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Abstract

Modern data aggregation often involves a platform collecting data from a network of users.
Now users are requesting that the data they provide is protected with a guarantee of pri-
vacy. With privacy options for users, platforms must solve the problem of how to allocate
incentives to users to convince them to share their data. The main goal of this paper is to
characterize a fair amount to compensate users for their data at a given privacy level. We
propose an axiomatic definition of fairness, along the lines of the celebrated Shapley value.
The notion of fairness we propose is ultimately related to the average marginal contribution
of a user. To the best of our knowledge, these are the first fairness concepts for data that ex-
plicitly consider privacy constraints. We also formulate a heterogeneous federated learning
problem for the platform with privacy level options for users. By studying this problem, we
investigate the amount of compensation users receive under fair allocations with different
privacy levels, amounts of data and degrees of heterogeneity. Under certain conditions, we
characterize the optimal behavior of the platform when incentives are constrained to be fair,
revealing that the optimal behavior of the platform can be separated into three regimes, de-
pending on the privacy sensitivity of the users. When privacy sensitivity is low, the platform
will set incentives to ensure that it collects all the data with the lowest privacy options. When
the privacy sensitivity is above a given threshold, the platform will provide no incentives to
users. Between these two extremes, the platform will set the incentives so some fraction of
the users chooses the higher privacy option and the other chooses the lower privacy option.

1 Introduction

From media to healthcare to transportation, the vast amount of data generated by people living their
everyday lives has been used to great effect to solve difficult problems across many domains. For example,
nearly all machine learning algorithms, including those based on deep learning rely heavily on data. Many
of the largest companies to ever exist center their business around the precious resource of data. This
includes directly selling access to data to others for profit, selling targeted advertisements based on data, or
by exploiting data through data-driven engineering, to better develop and market products. Simultaneously,
as users become more privacy conscious, online platforms are increasingly providing privacy level options for
users. Platforms may provide incentives to users to influence their privacy level decisions. This manuscript
investigates how platforms can fairly compensate users for their data contribution at a given privacy level.

Consider a platform offering geo-location services with three user privacy level options:
i) Users send no data to the platform — all data processing is local and private.

ii) An intermediate option with federated learning (FL) for privacy. Data remains with the users, but
the platform can ask for gradients with respect to a particular loss function, or data statistics.

iii) A non-private option, where the platform can collect any relevant data from a user device.

If users choose option (i), the platform does not stand to gain from using that data in other tasks. If the
user chooses (ii), the platform is better off, but still has limited access to the data via FL and may not be
able to fully leverage its potential. Therefore, the platform wants to incentivize users to choose option (iii).
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This may be done by providing services, discounts or money to users that choose this option. Effectively, by
choosing an option, users are informally selling (or not selling) their data to platforms.

Due to the lack of a formal exchange, it can be difficult to understand if this sale of user data is fair. Are
platforms making the cost of choosing private options like (i) or (ii) too high? Is the value of data much
higher than the platform is paying? The development of an economic theory for the value of data is still
nascent (Ghorbani & Zou, [2019; [Jia et al., |2019; |Acemoglu et al., |2019), and the dynamics of formal data
markets are largely not understood. As the sale of data and data-based products becomes a larger part of the
global economy, understanding these transactions will become critical for regulators and other stakeholders.

A major shortcoming of the current understanding of data value is that in many cases, it fails to explicitly
consider a critical factor in an individual’s decision to share data—privacy. This work puts forth two rigorous
notions of the fair value of data in Section [3] that explicitly include privacy and make use of the axiomatic
framework of the Shapley value from game theory (Shapley} 1952)).

Compelled by the importance of data in our mod-
ern economy and a growing social concern about pri-

Platform
vacy, this paper presents frameworks for quantify- Data Utility
ing the fair value of private data. Specifically, we - —
consider a setting where users are willing to pro- — $=
vide their data to a platform in exchange for some
sort of payment and under some privacy guarantees & aia Services @
depending on their level of privacy requirements. PrivaC—y'Level Discounts [
The platform is responsible for running the private Money $

learning algorithm on the gathered data and mak-
ing the fair payments with the objective of maximiz-
ing its utility including statistical accuracy and total
amount of payments. Our goal is to understand fair
mechanisms for this procedure as depicted in Fig.

1.1 Related Work
Figure 1: Depiction of interactions between platform

With widespread use of the internet and data-driven and users. Users generate data with phones, cameras,
methods, interactions involving those that have data vehicles, and drones. This data goes to the platform
and those that seek to acquire it have become an im- Pbut requires some level of privacy. The platform uses
portant area of theoretical study (Balazinska et al), this data to generate utility, often by using the data for
2011)), but also a practical necessity (Spiekermann learning tasks. In return, the platform may provide the
et all, [2015b). Among these interactions, the eco- USers with payments in the form of access to services,
nomics of data from privacy conscious users has re- discounts on products, or monetary compensation.
ceived significant attention in|Acquisti et al.| (2016)),

Wieringa et al.| (2021). Federated Learning (Kairouz et al.,|2021|) has become a popular option for providing
privacy in data-driven problems. In this work, we consider an example of fairly allocating payments in a Fed-
erated Learning setting. Differential Privacy (DP) (Dwork, [2008)) and its variations, (Bun & Steinke| [2016)
are also widely studied as a formal framework for privacy, used in conjunction with FL or independently.
Ghosh & Roth| (2015) studies the purchase of private data, where privacy is quantified under DP.|Ghosh &
Roth| (2015) assumes that each player has binary data and its own heterogeneous privacy sensitivity param-
eter that they report, potentially strategically. In [Fallah et al| (2022), the authors consider an optimal data
acquisition problem in the context of private mean estimation in two different heterogeneous DP settings.

Hu & Gong| (2020)) consider FL, where each play has a unique privacy sensitivity function parameterized by a
scalar variable. Players report their sensitivity parameter, and the platform assigns each user a privacy level,
paying them via a proportional scheme. For linear privacy sensitivity functions, an efficient way to compute
the Nash equilibrium is derived. In|Oh et al.| (2020)), a multi-stage data market is studied where data-brokers
acquire data from users, competing to sell data to a platform that further sells services based on the data.

The economic and social implications of privacy and data markets are considered in [Spiekermann et al.
(2015a). In |Acemoglu et al. (2019) the impact of data externalities is investigated. The leakage of data
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leading to the suppression of its market value is considered. In|Jia et al.| (2019)), |Ghorbani & Zou| (2019)) and
Ghorbani et al.| (2020) a framework for determining the fair value of data is proposed. These works extend
the foundational principles of the Shapley value (Shapleyl, [1952), which was originally proposed as a concept
for utility division in coalitional games to the setting of data. Our work takes this idea further and explicitly
includes privacy in the definition of the fair value of data.

Finally, we note that we consider the concept of fairness in data valuation, not algorithmic fairness, which
relates to the systematic failure of machine learning systems to account for data imbalances.

1.2 Main Contributions

The main contribution of this work is the development of a rigorous notion of fairness in the context of user
data acquisition with privacy. While the existing literature has investigated how a platform should design
incentives for users to optimize its utility, the definitions of fairness that we propose in this work can offer
another way to evaluate these mechanisms. We summarize the main contributions as follows:

e We present an axiomatic notion of fairness that is inclusive of the platforms and the users in Theo-
rem (I} The utility to be awarded to each user and the platform is uniquely determined, providing a
useful benchmark for comparison.

e In the realistic scenario that fairness is considered between users, Theorem [2| defines a notion of
fairness based on axioms, but only places restriction only on relative amounts distributed to the
players. This creates an opportunity for the platform to optimize utility under fairness constraints.

o Section [ contains an example inspired by online platform advertisement to heterogeneous users. We
use our framework to fairly allocate payments, noticing how those payments differ among different
types of users, and how payments change as the degree of heterogeneity increases or decreases.

o Finally, Section [5] explores the platform mechanism design problem. In Theorem [3] we establish
that there are three distinct regimes in which the platform’s optimal behavior differs depending on
the common privacy sensitivity of the users. When privacy sensitivity is low, the platform will set
incentives to ensure that it collects all the data with the lowest privacy options. When the privacy
sensitivity is above a given threshold, the platform will provide no incentives to users. Between these
two extremes, the platform will set the incentives so some fraction of the users choose the higher
privacy option and some choose the lower privacy option.

2 PROBLEM SETTING

2.1 Privacy Levels and Utility Functions

Consider the setting depicted by Fig. [2l User ¢ € [N], where [N] = {1,..., N}, selects a privacy level option
€; € £. They then transmit their data in accordance with their privacy level. In the example Fig. 2] ¢; =0
means the user will keep their data fully private, ¢; = 1 is an intermediate privacy option where user data is
obfuscated and only transmitted in part and finally if €; = 2, the users send all their data to the platform.
This mirrors notation in DP where ¢; = 0 means the data cannot be used by the platform (full privacy), and
€; = 00 means no privacy restrictions (DP will be defined shortly). If ¢; > €;, we say ¢; is a lower privacy
level than €;. Though we mostly focus on a finite space of privacy levels, in general we restrict the space of
privacy levels to be any non-negative (possibly infinite) value.

The platform applies an e-private algorithm A : X +— Y to process the data, providing privacy level ¢; to
data x;. For example, if ¢, = 1 indicates federated learning, then an € private algorithm might first take all
those users who chose ¢; = 2, and train a model from scratch using their data. Then for those users with
€; = 1, the platform would update the model via FL.

The output of the algorithm y = Ac(z) is used by the platform to derive utility U, which
depends on the privacy level e. For example, if the platform is estimating the mean of
a population, the utility could depend on the mean square error of the private estimator.

3
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Figure 3: Players (users) send their data x; and a privacy level €; to the central platform in exchange
for payments t;(€;;€_;). The central platform extracts utility from the data at a given privacy level and
optimizes incentives to maximize the difference between the utility and the sum of payments U (e) — 17t (e).

This is a valid model if the platform is concerned
about the statistical performance of the algorithm Platform
at the given privacy level, such as risk minimization
in a learning problem.

Secure Aggregation

Note that this formulation differs from typical for-
mulations in the literature of optimal data acquisi-
tion, where some privacy sensitivity is instead re-
ported by users, and the platform then chooses the
privacy level €; based on this sensitivity. This typical
formulation allows for the relatively straightforward

application of notions such as incentive compatibil- Y Y Y Y Y Y °
ity and individual rationality from mechanism de- " |MA||M| | M || M| A | A | A
sign theory. In this work, however, we wish to em- ——

phasize the fact that the utility U depends on the € =0 € =1 €6 =2

privacy levels € directly, so considering actions in the
space of privacy levels £ is natural. Furthermore, in
reality, users do choose a privacy level, rather than
report the somewhat nebulously defined privacy sen-
sitivity. Despite this difference, the notions of fair-
ness described in the following section can be ap-
plied more broadly. One way to define privacy level
consistent with this notion is pure e-DP, defined below.

Definition 1. A random function A : XN — ) is ¢-DP, ¢; > 0 in coordinate i if for any x’ € XV that
differs from x € XN only in coordinate 4, for all measurable sets S € ) we have:

Pr(A(x) € S) < e“Pr(A(x) € 9). (1)
Definition 2. A random function A : XV — ) is €-DP if A is ¢;-DP in coordinate i for all i € [N].

Figure 2: Users have a choice between three levels of
privacy. If ¢; = 0, users send no data to the platform.
If ¢, = 1, a user’s model is securely combined with
other users who also choose ¢; = 1, and the platform
receives only the combined model. If ¢; = 2, users send
their model directly to the platform.

2.2 The Data Acquisition Problem

The platform generates a transferable and divisible utility U (€) from the user data. In exchange, the platform
distributes a portion of the utility ¢;(e;; €—;) to user i, where e_; denotes the vector of privacy levels € with
the ith coordinate deleted. These incentives motivates users to lower their privacy level, but each user will
also have some sensitivity to their data being shared, modelled by a sensitivity function ¢; : £ — [0, 00),
¢;(0) = 0. The behavior of users can be modelled with the help of a utility function:

ul(e) = ti(ei, 6_2‘) — Ci(Ei). (2)

The payment to user ¢ will tend to increase with a lower privacy level, as the platform can better exploit the
data, but their sensitivity ¢; will increase with ¢;, creating a trade-off. By specifying a set of ¢;(e;; €_;), the
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platform effectively creates a game among the users. This situation is depicted in Fig.[3] Each user’s action
is the level of privacy that they request for the data they share. Users (players) select their privacy level €; by
considering their utility function u; and the potential actions of the other players. From the perspective of
the platform, the goal is to design the payments t;(e;; €—;) such that it maximizes the difference between the
utility it receives and the payments made to the players. One way to formulate this problem is to consider
maximizing this difference at equilibrium points:

maximize U(P) — 17¢(P)
t(),P (3)
subject to P € NE(t).

In equation 3] NE(t) denotes the set of Nash Equilibrium strategies induced by the payment function t,
which is the vector with payment function ¢; at index i. Recall that the Nash Equilibrium is a stable state
of a system such that no user can gain by a unilateral change of strategy if the strategies of the other users
remain unchanged. We allow these equilibrium points to be mixed strategies over the privacy space, such
that P represents a distribution over the privacy space €. In addition, we have used the shorthand f(P) =
Ecp [f(€)]. Note that in order to solve equation the platform requires knowledge of the privacy sensitivity
¢; of each user. This can be a reasonable assumption when the platform has interacted with the users many
times in the past and has learned ¢;. One could also formulate the problem where the privacy sensitivity c;
must be learned in an online fashion, but we avoid this complication here by our aforementioned assumption.

Restrictions must be placed on t, otherwise it can be made arbitrarily negative. Individual rationality is a
common condition in mechanism design that says that a user can be made no worse off by participation.
Finally, we note that the compensation ¢;(¢;; €_;) may not be a direct monetary transfer. Individuals are
often compensated for data through discounts or access to services. A shortcoming of our model is that we
assume a divisible and transferable utility, which may fail to capture these nuances of compensation.

3 Axiomatic Fairness with Privacy

Somewhat in contrast to the resource allocation view just described, we can view users and platforms as a
coalition that comes together and pool their resources to generate utility. A natural question to ask is: How
should the utility be divided fairly among members of this coalition? The answer to this question turns out
to be connected to the celebrated Shapley value (Shapley, [1952). Shapley value is one of the most important
normative utility division schemes for coalitional games. Following an axiomatic approach to fairness, the
Shapley value describes how to fairly divide utility among a coalition. In this section we develop an axiomatic
Shapley value-based approach to fairness for users providing private data to platforms.

3.1 Platform as a Coalition Member

We define a coalition of users and a platform as a collection of s users, with 0 < s < N and up to 1 platform.
Let a € {0, 1} represent the action of the platform. Let a = 1 when the platform chooses to join the coalition,
and a = 0 otherwise. Let U(e€) be as defined in Section [2] We augment the utility to take into account that
the utility is zero if the platform does not participate, and define €g as follows:

Ula,e) = {U(e) "o sl { e (@

0 else

Let ¢,(a,€) and ¢;(a,€), i € [N] represent the “fair” amount of utility awarded to the platform and each
user ¢ respectively, given a and €, otherwise described as the “value” of a user. Note that these values depend
implicitly on both the private algorithm A, and the utility function U, but for brevity, we avoid writing this
dependence explicitly. The result of Hart & Mas-Colell (1989)) show that these values are unique and well
defined if they satisfy the following three axioms:

A.i) (Fairness) For any i,j € [N]: U(a,esuiy) = Ula, esug;y) VS C [N\{i,j} = ¢i(a,€) = ¢;(a,€).
In addition, for any user i € [N], U(1,esugiy) —U(l,es) =0 VS C [N]\{i} = ¢i(a,€e) =0.
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A.ii) (Efficiency) The sum of values is the total utility U(a, €) = ¢p(a,€) + >, di(a,€).

A.iii) (Additivity) Let ¢,(a,€) and ¢;(a, €) be the value of the platform and users respectively for the
utility function U, under the e-private A.. Let V be a separate utility function, also based on the
output of A, and let ¢7,(a, €) and ¢;(a, €) be the utility of the platform and individuals with respect
to V. Then under the utility U 4+ V, the value of user i is ¢;(a, €) + ¢}(a, €) and the value of the
platform is ¢,(a, €) + ¢/, (a, €).

Theorem 1. Let ¢,(a, €) and ¢;(a, €) satisfying azioms (A.i-iii) represent the portion of total utility awarded
to the platform and each user i from utility U(a,€). Then they are unique and take the form:

1 1
opla, €) = Ula,€g), 5
9= 5757 2 qryvies )

oi(a,€) = R Z ]{[ (U(a, esugiy) — Ula, es)) ) (6)

scivivgy (si+)

Theorem [1}is proved in Appendix We now consider a simple setting where we can apply this result.

Example 1. Let X; represent the independent and identically distributed data of user i respectively, with
Pr(X; =1/2) = p and Pr(X; = —1/2) = 1 — p, with p ~ Unif(0,1). The goal of the platform is to construct
an €-DP estimator for p := E[X;] = p — 1/2 that minimizes the Bayes risk. A general procedure for finding
the Bayes optimal e-DP estimator does not exist. We restrict our attention to e-DP linear-Laplace estimators
of the form:

AX)=w(e)"X + Z, (7)
where Z ~ Laplace(1/n(€)). In [Fallah et al| (2022)) the authors argue that unbiased linear estimators
are nearly optimal in a minimax sense for bounded random variables. We assume a squared error loss
L(a, ) = (a — p)? and let A(€) be the set of e-DP estimators satisfying equation [7] Then, we define:

A = argminE[L(A(X), ) (8)
AcA(e)
r(€) = E[L(A(X),p)]. (9)

In words, A is an e-DP estimator of the form equation [7} where w(e) and n(e) are chosen to minimize the
Bayes risk of the estimator, and r(e) is the risk achieved by A.. Since the platform’s goal is to accurately
estimate the mean of the data, it is natural for the utility U(e) to depend on € through the risk function
r(€). Note that if U is monotone decreasing in r(€), then U is monotone increasing in €.

Let us now consider the case of N = 2 users, choosing from an action space of £ = {0, €'}, for some ¢’ > 0.
Furthermore, take U to be an affine function of r(€): U(e) = c;r(€)+co. For concreteness, take U(0) = 0 and
sup.cg U(€) = 1. Note that this ensures that U is monotone increasing in €, and is uniquely defined (exact
calculations are available in Appendix . Consider the example of a binary privacy space & = {0, co}.
By equation the utility can be written in matrix form as:

U= [2‘;3 2{3} . (10)

Note from equation |5[ and equation @ it is clear that ¢,(0,€) = ¢;(0,€) = 0. Let ®, and <I>§1) represent the
functions ¢, (1, €) and ¢;(1, €) in matrix form akin to U. Then using equation |[5{and equation |§|, we find that
the fair allocations of the utility are given by:

= [193 é?g] R {8 Zg] ®) = [193 239} ' (11)

3.2 Fairness Among Users

Though we can view the interactions between the platform and the users as a coalition, due to the asymmetry
that exists between the platform and the users, it also makes sense to discuss fairness among the users alone.
In this case, we can consider an analogous set of axioms that involve only the users.
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B.i) (Fairness) For any i,j € [N]: U(egugiy) = Ulesugyy) VS C [N\{i,j} = ¢i(e) = ¢;(e).
In addition, for any user i € [N], U(esu;y) —U(es) =0 VS C [N]\{i} = ¢i(e) = 0.

B.ii) (Pseudo-Efficiency) The sum of values is the total utility a(e)U(e) = >, ¢i(€). Where if U(e) =
U(€) then a(e) = a(€) and 0 < a(e) < 1.

B.iii) (Additivity) Let ¢;(€) be the value of users for the utility function U, under the e-private algorithm
Ac. Let V be a separate utility function, also based on the output of the algorithm A, and let ¢;(e)
be the utility of the users with respect to V. Then under the utility U 4+ V', the value of user 7 is
i(€) + di(e).

The most notable difference between these axioms and (A.i-iii) is that the efficiency condition is replaced
with a pseudo-efficiency condition. Under this condition, the platform may determine the sum of payments
awarded to the players, but this sum should in general depend only on the utility itself, and not on how that
utility is achieved.

Theorem 2. Let ¢;(€) satisfying axioms (B.i-iii) represent the portion of total utility awarded to each user
i from utility U(e). Then for a(€) satisfies axiom (B.ii) ¢; takes the form:

si(e) = 219

1
Z TN—1IN (U(ESu{i}) - U(ﬁs)) . (12)
SCIN\{:} ( |S] )
The proof of Theorem [2] can be found in Appendix
Example 2. Consider the utility function defined in equation for the N = 2 user mean estimation
problem with £ = {0,00}. By Theorem [2| the fair allocation satisfying (B.i-iii) must be of the form:

0 2/3
0 1/2

0 0

2 _
1 AQ{ 2/3 1/2

}, <I>(22)—A®[ },A—AT, 0<[Al; <1 (13)

4 Fair Incentives In Federated Learning

FL is a distributed learning process used when data is either too large or too sensitive to be directly
transferred in full to the platform. Instead of combining all the data together and learning at the platform,
each user performs some part of the learning locally and the results are aggregated at the platform, providing
some level of privacy. Recently, Donahue & Kleinberg| (2021) consider a setting where heterogeneous users
voluntarily opt-in to federation. A natural question to ask is: how much less valuable to the platform is a
user that chooses to federate with others as compared to one that provides full access to their data? This
section provides some interesting insights towards answering this question.

Let each user i € [N] have a unique mean and variance (6;,02) ~ O, where © is some global joint distribution.
To motivate this example, let 8; represent some information about the user critical for advertising. We wish
to learn 6; as accurately as possible to maximize our profits, by serving the best advertisements possible to
each user. User ¢ draws n; samples i.i.d. from its local distribution D;(6;, 0’? ), that is, some distribution with

mean 6; and variance o?. Let s> = Var(f;) and ¢*> = E[s?]. When s* > sz the data is very heterogeneous,

and it is generally not helpful to include much information from the other users when estimating 6;, however,
2

if s2 <« %7 the situation is reversed, and information from the other users will be very useful.

The goal of the platform is to construct estimators éf that minimize the expected mean squared-error of
each estimate, while respecting the privacy vector e:

EMSE; () := E {(éf(e) - oiﬂ . (14)

Fig. [2| summarizes our FL formulation. Users can choose from a 3-level privacy space £ = {0,1,2}. In this
case the privacy space is not related to DP, but instead encodes how users choose to share their data with
the platform. Let N; be the number of users that choose privacy level j. When €; = 2, user ¢ provides its
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Figure 4: Each user i € [N] has mean and variance (6;,0?) ~ ©, where © is a global joint distribution. Let
t? = Var(6;) and s? = E[¢?]. In this case s? is large relative to t2, and the data is very heterogeneous.

local estimator 6; directly to the platform. When ¢; = 1, user i’s local estimator is securely aggregated with
all other users that choose this same privacy:

~ 1 A
f— .
o = Y b (15)

iie;=1

and the platform receives access to 6f , rather than the local estimators. As before, ¢; = 0 means user i
chooses not to provide any information to the platform. Note that the error in estimating 6; depends not
just on the privacy level of the ith user ¢;, but on the entire privacy vector. Let the users be ordered such
that ¢; is a non-increasing sequence. Then for each i the platform constructs estimators of the form:

N2
éf = U}Z—Oéf + Zwijéj, (16)
j=1

where, > jwij =1 for all <. In Proposition [5, we calculate the optimal choice of w;; which depends on e.
From these estimators, the platform generates utility U(e). The optimal w;o and w;; in equation are
well defined in a Bayesian sense if €¢; > 0 for some 4, but this does not make sense when € = 0. We can get
around this by defining EMSE;(0) := t? 4 2s2. For the purposes of our discussion, we assume the following

logarithmic utility function:
= (2 +2s?)
= il — . 1
U(e) ; a; log (EMSEi(e) (17)

a; represents the relative importance of each user. Since some users may be willing to spend more than others,
the platform may care more about computing their 6; more accurately, adding another layer of heterogeneity.

4.1 Fair Payments Under Optional Federation: Numerical Study

In this section, we focus on our definition of fairness in Theorem Let there be N = 10 users. N; =5
of these users opt for federating (¢; = 1), N2 = 4 directly provide their data to the platform (¢; = 2), and
finally, Ny = 1 users chooses to not participate (¢; = 0). Without loss of generality, we assume «a(€) = 1,
and the results of this section can be scaled accordingly.

4.1.1 Different Amounts of Data

Fig [ba] plots the difference from an equal distribution of utility, i.e., how much each user’s utility differs from
U(€)/N. We assume a; = 1 for all users. In the bars furthest to the left, where s* = 100 and t? = 1, we are in
a very heterogeneous environment. Intuitively, this means that a user j will have data that may not be helpful
for estimating 6; for j # 4, thus those users that choose €; = 2 are paid the most, since at the very least, the
information they provide can be used to target their own 6;. Likewise, users that federate obfuscate where
their data is coming from, making their data less valuable (since their own 6; cannot be targeted), and thus we
see that users with ¢; = 1 are paid less than that they would receive in an even allocation. On the right side,
we have a regime where s? = 0.1 and ¢ = 100, meaning users are similar and user data more exchangeable.
Those users with larger n; are paid above the average utility per user, while those with less are paid below.
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We also see that users with ¢; = 2 still receive more than those with ¢; = 1 when n; is fixed, and this difference
is significant when n; = 100. In the center we have an intermediate regime of heterogeneity, where s> = 1 and
t2 = 10. Differences in payments appear less pronounced, somewhat interpolating between the two extremes.

4.1.2 More Valuable Users

Fig is similar to Fig except now in each set of graphs, exactly one user has a; = 100, meaning that
estimating 6; for user 7 is 100 times more important than the others. Looking at the two leftmost sets of bars in
Figwe see that when user i with ¢; = 2 and n; = 100 is the most important one, when s2 is large compared
to t2, it is user 7 who receives most of the benefit in terms of its payment but when s? is smaller, other users
also benefit. This can be intuitively explained as follows: if users are very heterogeneous, other users j # i do
not have data that is helpful for determining 6;, thus they do not benefit when user 7 has a larger a;. Likewise,
when s2 is small compared to 2 not just user ¢ benefits, but also all those users that contribute more data, as
those users with ¢; = 1 and n; = 100 are also paid over the average utility per user. Another key point is the
similarity between the second and fourth set of graphs. This tells an interesting story: when users are not
very heterogeneous, regardless of which user is has a; = 100, it is those users with large n; that will benefit.

T
e =2, n; =100

i Bl =2 ni—10 ] ol % Bl =2, n; =100 |
e =1 n; =100 I:I-E. 2? :( = 130
B ' L 6=1n= i
. e =1 n, =10

Bl =1n=10
Y a; =100
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Figure 5: (a) Plot of difference from the average utility per user U(e)/N for each of the four different types
of users, for three different regimes of s? and t?, with heterogeneity decreasing from left to right. In left
(most heterogeneous) plot users who choose €¢; = 2 are more valuable compared to those that choose €; = 1.
In the center there is an intermediate regime, where all users are paid closer to the average, with users with
more data being favoured slightly. In the rightmost graph, with little heterogeneity users with more data
are paid more, and privacy level has a lesser impact on the payments.

(b) In each case there is one user ¢ with a; = 100 (indicated with a star), while all other users j # ¢ have
a; =1 ( a; represents the relative importance of the user in the utility function). In the two leftmost set of
bars, we see that the user with ¢; = 2 and n; = 100 receives by far the most payment, when heterogeneity
is high, but this becomes less dramatic as heterogeneity decreases. This shows that when users are very
heterogeneous, if a; is large for only user 7, most of the benefit in terms of additional payments should go to
user 4. Likewise, comparing the second from the left and the rightmost plots we see little difference, showing
that the opposite is true in the homogeneous case: any user can benefit from any other user having a large a;.

5 Mechanism Design: The Platform’s Actions

We have constructed a concrete definition of fairness and applied it to a problem with significant heterogeneity
among users. In particular, we have constructed a recipe for constraining the platform to a class of fair
payments in Theorem [2] The platform still has the ability to choose the fraction of utility that it keeps
«, but the incentives it provides to users must be distributed in a fair way. This type of constraint can be
viewed as a form of regulation on a platform. A natural question to ask is: What will the platform do when
subject to this fairness constraint? This section addresses this problem by investigating the incentives of a
platform designing a mechanism under the constraint of fairness.
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Consider N > 2 users each with identical statistical marginal contribution, i.e., for any 4,j we have S C
[NI\{i,7}, U(esugiy) = U(esugjy). The platform is restricted to making fair payments satisfying axioms
(B.i-iii) with the additional constraint that a(e) = « € [0, 1]. Users choose one of two available privacy levels
€ € EN, with €& = {€},¢,} and €, > €}. We can write the utility of the user i as

u(es, €_;) = ag(e;;e_;) —cl {e; = €5} . (18)

The user gains utility from the incentive provided by the platform, but incurs a cost of ¢ if they choose the less
private option. For now, we assume this c is the same for all users; later we discuss the case where c is different.
Note that we can drop the index of ¢; due to the assumption of equal marginal contribution. To enrich the
problem, we allow users to employ a mixed strategy denoted by p = [p, (1 — p)]?, where users choose the €}
with probability p and €}, with probability 1—p. This is justified because we expect users to repeatedly interact
with platforms and sample from their mixed strategy and ultimately converge to their expected utility.

The platform is also trying to maximize the fraction of the total expected utility U(p) := Ee~p [U(€)] that
it keeps. The platform’s goal is to choose a payment value « such that it optimizes:
maximize (1 —a)U(p*(a))
N (19)
subject to p*(«) € NE(a).
The constraint in equation[I9] that the behavior of the agents must be a Nash equilibrium, implicitly encodes
the user behavior governed by equation and will change with the privacy sensitivity ¢. Theorem

characterizes the solution of equation [I9] for different values of ¢. In addition, to make equation [I9amenable
to insightful analysis, we must make some mild assumptions.

Assumption 1. The utility U is monotone: eg) > eg) = U(e(SQ)) > U(e(sl)) VS C [N].

Assumption 2. The utility U has diminishing returns. Let Nprivate(€s) Tepresent the number of elements
of i € S such that €; = €|, i.e., the number of users choosing the higher privacy option. Furthermore, define

A;U(es) == U(e(SH)) —Ul(es), where ngr) is equal to €g except el(-”) = €,. In other words, A;U(eg) is the
marginal increase in utility when the ith user switches to the lower privacy option. Then U satisfies:

npm'vate(eg‘l)) > nprivate(Gg)) — AzU(G(l)) > AzU(€(2)) (20)

It is helpful to define the expected relative payoff, where the expectation is taken with respect to the actions of
the other players. When all other users choose a mixed strategy p, the expected relative payoff is defined as:

v(p) = d(eyip) — dlelsp) = Ee;j;lp [B(eh5€—i) — dlerse—i)] . (21)

This quantity represents the expected gain in incentive (normalized to make it invariant to «) if a user
switches to a less private level from the more private level given everyone else plays the mixed strategy p.

Theorem 3. Consider a binary privacy level game with N users and a platform. If U satisfies Assumptions
[ and[3 and the platform payments are fair as defined in Theorem[J with constant « then the optimal a*
can be divided into three regimes depending on c. The boundaries of these regions are Ymqr := max, y(p)
and some cip < Vmaz Such that:

1. When ¢ > Ymaz, o = 0 is the mazimizer of[I9

2. When ¢, < ¢ < Vmaz then o is the smallest o € [0,1] such that p*(a) € v~ (c/a).
3. When ¢ < cu: o is the smallest o € [0, 1] such that p(a) = 0, where

1 —c¢/vmin _ Ulp*(a))

T U) >0 Va<c/’ymm}. (22)

Cip, = max {c

Theorem [3] can be interpreted as follows. If privacy sensitivity is above 7pqe for the given task, it is not
worth the effort of the platform to participate. On the other hand, if privacy sensitivity is less than ¢y, the
platform should set « to be as small as possible, while still ensuring that all users choose the low privacy
setting. Finally, if privacy sensitivities lie somewhere in between, o™ should be chosen based on the v function,
and generally will lead to a mixed strategy with some proportion of users choosing each of the two options.

10
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A Note on Monotonicity of Utility When beginning this work, the dearth of algorithms that supported
heterogeneous privacy constraints surprised us, given the increasing number of privacy options available
to users. All of the algorithms that did exist were provably sub-optimal Hu & Gong| (2020), or placed
constraints on privacy parameters to prove approximate optimality [Fallah et al. (2022). In both of these
works, the pathology of the algorithm leads to error that is not monotonically decreasing in €. For DP-based
notions of privacy, which both of the aforementioned works are, one can prove that an optimal error must
be monotonic. This observation inspired a recent work that studies a saturation phenomenon |Chaudhuri &
Courtade, (2023). The idea is that an optimal algorithm will sometimes give users that choose a large €; more
privacy than they asked for, to ensure that it still efficiently uses information from users j with €¢; < ¢;.

5.1 Mechanism Design in the Mean Estimation Example

In this section, we look at the problem we discussed 1 ‘
in Example [T] and [2] with the fair payments that we 00 } e Ut Doy
calculated in Section 2] and examine how it behaves 08 \ —— Payments to the Users
under mechanism design. Figure [6] depicts the so- o } |
lution to equation As predicted by Theorem 06 ‘ !
we find that the solution is clearly divided into ' | |
three regions. Equation tells us that ¢y, = + and e ! !
Ymas = %, matching our observations in Fig. 6| In 04 } }
the first region when ¢ < % the platform is able to 03 | |
capture most of the utility for itself, paying less of 0.2 } }
it out to the users. We also see that throughout this 0.1 } }
regime, the total utility is maximized, as predicted 0 L
1 2 o . 0 0.2 0.4 0.6 0.8 1
by the theory. For c € [3, 5], the total utility begins e

to decrease, as users no longer have enough incen-
tive to always choose the less private option. Finally,
for ¢ > %, the platform no longer attempts to incen-
tivize the users, and the total utility falls to zero.

Figure 6: Utility awarded to users and platform when
platform solves equation [I9] The solution is separated
into three regions as Predicted by Theorem @

5.2 Considering Different Privacy Sensitivities

We now discuss the case where users no longer have the same privacy sensitivity parameter c. This problem
differs from equation[I9only in that the equilibrium is governed by different user utility functions, making the
problem asymmetric. For example, if user 1 and user 2 have privacy sensitivity ¢; and ¢y respectively, we have

u1(p1,p2) = p1T‘1’§2)p2 — [0 1) py, (23)
us(p1,p2) = pT @5 pa — [0 2] po. (24)

Consider a setting where there are only two users (these can be thought of as representing two groups of
users) with utility function u; and ws listed above. Thus, when the platform is trying to optimize it’s own
utility, it must take into consideration that these two groups will play different strategies.

maximize pj Ups — (1 — a)p] Ups
o (25)
subject to  (p1,p2) € NE(a).

Fig. [7] plots the results of simulating the solution of 25} It shows that there is one region when ¢; and c;
are both small and close together (< 1/3), the platform chooses a to collect data from both users. If the
difference is large, even in this region, the users may be asymmetrically engaged. When ¢; > ¢o > 1/3, the
platform chooses « such that only user 2 chooses to participate, even if the difference is very small, and vice
versa if ¢ > ¢1 > 1/3, as before, when ¢1, co > 2/3 the sensitivity to too high and the platform can no longer
offer enough payment to the users.

11
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Figure 7: (Left) The payments to User 2 from the platform for a range of ¢1,ce. (Right) The platform’s
share of utility for the optimal o* payments for a range of values ci, cs.

Broader Impact Statement

One of the unique defining characteristics of data is that its generation process is inherently distributed,
so no single entity exists to advocate for data sellers. In the past, platforms have been able to extract
data from users, often with little to no compensation in return. As public consciousness around privacy
changes, a nuanced relationship around privacy between platforms and users must develop. Transparency and
understanding the value of user data is an important step in empowering regulators, consumers and platforms.

o Users making strategic decisions about when they share their data stand to gain from incentives.

e For regulators, understanding the amount of value that flows through the interactions between
platforms can enable better policies around data. Frameworks similar to those discussed in Theorem
[[] and [2 can be a starting point in understanding exactly how much this value is.

o For platforms, understanding which data tasks are economically viable, and how they allocate in-
centive is important. Our discussion in Section 5} and our three regimes help shed light on this.

6 Conclusion

This paper introduces two formal definitions of fair payments in the context of acquisition of private data.
The first treats the users and the platform together and uses axioms like those of the Shapley value to
determine a unique fair distribution of utility. In the second, we define a notion of fairness between the users
only, leading to a definition of fairness that admits a range of values, of which the platform is free to choose
the most favorable. By formulating a federated mean estimation problem, we show that heterogeneous users
can have significantly different contributions to the overall utility, and that a fair incentive, according to our
second notion, must take into account the amount of data, privacy level as well as the degree of heterogeneity.

While previous literature has investigated how platforms should design incentives for users in order to
optimize its utility, the definitions of fairness we propose offers another important way to evaluate the
fairness of these mechanisms. This is a critical step towards future research in ensuring that data acquisition
mechanisms are both fair for users and efficient for platforms.

Though we provide a characterization of optimal fair mechanisms when privacy sensitivity is the same across
users, designing mechanisms that consider fairness with heterogeneous privacy sensitivities, with an arbitrary
number of users IV is an important question that remains, since in practice the platform interacts with large
and diverse groups of users. Furthermore, there is subjectivity in the choice of axioms, and other choices may
lead to meaningful notions of fairness worthy of study. We have also assumed a non-divisible and transferable
utility, but in many cases, users are paid for their data in the form of access to services. Investigating the
impact of this will also be important for the practical application of a comprehensive theory for fairness.

12
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A Missing Proofs

A.1 Proof of Equation [36]

In this section, we present the calculations required to arrive at the utility values in equation [36] First let’s
treat the trivial case of € = 0, e = 0. The optimal e-DP estimator is simply the optimal Bayes estimator
with no data, i.e., the prior mean. Let us define this estimator as fig0) = 0. Its risk function is

R(p, fo,0)) = E [L(fig0,0), 1) | 1] = 1. (26)
The Bayes risk of fi(g,) is the expectation of this quantity taken using our prior:
1
r([0,0) = E [1*] = 7. (27)

Next, consider the case where user ¢ chooses privacy level €, = ¢ > 0, and the other user chooses e = 0. In
this case the estimator depends on X1, fi(e 0) = w1 X1 + Z. Then the risk function is:

~ 2 1 w1 2 1 w1 2 2
R(p, fyer,0) = E [(lel +Z—p)" | u} = <M+ 2) (u - 7) +{-utg (/Hr 7) o (28)
Now taking the expectation with respect to our prior over p, we have:
R 1 2
E [R(p, fie 0))] = 5 (3w} — 2wy +1) + el (29)

here 7 is the inverse scale parameter for Z. Note that equation [29]is minimized when 7 is maximized. The
e-DP condition enforces the constraint n < uﬁ}—l This constraint will be met with equality for the optimal

wi. The optimal w] = 3+12,42 . Thus, we have:
[i = 71 X1+Z2, Z~ Lapl (6/ ) (30)
&0 = , ~ Laplace ,
o = g P 3¢ +24

and the resulting Bayes risk is:

r([e',o1>r<[o,e’1>112<1 : ) (31)

3+ 24

For the case with €; = e = € we can repeat the same process by defining fi( ¢y = w1 X1 + w2 Xo + Z. By
symmetry, we must have w; = ws, so we drop the index. Then the risk function and its expectation are:

. 1 1\ , 1\? ) 1\? , 22
R, feren) =2\ ptg ) (—ptg )it (ntg ) (w=—p) +{-p+35) (utw) + (32)
E (R fige)] = 15 (80® — 4w 1) + 5. (33)
’ 12 7?2
By a similar argument to the previous case, the Bayes optimal estimator and the corresponding Bayes risk is:
1 €
(e ey = —= (X1 + Xo) + 2, Z ~ Laplace | ——— |, 34
Hiee) 4+j,—%( 1+ Xa) P <4e’2—|—12> (34)

(i€, ¢) = 15 (1 - 2;6) . (35)

Finally letting U(e) = ¢17(€)+c2. TakeU(0) =0 = ¢ = —12¢5. And max U(e) =1 = ¢ = 24(1—c2).
Simplifying gives us our desired result:

U ([0,0]7) U([o,e'ﬂ] 0 2(34 @) (36)

= -1 -1
23+ %) (1+n)
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A.2 Proof of Theorem [Il and Theorem

We will begin with the proof of Theorem [2] which is standard and follows the typical proof of the Shapley
value. We begin by proving ¢;(e€) as defined in equationsatisﬁes axioms (B.i-iii). First assume U(egufiy) =
Ulesugjy) VS C [NJ\{i,j}, then:

SCIN\{i} ( |51 )

a(e) 3 Ul(esugiy) — Ules) . (Ulesugjrugiy) — Ulesugsy))

N—-1 N—-1
N SCIN\{4,5} ( [S] ) SCIN\{i,j} <|S\+1)

_ % Z U(GSU{j}\}/:)il_ Ules) " Z (U(esu{i}u{jglr U(ESU{i})) (39)
SCIN\{4,5} ( [S] ) SCIN\{i,j} (\SHI)
= ¢j (6), (40)

proving axiom (B.i) is satisfied. For the proof that axiom (B.ii) is satisfied, we write:

Yoo = X

Ulesuqiy) — Ules)

N—
i SC[N)\{i} ( |S\1)

_ a(e) Ul(esugiy) Ules)
- N Z Z (N 1) Z Z (N—l) (42)

i SCINI\{i} IS i SCIN]\{i}

= a@uie+ 2 [y > euw) s s Ule) (43)
i Sng|[iV]]V\£’L1} (|S|) i 1 ( )

SCLCEE DYDY y, (WSt (a4
i SC[N] |S| 1) SC[N] (|S|)
i€s [S|I<N-1
[S|<N-1
_ Mdﬂd+é§) 3 151Utes) _ 5 (N = 1SDUes) (45)
SC[N] (\SH) SC[N] ( 5] )
1S|<N -1 |S|<N-1
= a(e)U(e), (46)

thus proving axiom (B.ii) is satisfied. Finally, we note that (B.iii) is satisfied by linearity. Next, we establish
the uniqueness of equation[I2} To prove uniqueness, we take an approach that is standard in the literature
where we define the unanimity game, show the uniqueness of the ¢;(€) in that case, and then argue that
uniqueness follows from additivity (B.iii).

Define the unanimity utility, indexed by some T' C [N]:

UT(C) =

? if T C supp(e) (47)

0 if else.

{Ur}rcny form a linear basis for utility function such that any utility U can be represented uniquely by
a set of Valueb {br}rcin)- In addition, by direct application of the axioms, it is easy to see that for the
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unanimity utility, the fair allocation (bET)(e) is unique and is of the form:

a(e) op -
(T) _ T ifieT 48
¢ (€) {O if else. (48)

Thus, for any utility U, the fair value is represented uniquely by ZTC[ N] quSgT) (€), since this value is unique,
it must be equivalent to equation -

Now we consider the proof of Theorem [[] By a similar argument to the above, we can establish that:

1 Ula,es) — U(0, €5)
d)p(aa 6) = Z ~ (49)
N+1 SC[N] (\S\)
as well as:
1 1

Gloe) = §g X Ty Ulhesun) - Uldes) (50

sciviiy Usititer=1)

a'e{0,a}

(51)

Applying the definition U(0, €) = 0 we have

1 U(a, 65)
¢p(av €) (52)
N+l SCIN] (\]g\)
bod = g7 Y v W) - Ules)). 53)

scintn (st

completing the proof.

A.3 Error Computation for Section [4]

In this section we prove Proposition [4] and [5| from which exact error expressions follow.

Proposition 4. For the federated mean estimation problem described in Section[] the expected mean-squared
error is given by:

2
No 1 1 1 N2+Ny N2+Ny
2 2 2 2
t Zwij - + Ewioﬁ + s Zw” + N2 Z w2 + Zw” N Z W40 , (54)
i=1 J j=Na+1 J=Na2+1
J;ﬁz J#i J#l J#i

-1
_ 1 N1+Ns 1
where n = Nl_z ™ .
j=N2+1

Proof. Consider an estimator of the form ép = Z vljﬁj, where user j has n samples, and 60; is the local
=1
model of user j. By Theorem 4.2 of [Donahue & Klemberg (2021)), the error can be written as:
2

N
B 0)] = et | D S )

J#i J#i
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Wy

For j = 1,..., Ny, we have v;; = w;;. For j = Ny +1,..., Ny + Ny, we have v;; = N—f Finally, for
j > N1+ N, we have v;; = 0. Thus the first term can be written as:

N 1 N2 N>+N; 1 w 2
S o D S () o0
= P AN
N2
1 1 1
_ 21 Lopl 57
jz:; wlj n + Nl Wio n ( )
Making these same substitutions to i vfj and > ;i Vij yields the desired result. O
Proposition 5. The error expression equation 1s minimized if ¢; = 0 with weights:
N Vo/V;
Wi =y = Y (59)
N1 + N2 70 Nl + N270
If €, = 1 equation[5]] is minimized by:
N N 52
Wi = ! V. + 2 Vo 17° (59)
Ni+Nogt Ni+Nop V
Vo/v 1 32
Wiy = ! Vo Vo V (60)
Ni+Nop Ni+Nop Y
Finally, if ¢, = 2, equation[5J) is minimized by:
N1 N1 82
wi0 = Vo Vo 1/.° (61)
Ni+Nogt N1+ No2 Vi
Vo/V; VoV s?
Wi = . Vo - Vo 1. (62)
Ni+ Nt Ni+ N2 Vi
Vo/V; Ny + Np¥o — 1o 2
Wi = O/ + ! 2 4 Vi i (63)

CNMENE S M +NE

Proof. First we will consider the case where ¢; = 1. Considering the point where the derivative of equation [54]
with respect to w;k, k > 1 is equal to zero gives:

22 242 aE ) Ni—1 AL 2 aE
j=1 j=1 j=1
t2 2 t2 2\ Wio 82
= w= = -2 65
(’I’Lk ts ) Wik <TL ts N1 N1 ( )

It is easily verified from the second derivative that solving this equation gives us the unique minimum of

_ N> -t
equation For ease of notation, define Vj, := (% + 82) and V := (% + 82>, V= <1\}2 S & > . Thus,

Vi
k=1
we have: )
Vowio _ s2
Wik = ONvikN (66)
Noting that w;g + Zj\f:zl w;; = 1, we have:
Ny Vp N5 52
wio + 5 =W — = = 1, 67
TNV MY (67)
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N N s2

wi0 = ! Vo + 2 Vo 17 (68)
Ni+Nojt Ni+No2 V

VO/V7 1 82 (69)

Wi = — —.
TN NRE N+ N2V

This completes the proof for those users i such that ¢, = 1. When ¢; = 2, the gradient condition with respect
tok>1,k#iis:
Vo

Wik Vi = sz‘o, (70)
and similarly, the gradient condition when k = ¢ is:
N2V0 52
wi Vi + wio——= + — = 1. 71
nv TV (71)
Combining these together gives our desired result. €¢; =0 O

A.4 Proof of Theorem [3

The symmetric Nash equilibria of our game is characterized |Cheng et al.| (2004)) by the minimizers of

Hgnz [u(s,p) — u(p,p)]7 , (72)

where u(s,p) is the utility a user when they choose privacy level ¢; = s, and all other users play mixed
strategy p, and u(p,p) = Esp [u(s,p)]. Since our action space is binary, there are only two terms in this
sum. Applying the definition of u and writing out both terms of this sum yields:

> luls,p) —u(p,p))} = [uler,p) — ulp,p)); + [ule2, p) — u(p. p)I; (73)
se&

= [e(1—p) = a(é(p,p) — $e1,p))]} + [c(1 = p) — a(p, p) — Ble2,p))]} (7T4)
= [(1=p)c—ay®)]} + [-plc—ar(P))]} (75)
where we define y(p) := ¢(e2,p) — P(€1,p). v is an important quantity in this problem that described the
relative increase in payment a user receives for choosing a higher privacy level when the other users choose
mixed strategy p. In general, to say something about the equilibria, we must say something about v. We

can now use Assumptions |1| and [2} as well as the definition of ¢(:;-) to establish properties of v. First we
show ~(p) > 0 using monotonicity of U:

v(p) = d(e2,p) — P(e1,p), (76)

1 1
—Eomp [+ W(U@su{i})—mes»
€i=ez SCINN\{i} \ 18]

1 1
—Ee~op N Z W(U(esu{i})_[](es)) ) (77)
fiTa SCINI\{i} \ |S]
1 1 i i—
- N NIy e P {U(ng{)z}) - U(E(S {)z})] 2 0. (78)
NemRee
SCINI\{i} \ |S]

In equation [77] we have used the definition of the fair value from Theorem [2] and in equation [78] we have
simplified the expression, exchanged the sum and expectation, and used the fact that the expectation of a
non-negative random variable is non-negative.

Next, we will show that under Assumption [2 (and our assumption of equal marginal contribution) we also

have 7/(p) > 0. Assume py > py, and let b(n,p) = (V)pi(1 — p)N 7

n
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1 1 i i— i i—

Y(p2) —1(p) = — (E~ (U(53) — Uedsly)] = Bomp [U(€85)) — U(egu{bp})
SCINN\{i} ( S| ) J#i

(79)

(b(n,p2) — b(n,p1))A;U(e(n))  s.t. Nprivate(€(n)) = N —n (80)

Il
2| =
2
||
(=

SC[N\{i} ( 15|

Now note that b(n, p2) — b(n,p1) is zero-mean, and decreasing, furthermore, A;U(€(n)) is non-negative and
non-increasing. Let n* represent the smallest value of n such that b(n, p2)—b(n, p1) is negative. Then we have:

n*—1 N
AU(e(n)) = Y (b(n,p2) = b(n,p1)) AiU(e(n)) + Y (b(n,p2) = b(n, p1)) AiU(e(n)) (81)
> i b(n,p2) — b(mm)) (AU(e(n™ —1)) — AiU(e(n"))) (82)
n=0
> 0. (83)

With the knowledge that y(p) > 0 and 7/(p) > 0 we can compute p* for three distinct cases. Defining
Vmaz = Maxy Y(p) and Ymin = min, y(p), we have:

Case 1 ¢— aYmaz > 0:

> luls,p) —ulp,p))s = [(1 = p)(c - ay(p)]} (84)

se&

Since this quantity is non-negative, it is clearly minimized when p* = 1, where it is exactly 0. Furthermore,
since ¢ — aYmae > 0 is satisfied with strict inequality, it is the unique minimizer.

Case 2 ¢/ € [Ymin, Ymaz):

> " [uls,p) — u(p,p)]} = [(1 = p)(c— ay(p))]: + [-plc — av(p)]7 . (85)
se&

In the above case, this is minimized when p* € v~!(c/a).

Case 3 ¢ — aYmin < 0:

> " luls,p) — ulp,p))% = [-plc — ay(p))7 . (86)

se&

In the above case, the expression is minimized when p* = 0. To summarize, we have:

1 if < ,YT:M
pra) = { v (e/a) ifae i, <] (87)
N

This establishes that the Nash equilibrium is cleanly separated into three regions. From this fact, we are
able to show that the optimal strategy of the platform is also separated into three regions. We consider a
platform that solves the following problem, where we define U(p) := E.,p [U(€)]:

min(1 — a)U(p*()), (88)

[e3

Clearly, when privacy sensitivity is large, specifically, when ¢ > Y4, then a® = 0 is the optimal solution,
since p*(a) = 1 for all @ < 1, and for @ > 1 the objective becomes negative.
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Alternatively, when c is very small, we can determine the optimal value as follows. We first note that
Assumption [I| implies that U(p) is a decreasing function of p. Thus the condition for o* = —— is:

Ymin

1 —¢/Ymin _ Up*(@))
11—« U(0)

Vo < ¢/Ymin- (89)

Since the left-hand side takes value ﬁ at ¢ = 0, while the right-hand side is 1, as well as the fact that
both sides are continuous, by the Intermediate Value Theorem, (and our previous, which implies that for ¢
large enough this condition does not hold), there is some minimum ¢y, where this condition fails. Thus we

conclude, there are three regions:

(1) a region where ¢ < ¢, is small, and o* is the smallest « such that p* = 0, (2) an intermediate region
where a symmetric mixed strategy is played, and (3) a region where ¢ > Y42 , and a* = 0,p* = 1.
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