD (APGD), and AutoAttack (Croce & Hein, 2020) schemes are used
to construct adversarial test samples, with attack intensity uniformly set to ζ = 8/255. The number
of steps for PGD ranges from 7 to 40, while the 10-step APGD based on the cross-entropy (CE) loss
and the difference-of-logits-ratio (DLR) is used. All these settings including ζ strictly follow those
of (Ding et al., 2024a) to make fair comparisons.

Eight state-of-the-art methods are taken into comparisons: SNN-BP (Sharmin et al., 2020), HIRE-
SNN (Kundu et al., 2021), SNN-RAT (Ding et al., 2022), FEEL (Xu et al., 2024), SR (Liu et al.,
2024), ANN-PGD-AT (Madry et al., 2018), ANN-RiFT (Zhu et al., 2023), and MPPD-TV-ℓ2 (Ding
et al., 2024a). SNN-BP is a deep SNN with inherent adversarial robustness based on discrete input
encoding and non-linear activations. HIRE-SNN is an energy-efficient deep SNN that can harness
the inherent robustness. SNN-RAT is an SNN with regularized adversarial training that can enhance
robustness. FEEL is an SNN with frequency encoding and evolutionary leak factor. SR is an SNN
with sparsity regularization of gradients. MPPD-TV-ℓ2 is originally a kind of robust stable SNNs,
which is found to be a TV-ℓ2 framework in the context of this paper. Hence it is denoted by MPPD-
TV-ℓ2 to be comparable to the proposed MPPD-TV-ℓ1 framework. Besides, standard SNNs without
MPPD (Non-MPPD) are also taken into comparisons as ablation studies. The default settings of

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

these competitors are used in the experiments, where the regularization strength is set to α = 1 for
both MPPD-TV-ℓ2 and MPPD-TV-ℓ1.

Table 1: Classification accuracies (%) of different methods on CIFAR 10 and CIFAR 100.

Perturbation Model Clean APGD10
CE APGD10

DLR FGSM PGD7 PGD10 PGD20 PGD40 CW AutoAttack
CIFAR 10

SNN-BP,VGG5 89.3 - - 15.0 3.8 - - - - -
HIRE-SNN,VGG5 87.9 - - 35.5 5.3 - - - - -
SNN-RAT,VGG11 90.74 - - 45.23 21.16 - - - - -
FEEL+AT,VGG11 87.850 21.960 32.620 41.920 30.060 28.220 19.970 19.540 53.580 1.630

SR,VGG11 88.980 27.340 28.400 42.810 30.360 30.230 31.040 31.150 59.550 22.870
ANN-PGD-AT,VGG11 78.630 33.240 35.070 44.040 35.840 34.900 34.440 34.360 56.650 20.420

ANN-RiFT,VGG11 80.980 30.100 32.970 41.050 35.390 35.300 35.310 35.100 55.250 22.310
ANN-PGD-AT,WRN16 79.870 30.640 27.460 34.240 34.120 34.960 34.790 34.310 60.930 19.830

ANN-RiFT,WRN16 81.260 31.080 24.830 36.850 36.800 36.810 36.660 35.870 61.140 20.010

Gaussian

Non-MPPD,VGG11 91.410 0.130 0.220 13.100 0.220 0.160 0.110 0.110 10.010 0.000
MPPD-TV-ℓ2,VGG11 90.990 0.130 0.160 15.160 0.230 0.110 0.060 0.060 10.410 0.000
MPPD-TV-ℓ1,VGG11 92.230 0.340 0.400 20.250 1.140 0.620 0.410 0.370 13.030 0.290
Non-MPPD,WRN16 91.050 0.020 0.040 11.780 0.080 0.020 0.020 0.020 7.500 0.000

MPPD-TV-ℓ2,WRN16 90.520 0.030 0.030 12.540 0.100 0.040 0.030 0.040 8.840 0.010
MPPD-TV-ℓ1,WRN16 92.390 0.060 0.040 15.350 0.420 0.270 0.180 0.150 10.520 0.010

AT

Non-MPPD,VGG11 85.030 29.820 34.350 46.960 35.520 34.600 34.240 33.850 60.640 16.390
MPPD-TV-ℓ2,VGG11 85.170 27.780 35.300 46.510 34.510 33.200 32.260 32.470 63.050 19.75
MPPD-TV-ℓ1,VGG11 86.110 36.590 45.260 51.890 42.840 41.560 41.150 40.850 66.680 23.040
Non-MPPD,WRN16 84.720 26.870 31.770 50.090 33.000 31.460 29.940 29.720 56.340 19.460

MPPD-TV-ℓ2,WRN16 84.380 30.270 34.150 49.950 35.650 34.030 33.430 32.660 59.110 21.340
MPPD-TV-ℓ1,WRN16 86.340 32.320 37.440 52.500 39.040 37.900 36.740 36.290 63.870 22.920

AT+Reg

Non-MPPD,VGG11 85.770 32.570 35.960 49.980 38.060 36.290 35.000 34.720 53.870 14.06
MPPD-TV-ℓ2,VGG11 84.910 33.620 39.490 54.520 39.030 36.570 34.530 33.270 54.340 19.070
MPPD-TV-ℓ1,VGG11 86.390 35.160 38.630 50.970 40.730 39.070 38.060 37.670 62.400 23.530
Non-MPPD,WRN16 84.640 35.500 38.270 56.880 40.290 37.380 34.870 33.270 50.250 11.160

MPPD-TV-ℓ2,WRN16 84.220 33.530 37.430 58.320 39.100 35.800 32.700 31.310 53.570 13.69
MPPD-TV-ℓ1,WRN16 85.400 36.680 39.580 57.440 41.490 38.260 35.900 34.780 60.580 18.010

CIFAR 100
SNN-BP,VGG11 64.4 - - 15.5 6.3 - - - - -

HIRE-SNN,VGG11 65.6 - - 16.4 2.9 - - - - -
SNN-RAT,VGG11 68.89 - - 25.86 17.81 - - - - -
FEEL+AT,VGG11 66.530 15.440 15.380 16.680 5.560 5.310 8.020 7.930 14.880 0.810

SR,VGG11 67.930 11.530 11.740 19.690 13.160 13.180 13.750 13.740 25.350 10.540
ANN-PGD-AT,VGG11 47.050 15.120 15.630 20.340 16.350 15.850 15.750 15.600 34.760 7.470

ANN-RiFT,VGG11 48.880 15.710 16.550 21.840 21.730 21.720 21.710 21.710 34.160 8.320
ANN-PGD-AT,WRN16 55.040 15.270 19.070 21.420 18.970 18.890 18.110 18.590 34.250 4.290

ANN-RiFT,WRN16 52.480 14.620 18.560 18.560 18.540 18.540 18.520 18.360 35.010 7.870

Gaussian

Non-MPPD,VGG11 68.770 0.540 1.120 8.330 0.980 0.710 0.690 0.570 11.030 0.080
MPPD-TV-ℓ2,VGG11 68.900 0.390 1.080 8.470 0.690 0.540 0.470 0.350 13.340 0.090
MPPD-TV-ℓ1,VGG11 69.410 0.820 1.520 8.680 1.390 1.150 1.070 0.960 12.640 0.250
Non-MPPD,WRN16 66.260 0.290 0.700 8.700 0.450 0.330 0.290 0.210 9.680 0.000

MPPD-TV-ℓ2,WRN16 65.990 0.190 0.810 9.070 0.410 0.290 0.140 0.090 13.130 0.110
MPPD-TV-ℓ1,WRN16 67.770 0.350 1.010 8.210 0.560 0.430 0.350 0.360 12.570 0.050

AT

Non-MPPD,VGG11 56,370 16.460 19.400 25.260 19.950 19.300 19.140 19.010 34.170 8.560
MPPD-TV-ℓ2,VGG11 57.820 12.920 16.690 24.550 16.440 15.600 15.180 14.960 34.650 8.450
MPPD-TV-ℓ1,VGG11 58.410 16.600 19.670 25.720 20.570 19.970 19.710 19.440 35.210 11.590
Non-MPPD,WRN16 55.580 16.530 20.490 29.580 20.110 18.980 18.080 17.950 37.810 6.470

MPPD-TV-ℓ2,WRN16 54.720 13.570 17.620 25.790 16.850 16.050 15.410 15.030 38.630 8.750
MPPD-TV-ℓ1,WRN16 56.060 16.630 19.830 27.400 20.000 19.270 18.480 18.420 39.370 9.140

AT+Reg

Non-MPPD,VGG11 62.190 21.550 23.440 34.370 24.680 22.650 20.850 20.060 35.820 6.260
MPPD-TV-ℓ2,VGG11 61.980 19.480 24.220 35.940 23.010 20.380 17.940 16.650 36.640 5.680
MPPD-TV-ℓ1,VGG11 62.710 21.740 23.700 34.390 25.360 23.650 21.520 20.620 39.710 10.800
Non-MPPD,WRN16 53.740 15.730 19.110 28.710 18.220 16.960 15.980 15.290 31.880 4.330

MPPD-TV-ℓ2,WRN16 54.010 15.510 21.550 33.000 19.210 17.090 15.270 14.390 33.870 5.350
MPPD-TV-ℓ1,WRN16 54.140 17.910 20.790 29.770 20.550 19.100 17.870 17.300 35.450 8.490

4.2 EXPERIMENTAL RESULTS

Image classification results of different methods are provided in Tables 1 and 2. MPPD-TV-ℓ1
outperforms other competitors in most cases for both VGG11 and WRN16 architectures on all of
CIFAR 10, CIFAR 100, and Tiny ImageNet data sets. Taking the VGG11 architecture with the AT
training scheme on CIFAR 10 as an example, MPPD-TV-ℓ1 achieves classification accuracies of
(45.260%, 51.890%, 42.840%), compared with (34.350%, 46.960%, 35.520%) of Non-MPPD and
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Table 2: Classification accuracies (%) of different methods on Tiny ImageNet.

Perturbation Model Clean APGD10
CE APGD10

DLR FGSM PGD7 PGD10 PGD20 PGD40 CW AutoAttack
FEEL+AT,VGG11 55.230 8.380 8.930 15.860 10.670 10.270 10.150 10.090 1.720 0.570

SR,VGG11 56.010 8.510 8.780 16.940 11.960 11.580 11.370 11.180 2.450 2.880
ANN-PGD-AT,VGG11 23.330 1.290 1.980 5.200 2.380 2.150 2.070 1.600 0.760 0.470

ANN-RiFT,VGG11 24.510 1.400 2.460 6.780 2.270 2.170 1.830 1.610 1.220 0.620
ANN-PGD-AT,WRN16 15.040 0.670 0.900 3.510 1.470 1.280 1.010 0.690 0.620 0.190

ANN-RiFT,WRN16 14.670 1.030 1.670 3.270 1.690 1.440 1.110 0.860 0.510 0.070

Gaussian

Non-MPPD,VGG11 54.280 2.020 2.260 9.870 3.380 3.040 2.910 2.950 0.820 10.590
MPPD-TV-ℓ2,VGG11 55.470 1.980 2.380 10.110 3.420 3.290 3.430 3.290 1.990 11.460
MPPD-TV-ℓ1,VGG11 56.530 2.380 2.770 10.340 3.770 3.660 3.580 3.470 2.500 12.310
Non-MPPD,WRN16 43.110 1.970 1.630 6.380 2.350 2.270 2.190 2.070 0.740 1.070

MPPD-TV-ℓ2,WRN16 44.290 2.070 1.980 6.540 2.520 2.410 2.370 2.240 2.080 1.230
MPPD-TV-ℓ1,WRN16 46.750 2.820 2.780 7.050 3.720 3.710 3.590 3.680 2.460 1.380

AT

Non-MPPD,VGG11 47.880 8.750 9.840 18.310 13.940 12.830 12.570 11.830 0.980 3.740
MPPD-TV-ℓ2,VGG11 48.380 8.350 9.460 19.450 13.210 13.080 13.050 12.770 1.430 3.890
MPPD-TV-ℓ1,VGG11 49.290 9.520 10.720 20.770 14.090 13.660 13.420 13.290 2.790 4.080
Non-MPPD,WRN16 33.620 3.710 4.030 12.250 6.950 6.310 6.110 6.040 1.400 2.070

MPPD-TV-ℓ2,WRN16 33.990 4.230 4.960 12.730 7.360 7.290 7.170 6.840 2.450 2.310
MPPD-TV-ℓ1,WRN16 35.000 5.420 5.730 13.720 7.840 7.480 7.330 7.240 3.170 2.660

AT+Reg

Non-MPPD,VGG11 49.390 8.850 9.740 22.090 12.820 12.640 12.340 12.290 1.390 5.570
MPPD-TV-ℓ2,VGG11 50.720 9.740 10.080 23.080 13.970 13.610 13.480 13.250 1.270 6.290
MPPD-TV-ℓ1,VGG11 52.990 10.440 11.050 23.440 14.290 13.980 13.520 13.430 2.990 6.720
Non-MPPD,WRN16 28.660 6.310 5.920 12.470 7.770 7.540 7.390 7.280 1.190 3.750

MPPD-TV-ℓ2,WRN16 29.090 6.720 6.180 12.350 8.280 7.940 7.770 7.490 2.580 3.950
MPPD-TV-ℓ1,WRN16 31.240 7.060 6.740 13.260 9.720 9.500 9.450 9.280 3.110 4.210

Table 3: Classification accuracies (%) of MPPD-TV-ℓ1 with different regularization strengths.

Model Clean APGD10
CE APGD10

DLR FGSM PGD7 PGD10 PGD20 PGD40 CW AutoAttack
AT,α = 0.0 82.990 26.370 29.940 40.360 30.990 29.860 29.460 29.540 51.910 18.870
AT,α = 0.5 83.250 28.100 31.420 41.400 32.470 31.470 31.380 30.860 54.800 20.800
AT,α = 1.0 83.640 29.250 31.940 42.230 33.350 32.620 32.150 31.830 55.640 22.270
AT,α = 2.0 82.860 30.090 32.840 42.800 34.140 33.450 32.960 32.820 57.660 23.190
AT,α = 2.5 83.750 30.640 33.560 43.580 34.690 33.910 33.400 33.280 57.690 22.760
AT,α = 3.0 83.550 30.430 33.240 43.330 34.540 33.420 33.120 32.780 60.070 25.020
AT,α = 3.5 84.010 30.460 33.910 43.630 34.680 33.830 33.360 33.130 56.670 13.590
AT,α = 4.0 83.470 30.850 33.470 43.490 34.640 33.610 33.070 33.140 58.050 22.340

(35.300%, 46.510%, 34.510%) of MPPD-TV-ℓ2 for the APGD10
DLR, FGSM, and PGD7 attacks, re-

spectively. Besides, MPPD-TV-ℓ1 outperforms MPPD-TV-ℓ2 and Non-MPPD on both clean and
perturbed data. This indicates that MPPD-TV-ℓ1 really improves robustness not just against adver-
sarial perturbations, but also against other types of detrimental noise. Note that AT+Reg is already a
heavy double penalization for non-robust dynamics. The fact that MPPD-TV-ℓ1 shows little further
improvement under AT+Reg suggests that MPPD-TV-ℓ1 is implicitly achieving the desired robust
regularization effect that the explicit Reg treatment of (Ding et al., 2022) is designed for. In the
more common and important training scenario AT, MPPD-TV-ℓ1 consistently shows better perfor-
mance, which proves its practical necessity and advantage as a standalone, effective robust training
method. These results indicate that MPPD-TV-ℓ1 is effective in suppressing adversarial perturba-
tions. The runtimes of different methods with VGG11 and AT on the three data sets are provided in
Table A1, which indicates that MPPD-TV-ℓ1 runs the fastest among the competitors. The gradient
magnitudes for different methods with WRN16 architecture and AT training scheme on Tiny Ima-
geNet are provided in Figure A1, which show that MPPD-TV-ℓ1 converges quickly to a low gradient
magnitude level around the 400-th iteration, and maintains the lowest gradient magnitude among the
competitors.

Moreover, MPPD-TV-ℓ1 achieves more robust performance than MPPD-TV-ℓ2, especially for the
PGD attacks. For instance, when training both VGG11 and WRN16 architectures with Gaus-
sian noise on CIFAR 100, MPPD-TV-ℓ1 achieves significantly higher classification accuracies than
MPPD-TV-ℓ2 on all the PGD attacks. Specifically, the accuracies of MPPD-TV-ℓ1 with VGG11 on
PGD7, PGD10, PGD20, and PGD40 are 1.390%, 1.150%, 1.070%, and 0.960%, respectively, which
are significantly higher than those of MPPD-TV-ℓ2: 0.690%, 0.540%, 0.470%, and 0.350%. More-
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over, as the number of iterative steps increases for the PGD attack, the gap between MPPD-TV-ℓ1
and MPPD-TV-ℓ2 also increases. It indicates that MPPD-TV-ℓ1 is more advantageous when the
perturbations get more adversarial.

4.3 REGULARIZATION STRENGTH α

To investigate the impact of regularization strength α, we use the VGG5 model to conduct experi-
ments on CIFAR 10, shown in Table 3. The values of α are set to 0.0 ∼ 4.0, respectively. Results
show that MPPD-TV-ℓ1 achieves higher accuracies with α > 0 than those with α = 0 against ad-
versarial attacks, which indicates that MPPD-TV-ℓ1 is effective in extracting and suppressing such
adversarial perturbations. As α varies, the accuracies of MPPD-TV-ℓ1 reach their peaks around
α = 2.5 ∼ 3.0.

Next, we evaluate the adversarial robustness of MPPD-TV-ℓ1 with a VGG11 architecture pre-trained
on CIFAR 10 by subjecting it to PGD10 attacks with gradually increasing intensity, then plot the
resulting accuracy curves in Figures 1a and 1b. Specifically, we increase the attack intensity ζ from
10/255 to 100/255 by increments of 10/255. Results indicate that the MPPD-TV-ℓ1 curves (α = 1)
decrease more gradually than the Non-MPPD curves (α = 0) as the intensity increases, especially
with AT training samples. We also calculate the actual TV values for MPPD-TV-ℓ1 and Non-MPPD,
shown in Figures 1c and 1d. Results indicate that MPPD-TV-ℓ1 (α = 1) indeed produces less TV
than Non-MPPD (α = 0), which accords with the design intention of MPPD-TV-ℓ1.

(a) Accuracy, AT (b) Accuracy, AT+Reg (c) TV, Gaussian (d) TV, AT+Reg

Figure 1: Accuracies and actual TV values of MPPD-TV-ℓ1 (α = 1) and Non-MPPD (α = 0).

5 CONCLUSION

Membrane potential perturbation dynamic (MPPD) is a new method to capture and suppress adver-
sarial perturbations for spiking neural networks (SNN). However, it discards the neuronal reset part
without reliable theoretical foundation. To fix this problem, we formulate that MPPD is total varia-
tion (TV) and its regularization scheme is essentially a TV-ℓ2 model (MPPD-TV-ℓ2). Based on this
insight, we propose the MPPD-TV-ℓ1 model to further improve the robustness of SNNs. Because the
L1 function space is larger than the L2 function space with finite measures, MPPD-TV-ℓ1 facilitates
broader classes of functions to be membrane potentials, thus expands its applicability and flexibil-
ity. Moreover, MPPD-TV-ℓ1 can exploit the coarea formula while MPPD-TV-ℓ2 cannot, hence the
former has better performance than MPPD-TV-ℓ2 in robust signal reconstruction against adversarial
perturbations, which better fits the architectures of SNNs. The only fundamental requirement of the
proposed theory is that the perturbation is a measurable function of the node index and the time-step
of an SNN, otherwise this perturbation cannot be captured to yield significant TV.

Experimental results show that the MPPD-TV-ℓ1 framework achieves better performance than other
state-of-the-art methods in most test scenarios, and shows better robustness in complicated environ-
ments with adversarial perturbations and signal distortions. In summary, we establish a theoretically-
sound TV formulation for MPPD, which provides a new insight into the essence of perturbation
characterization for SNNs. Our methodology is applicable to most SNN architectures where a TV
term is used to stabilize layer-wise internal state. Future works may lie in applying the above theory
to improve robustness of neuromorphic computing systems in safety-critical applications, such as
autonomous driving and industrial control.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Proof. Part (1): We first verify that the following local variation is well-defined:

∇(i,t)v(i, t, x) := v(i, t, x)− v(i, t, x+ δ(i, t)). (27)

Let x, δ ∈ Rd and (i, t) ∈ Θ, where the domain Θ can be [0, N ]× [0, T ] for the continuous setting,
[0 : N ]× [0 : T ] for the discrete setting, or [0 : N ]× [0, T ] or [0, N ]× [0 : T ] for the mixed setting.
Denote the σ-algebras of Θ, Rd, and R by F , G , and H , respectively. F can take the product σ-
algebra w.r.t. its two arguments i and t. For either argument, the power set or the Lebesgue σ-algebra
can be used for the discrete or continuous setting, respectively. G and H take the d-dimensional
and one-dimensional Lebesgue σ-algebras by default, respectively. The σ-algebra of Θ × Rd takes
the product σ-algebra F × G .

As a necessary condition, v : Θ×Rd 7→ R should be a measurable function of (i, t, x) for an eligible
SNN, otherwise this SNN cannot process the input information. Because δ : Θ 7→ Rd is measurable,
given any set F ∈ F , we have δ(F) ∈ G . Consider x as a fixed point in Rd, then (x + δ(F)) is a
translation of δ(F). According to the property of Lebesgue σ-algebra, (x+ δ(F)) ∈ G . Therefore,
F × (x + δ(F)) ∈ F × G and v(F × (x + δ(F))) ∈ H from the measurability of v. Hence the
forward mapping of v is well-defined.

Conversely, given any set H ∈ H , the preimage v−1(H) = F×G ∈ F ×G from the measurability
of v. Again from the property of Lebesgue σ-algebra, the translation (G − x) ∈ G . Then from the
measurability of δ, the preimage δ−1(G −x) ∈ F . Denote the intersection of F and δ−1(G −x) by
F ′ := F ∩ δ−1(G − x). Since the σ-algebra F is closed under intersection, F ′ ∈ F . By fixing x
as a constant function of (i, t), we consider v as a composed function: v ◦ (x + δ) : Θ 7→ R. Then
the above deduction indicates that the preimage (v ◦ (x+ δ))−1(H) = F ′ ∈ F . Hence v ◦ (x+ δ)
is also a measurable function of (i, t) and the inverse mapping (v ◦ (x+ δ))−1 is well-defined.

Summarizing the above deductions, we verify that v(i, t, x+δ(i, t)) is a measurable function of (i, t)
for any fixed x. Since ∇(i,t)v(i, t, x) in (27) is a subtraction between two measurable functions, it
is also a measurable function of (i, t) for any fixed x. Hence ∇(i,t)v(i, t, x) is well-defined and can
be calculated in practice.

Part (2): Next, we need to verify that
∫
J (i)

∇(j,t)s(j, t, x) dw(i, j(i)) is well-defined. The spike
function can be rewritten as:

s(j, t, x) = H(v(j, t, x)− uth). (28)
Since (v(j, t, x) − uth) and the Heaviside function are both measurable functions, their compos-
ite s(j, t, x) is also a measurable function. Following similar deductions to Part (1), the local
variation ∇(j,t)s(j, t, x) is also a well-defined measurable function. With a fixed i, the weight
function w(i, j(i)) is naturally a measure on J (i). With fixed t and x, ∇(j,t)s(j, t, x) is also a
measurable function restricted on J (i). Hence

∫
J (i)

∇(j,t)s(j, t, x) dw(i, j(i)) is a well-defined
Lebesgue integral. Moreover, since |∇(j,t)s(j, t, x)| ⩽ 1 from the definition of the Heaviside func-
tion,

∫
J (i)

∇(j,t)s(j, t, x) dw(i, j(i)) is also a finite integral with a finite measure w(i, j(i)). This is
crucial for the dominated TV property of Theorem 4 that controls the overall stability of an SNN.

Again by similar deductions to Part (1), ∇(i,t)v(i, t−1, x) is also a well-defined measurable function.
Hence (19) holds in a well-defined measurable sense. As for (20), we can use either counting
measure or Lebesgue measure for the discrete or continuous setting of i and t, respectively. Then
both sides of (20) are well-defined Lebesgue integrals, forming a TV-ℓ2 term. Moreover, this MPPD-
TV-ℓ2 term is finite in general situations, as stated in Theorem 4.

A.2 PROOF OF THEOREM 2

Proof. To simplify notations, we can fix and omit the input variable x in the rest of the appendices if
not specified. We use the notations in Appendix A.1. Since v is measurable, given any set H ∈ H ,
(v|x)−1(H) ∈ F . On the other hand, the interval type [ψ,ψ + ∆ψ) ∈ H from the definition
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of Lebesgue σ-algebra. The main technique to calculate the TV-ℓ1 term in (22) is to partition this
Lebesgue integral w.r.t. the values of v along with (−∞,∞). To do this, we observe that rational
numbers are dense in (−∞,∞). Since rational numbers are countable, we can construct a countable
set of M ∈ N+ ∪{+∞} intervals with positive Lebesgue measure (i.e., positive length), as follows.

{Bm := [am, bm)}Mm=1 s.t. am < bm ⩽ am+1, m = 1, 2, · · · ,M.

v(i, t) is Lipschitz continuous on Fm := {(i, t) ∈ Θ : am ⩽ v(i, t) < bm}. (29)

Each interval [am, bm) contains at least one rational number, and all these intervals are mutually
disjoint: Bm∩Bo = ∅ for anym ̸= o. Hence ∪Mm=1Bm covers all the Lipschitz continuous intervals
of the range of v. We only need to consider preimage sets {Fm}Mm=1 where v is Lipschitz continuous
because the corresponding Lebesgue integrals are positive only on these sets. Specifically,∫

Θ

|∇(i,t)v(i, t)|dµ =

∫
Θ\(∪M

m=1Fm)

|∇(i,t)v(i, t)|dµ+

∫
∪M

m=1Fm

|∇(i,t)v(i, t)|dµ, (30)

where Θ\(∪Mm=1Fm) corresponds to R\(∪Mm=1Bm) where v is discontinuous w.r.t. (i, t) almost ev-
erywhere (a.e.). Hence

∫
Θ\(∪M

m=1Fm)
|∇(i,t)v(i, t)|dµ = 0 based on the definition of Lebesgue inte-

gral, which means that it has zero volume. Then we just need to calculate
∫
∪M

m=1Fm
|∇(i,t)v(i, t)|dµ.

We break this down into the discrete and the continuous settings.

Part (1): For the discrete setting, direct calculation yields:∫
Fm

|∇(i,t)v(i, t)|dµ = φ(Fm) · (bm − am), ∀m. (31)

Since φ(Fm) remains unchanged in the interval v ∈ [am, bm) due to Lipschitz continuity, we have
Fm = {(i, t) ∈ Θ : v(i, t) = am}. By letting ψm = am and ∆ψm = bm − am, (31) can be
reformulated as

φ(Fm) · (bm − am) = φ({(i, t) ∈ Θ : v(i, t) = ψm}) ·∆ψm =

∫
{(i,t)∈Θ:v(i,t)=ψm}

dφdψ, ∀m.

(32)

From the σ-additivity of Lebesgue integrals,∫
∪M

m=1Fm

|∇(i,t)v(i, t)|dµ =

M∑
m=1

∫
Fm

|∇(i,t)v(i, t)|dµ

=

M∑
m=1

∫
{(i,t)∈Θ:v(i,t)=ψm}

dφdψ =

∫
∪M

m=1Bm

∫
{(i,t)∈Θ:v(i,t)=ψm}

dφdψ. (33)

Adding the zero integral terms w.r.t. Θ\(∪Mm=1Fm) and R\(∪Mm=1Bm) to both sides of (33) yields:∫
Θ

|∇(i,t)v(i, t)|dµ =

∫ ∞

−∞

∫
{(i,t)∈Θ:v(i,t)=ψ}

dφdψ, (34)

which proves the coarea formula (22).

Part (2): For the continuous setting, we can use the existing calculation for each Lipschitz contin-
uous interval (Federer, 1959):∫

Fm

|∇(i,t)v(i, t)|dµ =

∫ bm

am

∫
{(i,t)∈Θ:v(i,t)=ψ}

dφdψ, ∀m. (35)

Similar to the deductions in Part (1), we exploit the σ-additivity of Lebesgue integrals and add the
zero integral terms to obtain:∫

∪M
m=1Fm

|∇(i,t)v(i, t)|dµ =

M∑
m=1

∫
Fm

|∇(i,t)v(i, t)|dµ
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=

M∑
m=1

∫ bm

am

∫
{(i,t)∈Θ:v(i,t)=ψ}

dφdψ =

∫
∪M

m=1Bm

∫
{(i,t)∈Θ:v(i,t)=ψ}

dφdψ,∫
Θ

|∇(i,t)v(i, t)|dµ =

∫ ∞

−∞

∫
{(i,t)∈Θ:v(i,t)=ψ}

dφdψ. (36)

For the mixed setting (with i discrete and t continuous, or t discrete and i continuous), the proof is
similar to the above, which is omitted here.

A.3 PROOF OF THEOREM 3

Proof. The proof is basically the same as that of Theorem 1 in Appendix A.1 except that the inte-
grated function takes the absolute form | · | instead of the squared form | · |2, thus we need not repeat
it again. Moreover, the MPPD-TV-ℓ1 term in (23) is finite according to Theorem 4, which can be
calculated and quantified in practice.

Next, we verify that the function space L1(Θ) ⫌ L2(Θ) when µ(Θ) < ∞, so that MPPD-TV-ℓ1
allows for broader classes of functions than MPPD-TV-ℓ2:∫

Θ

|∇(i,t)v(i, t)|dµ

=

∫
Θ∩{(i,t):|∇(i,t)v(i,t)|>1}

|∇(i,t)v(i, t)|dµ+

∫
Θ∩{(i,t):0⩽|∇(i,t)v(i,t)|⩽1}

|∇(i,t)v(i, t)|dµ

⩽
∫
Θ∩{(i,t):|∇(i,t)v(i,t)|>1}

|∇(i,t)v(i, t)|2 dµ+

∫
Θ∩{(i,t):0⩽|∇(i,t)v(i,t)|⩽1}

1 · dµ (37)

⩽
∫
Θ

|∇(i,t)v(i, t)|2 dµ+ µ(Θ) (38)

<∞.

The inequality (37) holds because |∇(i,t)v(i, t)| ⩽ |∇(i,t)v(i, t)|2 when |∇(i,t)v(i, t)| > 1 in the
first term, and |∇(i,t)v(i, t)| ⩽ 1 in the second term. The inequality (38) holds due to the expansions
of the integration intervals. Last,

∫
Θ
|∇(i,t)v(i, t)|2 dµ < ∞ implies

∫
Θ
|∇(i,t)v(i, t)|dµ < ∞.

Hence L1(Θ) ⊇ L2(Θ).

However, L1(Θ) ̸= L2(Θ). For a simple counterexample, we let f(t) := t−
1
2 , Θ := [0, 1] and

use the Lebesgue measure. Then
∫ 1

0
f(t) dt < ∞ but

∫ 1

0
f2(t) dt = ∞. Hence f ∈ L1(Θ) but

f /∈ L2(Θ). There are many other functions like this f .

A.4 PROOF OF THEOREM 4

Proof. Part (1): Without loss of generality, we define and use the following continuous version of
(21) w.r.t. k:

∇(i,t)v(i, t) =

∫ t−1

0

λk
∫
J
∇(j,t)s(j, t−k) dw(i, j) dk. (39)

Then for the MPPD-TV-ℓ1 Case,∫ N l

1

∫ T

1

|∇(i,t)v(i, t)|dtdi

=

∫ T

1

(∫ N l

1

|∇(i,t)v(i, t)|di

)
dt

=

∫ T

1

(∫ N l

1

∣∣∣∣∫ t−1

0

λk
∫
J
∇(j,t)s(j, t−k)wl(i, j) dj dk

∣∣∣∣ di
)

dt (40)
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⩽
∫ T

1

(∫ t−1

0

λk
∫ N l

1

∫
J

∣∣∇(j,t)s(j, t−k)wl(i, j)
∣∣ dj di dk) dt

=

∫ T

1

∫ t−1

0

λk
∫
J

∣∣∇(j,t)s(j, t−k)
∣∣(∫ N l

1

|wl(i, j)| di

)
dj dk

 dt

⩽
∫ T

1

∫ t−1

0

λk · sup
j∈J

(∫ N l

1

|wl(i, j)| di

)∫
J

∣∣∇(j,t)s(j, t−k)
∣∣ dj dk

 dt

=

∫ T

1

(∫ t−1

0

λk∥wl∥1
∫
J

∣∣∇(j,t)s(j, t−k)
∣∣ dj dk) dt

=∥wl∥1
∫
J

(∫ T

1

∫ t−1

0

λk
∣∣∇(j,t)s(j, t−k)

∣∣ dk dt) dj

=∥wl∥1
∫
J

(∫ T

1

∫ T−τ

0

λt
∣∣∇(j,t)s(j, τ)

∣∣ dtdτ) dj (41)

=∥wl∥1
∫
J

(∫ T

1

(∫ T−τ

0

λt dt

)∣∣∇(j,t)s(j, τ)
∣∣ dτ) dj

=∥wl∥1
∫
J

(∫ T

1

λT−τ − 1

ln(λ)

∣∣∇(j,t)s(j, τ)
∣∣ dτ) dj

⩽
−∥wl∥1
ln(λ)

∫
J

∫ T

1

∣∣∇(j,t)s(j, τ)
∣∣ dτ dj

=∥wl∥1 logλ(
1

e
)

∫
J

∫ T

1

∣∣∇(j,t)s(j, τ)
∣∣ dτ dj.

The equality (40) holds because dw(i, j) = w(i, j) dj as a univariate differential with fixed i. The
underlined terms indicate the extraction of ∥wl∥1. The equality (41) exploits a change of variable
τ := t− k, which also changes the integration interval.

Theorem 4 also holds for the discrete setting of i and t, whose proof is similar to the above and thus
omitted here. The corresponding scaling factor for the discrete setting is ∥wl∥1

1−λ ⩽ ∥wl∥1 logλ( 1e ).

Part (2): For the MPPD-TV-ℓ2 Case,∫ N l

1

∫ T

1

|∇(i,t)v(i, t)|2 dtdi

=

∫ T

1

∫ N l

1

∣∣∣∣∫ t−1

0

λk
∫
J
∇(j,t)s(j, t−k)wl(i, j) dj dk

∣∣∣∣2 di dt

=

∫ T

1

∫ N l

1

(∫ T−τ

0

λt dt

)2(∫
J
∇(j,t)s(j, τ)wl(i, j) dj

)2

di dτ (42)

⩽ log2λ(
1

e
)

∫ T

1

∫ N l

1

(∫
J
∇(j,t)s(j, τ)wl(i, j) dj

)2

didτ

⩽ log2λ(
1

e
)

∫ T

1

∫ N l

1

(∫
J
|∇(j,t)s(j, τ)|2 dj

)(∫
J
w2
l (i, j) dj

)
di dτ (43)

= log2λ(
1

e
)

∫ T

1

(∫
J
|∇(j,t)s(j, τ)|2 dj

)(∫ N l

1

∫
J
w2
l (i, j) dj di

)
dτ

=∥wl∥2F log2λ(
1

e
)

∫ T

1

∫
J
|∇(j,t)s(j, τ)|2 dj dτ.
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The underlined terms indicate the extraction of ∥wl∥2F . The equality (42) exploits a change of
variable τ := t − k. The inequality (43) is derived from the Cauchy-Schwarz inequality for the L2

space: ∣∣∣∣∫
J
∇(j,t)s(j, τ)wl(i, j) dj

∣∣∣∣ ⩽ (∫
J
|∇(j,t)s(j, τ)|2 dj

) 1
2
(∫

J
w2
l (i, j) dj

) 1
2

. (44)

A.5 PROOF OF PROPOSITION 5

Proof. First, we provide the definition of the Fréchet subdifferential of f : R → R at w, denoted by
∂wf(w):

Definition 6 (The Fréchet Subdifferential).

∂wf(w):=

{
z∈R : lim inf

u→w
u̸=w

f(u)−f(w)−z · (u−w)
∥u− w∥2

⩾0

}
. (45)

An element in the set ∂wf(w) is called a subgradient, also denoted by ∂wf(w) for simplicity. It is
well-known that a subgradient of the modulus function is ∂w|w| = w

|w| for w ̸= 0, or ∂w|w| = 0 for
w = 0.

As for the subgradient of MPPD-TV-ℓ1, it can be calculated by exploiting the Leibniz integral rule,
the Fundamental Theorem of Calculus, and the chain rule for backpropagation:

∂w(i,j(i))

(∫
Θ

|∇(i,t)v(i, t)|dµ
)

=

∫
Θ

∂w(i,j(i))

∣∣∣∣∣
t−1∑
k=0

λk
∫
J (i)

∇(j,t)s(j, t−k) dw(i, j(i))

∣∣∣∣∣ dµ
=

∫
Θ

sign(

t−1∑
k=0

λk
∫
J (i)

∇(j,t)s(j, t−k) dw(i, j(i)))

·

(
t−1∑
k=0

λk∂w(i,j(i))

(∫
J (i)

∇(j,t)s(j, t−k) dw(i, j(i))

))
dµ

=

∫
Θ

sign(
t−1∑
k=0

λk
∫
J (i)

∇(j,t)s(j, t−k) dw(i, j(i)))·(
t−1∑
k=0

λk∇(j,t)s(j, t−k)) dµ. (46)

It finishes the proof.

A.6 ADDITIONAL EXPERIMENTAL RESULTS

A device with an Intel(R) Xeon(R) Platinum 8352V CPU, 64-GB RAM, and an NVIDIA RTX 4090
GPU is used for CIFAR 10 and CIFAR 100, while a device with an Intel(R) Xeon(R) Gold 6348
CPU, 100-GB RAM, and an NVIDIA A800 GPU is used for Tiny ImageNet. The training times of
different methods with VGG11 architecture and AT training scheme on CIFAR 10, CIFAR 100, and
Tiny ImageNet data sets are provided in Table A1, which indicate that MPPD-TV-ℓ1 runs the fastest
among the competitors. Besides, the gradient magnitudes based on the ℓ2 norm for different methods
with WRN16 architecture and AT training scheme on Tiny ImageNet data set are provided in Figure
A1, which show that MPPD-TV-ℓ1 converges quickly to a low gradient magnitude level around
the 400-th iteration, and maintains the lowest gradient magnitude compared with MPPD-TV-ℓ2 and
Non-MPPD. This confirms the gradient stability of MPPD-TV-ℓ1.
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Table A1: Runtimes (in hours) of different methods with VGG11 architecture and AT training
scheme on CIFAR 10, CIFAR 100, and Tiny ImageNet.

Data Set MPPD-TV-ℓ1 MPPD-TV-ℓ2 AT + FEEL SR
CIFAR 10 9.95 10.01 13.75 33.89
CIFAR 100 10.08 11.53 14.22 34.67

Tiny ImageNet 22.38 25.14 38.02 118.09
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Figure A1: ℓ2 norms of gradients for different methods with WRN16 architecture and AT training
scheme on Tiny ImageNet.
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