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ABSTRACT

Talking head video generation aims to generate a realistic talking head video that
preserves the person’s identity from a source image and the motion from a driving
video. Despite the promising progress made in the field, it remains a challenging
and critical problem to generate videos with accurate poses and fine-grained facial
details simultaneously. Essentially, facial motion is often highly complex to model
precisely, and the one-shot source face image cannot provide sufficient appearance
guidance during generation due to dynamic pose changes. To tackle the prob-
lem, we propose to jointly learn motion and appearance codebooks and perform
multi-scale codebook compensation to effectively refine both the facial motion
conditions and appearance features for talking face image decoding. Specifically,
the designed multi-scale motion and appearance codebooks are learned simulta-
neously in a unified framework to store representative global facial motion flow
and appearance patterns. Then, we present a novel multi-scale motion and appear-
ance compensation module, which utilizes a transformer-based codebook retrieval
strategy to query complementary information from the two codebooks for joint
motion and appearance compensation. The entire process produces motion flows
of greater flexibility and appearance features with fewer distortions across differ-
ent scales, resulting in a high-quality talking head video generation framework.
Extensive experiments on various benchmarks validate the effectiveness of our
approach and demonstrate superior generation results from both qualitative and
quantitative perspectives when compared to state-of-the-art competitors.

1 INTRODUCTION
Given a source image and a driving video, talking head video generation (Hong et al., 2022; Tao
et al., 2024) aims to animate the person in the source image using the pose and expression from the
driving video. Due to its widespread applications, such as video conferencing, the film industry, and
virtual reality, it has attracted growing interest in the community.
Significant progress has been made on this task in terms of both quality and robustness in recent
years. Existing works primarily focus on learning more accurate motion estimation and represen-
tation in 2D or 3D to enhance generation quality. Along the direction, unsupervised methods target
predicting local motion flows around unsupervised keypoints without relying on facial priors (Siaro-
hin et al., 2019b; Zhao & Zhang, 2022; Wang et al., 2024), and methods based on predefined models
(e.g., 3DMM) (Zakharov et al., 2019; Zhang et al., 2023; Ha et al., 2020) focus on learning robust
decoding features to generate high-quality face outputs. Despite the promising achievements, criti-
cal challenges persist: 1) Some motion patterns cannot be inferred from a single image pair solely
relying on unsupervised keypoints or predefined models for motion estimation, as such models often
have limited power of motion representation and may fail to capture certain dynamic aspects of the
facial motion from single image pairs. 2) Even with accurate motion estimation, highly dynamic and
complex motions in driving videos can create ambiguity during generation, as a still source image
lacks sufficient appearance information to handle occluded regions or subtle expression changes.
This results in noticeable artifacts and a significant drop in the quality of the generated output.
Therefore, generating realistic-looking facial images not only requires inferring accurate motion
flow between given two facial images but also needs to compensate for the intermediate appearance
decoding feature from the one-shot source image for the final generation of face images.
In this work, we aim to synergize motion and appearance by simultaneously learning accurate mo-
tion flows for facial warping and robust facial appearance features for face image decoding, to ad-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

vance talking head generation. We propose a unified framework that can achieve joint learning of
both motion and appearance codebooks with multi-scale compensation. Specifically, to estimate the
motion flow between two facial images (i.e., source and driving), we design a multi-scale motion
codebook that captures diverse motion patterns across scales from the entire dataset during training.
Using this learned multi-scale motion codebook, we further devise a transformer-based compensa-
tion structure to iteratively refine motion flows in a coarse to fine manner. To enhance intermediate
warped facial feature maps for image decoding, we introduce a multi-scale appearance codebook
that represents diverse appearance patterns learned from the entire dataset. Using the learned ap-
pearance codebook, we introduce a transformer-based compensation structure to refine the warped
features across different scales. This approach enables us to capture more facial details by leverag-
ing the diverse appearance information contained within the codebook. To enhance the learning of
both codebooks, we propose a joint training strategy in which the motion and appearance codebooks
are learned simultaneously with the entire framework. This approach allows both codebooks to be
optimized together, utilizing gradients from the refined warped features to strengthen their mutual
influence and improve overall performance. By learning both multi-scale motion and appearance
codebooks, our framework refines the motion flow to accurately warp the source facial features,
which are further compensated with additional details from the appearance codebook. This process
yields robust intermediate facial decoding features, resulting in improved generation.
We conduct extensive ablation studies to verify the effectiveness of the learned multi-scale motion
and appearance codebooks. Experimental results demonstrate that both codebooks effectively en-
hance the motion flow and intermediate warped features, resulting in more accurate and detailed fa-
cial motion flows and feature textures. Furthermore, results on two challenging datasets indicate that
our method surpasses state-of-the-art approaches, producing realistic-looking talking head videos.
In summary, our contributions are threefold:

• We propose a novel framework that jointly learns multi-scale motion and appearance codebooks.
The motion codebook captures motion patterns at varying levels of granularity, while the ap-
pearance codebook stores representative facial structure and texture features. This joint learning
enables the model to effectively compensate both motion and appearance for advanced generation.

• We develop an effective multi-scale compensation mechanism that utilizes the learned motion and
appearance codebooks to progressively refine both motion and appearance representations. The
mechanism can couple the compensation of both aspects at each level, achieving higher consis-
tency of appearance and motion, thus leading to high visual quality in generated videos.

• Extensive experiments including on challenging datasets demonstrate that our method not only
effectively compensates for facial motions and appearances but also significantly outperforms
state-of-the-art approaches, producing more realistic and visually convincing talking head videos.

2 RELATED WORK

Talking Head Video Generation. Existing works on talking head video generation generally sep-
arate the motion estimation module and image generation module to disentangle appearance and
motion. To transfer the motion, some works require facial priors provided by a pre-trained model
during generation. For example, landmark-based approaches (Ha et al., 2020; Zhao et al., 2021;
Wu et al., 2018; Zakharov et al., 2020) detect pre-defined facial landmarks to transfer the facial
pose and expression from a driving frame to the source image. Some other methods (Ren et al.,
2021; Zeng et al., 2023; Yao et al., 2020) use parameters from 3D face models (Blanz & Vetter,
2023; Feng et al., 2021; Zhu et al., 2017) as motion descriptors to disentangle identity and pose.
However, they normally cannot describe non-facial parts such as hair and neck, and their generation
quality is limited by the pre-trained model performance. To address the issue, several methods that
do not require any prior knowledge from pre-trained models are proposed. Monkey-Net (Siarohin
et al., 2019a) learns sparse motion-related keypoints in an unsupervised manner to describe object
movements. FOMM (Siarohin et al., 2019b) extends it with local affine transformation assumption
around the keypoints to model complex motion. Subsequent works introduce more flexible math-
ematical models such as thin-plane spline transformation (Zhao & Zhang, 2022) and continuous
piecewise-affine-based transformation (Wang et al., 2024) to increase motion estimation accuracy.
Despite the expressiveness of the motion models, they cannot fully describe large head poses and
delicate expression changes. MRFA (Tao et al., 2024) tackles the problem by building a correlation
volume for each image pair and using it to refine the coarse motion flow iteratively. However, it
only uses the warped image feature and a plain image generator for image generation, which may
fail when facing extreme pose change as the appearance information from the one-shot source im-
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Figure 1: Overview of the framework. For each scale, it consists of two sub-modules. (i) Motion
Codebook Compensation (MCC) compensates for a motion flow with the motion codebook. (ii)
To compensate for the source facial feature warped by the compensated motion flow, Appearance
Codebook Compensation (ACC) uses the appearance codebook and produces the compensated
appearance feature for generation. These two sub-modules are employed for all scales. We learn the
motion and appearance codebook jointly with the whole framework.

age is not enough. Some works (Yin et al., 2022; Oorloff & Yacoob, 2023; Bounareli et al., 2023)
leverage the remarkable generative power of pre-trained StyleGAN (Karras et al., 2019; 2020) for
better image generation, but they usually have to balance the editability and fidelity. MCNet (Hong
& Xu, 2023) learns a meta-memory bank of spatial facial features to compensate for the warped
source features. Different from previous works, we compensate for both motion flows and warped
source features with jointly learned multi-scale motion and appearance codebooks to boost the final
generation quality.
Codebook Learning. Codebook learning aims to learn useful discrete representations with a fixed
size. The learned codebook contains rich and compact information, which can facilitate various
tasks such as image classification (Cai et al., 2010; Zhang et al., 2009), image synthesis (Esser et al.,
2021; Chang et al., 2022), blind face restoration (Zhou et al., 2022; Gu et al., 2022) and audio-driven
talking head video generation (Wang et al., 2023). Traditional methods often learn a codebook with
unsupervised clustering such as k-means (Csurka et al., 2004). VQ-VAE (Van Den Oord et al., 2017)
first incorporates vector quantization in a Variational Autoencoder to learn a codebook containing
discrete representative input features. To build a context-rich codebook for images, VQGAN (Esser
et al., 2021) further increases the compression rate and adds a discriminator and a perceptual loss
on images reconstructed with the codes from the codebook. A transformer is later used to model the
composition of the codes for high-resolution image synthesis. CodeFormer (Zhou et al., 2022) uses
a learned codebook of compressed high-quality face image features as discrete prior and predicts
the code sequence based on the low-quality facial input for blind face restoration. LipFormer (Wang
et al., 2023) learns two codebooks of the upper half face and the bottom half face respectively
and predicts the lip codes from the input audio to generate a face video from the audio. We also
adopt the idea of codebook learning, but we simultaneously learn multi-scale motion and appearance
codebooks that store diverse motion and appearance patterns from the entire dataset during training
to facilitate high-quality talking head video generation. The codebooks and the entire framework
are trained together so that patterns useful for talking head video generation can be stored in and
retrieved from the codebooks.

3 METHOD

In this section, we will present the details of our framework. We learn multi-scale motion and ap-
pearance codebooks with compensation for the motion and intermediate appearance features during
generation. We adopt the Taylor expansion approximation method to learn the initial motion flow
and the warping manner as same as Siarohin et al. (2019a) for video generation.

3.1 OVERVIEW

Our framework is illustrated in Fig. 1. First, a keypoint-based motion flow estimator takes both the
source image Is and driving image Id as input and estimates the initial coarse motion flow M0. An
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Figure 2: Illustration of motion codebook learning and compensation for scale i. We adopt a trans-
former structure TM to compensate for the motion flow using the learned motion codebook. The
proposed motion codebook is learned under the supervision of a reconstruction loss and a code-
level loss.

image encoder EI extracts multi-scale source features {Fi
s}Ni=1 from Is. Using M0, {Fi

s}Ni=1, and
the driving keypoint feature Fd

kp, the multi-scale motion and appearance codebook compensation
module refines the motion flow and warped source features across all scales. At each scale, motion
codebook compensation refines the motion flow Mi−1, and the compensated motion flow Mi is
used to warp the source feature Fi

s. Appearance codebook compensation then refines the warped
source feature to produce the compensated appearance feature Fi

c. If i < N , Mi is used as the
motion flow for the next scale. Finally, the image decoder DI decodes the compensated appearance
features {Fi

c}Ni=1 to generate the final image Ig with the target motion and appearance. Details
on the design and learning of multi-scale motion and appearance codebooks and compensation are
provided in the following subsections.

3.2 MULTI-SCALE MOTION CODEBOOK LEARNING AND COMPENSATION

Previous methods typically estimate motion flows with source and driving features from a fixed
scale with certain mathematical models. While they capture rough motion, their accuracy is limited
by the single-scale information and the assumed transformations around unsupervised keypoints,
especially in complex motion scenarios. To improve this, we refine the initial motion flow M0

from coarse to fine using a multi-scale motion codebook. This enables us to produce more accurate
motion flows for warping source features at different scales. Specifically, we learn a multi-scale
motion codebook that stores local motion flow patterns and retrieve relevant information from it.
Fig. 2 illustrates the motion codebook learning and compensation process for scale i.
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Figure 3: Illustration of the code al-
location scheme. We take the multi-
scale motion codebook as an example.

Multi-scale Motion Code Allocation. We refine the initial
motion flow using a multi-scale motion codebook across all
N scales. As the scale increases, larger source features re-
quire finer motion flows for accurate warping. To provide
detailed motion flow compensation at larger scales, we in-
troduce a code allocation scheme as shown in Fig. 3 for the
multi-scale motion codebook, which divides the codebook
into multiple groups and allocates more codes for larger
scales. Specifically, the motion codebook CM = {mk ∈
Rdm}Kk=1 contains K codes, and we perform motion com-
pensation at N different scales. The K codes are split into
N equal groups, each with K/N codes. At scale i, the
first i groups, totaling N i

m = i × K/N codes, are allo-
cated for motion compensation. This allows codes with
smaller indices to capture general motion patterns shared
across scales, while codes with larger indices to capture finer motion patterns needed for larger
scales. The code allocation scheme maximizes the use of the motion codebook by sharing general
motion information across scales while reserving space for scale-specific details. At each scale i,
we form a new motion codebook Ci

M from the allocated codes, resulting in N scale-specific motion
codebooks {Ci

M}Ni=1 for multi-scale motion compensation.
Multi-scale Motion Codebook Learning. To learn a motion codebook storing multi-scale motion
flow patterns, we update {Ci

M}Ni=1 following the idea of vector quantization (Van Den Oord et al.,
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2017). At scale i, a CNN-based motion flow encoder EM maps the input motion flow Mi−1 ∈
Rh×w×2 into a compact motion flow feature Fi−1

m ∈ Rhm×wm×dm , in which each unit is of length
dm and captures a local motion flow pattern on Mi−1. We quantize each of its spatial element
Fi−1

m (x, y) with its nearest code from Ci
M to obtain a quantized motion flow feature F̂i−1

m :

F̂i−1
m = Q(Fi−1

m ) :=

(
argmin
mk∈Ci

M

||Fi−1
m (x, y)−mk||22

)
∈ Rhm×wm×dm . (1)

A motion flow decoder DM reconstructs Mi−1 with the quantized motion flow feature F̂i−1
m :

M̂i−1 = DM (F̂i−1
m ) = DM (Q(EM (Mi−1))). (2)

To update the scale-specific motion codebook Ci
M with local motion flow patterns from Fi−1

m , we
use the following loss function:

Li
vq,m = λrecon,m||M̂i−1 − sg[Mi−1]||1+||sg[EM (Mi−1)]− F̂i−1

m ||22
+ β||sg[F̂i−1

m ]− EM (sg[Mi−1])||22,
(3)

where sg[·] denotes the stop gradient operator, and λrecon,m and β are the weights of the loss terms.
The first term represents the motion flow reconstruction loss, while the last two terms form a code-
level loss (Van Den Oord et al., 2017) that minimizes the distance between the latent motion flow
units and the motion codes. We stop the gradient of Mi−1 to ensure that motion codebook learning
at scale i does not interfere with the training of the motion flow estimator or the compensated motion
flow from prior scales. The overall loss function for multi-scale motion codebook learning across
all N scales is Lvq,m =

∑N
i=1 Li

vq,m.
Multi-scale Motion Codebook Compensation. An intuitive approach for multi-scale motion code-
book compensation is to retrieve motion codes from the scale-specific codebook and decode them
into finer motion flows using DM at each scale. However, to reduce computational complexity, we
limit the number of motion codes, which decreases expressiveness. This makes it difficult to fully
reconstruct motion flows, leading to degraded image quality. Instead, we predict the motion flow
residual for each input, allowing the motion codebook to enhance the flow without the need for
precise reconstruction.
As shown in Fig. 2, to retrieve motion residuals from Ci

M at scale i, we use a motion code retrieval
transformer TM shared for all scales. It queries the scale-specific codebook Ci

M using the encoded
motion feature Fi−1

m , the warped source feature Fi−1
cw , and the driving keypoint feature Fd

kp. The
first two represent the current motion flow, and the last indicates the target pose. These features are
processed through a convolutional encoding block and concatenated into a compact motion query
feature, then flattened and enhanced with a learnable position embedding before being passed to
TM . TM consists of LM transformer layers, each with multi-head self-attention, cross-attention,
and convolution layers (instead of linear layers) to preserve spatial structure. The self-attention
models global correlations, and the cross-attention uses the output of self-attention as the query and
the codes from Ci

M as key-value pairs to retrieve local motion flow patterns. The transformer outputs
the motion flow residual feature Fi−1

mr , which is decoded by a motion flow residual decoder DMR to
obtain the motion flow residual Mi

r ∈ Rh×w×2, Finally, we add Mi
r to the input motion flow Mi−1

to get the compensated motion flow Mi, which is used for source feature warping at scale i.
The compensated motion flow Mi is sufficient for warping the source feature Fi

s, but may lack fine
details for higher-resolution features like Fi+1

s . Therefore, we use Mi as input for motion codebook
compensation at scale i + 1 and refine it with more motion codes. This iterative process continues
across scales, producing multi-scale compensated motion flows {Mi}Ni=1.

3.3 MULTI-SCALE APPEARANCE CODEBOOK LEARNING AND COMPENSATION

We have obtained compensated motion flows for each scale, allowing us to warp the source features
more accurately. However, when the motion between source and driving images is too large, oc-
clusion can cause the warped features to lack sufficient appearance details. To address this, we use
appearance codebook compensation at each scale. Specifically, we learn a multi-scale appearance
codebook with local textures and retrieve appropriate appearance information to enhance the warped
features for image generation. Fig. 4 illustrates the appearance codebook learning and compensation
at scale i.
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Figure 4: Illustration of appearance codebook learning and compensation for scale i. We utilize a
transformer structure TA to compensate for the warped features, adding more facial details to the
feature map. Similar to the motion codebook, the designed appearance codebook is learned under
the supervision of a code-level loss.

Multi-scale Appearance Code Allocation. We aim to compensate for the warped source features
across all N scales. As the scale increases, larger features require more detailed appearance infor-
mation for compensation. To achieve this, we also perform the code allocation scheme in Fig. 3 on
the multi-scale appearance codebook. The appearance codebook CA = {ak ∈ Rda}Tk=1, containing
T codes, is divided into N groups, each with T/N codes. At scale i, we allocate the first i groups,
which are the first N i

a = i× T/N codes for appearance compensation. Codes with smaller indices
capture general, coarse appearance patterns shared across scales, while larger-index codes focus on
finer details. We form a new appearance codebook Ci

A for each scale i, resulting in N scale-specific
appearance codebooks {Ci

A}Ni=1 for multi-scale compensation.
Multi-scale Appearance Codebook Learning. To compensate for multi-scale warped source fea-
tures, we aim to store appearance codes of different scales in the appearance codebook. Similar
to the multi-scale motion codebook, we use vector quantization to directly update {Ci

A}Ni=1 for the
multi-scale appearance codebook learning. We extract multi-scale driving features {Fi

d}Ni=1 using
the image encoder EI , which serve as targets for our appearance codebook. Since image features
of different scales have varying resolutions, directly flattening high-resolution features can be com-
putationally expensive. To address this, we apply window partitioning. For a feature map of shape
(hi

a, w
i
a, c

i
a) at scale i, we divide it into patches of shape (hi

a/ha, w
i
a/wa), reshaping the feature into

(ha, wa, c
i
a × hi

a × wi
a/ha/wa). We then linearly project the features into da dimensions to align

them with the appearance codes. This results in a more compact driving feature F
i

d ∈ Rha×wa×da ,
where each unit represents an appearance pattern at scale i. Finally, element-wise quantization with
the nearest code from Ci

A produces the quantized appearance feature F
i′
d .

F
i′
d = Q(F

i

d) :=

(
argmin
ak∈Ci

A

||Fi

d(x, y)− ak||22

)
∈ Rha×wa×da . (4)

To update the scale-specific appearance codebook Ci
A with local appearance units from F

i

d, we use
the following loss function:

Li
vq,a = ||sg[Fi

d]− F
i′
d ||22 + β||sg[Fi′

d ]− F
i

d||22, (5)

where sg[·] denotes the stop gradient operator, and β is the weight of the loss term. We only use the
code-level loss to reduce the distance between the appearance feature units and the codes from Ci

A.
The overall loss function for multi-scale appearance codebook learning is Lvq,a =

∑N
i=1 Li

vq,a. We

do not use the image decoder DI to reconstruct the original driving image Id from {Fi′
d}Ni=1, allow-

ing DI to focus on decoding the compensated appearance features and improving the talking head
video generation. Training a separate image decoder for reconstruction with quantized appearance
codes would be computationally expensive. Experimental results in Sec. 4.3 show that using only
the code-level loss effectively learns the appearance codebook.
Multi-scale Appearance Codebook Compensation. To transfer the compensated motion to the
source image, we warp the source features with their corresponding compensated motion flows at
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each scale. However, warping can introduce distortions due to pose changes, which degrade image
quality. To address this, we use the multi-scale appearance codebook to repair the distorted warped
features with retrieved appearance information. At scale i, we first warp the source feature Fi

s
with the compensated motion flow Mi to obtain the warped feature Fi

w. We then apply window
partitioning to map Fi

w into a compact feature F
i

w. To correct the corrupted appearance in F
i

w, we
retrieve appearance codes with F

i

w using a transformer TA. F
i

w, reshaped and augmented with a
learnable position embedding, passes through LA transformer layers, which also use convolution
layers instead of linear layers to preserve spatial structures. The self-attention mechanism models
global interactions, and cross-attention retrieves appearance codes from Ci

A. The transformer output
is the compensated appearance feature F

i

c, which retains the pose but reduces distortion of F
i

w.
Finally, we apply window reverse on F

i

c to restore it to the original image shape (hi
a, w

i
a, c

i
a) using

linear projection and reshaping. This appearance codebook compensation is performed across all N
scales, resulting in multi-scale compensated appearance features {Fi

c}Ni=1.

3.4 JOINT OPTIMIZATION OBJECTIVES OF THE FRAMEWORK

We use the multi-scale compensated appearance features {Fi
c}Ni=1 and the image decoder DI for

image generation. The low-resolution feature F1
c is fed as the initial input to DI , which gradually

upsamples it through a series of upsampling layers and ResNet blocks (He et al., 2016) until it
reaches the output resolution. For higher-resolution features {Fi

c}Ni=2, we apply SFT (Wang et al.,
2018) to refine the intermediate features when they match the resolution of Fi

c. We also pass Fi
c

through a convolution layer and add the result to the intermediate features. After fusing all scales,
DI generates the final image Ig .
While we introduced multi-scale motion and appearance codebooks separately in Sec. 3.2 and
Sec. 3.3, unlike traditional codebook-based methods (Esser et al., 2021; Zhou et al., 2022; Xing
et al., 2023) where codebooks are pre-trained, we train both codebooks and the full framework end-
to-end. This allows the network to effectively store and retrieve useful patterns at different scales,
leading to high-quality talking head video generation.
We follow the unsupervised training pipeline from (Siarohin et al., 2019b), where the source and
driving frames are extracted from the same video, and our framework learns to reconstruct the
driving frame. The training combines the codebook losses from Sec. 3.2 and Sec. 3.3 with common
losses for talking head video generation (Siarohin et al., 2019b; Hong et al., 2022). Specifically, we
use the equivariance loss Leq and keypoint distance loss Lkpd to guide keypoint prediction in the
motion flow estimator, and an image reconstruction loss Lrecon and an adversarial loss Ladv on the
output Ig . To avoid the image decoder relying too much on high-resolution appearance features, we
also generate an image I1g using only F1

c and apply Lrecon to minimize the difference between I1g
and Id. The overall training objective is:

L = Lrecon(Id, Ig) + λadvLadv(Id, Ig) + Leq + Lkpd + Lvq,m + Lvq,a + λ1Lrecon(Id, I
1
g), (6)

where λadv and λ1 are the weights of the corresponding loss terms.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets. We conduct experiments on VoxCeleb1 (Nagrani et al., 2017) and CelebV-HQ (Zhu et al.,
2022) datasets. We train our model on VoxCeleb1 training set. For evaluation, we build the test set on
VoxCeleb1 by randomly sample 50 videos from its test split. To evaluate the model’s generalization
ability, we randomly select 50 videos from CelebV-HQ for testing.
Metrics. For same-identity reconstruction, we adopt PSNR, L1 and LPIPS following (Tao et al.,
2024) to evaluate the reconstruction quality. We also use FID (Heusel et al., 2017) to measure
the realism of the generated video frames. Following (Siarohin et al., 2019a), we employ Average
Keypoint Distance (AKD) for motion transfer quality evaluation and Average Euclidean Distance
(AED) for identity preservation quality evaluation.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our method with a series of open-source state-of-the-art methods including non-
diffusion based FOMM (Siarohin et al., 2019b), DaGAN (Hong et al., 2022), TPSM (Zhao & Zhang,
2022), MCNet (Hong & Xu, 2023), MRFA (Tao et al., 2024) and LivePortrait (Guo et al., 2024),
and diffusion-based AniPortrait (Wei et al., 2024) and Follow-Your-Emoji (FYE) (Ma et al., 2024).
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Table 1: Quantitative comparison with state-of-the-art methods for same-identity reconstruction on
VoxCeleb1 and CelebV-HQ dataset. Our results are the best on Voxceleb1 dataset and competitive
on CelebV-HQ dataset.

Method VoxCeleb1 CelebV-HQ
FID ↓ PSNR ↑ L1 ↓ LPIPS ↓ AKD ↓ AED ↓ FID ↓ PSNR ↑ L1 ↓ LPIPS ↓ AKD ↓ AED ↓

FOMM Siarohin et al. (2019b) 53.97 22.96 0.0474 0.2200 1.4037 0.1509 78.15 20.92 0.0685 0.2925 3.6098 0.2955
DaGAN Hong et al. (2022) 51.55 22.92 0.0492 0.2251 1.5740 0.1652 99.84 20.49 0.0781 0.3209 7.6075 0.3301
TPSM Zhao & Zhang (2022) 53.69 24.73 0.0402 0.1974 1.2338 0.1241 73.14 22.19 0.0645 0.2618 4.5840 0.2843
MCNet Hong & Xu (2023) 51.45 24.59 0.0402 0.1996 1.2363 0.1254 78.33 22.20 0.0640 0.2732 4.1386 0.2903
MRFA Tao et al. (2024) 48.49 25.26 0.0370 0.1872 1.1823 0.1188 75.73 22.41 0.0625 0.2670 3.7166 0.2527
AniPortrait Wei et al. (2024) 52.65 20.15 0.0637 0.2767 2.6543 0.2623 66.67 17.37 0.1027 0.3263 1.9444 0.3517
FYE Ma et al. (2024) 43.25 19.54 0.07137 0.2954 2.7071 0.2652 62.55 19.58 0.0802 0.3006 4.8637 0.3029
LivePortrait Guo et al. (2024) 48.11 22.94 0.0484 0.2213 1.5516 0.1602 53.88 21.25 0.0659 0.2601 2.0467 0.2718
Ours 43.15 25.30 0.0355 0.1846 1.2039 0.1071 71.78 22.40 0.0610 0.2608 3.2562 0.2825

DrivingSource MRFA LivePortrait FYE Ours DrivingSource MRFA LivePortrait FYE Ours

(a) Same-identity Reconstruction (a) Cross-identity Reenactment

Figure 5: Qualitative comparison with state-of-the-art methods for (a) same-identity reconstruction
and (b) cross-identity reenactment on VoxCeleb1 and CelebV-HQ dataset.

Same-identity Reconstruction. To evaluate the performance on same-identity reconstruction, we
use the first frame of each video as the source image and reconstruct the whole video. Tab. 1
presents the quantitative results for same-identity reconstruction. Our method outperforms the other
methods almost on all metrics on VoxCeleb1 dataset and remains competitive when generalized
to the more challenging CelebV-HQ. Compared with those unsupervised methods (Siarohin et al.,
2019b; Hong et al., 2022; Hong & Xu, 2023; Tao et al., 2024), our method achieves better motion
estimation, e.g.,, our method get the best AKD scores on CelebV-HQ dataset. This result verifies the
effectiveness of our designed multi-scale motion codebook and its generalizability. For the results of
image quality (i.e., FID, PSNR, L1, LPIPS), our method outperforms other methods on VoxCeleb1
dataset, even those diffusion methods (Wei et al., 2024; Ma et al., 2024) and Guo et al. (2024) trained
with larger-scale datasets. It indicates that our designed multi-scale appearance codebook is capable
to compensate for the intermediate warped feature for better talking head video generation.We also
show some qualitative results in Fig. 4.2 (a). Our method can generate plausible unseen facial
regions (the second row and the third row) and eliminate the undesired occlusion (the fourth row) in
the source image while preserving the motion faithfully.

0% 20% 40% 60% 80% 100%

Ours

FYE

LivePortrait

MRFA

Rank 1 Rank 2 Rank 3 Rank 4

Figure 6: User study results of ranking the quality
of videos generated by different methods.

Cross-identity Reenactment. We conduct
cross-identity reenactment experiments to vali-
date our method. Since there is no ground truth
for this setting, we perform a user study com-
paring our approach to recent SOTA methods,
including two GAN-based models (MRFA (Tao
et al., 2024) and LivePortrait (Guo et al., 2024))
and one diffusion model (Follow-You-Emoji
(FYE) (Ma et al., 2024)). We randomly se-
lected 10 source-driving pairs and asked 30 par-
ticipants to evaluate the generated videos based
on appearance realism, motion naturalness, and
overall quality. The results, shown in Fig. 6 and
Fig. 4.2(b), indicate that users preferred our method. FYE (Ma et al., 2024) often produced ex-
aggerated expressions and struggled to imitate the driving expressions accurately, likely due to its
reliance on landmark-based embeddings without explicitly modeling motion. Compared to other
GAN methods (Tao et al., 2024; Guo et al., 2024), our method better preserves facial shape and
expression consistency. These findings confirm the effectiveness of our framework.
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Table 2: Ablation study on the multi-scale motion and appearance codebook compensation. We
present the results for same-identity reconstruction on VoxCeleb1 dataset.

FID ↓ PSNR ↑ L1 ↓ LPIPS ↓ AKD ↓ AED ↓
Baseline 47.83 24.93 0.0375 0.1954 1.2384 0.1106
Baseline + SMC 49.00 24.97 0.0371 0.1917 1.2183 0.1167
Baseline + MMC 44.86 25.27 0.0360 0.1875 1.2171 0.1076
Baseline + MMC + SAC 44.32 25.16 0.0362 0.1856 1.2106 0.1091
Baseline + MMC + MAC (Ours) 43.15 25.30 0.0355 0.1846 1.2039 0.1071

Source Driving 𝐌𝟎 𝐌0 𝐌1 𝐌2 𝐌3𝐌1 𝐌2 𝐌3

Figure 7: Visulization of the original and reconstructed motion flows for different scales. Our multi-
scale motion codebook can reconstruct multi-scale motion flows with high quality.

4.3 ABLATION STUDY

We perform ablation studies to assess the effectiveness of the learned multi-scale motion and ap-
pearance compensatory codebooks. The model variants in Tab. 2 are as follows: (i) “Baseline” is
the model without any compensatory codebook. (ii) “Baseline+SMC” includes only a single-scale
motion codebook, compensating the initial motion flow at scale 1, which is used to warp multi-scale
features. (iii) “Baseline+MMC” includes a multi-scale motion codebook to compensate the motion
flow across scales. (iv) “Baseline+MMC+SAC” adds a single-scale appearance codebook to “Base-
line+MMC,” compensating only the warped feature at scale 1. (v) “Baseline+MMC+MAC” is the
full model with both multi-scale motion and appearance codebooks. We present the quantitative
results in Tab. 2 and qualitative comparisons of (i), (iii), and (v) in Fig. 9.

DrivingSource Baseline Baseline+MMC Ours

Figure 9: Qualitative ablation study on multi-scale
motion and appearance codebook compensation.
Both motion and appearance codebook compen-
sation contribute to better generation quality.

Effect of Joint Learning of Multi-scale Mo-
tion and Appearance Codebooks. To evaluate
the effectiveness of our jointly learned multi-
scale motion and appearance codebooks, we
visualize the reconstructed multi-scale motion
flows from the motion codebook in Fig. 7 and
appearance features from the appearance code-
book in Fig. 8, using vector quantization. For
the motion flows, we use a motion flow decoder
DM to decode the quantized motion flow fea-
tures and visualize the results. In Fig. 7, de-
spite the limited number of codes, our multi-
scale motion codebook can reconstruct high-
quality motion flows, showing its ability to cap-
ture typical local motion patterns. For appear-
ance features, we visualize the quantized fea-
tures directly in Fig. 8. Despite some quantiza-
tion loss, the multi-scale appearance codebook reconstructs the driving features well with limited
codes, demonstrating the codebook’s ability of storing informative local appearance details. Note
that quantization errors are more noticeable at the feature level, and an image decoder specializing

Driving ത𝐅𝑑
1 ത𝐅𝑑

1′ ത𝐅𝑑
2′ ത𝐅𝑑

3′ ത𝐅𝑑
4′ത𝐅𝑑

2 ത𝐅𝑑
3 ത𝐅𝑑

4

Figure 8: Visulization of the original and reconstructed driving features. Our multi-scale appearance
codebook can reconstruct multi-scale appearance features with acceptable quantization loss.
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DrivingSource 𝐌1𝐌𝑟
1𝐌0 𝐌𝑟

2 𝐌2 𝐌𝑟
3 𝐌3 𝐌4𝐌𝑟

4

Figure 10: Visulization of the motion flow compensation process. We present the initial motion flow
M0, the motion flow residual {Mi

r}Ni=1 and the compensated motion flows {Mi}Ni=1 for all scales.

Source Driving Output 𝐅!" 𝐅#" 𝐅!$ 𝐅#$ 𝐅!% 𝐅!&𝐅#% 𝐅#&

Figure 11: Visualization of the appearance compensation results. We present the warped source
features {Fi

w}Ni=1 and the compensated appearance features {Fi
c}Ni=1 for all scales.

in decoding such quantized features can reduce the perceptual loss at the image level. These results
demonstrate the effectiveness of jointly learning multi-scale motion and appearance codebooks, al-
lowing them to store expressive local motion and appearance patterns for compensation.
Effect of Multi-scale Motion Codebook Compensation. The second row of Tab. 2 shows that us-
ing single-scale motion codebook compensation already improves motion transfer and image qual-
ity, reflected by better PSNR, L1, LPIPS, and AKD compared to the baseline. This highlights the
effectiveness of motion codebook compensation for talking head video generation. Multi-scale mo-
tion codebook compensation further enhances all metrics, underscoring the importance of handling
motion flows at different scales for improved feature warping. Fig. 9 shows that multi-scale motion
compensation achieves better motion transfer (e.g., head pose in row 1), reduces artifacts (e.g., hair
in row 2), and preserves source identity (row 3). Fig. 10 visualizes the motion flow compensation
process, showing that the initial motion flow M0 is rough, but multi-scale compensation refines it
iteratively with residuals {Mi

r}Ni=1, adding finer details as the scale increases for smoother, more
face-adapted motion flows.
Effect of Multi-scale Appearance Codebook Compensation. The fourth row in Tab. 2 shows
that adding single-scale appearance codebook compensation on top of multi-scale motion codebook
compensation improves FID, LPIPS, and AKD, indicating that appearance codebook compensation
refines warped source features for more realistic image generation. However, there is a slight drop
in PSNR, L1, and AED, likely due to a conflict between scale 1 compensated appearance features
and other warped features with warping artifacts. The fifth row shows consistent improvement,
suggesting multi-scale appearance codebook compensation resolves this conflict and further refines
warped features across scales, boosting overall performance. The last two columns in Fig. 9 also
verify that multi-scale appearance codebook compensation leads to more accurate motion (e.g., the
mouth in row 1, eyes in row 2, and shoulders in row 3) with realistic facial details (e.g., the hair in
row 2). Additionally, Fig. 11 visualizes the compensated feature maps at different scales, showing
more complete facial shapes and details compared to the warped feature Fi

w. These results validate
the effectiveness of multi-scale appearance codebook compensation.

5 CONCLUSION

In this paper, we present a novel framework that jointly learns multi-scale motion and appearance
compensatory codebooks to enhance the motion flows and appearance features for talking head
video generation. The jointly learned motion and appearance codebooks store local motion and
appearance patterns learned from the entire dataset at different scales, and our multi-scale motion
and appearance codebook compensation module retrieves useful codes from the codebooks with a
transformer-based strategy at different scales to gradually refine the motion flows and appearance
features during generation. Extensive results demonstrate the effectiveness of our codebook learning
and compensation, synergizing motion and appearance to produce higher quality videos.
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Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu Sebe. First order
motion model for image animation. NeurIPS, 2019b.

Jiale Tao, Shuhang Gu, Wen Li, and Lixin Duan. Learning motion refinement for unsupervised face
animation. NeurIPS, 2024.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 2017.

Hexiang Wang, Fengqi Liu, Qianyu Zhou, Ran Yi, Xin Tan, and Lizhuang Ma. Continuous
piecewise-affine based motion model for image animation. arXiv preprint arXiv:2401.09146,
2024.

Jiayu Wang, Kang Zhao, Shiwei Zhang, Yingya Zhang, Yujun Shen, Deli Zhao, and Jingren Zhou.
Lipformer: High-fidelity and generalizable talking face generation with a pre-learned facial code-
book. In CVPR, 2023.

Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. Recovering realistic texture in image
super-resolution by deep spatial feature transform. In CVPR, 2018.

Huawei Wei, Zejun Yang, and Zhisheng Wang. Aniportrait: Audio-driven synthesis of photorealistic
portrait animation. arXiv preprint arXiv:2403.17694, 2024.

Wayne Wu, Yunxuan Zhang, Cheng Li, Chen Qian, and Chen Change Loy. Reenactgan: Learning
to reenact faces via boundary transfer. In ECCV, 2018.

Jinbo Xing, Menghan Xia, Yuechen Zhang, Xiaodong Cun, Jue Wang, and Tien-Tsin Wong.
Codetalker: Speech-driven 3d facial animation with discrete motion prior. In CVPR, 2023.

Guangming Yao, Yi Yuan, Tianjia Shao, and Kun Zhou. Mesh guided one-shot face reenactment
using graph convolutional networks. In ACM MM, 2020.

Fei Yin, Yong Zhang, Xiaodong Cun, Mingdeng Cao, Yanbo Fan, Xuan Wang, Qingyan Bai,
Baoyuan Wu, Jue Wang, and Yujiu Yang. Styleheat: One-shot high-resolution editable talking
face generation via pre-trained stylegan. In ECCV, 2022.

Egor Zakharov, Aliaksandra Shysheya, Egor Burkov, and Victor Lempitsky. Few-shot adversarial
learning of realistic neural talking head models. In ICCV, 2019.

Egor Zakharov, Aleksei Ivakhnenko, Aliaksandra Shysheya, and Victor Lempitsky. Fast bi-layer
neural synthesis of one-shot realistic head avatars. In ECCV, 2020.

Bohan Zeng, Xuhui Liu, Sicheng Gao, Boyu Liu, Hong Li, Jianzhuang Liu, and Baochang Zhang.
Face animation with an attribute-guided diffusion model. In CVPR Workshops, 2023.

Bowen Zhang, Chenyang Qi, Pan Zhang, Bo Zhang, HsiangTao Wu, Dong Chen, Qifeng Chen,
Yong Wang, and Fang Wen. Metaportrait: Identity-preserving talking head generation with fast
personalized adaptation. In CVPR, 2023.

Wei Zhang, Akshat Surve, Xiaoli Fern, and Thomas Dietterich. Learning non-redundant codebooks
for classifying complex objects. In ICML, 2009.

Jian Zhao and Hui Zhang. Thin-plate spline motion model for image animation. In CVPR, 2022.

Ruiqi Zhao, Tianyi Wu, and Guodong Guo. Sparse to dense motion transfer for face image anima-
tion. In ICCV Workshops, 2021.

Shangchen Zhou, Kelvin Chan, Chongyi Li, and Chen Change Loy. Towards robust blind face
restoration with codebook lookup transformer. NeurIPS, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hao Zhu, Wayne Wu, Wentao Zhu, Liming Jiang, Siwei Tang, Li Zhang, Ziwei Liu, and
Chen Change Loy. Celebv-hq: A large-scale video facial attributes dataset. In ECCV, 2022.

Xiangyu Zhu, Xiaoming Liu, Zhen Lei, and Stan Z Li. Face alignment in full pose range: A 3d total
solution. IEEE TPAMI, 41(1):78–92, 2017.

13


	Introduction
	Related Work
	Method
	Overview
	Multi-scale Motion Codebook Learning and Compensation
	Multi-scale Appearance Codebook Learning and Compensation
	Joint Optimization Objectives of the Framework

	Experiments
	Implementation Details
	Comparison with State-of-the-Art Methods
	Ablation Study

	Conclusion

