

A UNIFIED TOTAL VARIATION FRAMEWORK FOR MEMBRANE POTENTIAL PERTURBATION DYNAMIC

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Membrane potential perturbation dynamic (MPPD) is an emerging approach to
 012 capture perturbation intensity and stabilize the performance of spiking neural net-
 013 works (SNN). It discards the neuronal reset part to intuitively reduce fluctuations
 014 of dynamics, but this treatment may be insufficient in perturbation characteriza-
 015 tion. In this study, we prove that MPPD is total variation (TV), which is a widely-
 016 used methodology for robust signal reconstruction. Moreover, we propose a novel
 017 TV- ℓ_1 framework for MPPD, which allows for a wider range of network functions
 018 and has better denoising advantage than the existing TV- ℓ_2 framework, based on
 019 the coarea formula. Experiments show that MPPD-TV- ℓ_1 achieves robust perfor-
 020 mance in both Gaussian noise training and adversarial training for image classifi-
 021 cation tasks. This finding may provide a new insight into the essence of pertur-
 022 bation characterization.

1 INTRODUCTION

024 Spiking neural networks (SNN, Maass 1997) are a main category of NNs that have caught more and
 025 more attention these years (Shen et al., 2023; Li et al., 2024; Song et al., 2024). Since they have
 026 sparse activation features (Yao et al., 2025), they require less computational complexity and power
 027 in training and operating than the NNs with dense activation features (Fang et al., 2023), making it
 028 an advantage in deep learning scenarios (Pei et al., 2019; Perez-Nieves & Goodman, 2021). A key
 029 concept to convey binary information in the SNN is the *membrane potential* (Xu et al., 2023; Zhu
 030 et al., 2024; Ding et al., 2024a), which imitates the complex dynamics in the brain (Zhang & Li,
 031 2020; Shi et al., 2024b; Yao et al., 2022). Such a concept bridges the computational properties of
 032 the SNN with those of the biological neural system, which opens up a promising research topic for
 033 future works.

034 Similar to other categories of NNs, SNNs are vulnerable to attacks from adversarial examples
 035 (Goodfellow et al., 2015; Kundu et al., 2021; Ding et al., 2022; Bu et al., 2023; Hao et al., 2024).
 036 It holds back applications of SNNs to scenarios with strict security needs (Yamazaki et al., 2022;
 037 Liang et al., 2023; Wu et al., 2024; Sharmin et al., 2019; Ding et al., 2024a;b; Geng & Li, 2025).
 038 One solution to this problem is to effectively identify the adversarial perturbations. By observing
 039 that membrane potentials contain adversarial perturbation information in the leaky integrate-and-fire
 040 (LIF) neuron based SNNs (Sharmin et al., 2020), a kind of membrane potential perturbation dynam-
 041 ics (MPPD) is proposed to analyze the dynamic properties of such perturbation information (Ding
 042 et al., 2024a). It further proposes to use the mean square of MPPD (MS-MPPD) as a regularizer to
 043 stabilize the performance of SNNs against adversarial examples.

044 To better highlight our motivation, we first provide the formula of MPPD (Ding et al., 2024a):

$$\underbrace{\vartheta_i^l[t]}_{\text{full MPPD}} = \underbrace{\lambda \vartheta_i^l[t-1] + \sum_j w_{ij}^l (s_j^{l-1}[t] - \tilde{s}_j^{l-1}[t])}_{\text{MPPD}} - \underbrace{\lambda (v_i^l[t-1] s_i^l[t-1] - \tilde{v}_i^l[t-1] \tilde{s}_i^l[t-1])}_{\text{neuronal reset}}, \quad (1)$$

045 where $v_i^l[t]$ and $s_i^l[t]$ denote the *pure* membrane potential and spike of neuron i in layer l at time t ,
 046 respectively. The notation with the *tilde* superscript is the *perturbed* version of the corresponding
 047 variable. The *full MPPD* is defined as the difference between the pure and the perturbed membrane
 048 potential: $\vartheta_i^l[t] = v_i^l[t] - \tilde{v}_i^l[t]$, which equals the *MPPD* part on the right side of (1) when this neuron
 049 does not fire a spike. However, if the neuron fires a spike, there will be an additional *neuronal reset*
 050 part, which might cause fluctuations in $\vartheta_i^l[t]$. Hence this neuronal reset part is discarded by (Ding
 051 et al., 2024a).

054 et al., 2024a) and only the MPPD part is used. Though intuitive, this treatment may be insufficient
055 in perturbation characterization.
056

057 In this study, we discover and prove that MPPD is total variation (TV), which is a widely-used
058 methodology in robust signal reconstruction (Rudin et al., 1992; Chan et al., 2006; Chen et al.,
059 2006), function approximation (Chan & Esedoglu, 2005), and invariant risk minimization (Lai &
060 Wang, 2024; Wang et al., 2025). TV accumulates the increments of a function with respect to (w.r.t.)
061 its arguments, which well fits the perturbation of membrane potential. The proposed methodology
062 requires only one fundamental condition that the perturbation is a measurable function of the node
063 index and the time-step of an SNN. This means that the temporal and neuronal evolutions of the
064 SNN should be able to capture such a perturbation and then yield significant TV. This finding may
065 provide a new insight into the essence of characterizing perturbations.
066

067 Our main contributions can be summarized as follows: **1.** We prove that MPPD is TV and verify
068 that the existing MS-MPPD regularized SNN training model is a standard $TV-\ell_2$ framework. **2.** We
069 further propose a novel $TV-\ell_1$ framework for MPPD (MPPD-TV- ℓ_1). It has at least two advantages
070 over the $TV-\ell_2$ framework: a) The L^1 function space is larger than the L^2 function space in general
071 deep learning settings, which allows for more classes of functions to be membrane potentials. b)
072 Based on the coarea formula, $TV-\ell_1$ performs better than $TV-\ell_2$ in robust signal reconstruction
073 against adversarial perturbations, which better fits the architectures of SNNs. **3.** We deduce the
074 coarea formula, the dominated TV property, and the subgradient calculation for MPPD-TV- ℓ_1 . Our
075 methodology is applicable to most SNN architectures where a TV term is used to stabilize layer-wise
076 internal state.
077

2 PRELIMINARIES AND RELATED WORKS

078 We introduce some preliminaries and related works on SNNs, MPPD, TV, and adversarial attacks.
079

2.1 MEMBRANE POTENTIAL PERTURBATION DYNAMICS

080 Different from typical analog neural networks (ANNs), SNNs use spike sequences to send temporal
081 binary information. This mechanism imitates the dynamic communications of biological neural
082 systems. To exploit temporal spike information, the LIF model (Wu et al., 2019; Kim et al., 2022; Shi
083 et al., 2024a) can be used to characterize how neurons work in SNNs. The discrete-form differential
084 equations of LIF are as follows:
085

$$v_i^l[t] = \lambda u_i^l[t-1] + \sum_j w_{ij}^l s_j^{l-1}[t], \quad s_i^l[t] = H(v_i^l[t] - u_{th}), \quad u_i^l[t] = v_i^l[t](1 - s_i^l[t]), \quad (2)$$

086 where $v_i^l[t]$ denotes the membrane potential of neuron i in layer l at time-step t before firing ($i \in$
087 $[N^l] := \{1, 2, \dots, N^l\}; t \in [T]; l \in [L]; u_i^l[0] = 0$). H is the Heaviside function such that if $v_i^l[t]$
088 is no less than the threshold u_{th} , then the spike function $s_i^l[t] = 1$; else $s_i^l[t] = 0$. w_{ij}^l denotes the
089 weight of the edge connecting neurons i and j , where j is from the preceding layer ($l-1$). $u_i^l[t]$
090 denotes the membrane potential after firing, which resumes to the resting potential (i.e., 0) and waits
091 for being transferred to the succeeding time-step with a decaying leaky factor $\lambda \in [0, 1)$.
092

093 As introduced in Section 1 and (1), the MPPD is defined as (Ding et al., 2024a):
094

$$\epsilon_i^l[t] = \lambda \epsilon_i^l[t-1] + \sum_j w_{ij}^l \Delta s_j^{l-1}[t], \quad t = 1, 2, \dots, T, \quad (3)$$

095 where $\Delta s_j^{l-1}[t] := s_j^{l-1}[t] - \tilde{s}_j^{l-1}[t]$ denotes the difference of the presynaptic spike, and the neuronal
096 reset part in (1) is discarded. Then the MS-MPPD regularized SNN training model is (Ding et al.,
097 2024a):
098

$$\min_w \{\mathcal{L} := \mathcal{L}_{task} + \alpha \cdot \mathcal{L}_{MS-MPPD}\} \quad (4)$$

$$\text{s.t. } \mathcal{L}_{task} := \chi CE(f_{SNN}(x), y) + (1 - \chi) CE(f_{SNN}(\tilde{x}), y),$$

$$\mathcal{L}_{MS-MPPD} := \sum_{i=1}^{N^L} \sum_{t=1}^T (\epsilon_i^L[t])^2, \quad (5)$$

099 where $x \in \mathbb{R}^d$ (or \tilde{x}) and $y \in \mathbb{Y}$ denote the pure (or perturbed) input and the corresponding ground-
100 truth output of the training samples, respectively. f_{SNN} denotes the function induced by the SNN,
101 and CE denotes the cross-entropy classifier. χ is a mixing hyperparameter with a default value
102

of 0.5, and $\alpha \geq 0$ is a regularization hyperparameter for $\mathcal{L}_{MS-MPPD}$. N^L denotes the number of neurons in the L -th layer (the last layer). To summarize, model (4) sums up the mean squared perturbations with a factor α to the task loss, in order to suppress such perturbations in the training process. The training algorithm is a standard Spatio-Temporal Backproagation (STBP) with the triangle-like surrogate function (Deng et al., 2022) in place of the non-differentiable Heaviside function with $\omega = 1$ by default:

$$\frac{\partial s_i^l[t]}{\partial v_i^l[t]} = \frac{1}{\omega^2} \max(\omega - |v_i^l[t] - u_{th}|, 0). \quad (6)$$

2.2 ADVERSARIAL ATTACKS

It is widely-recognized that NNs are vulnerable to adversarial attacks. These attacks deliberately change the input data for a little bit, in order to make the NNs give incorrect results. The SNN also suffers from this problem, although it has a higher activation sparsity than the ANN. A common attack strategy is to maximize the network loss when the classifier $f : \mathbb{R}^d \mapsto \mathbb{Y}$ makes an incorrect classification after receiving a perturbed input $(x + \delta)$:

$$\max_{\|\delta\|_p \leq \zeta} \mathcal{L}_{task}(f(x + \delta), y), \quad (7)$$

where $\|\delta\|_p \leq \zeta$ means that the attack is imperceptible with ℓ_p norm no more than an intensity hyperparameter $\zeta \geq 0$. For images, ζ is often set as an integer multiplied by 1/255.

Fast Gradient Sign Method (FGSM, Goodfellow et al. 2015) is a fundamental attack technique to generate adversarial examples by adding a small component in the same direction of the gradient sign:

$$\tilde{x} = x + \zeta' \cdot \text{sign}(\nabla_x \mathcal{L}_{task}(f(x), y)), \quad (8)$$

where $0 \leq \zeta' \leq \zeta / \|\text{sign}(\nabla_x \mathcal{L}_{task}(f(x), y))\|_p$. Based on FGSM, the Projected Gradient Descent (PGD, Madry et al. 2018) attack technique is further proposed to achieve a stronger attack of “first-order adversary”:

$$\tilde{x}_{(k+1)} = \text{proj}_{\mathcal{B}_p[x; \zeta]}(\tilde{x}_{(k)} + \eta \cdot \text{sign}(\nabla_x \mathcal{L}_{task}(f(\tilde{x}_{(k)}), y))), \quad (9)$$

where η represents the step size for a single PGD iteration, and $\text{proj}_{\mathcal{B}_p[x; \zeta]}$ denotes the projection operator onto the closed neighborhood of x with a radius of ζ . Besides the above gradient-based attack schemes, C&W is also a popular optimization-based attack mechanism (Carlini & Wagner, 2017).

2.3 TOTAL VARIATION

TV (Rudin et al., 1992) is a widely-used operator that measures the degree of variation in a function. We consider an open set $\Omega \subseteq \mathbb{R}^d$ and denote $L^1(\Omega)$ as the corresponding Lebesgue-integrable function space. The TV of any $f \in L^1(\Omega)$ is originally defined as (Chan et al., 2006):

$$\int_{\Omega} |\nabla f| := \sup \left\{ \int_{\Omega} f(x) \text{div} g(x) \, dx : g \in C_c^1(\Omega, \mathbb{R}^d), \|g\|_{L^{\infty}(\Omega)} \leq 1 \right\}, \quad (10)$$

where $\text{div} g$ denotes the divergence of a differentiable function g . g has a compact support contained in Ω and an essential supremum no larger than 1. TV quantifies the local variations of f across all dimensions of x , and then accumulates these variations over the entire domain Ω . If f is non-differentiable, then $|\nabla f|$ is characterized via $\text{div} g$. But when f is differentiable, $|\nabla f|$ is exactly the magnitude (i.e., the ℓ_2 norm) of the gradient ∇f .

In practice, only functions with bounded variation (BV) can be calculated, which constitute the BV function space $\{f \in L^1(\Omega) : \int_{\Omega} |\nabla f| < \infty\}$. Hence a TV function actually refers to a BV function in this paper. TV has an important property that can be represented by the following coarea formula (Chan et al., 2006):

$$\int_{\Omega} |\nabla f| := \int_{-\infty}^{\infty} \int_{f^{-1}(\psi)} d\varphi \, d\psi, \quad (11)$$

where $f^{-1}(\psi) := \{x \in \Omega : f(x) = \psi\}$ represents the level set (or preimage) of f at the value ψ . (11) indicates that this integral is calculated by aggregating all contours of $f^{-1}(\psi)$ for every ψ where the differential $d\psi$ exists. Hence if f has a more blocky (piecewise-constant) landscape, its TV will be smaller. Based on this property, minimizing TV helps to preserve discontinuous features of f , while effectively reducing noise and other unwanted fine-scale details. The TV- ℓ_1 model (Rudin

162 et al., 1992) is proposed to this end:

$$164 \inf_{\hat{f} \in L^2(\Omega)} \left\{ \int_{\Omega} |\nabla \hat{f}| + \lambda \int_{\Omega} (f - \hat{f})^2 dx \right\}, \quad (12)$$

166 where $\hat{f} \in L^2(\Omega)$ denotes the recovery of the target function f , and λ is a hyperparameter that
167 controls the approximation accuracy. This model aims to preserve the sharp discontinuities in the
168 recovery \hat{f} while using the residual $(f - \hat{f})$ to capture and retain noise as well as other unwanted
169 fine-scale details.

170 If \hat{f} has a stronger TV condition that $\int_{\Omega} |\nabla \hat{f}|^2 < \infty$, then the following TV- ℓ_2 framework can also
171 be used (Mumford & Shah, 1985):

$$172 \inf_{\hat{f} \in L^2(\Omega)} \left\{ \int_{\Omega} |\nabla \hat{f}|^2 + \lambda \int_{\Omega} (f - \hat{f})^2 dx \right\}. \quad (13)$$

174 Compared with TV- ℓ_1 , TV- ℓ_2 uses the squared TV term $\int_{\Omega} |\nabla \hat{f}|^2$, which does not have the coarea
175 formula (11) and thus lacks robustness to sharp noises.

177 3 METHODOLOGY

179 We observe that MPPD accords with the concept of TV not only by its formulation of (3) but also by
180 its motivation to suppress perturbations. Hence we aim to establish a complete theory and method-
181 ology for the TV based MPPD, in order to improve its robustness to adversarial perturbations.

182 3.1 TOTAL VARIATION FORMULATION OF MEMBRANE POTENTIAL PERTURBATION DYNAM- 183 ICS

184 (3) has a natural form of differences in both dimensions of time-step and node index. In the time-
185 step dimension, the perturbation term $\epsilon_i^l[t]$ is influenced by its one-step-forward term $\epsilon_i^l[t-1]$. In
186 the node index dimension, $\epsilon_i^l[t]$ is influenced by its preceding nodes $\sum_j w_{ij}^l \Delta s_j^{l-1}[t]$. Since the
187 preceding nodes of a given node i are fixed, we can omit the layer notation l to simplify expressions.
188 Then we need to verify that both sides of (3) are well-defined in the framework of TV.

190 **Part (a):** We first examine the left side of (3). By taking the node index i , the time-step t , and the
191 input x as arguments, the perturbation term intends to approximate the difference between the pure
192 and the perturbed membrane potential:

$$193 \epsilon(i, t, x) \approx v(i, t, x) - v(i, t, \tilde{x}) = v(i, t, x) - v(i, t, x + \delta), \quad (14)$$

194 where δ denotes the perturbation added to the input x . We find that if δ can be represented by i and
195 t : $\delta := \delta(i, t)$, then the right side of (14) is exactly local variation of v w.r.t. (i, t) at x , which can
196 be directly defined as $\epsilon(i, t, x)$:

$$197 \epsilon(i, t, x) := \nabla_{(i,t)} v(i, t, x) := v(i, t, x) - v(i, t, x + \delta(i, t)). \quad (15)$$

198 The reason is that the perturbation $\delta(i, t)$ can be embedded into the SNN at node i and time-step t .
199 The symbol $\nabla_{(i,t)}$ means that this difference is performed in the unified dimensions (i, t) via $\delta(i, t)$.
200 Then $\mathcal{L}_{MS-MPPD}$ in (5) is exactly a TV- ℓ_2 term:

$$201 \int_1^{N^L} \int_1^T \epsilon^2(i, t, x) dt di = \int_1^{N^L} \int_1^T |\nabla_{(i,t)} v(i, t, x)|^2 dt di, \quad \forall x \in \mathbb{R}^d, \quad (16)$$

203 where the integrations w.r.t. i and t take the discrete form for a discrete-time SNN.

204 **Part (b):** The right side of (3) actually re-calculates the local variation of v by exploiting the infor-
205 mation flow based on the network structure. Similar to (15), the local variation of the spike function
206 s can be represented by:

$$207 \Delta s(j, t, x) = s(j, t, x) - s(j, t, x + \delta(i, t)) =: \nabla_{(j,t)} s(j, t, x). \quad (17)$$

208 Then the right side of (3) can be transformed into the following local variation:

$$210 \lambda \nabla_{(i,t)} v(i, t-1, x) + \int_{\mathcal{J}(i)} \nabla_{(j,t)} s(j, t, x) dw(i, j(i)), \quad (18)$$

212 where $\mathcal{J}(i)$ denotes the index set of the nodes preceding i , and the weight $w(i, j(i))$ serves as a
213 measure for the integral. $w(i, j(i))$ is assumed to be a finite measure in this paper, which is the
214 case in general practice of neural networks. To simplify notations, we use $\int_{\mathcal{J}(i)} dw(i, j(i))$ for the
215 univariate integral w.r.t. j with fixed i and $\int_1^N \int_{\mathcal{J}(i)} dw(i, j(i))$ for the bivariate integral w.r.t. the

216 entire $(i, j(i))$, respectively. After integrating on j , the second term of (18) is still local variation at
 217 (i, t, x) . By joining both sides of (3), we can directly well define MPPD in the form of TV without
 218 entailing the neuronal reset part in (1). By this means, the perturbation δ can be fully conveyed by
 219 the MPPD throughout different nodes and time-steps of an SNN.

220 **Theorem 1.** *If the perturbation δ is a measurable function of (i, t) , then the following equations on
 221 local variation and TV hold:*

$$223 \quad \nabla_{(i,t)} v(i, t, x) = \lambda \nabla_{(i,t)} v(i, t-1, x) + \int_{\mathcal{J}(i)} \nabla_{(j,t)} s(j, t, x) dw(i, j(i)), \quad \forall (i, t, x), \quad (19)$$

$$225 \quad \int_1^{N^L} \int_1^T |\nabla_{(i,t)} v(i, t, x)|^2 dt di \\ 226 \quad = \int_1^{N^L} \int_1^T \left| \lambda \nabla_{(i,t)} v(i, t-1, x) + \int_{\mathcal{J}(i)} \nabla_{(j,t)} s(j, t, x) dw(i, j(i)) \right|^2 dt di, \quad \forall x. \quad (20)$$

230 The above integrals allow for any feasible measure types for i and t in the mathematical form,
 231 including both discrete and continuous measures.

232 The proof is provided in Appendix A.1. This appendix also verifies that the integral on the right side
 233 of (19) is finite, which is necessary for the dominated TV property of Theorem 4, in order to control
 234 the overall stability of an SNN. (20) is the TV- ℓ_2 version of $\mathcal{L}_{MS-MPPD}$, denoted by MPPD-TV- ℓ_2 .
 235 This MPPD-TV- ℓ_2 term is finite in general situations, as stated in Theorem 4. Therefore, adding
 236 $\alpha \cdot \mathcal{L}_{MS-MPPD}$ in (4) actually suppresses the squared TV of membrane potential throughout the
 237 entire SNN, in order to suppress the adversarial perturbations inside the TV. To do this, the condition
 238 that δ is measurable of (i, t) is fundamental, otherwise δ cannot be fully identified by the SNN and
 239 yield significant TV. An intuitive interpretation of the term measurable is that different magnitudes
 240 of δ can be discriminated via different combinations of nodes and time-steps. This accords with
 241 the common sense that using more nodes and time-steps may improve the accuracy of identifying
 242 adversarial perturbations.

244 3.2 MPPD-TV- ℓ_1

245 In the previous subsection, we prove that MPPD is TV and the corresponding $\mathcal{L}_{MS-MPPD}$ is equiv-
 246 alent to a TV- ℓ_2 model. Without loss of generality, we can assume $\nabla_{(i,t)} v(i, 0, x) = 0$ and t being
 247 an integer. Then (19) can be aggregated w.r.t. all the $k < t$ as follows:

$$249 \quad \nabla_{(i,t)} v(i, t, x) = \sum_{k=0}^{t-1} \lambda^k \int_{\mathcal{J}(i)} \nabla_{(j,t)} s(j, t-k, x) dw(i, j(i)), \quad (21)$$

250 which reveals a difference evolution process along the node (i) and the time-step (k) dimensions.
 251 Besides, $\nabla_{(i,t)} v(i, t, x)$ is directly the sum of spike perturbations, thus its absolute value (instead
 252 of the squared value) quantifies the exact magnitude of these perturbations. Moreover, TV- ℓ_1 has at
 253 least two advantages over TV- ℓ_2 : 1) TV- ℓ_1 can exploit the coarea formula to suppress adversarial
 254 perturbations. 2) With a finite measure, an L^2 integrable function is also an L^1 integrable function,
 255 but the converse is not true (see Appendix A.3). Hence the L^1 function space is larger than the
 256 L^2 function space with finite measures for i and t (for example, when $i \in [N]$, $t \in [T]$, and the
 257 counting measure is used), which allows for more classes of functions to be membrane potentials,
 258 and expands the applicability and flexibility of TV- ℓ_1 . These findings and advantages motivate us to
 259 develop a novel TV- ℓ_1 framework for MPPD (MPPD-TV- ℓ_1).

260 The first step is to establish the coarea formula for the membrane potential v . We denote the unified
 261 domain of (i, t) by Θ and the corresponding measure by μ . For example, $\Theta = [N] \times [T]$ and
 262 $\mu(\{(i, t)\}) = 1, \forall (i, t) \in \Theta$ can be used for a standard discrete SNN.

263 **Theorem 2** (Coarea Formula). *If the perturbation δ is a measurable function of (i, t) , the following
 264 coarea formula holds for both continuous and discrete settings:*

$$267 \quad \int_{\Theta} |\nabla_{(i,t)} v(i, t, x)| d\mu = \int_{-\infty}^{\infty} \int_{\{(i,t) \in \Theta : v(i,t,x) = \psi\}} d\varphi d\psi, \quad \forall x, \quad (22)$$

268 where φ denotes the Hausdorff measure induced by μ .

The proof is provided in Appendix A.2. Taking the above standard discrete SNN as an example, the coarea formula counts the number of points (i, t) at which $v(\cdot, \cdot, x)$ equals a fixed ψ , then aggregates all the infinitesimal surface areas along $\psi \in (-\infty, \infty)$: $\sum_{\psi} \varphi(\{(i, t) \in \Theta : v(i, t, x) = \psi\}) \cdot \Delta\psi$. In brief, the TV will increase significantly if the Hausdorff measure $\varphi(\{(i, t) \in \Theta : v(i, t, x) = \psi\})$ corresponding to the interval $[\psi, \psi + \Delta\psi]$ is large. Such intervals and points may contain target perturbations and thus could be suppressed in the objective. Based on this property, we can develop the MPPD-TV- ℓ_1 framework as follows.

Theorem 3. *If the perturbation δ is a measurable function of (i, t) , then the following MPPD-TV- ℓ_1 is well-defined:*

$$\int_{\Theta} |\nabla_{(i,t)} v(i, t, x)| d\mu = \int_{\Theta} \left| \sum_{k=0}^{t-1} \lambda^k \int_{\mathcal{J}(i)} \nabla_{(j,t)} s(j, t-k, x) dw(i, j(i)) \right| d\mu, \quad \forall x. \quad (23)$$

The above integrals allow for any feasible measure types μ in the mathematical form, including both discrete and continuous measures.

The proof is provided in Appendix A.3. This TV formulation penalizes the total accumulation of potential changes over time, not just the potential at the moment of a spike. The membrane potential $v(i, t, x)$ evolves continuously based on input currents, even when no spike occurs. Replacing the $\mathcal{L}_{MS-MPPD}$ term in (4) by the MPPD-TV- ℓ_1 term in (23), the new MPPD-TV- ℓ_1 framework can be used for different tasks.

3.3 PROPERTIES OF MPPD-TV- ℓ_1

We investigate two useful properties of MPPD-TV- ℓ_1 in this subsection. First, an important property of SNN is that the perturbation dynamics should be dominated by the spikes (Khalil, 2002). We verify that this property also holds in both MPPD-TV- ℓ_1 and MPPD-TV- ℓ_2 frameworks.

Theorem 4 (Dominated TV Property). *To simplify notation, assume every node i in layer l uses the same set of preceding nodes \mathcal{J} in layer $(l-1)$. Then for MPPD-TV- ℓ_1 defined in (21) and (23) and MPPD-TV- ℓ_2 defined in (20), the following dominated TV property holds:*

$$\int_1^{N^l} \int_1^T |\nabla_{(i,t)} v(i, t, x)| dt di \leq \|w_l\|_1 \log_{\lambda} \left(\frac{1}{e} \right) \int_{\mathcal{J}} \int_1^T |\nabla_{(j,t)} s(j, t, x)| dt dj, \quad (24)$$

$$\int_1^{N^l} \int_1^T |\nabla_{(i,t)} v(i, t, x)|^2 dt di \leq \|w_l\|_F^2 \log_{\lambda}^2 \left(\frac{1}{e} \right) \int_{\mathcal{J}} \int_1^T |\nabla_{(j,t)} s(j, t, x)|^2 dt dj, \quad \forall l, \forall x, \quad (25)$$

where $\|w_l\|_1$ and $\|w_l\|_F$ denote the 1-norm and the Frobenius norm of the weight matrix w_l connecting layers l and $(l-1)$, respectively. (24) also holds in the discrete form by replacing the scaling factor $\|w_l\|_1 \log_{\lambda} \left(\frac{1}{e} \right)$ by $\frac{\|w_l\|_1}{1-\lambda}$.

The proof is provided in Appendix A.4. For general situations such as sparse or skip-connected SNN architectures, the weight matrix w_l simply has zero entries corresponding to non-connections, and the set of preceding nodes $\mathcal{J}(i)$ is a proper subset of the entire layer $(l-1)$. The proof structure and the fundamental dominating bound remain valid. Note that $|\nabla_{(j,t)} s(j, t, x)| \leq 1$ from the definition of the Heaviside function, and the integration limits for t and j are also finite. Hence the integral on the right side of (24) or (25) is finite, which is able to control the left side. This theorem indicates that the TV of membrane potential v is dominated by the TV of spike s up to a factor of $\|w_l\|_1 \log_{\lambda} \left(\frac{1}{e} \right)$. In this factor, $\|w_l\|_1$ indicates the spectral energy spread caused by the edge weight, while $\log_{\lambda} \left(\frac{1}{e} \right)$ indicates the scaling effect caused by temporal evolution. The closer λ is set to 1, the larger scaling of spike TV is required to dominate the membrane potential TV. Nevertheless, λ is usually set very close to 1 to simultaneously keep the smoothness of temporal evolution and ensure the above dominated TV property.

The right side of (23) is nondifferentiable w.r.t. the weight $w(i, j(i))$, thus $w(i, j(i))$ cannot be trained by mainstream learning architectures like Pytorch¹. To solve this problem, we complete the backpropagation module with a closed-form subgradient calculation of (23). This strategy is widely-used to deal with nondifferentiable terms in general machine learning tasks (Lin et al., 2024a;b).

¹<https://pytorch.org/>

324 **Proposition 5** (Subgradient Calculation). *A subgradient of (23) w.r.t. the weight $w(i, j(i))$ can be
325 calculated as follows:*

$$327 \quad \int_{\Theta} \partial_{w(i, j(i))} \left| \sum_{k=0}^{t-1} \lambda^k \int_{\mathcal{J}(i)} \nabla_{(j,t)} s(j, t-k, x) dw(i, j(i)) \right| d\mu \\ 328 \quad = \int_{\Theta} \text{sign} \left(\sum_{k=0}^{t-1} \lambda^k \int_{\mathcal{J}(i)} \nabla_{(j,t)} s(j, t-k, x) dw(i, j(i)) \right) \cdot \left(\sum_{k=0}^{t-1} \lambda^k \nabla_{(j,t)} s(j, t-k, x) \right) d\mu. \quad (26) \\ 329 \\ 330 \\ 331 \\ 332$$

333 The proof is provided in Appendix A.5. It can be seen that this subgradient calculation works as
334 a standard gradient calculation and will not cause additional computational complexity. Based on
335 this property, the MPPD-TV- ℓ_1 framework is compatible with mainstream learning architectures and
336 enables the training of SNNs. Moreover, this subgradient captures the sensitivity of the TV to the
337 weights at every timestep t , regardless of whether the potential crosses the threshold and is reset.
338 By minimizing the TV, the model weights are enforced to produce membrane potential trajectories
339 that are globally smoother and less responsive to small changes in the input (noise). This inherent
340 smoothness regulates the weight updates such that even small, sub-threshold input perturbations are
341 suppressed by a less-sensitive weight profile.

343 4 EXPERIMENTS

344 To test the performance of the proposed MPPD-TV- ℓ_1 framework in improving the robustness of
345 SNNs, we basically follow the evaluation baseline of (Ding et al., 2022; 2024a) to conduct image
346 classification experiments.

347 4.1 EXPERIMENTAL SETUP

348 **In the training stage**, VGG11 (Simonyan & Zisserman, 2015) and WRN16 (WideResNet-16-
349 4, (Zagoruyko & Komodakis, 2017)) with Dynamic LIF (DLIF, (Ding et al., 2024a)) neurons are
350 used as backbones of SNNs, while CIFAR 10, CIFAR 100 (Krizhevsky et al., 2009), and Tiny
351 ImageNet (Le & Yang, 2015) are used as data sets. CIFAR 10 and CIFAR 100 have 60000 32 \times 32
352 images, categorized into 10 and 100 classes, respectively. Tiny ImageNet is a large-scale data set
353 with 500 64 \times 64 downsized images for each of the 200 classes. In the training procedure, the
354 time-step for SNN to infer forward is set to 8. Gaussian noise and adversarial noise (AT, Wong
355 et al. 2020) are used as perturbations to construct training samples. In addition, the adversarial noise
356 together with the regularizer of (Ding et al., 2022) is also used (AT+Reg). Perturbation strengths are
357 set to $\zeta = 10/255$ for Gaussian noise, $\zeta = 6/255$ for AT, and $\zeta = 7/255$ for AT+Reg. The SGD
358 optimizer is used with a starting learning rate of 0.01, then the learning rate is reduced to zero via
359 cosine annealing.

360 **In the test stage**, the FGSM (Goodfellow et al., 2015), C&W (Carlini & Wagner, 2017), PGD
361 (Madry et al., 2018), Auto-PGD (APGD), and AutoAttack (Croce & Hein, 2020) schemes are used
362 to construct adversarial test samples, with attack intensity uniformly set to $\zeta = 8/255$. The number
363 of steps for PGD ranges from 7 to 40, while the 10-step APGD based on the cross-entropy (CE) loss
364 and the difference-of-logits-ratio (DLR) is used. All these settings including ζ strictly follow those
365 of (Ding et al., 2024a) to make fair comparisons.

366 Eight state-of-the-art methods are taken into comparisons: SNN-BP (Sharmin et al., 2020), HIRE-
367 SNN (Kundu et al., 2021), SNN-RAT (Ding et al., 2022), FEEL (Xu et al., 2024), SR (Liu et al.,
368 2024), ANN-PGD-AT (Madry et al., 2018), ANN-RiFT (Zhu et al., 2023), and MPPD-TV- ℓ_2 (Ding
369 et al., 2024a). SNN-BP is a deep SNN with inherent adversarial robustness based on discrete input
370 encoding and non-linear activations. HIRE-SNN is an energy-efficient deep SNN that can harness
371 the inherent robustness. SNN-RAT is an SNN with regularized adversarial training that can enhance
372 robustness. FEEL is an SNN with frequency encoding and evolutionary leak factor. SR is an SNN
373 with sparsity regularization of gradients. MPPD-TV- ℓ_2 is originally a kind of robust stable SNNs,
374 which is found to be a TV- ℓ_2 framework in the context of this paper. Hence it is denoted by MPPD-
375 TV- ℓ_2 to be comparable to the proposed MPPD-TV- ℓ_1 framework. Besides, standard SNNs without
376 MPPD (Non-MPPD) are also taken into comparisons as ablation studies. The default settings of
377 MPPD (Non-MPPD) are also taken into comparisons as ablation studies. The default settings of

378 these competitors are used in the experiments, where the regularization strength is set to $\alpha = 1$ for
 379 both MPPD-TV- ℓ_2 and MPPD-TV- ℓ_1 .
 380

381 Table 1: Classification accuracies (%) of different methods on CIFAR 10 and CIFAR 100.
 382

Perturbation	Model	Clean	APGD _{CE} ¹⁰	APGD _{DLR} ¹⁰	FGSM	PGD ⁷	PGD ¹⁰	PGD ²⁰	PGD ⁴⁰	CW	AutoAttack
CIFAR 10											
	SNN-BP,VGG5	89.3	-	-	15.0	3.8	-	-	-	-	-
	HIRE-SNN,VGG5	87.9	-	-	35.5	5.3	-	-	-	-	-
	SNN-RAT,VGG11	90.74	-	-	45.23	21.16	-	-	-	-	-
	FEEL+AT,VGG11	87.850	21.960	32.620	41.920	30.060	28.220	19.970	19.540	53.580	1.630
	SR,VGG11	88.980	27.340	28.400	42.810	30.360	30.230	31.040	31.150	59.550	22.870
	ANN-PGD-AT,VGG11	78.630	33.240	35.070	44.040	35.840	34.900	34.440	34.360	56.650	20.420
	ANN-RIFT,VGG11	80.980	30.100	32.970	41.050	35.390	35.300	35.310	35.100	55.250	22.310
	ANN-PGD-AT,WRN16	79.870	30.640	27.460	34.240	34.120	34.960	34.790	34.310	60.930	19.830
	ANN-RIFT,WRN16	81.260	31.080	24.830	36.850	36.800	36.810	36.660	35.870	61.140	20.010
	Non-MPPD,VGG11	91.410	0.130	0.220	13.100	0.220	0.160	0.110	0.110	10.010	0.000
	MPPD-TV- ℓ_2 ,VGG11	90.990	0.130	0.160	15.160	0.230	0.110	0.060	0.060	10.410	0.000
Gaussian	MPPD-TV-ℓ_1,VGG11	92.230	0.340	0.400	20.250	1.140	0.620	0.410	0.370	13.030	0.290
	Non-MPPD,WRN16	91.050	0.020	0.040	11.780	0.080	0.020	0.020	0.020	7.500	0.000
	MPPD-TV- ℓ_2 ,WRN16	90.520	0.030	0.030	12.540	0.100	0.040	0.030	0.040	8.840	0.010
	MPPD-TV-ℓ_1,WRN16	92.390	0.060	0.400	15.350	0.420	0.270	0.180	0.150	10.520	0.010
	Non-MPPD,VGG11	85.030	29.820	34.350	46.960	35.520	34.600	34.240	33.850	60.640	16.390
	MPPD-TV- ℓ_2 ,VGG11	85.170	27.780	35.300	46.510	34.510	33.200	32.260	32.470	63.050	19.75
AT	MPPD-TV-ℓ_1,VGG11	86.110	36.590	45.260	51.890	42.840	41.560	41.150	40.850	66.680	23.040
	Non-MPPD,WRN16	84.720	26.870	31.770	50.090	33.000	31.460	29.940	29.720	56.340	19.460
	MPPD-TV- ℓ_2 ,WRN16	84.380	30.270	34.150	49.950	35.650	34.030	33.430	32.660	59.110	21.340
AT+Reg	MPPD-TV-ℓ_1,WRN16	86.340	32.320	37.440	52.500	39.040	37.900	36.740	36.290	63.870	22.920
	Non-MPPD,VGG11	85.770	32.570	35.960	49.980	38.060	36.290	35.000	34.720	53.870	14.06
	MPPD-TV- ℓ_2 ,VGG11	84.910	33.620	39.490	54.520	39.030	36.570	34.530	33.270	54.340	19.070
AT+Reg	MPPD-TV-ℓ_1,VGG11	86.390	35.160	38.630	50.970	40.730	39.070	38.060	37.670	62.400	23.530
	Non-MPPD,WRN16	84.640	35.500	38.270	56.880	40.290	37.380	34.870	33.270	50.250	11.160
	MPPD-TV- ℓ_2 ,WRN16	84.220	33.530	37.430	58.320	39.100	35.800	32.700	31.310	53.570	13.69
	MPPD-TV-ℓ_1,WRN16	85.400	36.680	39.580	57.440	41.490	38.260	35.900	34.780	60.580	18.010
	CIFAR 100										
	SNN-BP,VGG11	64.4	-	-	15.5	6.3	-	-	-	-	-
	HIRE-SNN,VGG11	65.6	-	-	16.4	2.9	-	-	-	-	-
	SNN-RAT,VGG11	68.89	-	-	25.86	17.81	-	-	-	-	-
	FEEL+AT,VGG11	66.530	15.440	15.380	16.680	5.560	5.310	8.020	7.930	14.880	0.810
	SR,VGG11	67.930	11.530	11.740	19.690	13.160	13.180	13.750	13.740	25.350	10.540
	ANN-PGD-AT,VGG11	47.050	15.120	15.630	20.340	16.350	15.850	15.750	15.600	34.760	7.470
	ANN-RIFT,VGG11	48.880	15.710	16.550	21.840	21.730	21.720	21.710	21.710	34.160	8.320
	ANN-PGD-AT,WRN16	55.040	15.270	19.070	21.420	18.970	18.890	18.110	18.590	34.250	4.290
	ANN-RIFT,WRN16	52.480	14.620	18.560	18.560	18.540	18.540	18.520	18.360	35.010	7.870
	Non-MPPD,VGG11	68.770	0.540	1.120	8.330	0.980	0.710	0.690	0.570	11.030	0.080
	MPPD-TV- ℓ_2 ,VGG11	68.900	0.390	1.080	8.470	0.690	0.540	0.470	0.350	13.340	0.090
Gaussian	MPPD-TV-ℓ_1,VGG11	69.410	0.820	1.520	8.680	1.390	1.150	1.070	0.960	12.640	0.250
	Non-MPPD,WRN16	66.260	0.290	0.700	8.700	0.450	0.330	0.290	0.210	9.680	0.000
	MPPD-TV- ℓ_2 ,WRN16	65.990	0.190	0.810	9.070	0.410	0.290	0.140	0.090	13.130	0.110
AT	MPPD-TV-ℓ_1,WRN16	67.770	0.350	1.010	8.210	0.560	0.430	0.350	0.360	12.570	0.050
	Non-MPPD,VGG11	56.370	16.460	19.400	25.260	19.950	19.300	19.140	19.010	34.170	8.560
	MPPD-TV- ℓ_2 ,VGG11	57.820	12.920	16.690	24.550	16.440	15.600	15.180	14.960	34.650	8.450
AT+Reg	MPPD-TV-ℓ_1,VGG11	58.410	16.600	19.670	25.720	20.570	19.970	19.710	19.440	35.210	11.590
	Non-MPPD,WRN16	55.580	16.530	20.490	29.580	20.110	18.980	18.080	17.950	37.810	6.470
	MPPD-TV- ℓ_2 ,WRN16	54.720	13.570	17.620	25.790	16.850	16.050	15.410	15.030	38.630	8.750
AT+Reg	MPPD-TV-ℓ_1,WRN16	56.060	16.630	19.830	27.400	20.000	19.270	18.480	18.420	39.370	9.140
	Non-MPPD,VGG11	62.190	21.550	23.440	34.370	24.680	22.650	20.850	20.060	35.820	6.260
	MPPD-TV- ℓ_2 ,VGG11	61.980	19.480	24.220	35.940	23.010	20.380	17.940	16.650	36.640	5.680
	MPPD-TV-ℓ_1,VGG11	62.710	21.740	23.700	34.390	25.360	23.650	21.520	20.620	39.710	10.800
	Non-MPPD,WRN16	53.740	15.730	19.110	28.710	18.220	16.960	15.980	15.290	31.880	4.330
	MPPD-TV- ℓ_2 ,WRN16	54.010	15.510	21.550	33.000	19.210	17.090	15.270	14.390	33.870	5.350
	MPPD-TV-ℓ_1,WRN16	54.140	17.910	20.790	29.770	20.550	19.100	17.870	17.300	35.450	8.490

4.2 EXPERIMENTAL RESULTS

Image classification results of different methods are provided in Tables 1 and 2. MPPD-TV- ℓ_1 outperforms other competitors in most cases for both VGG11 and WRN16 architectures on all of CIFAR 10, CIFAR 100, and Tiny ImageNet data sets. Taking the VGG11 architecture with the AT training scheme on CIFAR 10 as an example, MPPD-TV- ℓ_1 achieves classification accuracies of (45.260%, 51.890%, 42.840%), compared with (34.350%, 46.960%, 35.520%) of Non-MPPD and

Table 2: Classification accuracies (%) of different methods on Tiny ImageNet.

Perturbation	Model	Clean	APGD ¹⁰ _{CE}	APGD ¹⁰ _{DLR}	FGSM	PGD ⁷	PGD ¹⁰	PGD ²⁰	PGD ⁴⁰	CW	AutoAttack
Gaussian	FEEL+AT,VGG11	55.230	8.380	8.930	15.860	10.670	10.270	10.150	10.090	1.720	0.570
	SR,VGG11	56.010	8.510	8.780	16.940	11.960	11.580	11.370	11.180	2.450	2.880
	ANN-PGD-AT,VGG11	23.330	1.290	1.980	5.200	2.380	2.150	2.070	1.600	0.760	0.470
	ANN-RiFT,VGG11	24.510	1.400	2.460	6.780	2.270	2.170	1.830	1.610	1.220	0.620
	ANN-PGD-AT,WRN16	15.040	0.670	0.900	3.510	1.470	1.280	1.010	0.690	0.620	0.190
	ANN-RiFT,WRN16	14.670	1.030	1.670	3.270	1.690	1.440	1.110	0.860	0.510	0.070
Gaussian	Non-MPPD,VGG11	54.280	2.020	2.260	9.870	3.380	3.040	2.910	2.950	0.820	10.590
	MPPD-TV- ℓ_2 ,VGG11	55.470	1.980	2.380	10.110	3.420	3.290	3.430	3.290	1.990	11.460
	MPPD-TV-ℓ_1,VGG11	56.530	2.380	2.770	10.340	3.770	3.660	3.580	3.470	2.500	12.310
	Non-MPPD,WRN16	43.110	1.970	1.630	6.380	2.350	2.270	2.190	2.070	0.740	1.070
	MPPD-TV- ℓ_2 ,WRN16	44.290	2.070	1.980	6.540	2.520	2.410	2.370	2.240	2.080	1.230
	MPPD-TV-ℓ_1,WRN16	46.750	2.820	2.780	7.050	3.720	3.710	3.590	3.680	2.460	1.380
AT	Non-MPPD,VGG11	47.880	8.750	9.840	18.310	13.940	12.830	12.570	11.830	0.980	3.740
	MPPD-TV- ℓ_2 ,VGG11	48.380	8.350	9.460	19.450	13.210	13.080	13.050	12.770	1.430	3.890
	MPPD-TV-ℓ_1,VGG11	49.290	9.520	10.720	20.770	14.090	13.660	13.420	13.290	2.790	4.080
	Non-MPPD,WRN16	33.620	3.710	4.030	12.250	6.950	6.310	6.110	6.040	1.400	2.070
	MPPD-TV- ℓ_2 ,WRN16	33.990	4.230	4.960	12.730	7.360	7.290	7.170	6.840	2.450	2.310
	MPPD-TV-ℓ_1,WRN16	35.000	5.420	5.730	13.720	7.840	7.480	7.330	7.240	3.170	2.660
AT+Reg	Non-MPPD,VGG11	49.390	8.850	9.740	22.090	12.820	12.640	12.340	12.290	1.390	5.570
	MPPD-TV- ℓ_2 ,VGG11	50.720	9.740	10.080	23.080	13.970	13.610	13.480	13.250	1.270	6.290
	MPPD-TV-ℓ_1,VGG11	52.990	10.440	11.050	23.440	14.290	13.980	13.520	13.430	2.990	6.720
	Non-MPPD,WRN16	28.660	6.310	5.920	12.470	7.770	7.540	7.390	7.280	1.190	3.750
	MPPD-TV- ℓ_2 ,WRN16	29.090	6.720	6.180	12.350	8.280	7.940	7.770	7.490	2.580	3.950
	MPPD-TV-ℓ_1,WRN16	31.240	7.060	6.740	13.260	9.720	9.500	9.450	9.280	3.110	4.210

Table 3: Classification accuracies (%) of MPPD-TV- ℓ_1 with different regularization strengths.

Model	Clean	APGD ¹⁰ _{CE}	APGD ¹⁰ _{DLR}	FGSM	PGD ⁷	PGD ¹⁰	PGD ²⁰	PGD ⁴⁰	CW	AutoAttack
AT, $\alpha = 0.0$	82.990	26.370	29.940	40.360	30.990	29.860	29.460	29.540	51.910	18.870
AT, $\alpha = 0.5$	83.250	28.100	31.420	41.400	32.470	31.470	31.380	30.860	54.800	20.800
AT, $\alpha = 1.0$	83.640	29.250	31.940	42.230	33.350	32.620	32.150	31.830	55.640	22.270
AT, $\alpha = 2.0$	82.860	30.090	32.840	42.800	34.140	33.450	32.960	32.820	57.660	23.190
AT, $\alpha = 2.5$	83.750	30.640	33.560	43.580	34.690	33.910	33.400	33.280	57.690	22.760
AT, $\alpha = 3.0$	83.550	30.430	33.240	43.330	34.540	33.420	33.120	32.780	60.070	25.020
AT, $\alpha = 3.5$	84.010	30.460	33.910	43.630	34.680	33.830	33.360	33.130	56.670	13.590
AT, $\alpha = 4.0$	83.470	30.850	33.470	43.490	34.640	33.610	33.070	33.140	58.050	22.340

(35.300%, 46.510%, 34.510%) of MPPD-TV- ℓ_2 for the APGD¹⁰_{DLR}, FGSM, and PGD⁷ attacks, respectively. Besides, MPPD-TV- ℓ_1 outperforms MPPD-TV- ℓ_2 and Non-MPPD on both clean and perturbed data. This indicates that MPPD-TV- ℓ_1 really improves robustness not just against adversarial perturbations, but also against other types of detrimental noise. Note that AT+Reg is already a heavy double penalization for non-robust dynamics. The fact that MPPD-TV- ℓ_1 shows little further improvement under AT+Reg suggests that MPPD-TV- ℓ_1 is implicitly achieving the desired robust regularization effect that the explicit Reg treatment of (Ding et al., 2022) is designed for. In the more common and important training scenario AT, MPPD-TV- ℓ_1 consistently shows better performance, which proves its practical necessity and advantage as a standalone, effective robust training method. These results indicate that MPPD-TV- ℓ_1 is effective in suppressing adversarial perturbations. The runtimes of different methods with VGG11 and AT on the three data sets are provided in Table A1, which indicates that MPPD-TV- ℓ_1 runs the fastest among the competitors. The gradient magnitudes for different methods with WRN16 architecture and AT training scheme on Tiny ImageNet are provided in Figure A1, which show that MPPD-TV- ℓ_1 converges quickly to a low gradient magnitude level around the 400-th iteration, and maintains the lowest gradient magnitude among the competitors.

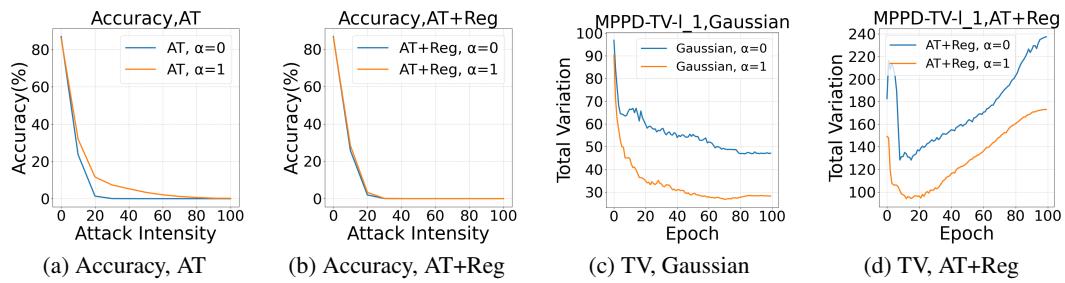
Moreover, MPPD-TV- ℓ_1 achieves more robust performance than MPPD-TV- ℓ_2 , especially for the PGD attacks. For instance, when training both VGG11 and WRN16 architectures with Gaussian noise on CIFAR 100, MPPD-TV- ℓ_1 achieves significantly higher classification accuracies than MPPD-TV- ℓ_2 on all the PGD attacks. Specifically, the accuracies of MPPD-TV- ℓ_1 with VGG11 on PGD⁷, PGD¹⁰, PGD²⁰, and PGD⁴⁰ are 1.390%, 1.150%, 1.070%, and 0.960%, respectively, which are significantly higher than those of MPPD-TV- ℓ_2 : 0.690%, 0.540%, 0.470%, and 0.350%. More-

over, as the number of iterative steps increases for the PGD attack, the gap between MPPD-TV- ℓ_1 and MPPD-TV- ℓ_2 also increases. It indicates that MPPD-TV- ℓ_1 is more advantageous when the perturbations get more adversarial.

490 491 4.3 REGULARIZATION STRENGTH α

492 To investigate the impact of regularization strength α , we use the VGG5 model to conduct experiments on CIFAR 10, shown in Table 3. The values of α are set to $0.0 \sim 4.0$, respectively. Results show that MPPD-TV- ℓ_1 achieves higher accuracies with $\alpha > 0$ than those with $\alpha = 0$ against adversarial attacks, which indicates that MPPD-TV- ℓ_1 is effective in extracting and suppressing such adversarial perturbations. As α varies, the accuracies of MPPD-TV- ℓ_1 reach their peaks around $\alpha = 2.5 \sim 3.0$.

498 Next, we evaluate the adversarial robustness of MPPD-TV- ℓ_1 with a VGG11 architecture pre-trained 499 on CIFAR 10 by subjecting it to PGD¹⁰ attacks with gradually increasing intensity, then plot the 500 resulting accuracy curves in Figures 1a and 1b. Specifically, we increase the attack intensity ζ from 501 10/255 to 100/255 by increments of 10/255. Results indicate that the MPPD-TV- ℓ_1 curves ($\alpha = 1$) 502 decrease more gradually than the Non-MPPD curves ($\alpha = 0$) as the intensity increases, especially 503 with AT training samples. We also calculate the actual TV values for MPPD-TV- ℓ_1 and Non-MPPD, 504 shown in Figures 1c and 1d. Results indicate that MPPD-TV- ℓ_1 ($\alpha = 1$) indeed produces less TV 505 than Non-MPPD ($\alpha = 0$), which accords with the design intention of MPPD-TV- ℓ_1 .



515 516 Figure 1: Accuracies and actual TV values of MPPD-TV- ℓ_1 ($\alpha = 1$) and Non-MPPD ($\alpha = 0$).

520 521 5 CONCLUSION

522 Membrane potential perturbation dynamic (MPPD) is a new method to capture and suppress adversarial 523 perturbations for spiking neural networks (SNN). However, it discards the neuronal reset part 524 without reliable theoretical foundation. To fix this problem, we formulate that MPPD is total variation 525 (TV) and its regularization scheme is essentially a TV- ℓ_2 model (MPPD-TV- ℓ_2). Based on this 526 insight, we propose the MPPD-TV- ℓ_1 model to further improve the robustness of SNNs. Because the 527 L^1 function space is larger than the L^2 function space with finite measures, MPPD-TV- ℓ_1 facilitates 528 broader classes of functions to be membrane potentials, thus expands its applicability and flexibility. 529 Moreover, MPPD-TV- ℓ_1 can exploit the coarea formula while MPPD-TV- ℓ_2 cannot, hence the 530 former has better performance than MPPD-TV- ℓ_2 in robust signal reconstruction against adversarial 531 perturbations, which better fits the architectures of SNNs. The only fundamental requirement of the 532 proposed theory is that the perturbation is a measurable function of the node index and the time-step 533 of an SNN, otherwise this perturbation cannot be captured to yield significant TV.

534 Experimental results show that the MPPD-TV- ℓ_1 framework achieves better performance than other 535 state-of-the-art methods in most test scenarios, and shows better robustness in complicated environments 536 with adversarial perturbations and signal distortions. In summary, we establish a theoretically- 537 sound TV formulation for MPPD, which provides a new insight into the essence of perturbation 538 characterization for SNNs. Our methodology is applicable to most SNN architectures where a TV 539 term is used to stabilize layer-wise internal state. Future works may lie in applying the above theory 540 to improve robustness of neuromorphic computing systems in safety-critical applications, such as 541 autonomous driving and industrial control.

540 REFERENCES
541

542 Tong Bu, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Rate gradient approximation attack threats
543 deep spiking neural networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
544 and *Pattern Recognition (CVPR)*, pp. 7896–7906, June 2023.

545 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *2017*
546 *IEEE Symposium on Security and Privacy (SP)*, pp. 39–57. IEEE, 2017.

548 T. Chan, S. Esedoglu, F. Park, and A. Yip. *Total Variation Image Restoration: Overview and Recent*
549 *Developments*, pp. 17–31. Springer US, Boston, MA, 2006.

551 T.F. Chan and S. Esedoglu. Aspects of total variation regularized l^1 function approximation. *SIAM*
552 *Journal on Applied Mathematics*, (65):1817–1837, 2005.

553 Terrence Chen, Wotao Yin, Xiang Sean Zhou, Dorin Comaniciu, and Thomas S. Huang. Total
554 variation models for variable lighting face recognition. *IEEE Transactions on Pattern Analysis*
555 and *Machine Intelligence*, 28(9):1519–1524, 2006.

557 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
558 of diverse parameter-free attacks. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the*
559 *37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine*
560 *Learning Research*, pp. 2206–2216. PMLR, 13–18 Jul 2020.

562 Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
563 neural network via gradient re-weighting. In *The Tenth International Conference on Learning*
564 *Representations*, 2022.

565 Jianhao Ding, Tong Bu, Zhaofei Yu, Tiejun Huang, and Jian Liu. SNN-RAT: Robustness-enhanced
566 spiking neural network through regularized adversarial training. *Advances in Neural Information*
567 *Processing Systems*, 35:24780–24793, 2022.

569 Jianhao Ding, Zhiyu Pan, Yujia Liu, Zhaofei Yu, and Tiejun Huang. Robust stable spiking neural
570 networks. In *Proceedings of the 41st International Conference on Machine Learning*, ICML’24.
571 JMLR.org, 2024a.

572 Jianhao Ding, Zhaofei Yu, Tiejun Huang, and Jian K. Liu. Enhancing the robustness of spiking
573 neural networks with stochastic gating mechanisms. *Proceedings of the AAAI Conference on*
574 *Artificial Intelligence*, 38(1):492–502, Mar. 2024b.

576 Wei Fang, Zhaofei Yu, Zhaokun Zhou, Ding Chen, Yanqi Chen, Zhengyu Ma, Timothée Masquelier,
577 and Yonghong Tian. Parallel spiking neurons with high efficiency and ability to learn long-
578 term dependencies. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
579 (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 53674–53687. Curran
580 Associates, Inc., 2023.

581 Herbert Federer. Curvature measures. *Transactions of the American Mathematical Society*, 93(3):
582 418–491, 1959.

584 Hejia Geng and Peng Li. HoSNNs: Adversarially-robust homeostatic spiking neural networks with
585 adaptive firing thresholds. *Transactions on Machine Learning Research*, 2025. ISSN 2835-8856.

586 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
587 examples. In Yoshua Bengio and Yann LeCun (eds.), *3rd International Conference on Learning*
588 *Representations, ICLR*, 2015.

590 Zecheng Hao, Tong Bu, Xinyu Shi, Zihan Huang, Zhaofei Yu, and Tiejun Huang. Threaten spiking
591 neural networks through combining rate and temporal information. In *The Twelfth International*
592 *Conference on Learning Representations*, 2024.

593 H.K. Khalil. *Nonlinear Systems*. Pearson Education, 2002. ISBN 9780130673893.

594 Youngeun Kim, Hyoungseob Park, Abhishek Moitra, Abhiroop Bhattacharjee, Yeshwanth Venkatesha,
 595 and Priyadarshini Panda. Rate coding or direct coding: Which one is better for accurate,
 596 robust, and energy-efficient spiking neural networks? In *ICASSP 2022 - 2022 IEEE International
 597 Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 71–75, 2022.

598

599 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 600 2009.

601

602 Souvik Kundu, Massoud Pedram, and Peter A Beerel. Hire-snn: Harnessing the inherent robustness
 603 of energy-efficient deep spiking neural networks by training with crafted input noise. In *Proceed-
 604 ings of the IEEE/CVF international conference on computer vision*, pp. 5209–5218, 2021.

605

606 Zhao-Rong Lai and Weiwen Wang. Invariant risk minimization is a total variation model. In *Pro-
 607 ceedings of the 41st International Conference on Machine Learning*, volume 235, pp. 25913–
 608 25935. PMLR, 21–27 Jul 2024.

609

610 Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

611

612 Yixin Li, Qi Xu, Jiangrong Shen, Hongming Xu, Long Chen, and Gang Pan. Towards efficient deep
 613 spiking neural networks construction with spiking activity based pruning. In *Proceedings of the
 614 41st International Conference on Machine Learning*, ICML’24. JMLR.org, 2024.

615

616 Ling Liang, Xing Hu, Lei Deng, Yujie Wu, Guoqi Li, Yufei Ding, Peng Li, and Yuan Xie. Exploring
 617 adversarial attack in spiking neural networks with spike-compatible gradient. *IEEE Transactions
 618 on Neural Networks and Learning Systems*, 34(5):2569–2583, 2023.

619

620 Yizun Lin, Zhao-Rong Lai, and Cheng Li. A globally optimal portfolio for m-sparse sharpe ratio
 621 maximization. In *Advances in Neural Information Processing Systems*, volume 37, pp. 17133–
 622 17160, 2024a.

623

624 Yizun Lin, Yangyu Zhang, Zhao-Rong Lai, and Cheng Li. Autonomous sparse mean-CVaR port-
 625 folio optimization. In *Proceedings of the 41st International Conference on Machine Learning*,
 626 volume 235 of *Proceedings of Machine Learning Research*, pp. 30440–30456. PMLR, 21–27 Jul
 627 2024b.

628

629 Yujia Liu, Tong Bu, Jianhao Ding, Zecheng Hao, Tiejun Huang, and Zhaofei Yu. Enhancing adver-
 630 sarial robustness in snns with sparse gradients. In *Proceedings of the 41st International Confer-
 631 ence on Machine Learning*, ICML’24. JMLR.org, 2024.

632

633 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
 634 *Neural Networks*, 10(9):1659–1671, 1997.

635

636 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 637 Towards deep learning models resistant to adversarial attacks. In *International Conference on
 638 Learning Representations (ICLR)*, 2018.

639

640 David Mumford and Jayant Shah. Boundary detection by minimizing functionals, I. In *Proceedings
 641 of IEEE Conference on Computer Vision and Pattern Recognition*, pp. 22–26, 1985.

642

643 Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
 644 Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip
 645 architecture. *Nature*, 572(7767):106–111, 2019.

646

647 Nicolas Perez-Nieves and Dan Goodman. Sparse spiking gradient descent. In M. Ranzato,
 648 A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neu-
 649 ral Information Processing Systems*, volume 34, pp. 11795–11808. Curran Associates, Inc.,
 650 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/61f2585b0ebcf1f532c4d1ec9a7d51aa-Paper.pdf.

651

652 Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
 653 algorithms. *Physica D: Nonlinear Phenomena*, 60(1):259–268, 1992.

648 Saima Sharmin, Priyadarshini Panda, Syed Shakib Sarwar, Chankyu Lee, Wachirawit Ponghiran,
 649 and Kaushik Roy. A comprehensive analysis on adversarial robustness of spiking neural networks.
 650 In *2019 International Joint Conference on Neural Networks (IJCNN)*, pp. 1–8. IEEE, 2019.

651 Saima Sharmin, Nitin Rathi, Priyadarshini Panda, and Kaushik Roy. Inherent adversarial robustness
 652 of deep spiking neural networks: Effects of discrete input encoding and non-linear activations. In
 653 *European Conference on Computer Vision*, pp. 399–414. Springer, 2020.

654 Jiangrong Shen, Qi Xu, Jian K Liu, Yueming Wang, Gang Pan, and Huajin Tang. Esl-snn: An
 655 evolutionary structure learning strategy for spiking neural networks. In *Proceedings of the AAAI
 656 Conference on Artificial Intelligence*, volume 37, pp. 86–93, 2023.

657 Xinyu Shi, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Towards energy efficient spiking neu-
 658 ral networks: An unstructured pruning framework. In *The Twelfth International Conference on
 659 Learning Representations*, 2024a.

660 Xinyu Shi, Zecheng Hao, and Zhaofei Yu. Spikingresformer: Bridging resnet and vision transformer
 661 in spiking neural networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 662 Pattern Recognition (CVPR)*, pp. 5610–5619, June 2024b.

663 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 664 recognition, 2015. URL <https://arxiv.org/abs/1409.1556>.

665 Tianyu Song, Guiyue Jin, Pengpeng Li, Kui Jiang, Xiang Chen, and Jiayu Jin. Learning a spiking
 666 neural network for efficient image deraining. *IJCAI '24*, 2024. ISBN 978-1-956792-04-1.

667 Yuanchao Wang, Zhao-Rong Lai, and Tianqi Zhong. Out-of-distribution generalization for total vari-
 668 ation based invariant risk minimization. In *The Thirteenth International Conference on Learning
 669 Representations*, 2025.

670 Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training.
 671 In *The Eighth International Conference on Learning Representations*, 2020.

672 Keming Wu, Man Yao, Yuhong Chou, Xuerui Qiu, Rui Yang, Bo Xu, and Guoqi Li. Rsc-snn:
 673 Exploring the trade-off between adversarial robustness and accuracy in spiking neural networks
 674 via randomized smoothing coding. In *Proceedings of the 32nd ACM International Conference on
 675 Multimedia*, MM '24, pp. 2748–2756, New York, NY, USA, 2024. Association for Computing
 676 Machinery. ISBN 9798400706868.

677 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
 678 networks: Faster, larger, better. In *Proceedings of the AAAI conference on artificial intelligence*,
 679 volume 33, pp. 1311–1318, 2019.

680 Mengting Xu, De Ma, HuaJin Tang, Qian Zheng, and Gang Pan. Feel-snn: Robust spiking neural
 681 networks with frequency encoding and evolutionary leak factor. In A. Globerson, L. Mackey,
 682 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information
 683 Processing Systems*, volume 37, pp. 91930–91950. Curran Associates, Inc., 2024.

684 Qi Xu, Yuyuan Gao, Jiangrong Shen, Yixin Li, Xuming Ran, Huajin Tang, and Gang
 685 Pan. Enhancing adaptive history reserving by spiking convolutional block attention
 686 module in recurrent neural networks. In A. Oh, T. Naumann, A. Globerson,
 687 K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Pro-
 688 cessing Systems*, volume 36, pp. 58890–58901. Curran Associates, Inc., 2023. URL
 689 [https://proceedings.neurips.cc/paper_files/paper/2023/file/
 690 b8734840bf65c8facd619f5105c6acd0-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2023/file/b8734840bf65c8facd619f5105c6acd0-Paper-Conference.pdf).

691 Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Balsara, and Ngan Le. Spiking neural networks and
 692 their applications: A review. *Brain Sciences*, 12(7):863, 2022.

693 Man Yao, Xuerui Qiu, Tianxiang Hu, Jiakui Hu, Yuhong Chou, Keyu Tian, Jianxing Liao, Luzi-
 694 we Leng, Bo Xu, and Guoqi Li. Scaling spike-driven transformer with efficient spike firing
 695 approximation training. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47(4):
 696 2973–2990, 2025.

702 Xingting Yao, Fanrong Li, Zitao Mo, and Jian Cheng. Glif: A unified gated
703 leaky integrate-and-fire neuron for spiking neural networks. In S. Koyejo, S. Mo-
704 hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural In-*
705 *formation Processing Systems*, volume 35, pp. 32160–32171. Curran Associates, Inc.,
706 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/cfa8440d500a6a6867157dfd4eaff66e-Paper-Conference.pdf.

708 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks, 2017. URL <https://arxiv.org/abs/1605.07146>.

711 Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep
712 spiking neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
713 (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 12022–12033. Cur-
714 ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/8bdb5058376143fa358981954e7626b8-Paper.pdf.

716 Kaijie Zhu, Xixu Hu, Jindong Wang, Xing Xie, and Ge Yang. Improving generalization of ad-
717 versarial training via robust critical fine-tuning. In *Proceedings of the IEEE/CVF International*
718 *Conference on Computer Vision (ICCV)*, pp. 4424–4434, October 2023.

719 Yaoyu Zhu, Jianhao Ding, Tiejun Huang, Xiaodong Xie, and Zhaofei Yu. Online stabilization of
720 spiking neural networks. In *The Twelfth International Conference on Learning Representations*,
721 2024.

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **A.1 PROOF OF THEOREM 1**
759760 *Proof.* **Part (1):** We first verify that the following local variation is well-defined:
761

762
$$\nabla_{(i,t)} v(i, t, x) := v(i, t, x) - v(i, t, x + \delta(i, t)). \quad (27)$$

763 Let $x, \delta \in \mathbb{R}^d$ and $(i, t) \in \Theta$, where the domain Θ can be $[0, N] \times [0, T]$ for the continuous setting,
764 $[0 : N] \times [0 : T]$ for the discrete setting, or $[0 : N] \times [0, T]$ or $[0, N] \times [0 : T]$ for the mixed setting.
765 Denote the σ -algebras of Θ , \mathbb{R}^d , and \mathbb{R} by \mathcal{F} , \mathcal{G} , and \mathcal{H} , respectively. \mathcal{F} can take the product σ -
766 algebra w.r.t. its two arguments i and t . For either argument, the power set or the Lebesgue σ -algebra
767 can be used for the discrete or continuous setting, respectively. \mathcal{G} and \mathcal{H} take the d -dimensional
768 and one-dimensional Lebesgue σ -algebras by default, respectively. The σ -algebra of $\Theta \times \mathbb{R}^d$ takes
769 the product σ -algebra $\mathcal{F} \times \mathcal{G}$.
770771 As a necessary condition, $v : \Theta \times \mathbb{R}^d \mapsto \mathbb{R}$ should be a measurable function of (i, t, x) for an eligible
772 SNN, otherwise this SNN cannot process the input information. Because $\delta : \Theta \mapsto \mathbb{R}^d$ is measurable,
773 given any set $\mathcal{F} \in \mathcal{F}$, we have $\delta(\mathcal{F}) \in \mathcal{G}$. Consider x as a fixed point in \mathbb{R}^d , then $(x + \delta(\mathcal{F}))$ is a
774 translation of $\delta(\mathcal{F})$. According to the property of Lebesgue σ -algebra, $(x + \delta(\mathcal{F})) \in \mathcal{G}$. Therefore,
775 $\mathcal{F} \times (x + \delta(\mathcal{F})) \in \mathcal{F} \times \mathcal{G}$ and $v(\mathcal{F} \times (x + \delta(\mathcal{F}))) \in \mathcal{H}$ from the measurability of v . Hence the
776 forward mapping of v is well-defined.
777778 Conversely, given any set $\mathcal{H} \in \mathcal{H}$, the preimage $v^{-1}(\mathcal{H}) = \mathcal{F} \times \mathcal{G} \in \mathcal{F} \times \mathcal{G}$ from the measurability
779 of v . Again from the property of Lebesgue σ -algebra, the translation $(\mathcal{G} - x) \in \mathcal{G}$. Then from the
780 measurability of δ , the preimage $\delta^{-1}(\mathcal{G} - x) \in \mathcal{F}$. Denote the intersection of \mathcal{F} and $\delta^{-1}(\mathcal{G} - x)$ by
781 $\mathcal{F}' := \mathcal{F} \cap \delta^{-1}(\mathcal{G} - x)$. Since the σ -algebra \mathcal{F} is closed under intersection, $\mathcal{F}' \in \mathcal{F}$. By fixing x
782 as a constant function of (i, t) , we consider v as a composed function: $v \circ (x + \delta) : \Theta \mapsto \mathbb{R}$. Then
783 the above deduction indicates that the preimage $(v \circ (x + \delta))^{-1}(\mathcal{H}) = \mathcal{F}' \in \mathcal{F}$. Hence $v \circ (x + \delta)$
784 is also a measurable function of (i, t) and the inverse mapping $(v \circ (x + \delta))^{-1}$ is well-defined.
785786 Summarizing the above deductions, we verify that $v(i, t, x + \delta(i, t))$ is a measurable function of (i, t)
787 for any fixed x . Since $\nabla_{(i,t)} v(i, t, x)$ in (27) is a subtraction between two measurable functions, it
788 is also a measurable function of (i, t) for any fixed x . Hence $\nabla_{(i,t)} v(i, t, x)$ is well-defined and can
789 be calculated in practice.
790791 **Part (2):** Next, we need to verify that $\int_{\mathcal{J}(i)} \nabla_{(j,t)} s(j, t, x) dw(i, j(i))$ is well-defined. The spike
792 function can be rewritten as:
793

794
$$s(j, t, x) = H(v(j, t, x) - u_{th}). \quad (28)$$

795 Since $(v(j, t, x) - u_{th})$ and the Heaviside function are both measurable functions, their composite
796 $s(j, t, x)$ is also a measurable function. Following similar deductions to Part (1), the local
797 variation $\nabla_{(j,t)} s(j, t, x)$ is also a well-defined measurable function. With a fixed i , the weight
798 function $w(i, j(i))$ is naturally a measure on $\mathcal{J}(i)$. With fixed t and x , $\nabla_{(j,t)} s(j, t, x)$ is also a
799 measurable function restricted on $\mathcal{J}(i)$. Hence $\int_{\mathcal{J}(i)} \nabla_{(j,t)} s(j, t, x) dw(i, j(i))$ is a well-defined
800 Lebesgue integral. Moreover, since $|\nabla_{(j,t)} s(j, t, x)| \leq 1$ from the definition of the Heaviside function,
801 $\int_{\mathcal{J}(i)} \nabla_{(j,t)} s(j, t, x) dw(i, j(i))$ is also a finite integral with a finite measure $w(i, j(i))$. This is
802 crucial for the dominated TV property of Theorem 4 that controls the overall stability of an SNN.
803804 Again by similar deductions to Part (1), $\nabla_{(i,t)} v(i, t-1, x)$ is also a well-defined measurable function.
805 Hence (19) holds in a well-defined measurable sense. As for (20), we can use either counting
806 measure or Lebesgue measure for the discrete or continuous setting of i and t , respectively. Then
807 both sides of (20) are well-defined Lebesgue integrals, forming a TV- ℓ_2 term. Moreover, this MPPD-
808 TV- ℓ_2 term is finite in general situations, as stated in Theorem 4.
809

□

810 **A.2 PROOF OF THEOREM 2**
811812 *Proof.* To simplify notations, we can fix and omit the input variable x in the rest of the appendices if
813 not specified. We use the notations in Appendix A.1. Since v is measurable, given any set $\mathcal{H} \in \mathcal{H}$,
814 $(v|_x)^{-1}(\mathcal{H}) \in \mathcal{F}$. On the other hand, the interval type $[\psi, \psi + \Delta\psi) \in \mathcal{H}$ from the definition

of Lebesgue σ -algebra. The main technique to calculate the $\text{TV-}\ell_1$ term in (22) is to partition this Lebesgue integral w.r.t. the values of v along with $(-\infty, \infty)$. To do this, we observe that rational numbers are dense in $(-\infty, \infty)$. Since rational numbers are countable, we can construct a countable set of $M \in \mathbb{N}^+ \cup \{+\infty\}$ intervals with positive Lebesgue measure (i.e., positive length), as follows.

$$\{B_m := [a_m, b_m]\}_{m=1}^M \quad \text{s.t.} \quad a_m < b_m \leq a_{m+1}, \quad m = 1, 2, \dots, M. \\ v(i, t) \text{ is Lipschitz continuous on } \mathcal{F}_m := \{(i, t) \in \Theta : a_m \leq v(i, t) < b_m\}. \quad (29)$$

Each interval $[a_m, b_m]$ contains at least one rational number, and all these intervals are mutually disjoint: $B_m \cap B_o = \emptyset$ for any $m \neq o$. Hence $\bigcup_{m=1}^M B_m$ covers all the Lipschitz continuous intervals of the range of v . We only need to consider preimage sets $\{\mathcal{F}_m\}_{m=1}^M$ where v is Lipschitz continuous because the corresponding Lebesgue integrals are positive only on these sets. Specifically,

$$\int_{\Theta} |\nabla_{(i,t)} v(i, t)| d\mu = \int_{\Theta \setminus (\bigcup_{m=1}^M \mathcal{F}_m)} |\nabla_{(i,t)} v(i, t)| d\mu + \int_{\bigcup_{m=1}^M \mathcal{F}_m} |\nabla_{(i,t)} v(i, t)| d\mu, \quad (30)$$

where $\Theta \setminus (\bigcup_{m=1}^M \mathcal{F}_m)$ corresponds to $\mathbb{R} \setminus (\bigcup_{m=1}^M B_m)$ where v is discontinuous w.r.t. (i, t) almost everywhere (a.e.). Hence $\int_{\Theta \setminus (\bigcup_{m=1}^M \mathcal{F}_m)} |\nabla_{(i,t)} v(i, t)| d\mu = 0$ based on the definition of Lebesgue integral, which means that it has zero volume. Then we just need to calculate $\int_{\bigcup_{m=1}^M \mathcal{F}_m} |\nabla_{(i,t)} v(i, t)| d\mu$. We break this down into the discrete and the continuous settings.

Part (1): For the **discrete setting**, direct calculation yields:

$$\int_{\mathcal{F}_m} |\nabla_{(i,t)} v(i, t)| d\mu = \varphi(\mathcal{F}_m) \cdot (b_m - a_m), \quad \forall m. \quad (31)$$

Since $\varphi(\mathcal{F}_m)$ remains unchanged in the interval $v \in [a_m, b_m]$ due to Lipschitz continuity, we have $\mathcal{F}_m = \{(i, t) \in \Theta : v(i, t) = a_m\}$. By letting $\psi_m = a_m$ and $\Delta\psi_m = b_m - a_m$, (31) can be reformulated as

$$\varphi(\mathcal{F}_m) \cdot (b_m - a_m) = \varphi(\{(i, t) \in \Theta : v(i, t) = \psi_m\}) \cdot \Delta\psi_m = \int_{\{(i, t) \in \Theta : v(i, t) = \psi_m\}} d\varphi d\psi, \quad \forall m. \quad (32)$$

From the σ -additivity of Lebesgue integrals,

$$\begin{aligned} \int_{\bigcup_{m=1}^M \mathcal{F}_m} |\nabla_{(i,t)} v(i, t)| d\mu &= \sum_{m=1}^M \int_{\mathcal{F}_m} |\nabla_{(i,t)} v(i, t)| d\mu \\ &= \sum_{m=1}^M \int_{\{(i, t) \in \Theta : v(i, t) = \psi_m\}} d\varphi d\psi = \int_{\bigcup_{m=1}^M B_m} \int_{\{(i, t) \in \Theta : v(i, t) = \psi_m\}} d\varphi d\psi. \end{aligned} \quad (33)$$

Adding the zero integral terms w.r.t. $\Theta \setminus (\bigcup_{m=1}^M \mathcal{F}_m)$ and $\mathbb{R} \setminus (\bigcup_{m=1}^M B_m)$ to both sides of (33) yields:

$$\int_{\Theta} |\nabla_{(i,t)} v(i, t)| d\mu = \int_{-\infty}^{\infty} \int_{\{(i, t) \in \Theta : v(i, t) = \psi\}} d\varphi d\psi, \quad (34)$$

which proves the coarea formula (22).

Part (2): For the **continuous setting**, we can use the existing calculation for each Lipschitz continuous interval (Federer, 1959):

$$\int_{\mathcal{F}_m} |\nabla_{(i,t)} v(i, t)| d\mu = \int_{a_m}^{b_m} \int_{\{(i, t) \in \Theta : v(i, t) = \psi\}} d\varphi d\psi, \quad \forall m. \quad (35)$$

Similar to the deductions in Part (1), we exploit the σ -additivity of Lebesgue integrals and add the zero integral terms to obtain:

$$\int_{\bigcup_{m=1}^M \mathcal{F}_m} |\nabla_{(i,t)} v(i, t)| d\mu = \sum_{m=1}^M \int_{\mathcal{F}_m} |\nabla_{(i,t)} v(i, t)| d\mu$$

$$\begin{aligned}
&= \sum_{m=1}^M \int_{a_m}^{b_m} \int_{\{(i,t) \in \Theta : v(i,t) = \psi\}} d\varphi d\psi = \int_{\cup_{m=1}^M B_m} \int_{\{(i,t) \in \Theta : v(i,t) = \psi\}} d\varphi d\psi, \\
&\int_{\Theta} |\nabla_{(i,t)} v(i,t)| d\mu = \int_{-\infty}^{\infty} \int_{\{(i,t) \in \Theta : v(i,t) = \psi\}} d\varphi d\psi.
\end{aligned} \tag{36}$$

For the mixed setting (with i discrete and t continuous, or t discrete and i continuous), the proof is similar to the above, which is omitted here. \square

A.3 PROOF OF THEOREM 3

Proof. The proof is basically the same as that of Theorem 1 in Appendix A.1 except that the integrated function takes the absolute form $|\cdot|$ instead of the squared form $|\cdot|^2$, thus we need not repeat it again. Moreover, the MPPD-TV- ℓ_1 term in (23) is finite according to Theorem 4, which can be calculated and quantified in practice.

Next, we verify that the function space $L^1(\Theta) \supseteq L^2(\Theta)$ when $\mu(\Theta) < \infty$, so that MPPD-TV- ℓ_1 allows for broader classes of functions than MPPD-TV- ℓ_2 :

$$\begin{aligned}
&\int_{\Theta} |\nabla_{(i,t)} v(i,t)| d\mu \\
&= \int_{\Theta \cap \{(i,t) : |\nabla_{(i,t)} v(i,t)| > 1\}} |\nabla_{(i,t)} v(i,t)| d\mu + \int_{\Theta \cap \{(i,t) : 0 \leq |\nabla_{(i,t)} v(i,t)| \leq 1\}} |\nabla_{(i,t)} v(i,t)| d\mu \\
&\leq \int_{\Theta \cap \{(i,t) : |\nabla_{(i,t)} v(i,t)| > 1\}} |\nabla_{(i,t)} v(i,t)|^2 d\mu + \int_{\Theta \cap \{(i,t) : 0 \leq |\nabla_{(i,t)} v(i,t)| \leq 1\}} 1 \cdot d\mu
\end{aligned} \tag{37}$$

$$\begin{aligned}
&\leq \int_{\Theta} |\nabla_{(i,t)} v(i,t)|^2 d\mu + \mu(\Theta) \\
&< \infty.
\end{aligned} \tag{38}$$

The inequality (37) holds because $|\nabla_{(i,t)} v(i,t)| \leq |\nabla_{(i,t)} v(i,t)|^2$ when $|\nabla_{(i,t)} v(i,t)| > 1$ in the first term, and $|\nabla_{(i,t)} v(i,t)| \leq 1$ in the second term. The inequality (38) holds due to the expansions of the integration intervals. Last, $\int_{\Theta} |\nabla_{(i,t)} v(i,t)|^2 d\mu < \infty$ implies $\int_{\Theta} |\nabla_{(i,t)} v(i,t)| d\mu < \infty$. Hence $L^1(\Theta) \supseteq L^2(\Theta)$. \square

However, $L^1(\Theta) \neq L^2(\Theta)$. For a simple counterexample, we let $f(t) := t^{-\frac{1}{2}}$, $\Theta := [0, 1]$ and use the Lebesgue measure. Then $\int_0^1 f(t) dt < \infty$ but $\int_0^1 f^2(t) dt = \infty$. Hence $f \in L^1(\Theta)$ but $f \notin L^2(\Theta)$. There are many other functions like this f . \square

A.4 PROOF OF THEOREM 4

Proof. Part (1): Without loss of generality, we define and use the following continuous version of (21) w.r.t. k :

$$\nabla_{(i,t)} v(i,t) = \int_0^{t-1} \lambda^k \int_{\mathcal{J}} \nabla_{(j,t)} s(j, t-k) dw(i, j) dk. \tag{39}$$

Then for the MPPD-TV- ℓ_1 Case,

$$\begin{aligned}
&\int_1^{N^l} \int_1^T |\nabla_{(i,t)} v(i,t)| dt di \\
&= \int_1^T \left(\int_1^{N^l} |\nabla_{(i,t)} v(i,t)| di \right) dt \\
&= \int_1^T \left(\int_1^{N^l} \left| \int_0^{t-1} \lambda^k \int_{\mathcal{J}} \nabla_{(j,t)} s(j, t-k) w_l(i, j) dj dk \right| di \right) dt
\end{aligned} \tag{40}$$

$$\begin{aligned}
&\leq \int_1^T \left(\int_0^{t-1} \lambda^k \int_1^{N^l} \int_{\mathcal{J}} |\nabla_{(j,t)} s(j, t-k) w_l(i, j)| \, dj \, di \, dk \right) \, dt \\
&= \int_1^T \left(\int_0^{t-1} \lambda^k \int_{\mathcal{J}} |\nabla_{(j,t)} s(j, t-k)| \left(\int_1^{N^l} |w_l(i, j)| \, di \right) \, dj \, dk \right) \, dt \\
&\leq \int_1^T \left(\int_0^{t-1} \lambda^k \cdot \sup_{j \in \mathcal{J}} \left(\int_1^{N^l} |w_l(i, j)| \, di \right) \int_{\mathcal{J}} |\nabla_{(j,t)} s(j, t-k)| \, dj \, dk \right) \, dt \\
&= \int_1^T \left(\int_0^{t-1} \lambda^k \underline{\|w_l\|_1} \int_{\mathcal{J}} |\nabla_{(j,t)} s(j, t-k)| \, dj \, dk \right) \, dt \\
&= \|w_l\|_1 \int_{\mathcal{J}} \left(\int_1^T \int_0^{t-1} \lambda^k |\nabla_{(j,t)} s(j, t-k)| \, dk \, dt \right) \, dj \\
&= \|w_l\|_1 \int_{\mathcal{J}} \left(\int_1^T \int_0^{T-\tau} \lambda^t |\nabla_{(j,t)} s(j, \tau)| \, dt \, d\tau \right) \, dj \\
&= \|w_l\|_1 \int_{\mathcal{J}} \left(\int_1^T \left(\int_0^{T-\tau} \lambda^t \, dt \right) |\nabla_{(j,t)} s(j, \tau)| \, d\tau \right) \, dj \\
&= \|w_l\|_1 \int_{\mathcal{J}} \left(\int_1^T \frac{\lambda^{T-\tau} - 1}{\ln(\lambda)} |\nabla_{(j,t)} s(j, \tau)| \, d\tau \right) \, dj \\
&\leq \frac{-\|w_l\|_1}{\ln(\lambda)} \int_{\mathcal{J}} \int_1^T |\nabla_{(j,t)} s(j, \tau)| \, d\tau \, dj \\
&= \|w_l\|_1 \log_{\lambda} \left(\frac{1}{e} \right) \int_{\mathcal{J}} \int_1^T |\nabla_{(j,t)} s(j, \tau)| \, d\tau \, dj.
\end{aligned} \tag{41}$$

The equality (40) holds because $dw(i, j) = w(i, j) \, dj$ as a univariate differential with fixed i . The underlined terms indicate the extraction of $\|w_l\|_1$. The equality (41) exploits a change of variable $\tau := t - k$, which also changes the integration interval.

Theorem 4 also holds for the discrete setting of i and t , whose proof is similar to the above and thus omitted here. The corresponding scaling factor for the discrete setting is $\frac{\|w_l\|_1}{1-\lambda} \leq \|w_l\|_1 \log_{\lambda} \left(\frac{1}{e} \right)$.

Part (2): For the MPPD-TV- ℓ_2 Case,

$$\begin{aligned}
&\int_1^{N^l} \int_1^T |\nabla_{(i,t)} v(i, t)|^2 \, dt \, di \\
&= \int_1^T \int_1^{N^l} \left| \int_0^{t-1} \lambda^k \int_{\mathcal{J}} \nabla_{(j,t)} s(j, t-k) w_l(i, j) \, dj \, dk \right|^2 \, di \, dt \\
&= \int_1^T \int_1^{N^l} \left(\int_0^{T-\tau} \lambda^t \, dt \right)^2 \left(\int_{\mathcal{J}} \nabla_{(j,t)} s(j, \tau) w_l(i, j) \, dj \right)^2 \, di \, d\tau
\end{aligned} \tag{42}$$

$$\begin{aligned}
&\leq \log_{\lambda}^2 \left(\frac{1}{e} \right) \int_1^T \int_1^{N^l} \left(\int_{\mathcal{J}} \nabla_{(j,t)} s(j, \tau) w_l(i, j) \, dj \right)^2 \, di \, d\tau \\
&\leq \log_{\lambda}^2 \left(\frac{1}{e} \right) \int_1^T \int_1^{N^l} \left(\int_{\mathcal{J}} |\nabla_{(j,t)} s(j, \tau)|^2 \, dj \right) \left(\int_{\mathcal{J}} w_l^2(i, j) \, dj \right) \, di \, d\tau \\
&= \log_{\lambda}^2 \left(\frac{1}{e} \right) \int_1^T \left(\int_{\mathcal{J}} |\nabla_{(j,t)} s(j, \tau)|^2 \, dj \right) \underline{\left(\int_1^{N^l} \int_{\mathcal{J}} w_l^2(i, j) \, dj \, di \right)} \, d\tau
\end{aligned} \tag{43}$$

$$= \|w_l\|_F^2 \log_{\lambda}^2 \left(\frac{1}{e} \right) \int_1^T \int_{\mathcal{J}} |\nabla_{(j,t)} s(j, \tau)|^2 \, dj \, d\tau.$$

972 The underlined terms indicate the extraction of $\|w_l\|_F^2$. The equality (42) exploits a change of
 973 variable $\tau := t - k$. The inequality (43) is derived from the Cauchy-Schwarz inequality for the L^2
 974 space:
 975

$$976 \left| \int_{\mathcal{J}} \nabla_{(j,t)} s(j, \tau) w_l(i, j) dj \right| \leq \left(\int_{\mathcal{J}} |\nabla_{(j,t)} s(j, \tau)|^2 dj \right)^{\frac{1}{2}} \left(\int_{\mathcal{J}} w_l^2(i, j) dj \right)^{\frac{1}{2}}. \quad (44)$$

□

981 A.5 PROOF OF PROPOSITION 5

982 *Proof.* First, we provide the definition of the Fréchet subdifferential of $f : \mathbb{R} \rightarrow \mathbb{R}$ at w , denoted by
 983 $\partial_w f(w)$:

984 **Definition 6** (The Fréchet Subdifferential).

$$985 \partial_w f(w) := \left\{ z \in \mathbb{R} : \liminf_{\substack{u \rightarrow w \\ u \neq w}} \frac{f(u) - f(w) - z \cdot (u - w)}{\|u - w\|_2} \geq 0 \right\}. \quad (45)$$

986 An element in the set $\partial_w f(w)$ is called a subgradient, also denoted by $\partial_w f(w)$ for simplicity. It is
 987 well-known that a subgradient of the modulus function is $\partial_w |w| = \frac{w}{|w|}$ for $w \neq 0$, or $\partial_w |w| = 0$ for
 988 $w = 0$.

989 As for the subgradient of MPPD-TV- ℓ_1 , it can be calculated by exploiting the Leibniz integral rule,
 990 the Fundamental Theorem of Calculus, and the chain rule for backpropagation:

$$991 \begin{aligned} & \partial_{w(i,j(i))} \left(\int_{\Theta} |\nabla_{(i,t)} v(i, t)| d\mu \right) \\ 992 &= \int_{\Theta} \partial_{w(i,j(i))} \left| \sum_{k=0}^{t-1} \lambda^k \int_{\mathcal{J}(i)} \nabla_{(j,t)} s(j, t-k) dw(i, j(i)) \right| d\mu \\ 993 &= \int_{\Theta} \text{sign} \left(\sum_{k=0}^{t-1} \lambda^k \int_{\mathcal{J}(i)} \nabla_{(j,t)} s(j, t-k) dw(i, j(i)) \right) \\ 994 & \quad \cdot \left(\sum_{k=0}^{t-1} \lambda^k \partial_{w(i,j(i))} \left(\int_{\mathcal{J}(i)} \nabla_{(j,t)} s(j, t-k) dw(i, j(i)) \right) \right) d\mu \\ 995 &= \int_{\Theta} \text{sign} \left(\sum_{k=0}^{t-1} \lambda^k \int_{\mathcal{J}(i)} \nabla_{(j,t)} s(j, t-k) dw(i, j(i)) \right) \cdot \left(\sum_{k=0}^{t-1} \lambda^k \nabla_{(j,t)} s(j, t-k) \right) d\mu. \end{aligned} \quad (46)$$

1000 It finishes the proof.
 1001

□

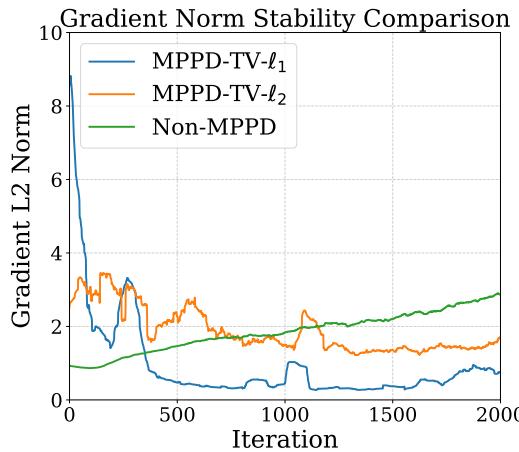
1002 A.6 ADDITIONAL EXPERIMENTAL RESULTS

1003 A device with an Intel(R) Xeon(R) Platinum 8352V CPU, 64-GB RAM, and an NVIDIA RTX 4090
 1004 GPU is used for CIFAR 10 and CIFAR 100, while a device with an Intel(R) Xeon(R) Gold 6348
 1005 CPU, 100-GB RAM, and an NVIDIA A800 GPU is used for Tiny ImageNet. The training times of
 1006 different methods with VGG11 architecture and AT training scheme on CIFAR 10, CIFAR 100, and
 1007 Tiny ImageNet data sets are provided in Table A1, which indicate that MPPD-TV- ℓ_1 runs the fastest
 1008 among the competitors. Besides, the gradient magnitudes based on the ℓ_2 norm for different methods
 1009 with WRN16 architecture and AT training scheme on Tiny ImageNet data set are provided in Figure
 1010 A1, which show that MPPD-TV- ℓ_1 converges quickly to a low gradient magnitude level around
 1011 the 400-th iteration, and maintains the lowest gradient magnitude compared with MPPD-TV- ℓ_2 and
 1012 Non-MPPD. This confirms the gradient stability of MPPD-TV- ℓ_1 .
 1013

1024

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033 Table A1: Runtimes (in hours) of different methods with VGG11 architecture and AT training
 1034 scheme on CIFAR 10, CIFAR 100, and Tiny ImageNet.
 1035

Data Set	MPPD-TV- ℓ_1	MPPD-TV- ℓ_2	AT + FEEL	SR
CIFAR 10	9.95	10.01	13.75	33.89
CIFAR 100	10.08	11.53	14.22	34.67
Tiny ImageNet	22.38	25.14	38.02	118.09



1071 Figure A1: ℓ_2 norms of gradients for different methods with WRN16 architecture and AT training
 1072 scheme on Tiny ImageNet.
 1073

1074
 1075
 1076
 1077
 1078
 1079