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ABSTRACT

Model evaluation is a cornerstone of machine learning, guiding model design and
progress measurement. Designing generalizable evaluation processes remains a
challenge, however, partly due to the vast number of possible domain, task and
modality combinations and lack of knowledge of how informative they are. In
this paper, we propose EEVEE (Efficient Evaluation process Evolution Engine)1, a
method that frames evaluation process design as a learning problem. By analyzing
a large number of evaluation metrics from diverse benchmarks and models, EEVEE
identifies a smaller subset of tasks with high predictive power over the full set of
evaluation metrics, reducing evaluation time. To find the optimal subset maximiz-
ing signal while minimizing GPU hours, EEVEE evaluates pre-trained models of
various architectures, pretraining schemes, and modalities on diverse downstream
tasks and datasets including image classification, segmentation, relational reason-
ing, zero-shot image-to-text tasks, medical classification and segmentation, video
classification, and regression. Our results identify three subsets of benchmarks,
with 8, 15 and 21 tasks, providing high quality signal for model generalization.
Key benchmarks selected include iWildCam, CLEVR-Math, ACDC, WinoGround,
CIFAR100, Fungi, and ADE20K. We structure the subsets into three tiers for
12, 24, and 36 GPU-hour budgets and package them into a unified, efficient, and
user-friendly Python framework that we built with the researcher in mind – which
we refer to as the GATE engine. Our experiments reveal ConvNextV2, SigLIP
and CLIP as top-performing model encoders, with EfficientNetV2 and ResNext50
excelling in medical tasks and challenging image classification, in particular in
Happy Whale Individual classification, ConvNet based models seem to outperform
transformer models by a factor of 2.5x, which is surprising. The top performing en-
coder being ConvNextV2 followed by CLIP seems to agree with other recent large
scale evaluations. We also demonstrate the framework’s versatility in fine-tuning
models from text and audio modalities, paving the way for future cross-modal
evaluations.

1 INTRODUCTION

Increasing Complexities of Benchmarking: As we create benchmarks for expanding model capa-
bility evaluation, the growing number and complexity of these benchmarks inadvertently complicates
evaluation, requiring more resources like engineering, computation, and research time. Consequently,
prioritizing which benchmarks to use becomes challenging. The high costs and longer wait times of
newer, complex benchmarks often deter their adoption, leading researchers to rely on older, simpler
benchmarks. This risks missing valuable insights from innovative ideas that may underperform on
simpler benchmarks but have broader applicability, while promoting incremental improvements that
overfit to simpler benchmarks but underperform in comprehensive evaluations.

To illustrate the mounting increase in available benchmarks, we can look at the historical benchmarks
in deep learning. Few benchmarks have had as much impact as ImageNet (30), which remains a
rich resource for model training and evaluation, particularly in visuo-linguistic models. As key
capabilities for deep neural networks were discovered, more benchmarks were generated to measure
and stimulate progress in those areas. In natural language processing, the GLUE benchmark (69),

1Pronounced as /’i:vi:/ EE-vee
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SQuAD (48), and CoNLL-2003 (51) have been instrumental. In audio processing, LibriSpeech (42),
TIMIT (16), and VCTK (72) are widely used. For machine translation, WMT (3), IWSLT (23), and
Europarl (26) have driven advancements. Relational reasoning has been advanced by benchmarks
such as CLEVR (24), bAbI (70), and RAVEN (75). In segmentation, PASCAL VOC (14), Cityscapes
(8), and COCO (36) remain crucial. Large language models are often evaluated using benchmarks
like SuperGLUE (68), LAMBADA (43), and MMLU (20). Vision-language models are typically
evaluated using benchmarks such as VQA (1), Visual7W (81), and Flickr30k (45).

As a result, a researcher has to choose from all these options, and even more, and then find a
way to unify and experiment with their models across all of them. The lack of unification, and
the lack of guarantees for their generalization signal, quickly becomes a kind of “evaluation hell”,
where researchers waste a lot of time just doing redundant things like fixing the same bugs to
download datasets, preprocess them etc, while at the same time not having any real signal as to which
benchmarks are more informative, other than just knowing what has been used the most – which is
usually a function of popularity, and not real informativeness. To elaborate, the adoption of complex
evaluation processes that could enhance research efficiency and impact is often hindered by the
engineering effort required to evaluate machine learning models. Researchers must create involved
pipelines across multiple datasets demanding high data engineering efforts, develop task-specific
adapters, and derive nuanced training recipes, which is time-consuming. As a result, researchers
often revert to simpler evaluation strategies instead of comprehensive assessments.

A good benchmark should alleviate these burdens by automating dataset handling, integrating task
adapters, optimizers, schedulers, and logging mechanisms seamlessly. It should provide broad and
meaningful signals with minimal GPU time, accommodating various computational budgets, ensuring
inclusivity. Furthermore, an increasingly important factor for a robust modern benchmark engine
is its support for multi-modal learning and early fusion techniques. AI systems must seamlessly
integrate and reason across multiple modalities, such as text, images, audio, and more. Multi-modal
learning enhances self-supervised learning opportunities and provides inherent supervision through
natural alignments, like audio-visual synchronization in videos. Early fusion, where data from
different modalities is combined at the initial stages of processing, allows models to leverage shared
representations, improving generalization and reasoning capabilities across varied tasks and domains.
These key desiderata are what motivates the production of this work.

With the desiderata in mind, we next introduce EEVEE, a methodology developed for building
high-signal low-cost evaluation routines, and GATE, the resulting benchmark that is designed to
be extensible, readable, flexible, modular and robust, supported by a new efficient, easy to use
framework.

EEVEE, Learning Optimal Benchmarks: The ability to find which benchmarks offer the most
signal with respect to a given goal, such that we can optimize our compute time, research iteration
speed, and engineering time is increasingly crucial. In this work, rather than just manually designing
a new set of benchmarks, we propose a methodology, called EEVEE (Empirical Evaluation process
Evolution Engine) that frames evaluation design as a learning problem and then leverages machine
learning to automate the discovery and refinement of evaluation processes.

More specifically, EEVEE operates by taking in a large set of performance metrics from diverse
models applied across various benchmarks and identifies a smaller subset of benchmarks with high
predictive power over the entire set. EEVEE achieves this through two main components: (a) an
evolutionary algorithm to optimize the selection of benchmark combinations based on a computed
score, and (b) a meta-model trained to predict a model’s performance on the full set of benchmarks
using performance metrics from a chosen subset. We parameterize the meta-model as as a small
neural network.

The meta-model receives input performance metrics from a subset of benchmarks and predicts perfor-
mance on the full set of performance metrics. Through careful k-fold cross-validation and leveraging
a diverse set of models and benchmarks, EEVEE iteratively evolves benchmark combinations that
offer high information content with respect to the entire spectrum of benchmarks, ensuring robust,
efficient and comprehensive evaluation that can be targeted to computational budgets ranging from
more “GPU Poor” users to high-budget organizations.

Taking the desiderata explained above and the resulting understanding of what a good evaluation
engine should look like, we demonstrate the effectiveness of EEVEE by tasking it with the discovery
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of benchmark combinations that offer good signal-to-GPU-time ratio, for the evaluation of model
encoders – also referred to as backbones, on their ability to adapt to new tasks, domains, and
modalities. For this purpose, we choose a pool of 20 models, varying in their pretraining schemes
(e.g CLIP, DINO, ImageNet Classification), architectures (e.g. ResNets, ViTs, ConvNext) and even
their source modalities (e.g. Whisper, BERT), which we adapt on 31 benchmarks ranging from image
classification, segmentation, relational reasoning, zero-shot image-to-text tasks, medical classification
and segmentation, video classification, and regression, using robust fine tuning recipes, and training
for 10K iterations, ensuring that the signal we get is about models that are adaptable, generalizable
and efficient in their adaptation.

By applying 20 models on 31 benchmarks and employing EEVEE on their resulting metrics, we
identify three subsets of benchmarks, each targeted to a specific computational budget range. Some of
the key benchmarks that have been selected include iWildCam, CLEVR-Math, ACDC, WinoGround,
mini-ImageNet, Fungi, ADE20K, and dtextures. We refer to the discovered subsets as Tiers, and
assign to them identifiers for their sizes, specifically, small (n=8, 12 GPU hours), base (n=15, 24 GPU
hours) and big (n=21, 36 GPU hours). We package these tiers into our comprehensive benchmarking
suite and software framework (called GATE) designed for domain, task and modality transferability
evaluation, which facilitates the transfer of neural network encoders to different modalities, domains,
and tasks. GATE’s architecture caters to the research community, enabling straightforward replace-
ment of these transferable encoders with minimal effort. With these innovations, GATE seeks to
evolve the landscape of model encoder evaluation, championing a deeper understanding of transfer
learning and model adaptability.

Contributions: 1. We introduce EEVEE, a machine learning approach for selecting subsets of
benchmarks optimized to offer maximal predictive power over a larger benchmark set. 2. We conduct
a comprehensive investigation of diverse benchmarks within the space of image, image+text and
video modalities, pinpointing those with the highest predictive value for a model’s performance
in downstream tasks. We apply EEVEE to model encoder evaluation by training 20 models on 31
benchmarks, identifying subsets of 8, 15 and 21 benchmarks that offer high signal-to-GPU-hour
ratios. 3. We pack the EEVEE-discovered subsets (of 8, 15 and 21 benchmarks out of 31 benchmarks)
into targeted benchmark packs, referred to as tiers, designed for specific compute budgets (of 12,
24 and 36 GPU hours) and project phases, and establish standard experimental settings for these
tiers. We call these collectively as the GATE Benchmarks. 4. We develop the GATE engine, a
unified benchmark suite and software framework that automates dataset downloading, preprocessing,
and pipelining for fine tuning and evaluation. GATE facilitates the incorporation of new model
encoders, adapts input modalities, fine-tunes with robust recipes, and logs critical information such
as training and evaluation metrics, power, energy, computational usage, task visualizations, and
model gradients per layer. 5. Through our extensive investigation, we identify foundation models
demonstrating superior transferability across diverse tasks. 6. We run a range of modality-shifting
transfer experiments in the standard evaluation process for ML researchers, so that future work can
potentially further probe into how pretraining on one set of modalities transfers to downstream (and
potentially different) modalities.

2 RELATED WORK

On the Diversity of Benchmarks: There is a vast array of benchmark suites in machine learning.
To the best of our knowledge, the benchmark suites relating strongly to GATE are ImageNet (9),
VTAB (74), VLMBench (78) and WILDS (27). ImageNet has been of tremendous importance and
interest to the transfer learning community. Nevertheless, there has been skepticism about overfitting
to such datasets resulting from implicitly qualifying models using the test set performance over
the years (49; 6) or the test set not being challenging enough to gauge model generalization power
(50). Although ImageNet pre-training helps transfer performance to the many-shot classification
setting (13), it provides minimal to no gains on more challenging datasets such as fine-grained
classification (28). Similarily, with a larger distribution shift, ImageNet pre-trained models was
found to offer limited benefits for medical imaging tasks due to large distribution shifts induced by
fundamental differences in data sizes, features, and task specifications; that is, lightweight models
perform comparably to standard architectures (47). To make matters worse, ImageNet performance
is less correlated with and less predictive of downstream performance on diverse tasks beyond
classification such as object detection, few-shot classification, and segmentation (13). On top of it all,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Desiderata ↓ Benchmark → ImageNet VTAB VLMBench WILDS GATE (Ours)
Diversity of Tasks
Diversity of Domains
Diversity of Modalities
Automatic Dataset Download/Preparation
Code allows for easy switch of encoders
Optimized for fast and effective research iteration
Run Time
Includes Medical Domains
Includes Environmental domains
Tiered compute budgets
GPU poor optimized

Table 1: Our Desiderata (first column) VS Benchmarks (first row). More ticks means better, from
one/red/lacking, two/gray/OK, three/green/good

when ImageNet is extended with a perturbed temporal dimension, models performance significantly
worsen (55).

On the Usability of Benchmarks: Beyond ImageNet, VTAB introduced a benchmark with a wider
diversity of tasks and domains (74). Nevertheless, it does not offer task and domain shifts offered
in GATE, such as medical segmentation and video classification and regression that are known to
be ill-measured and gauged by ImageNet alone (47; 55). That said, VTAB offers satellite imaging
and 3D tasks which GATE does not. Nevertheless, GATE as a software framework was optimized to
minimise usage friction, to take no more than 12 GPU hours on our smallest tier, and, to only require
approximately 1 hour of adding the new encoder and wrapping it into GATE wrappers for GATE to be
able to go away and take care of everything, including dataset downloading, task adapter integration
and full train/val and test cycles with logging of various key metrics. VTAB, in our experience,
requires a lot more manual work in getting the datasets, and integrating new models to be adapted.
Similarly, VLMBench (78) and WILDS (27) offer more diverse datasets beyond previous work but
neither offer a tiered approach that enables iterative development of models during pre-training, nor
produce extensible and flexible benchmarks that can be easily glued into researchers experimentation
code without friction.

On the Systematic Selection of Benchmarks: Previous work investigated the properties inherit
in multi-task benchmarks that trade-off diversity and sensitivity where the latter is how robust a
benchmark ranking is to the inclusion of irrelevant models or minute changes in the tasks themselves
(76). It was found that multi-task benchmark are unstable to irrelevant changes in tasks design.
Nevertheless, this is related to how the benchmark ranks models; whether it compares how model often
ranks higher than another in cardinal benchmarks or if the performance across tasks is averaged to
produce a single rank in cardinal ones. Meanwhile, our benchmark produces fine-grained information
to model performances across diverse tasks rather than producing specific ranking which is delegated
to the user analysis. Another complementary thread of work investigates dynamic benchmarks where
model training and data collection is interleaved to continually challenge model knowledge (56). To
the best of our knowledge, this is the first work that studies the selection of multi-task, multi-domain
benchmarks that satisfy limited compute budgets while maximizing research signal.

In summary, Table 1 shows the desiderata that we believe a good evaluation suite and framework
should have such that they can both offer the community useful signal, and also balance that with
being practical so that people can adopt it.

3 EEVEE METHODOLOGY

EEVEE is our proposed method for automating the selection of Pareto-optimal benchmark subsets.
By analyzing benchmark performance metrics, EEVEE identifies a small, highly informative subset
that maximizes information relative to the entire benchmark pool. This ensures that, as machine
learning benchmark breadth and depth increases, we will always be able to identify and select few that
offer high information about the whole. We strike a balance between providing rich evaluation signals
and maintaining simplicity, reducing computational costs and human efforts required for adopting
new benchmarks. EEVEE enables the production of a tiered evaluation engine accommodating
various computational budgets, fostering an inclusive and accessible research environment, and
improving the quality of insights derived from machine learning research while addressing reluctance
towards resource-intensive evaluation processes. This balance between efficiency, simplicity, and
signal richness presents EEVEE’s value proposition for advancing machine learning research.
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Working Principle of EEVEE: EEVEE works by building a meta-model over the performance
metrics of models sufficient both in number and diversity, on the full benchmark pool from which we
want to choose our subset. With the term benchmark in this paper we refer to a dataset + task
pairs. The meta-model is parameterized as a 2-layer MLP network with 128 hidden neurons and
leaky relu activation.

Formally, given a large benchmark pool B = {b0, b1, . . . , bK}, where B is the full set of benchmarks,
and bi are individual benchmarks therein, we have a sufficiently large and diverse pool of model
performance metrics M = {m0

0,m
0
1, . . . ,m

N
K}. Here, mj

i is the performance metric of model j on
benchmark bi. We aim to discover a subset of B of size k. This means k total benchmarks make
up the subset. If we build a meta-model g(Mselected, θ) to predict all of M given only the selected
subset Mselected, it should minimize the following loss:

LEEV EE = MSE(M, g(Mselected, θ)) (1)

In this equation, MSE is the mean squared error. M represents the full set of performance metrics of
all our models on the full benchmark pool B. The term g(Mselected, θ) represents the predictions of
the meta-model g with parameters θ when it is given the performance metrics of all models from the
selected subset of benchmarks Bselected, referred to as Mselected.

However, our main focus lies in the selected combination of performance metrics Mselected that can
generalize well on previously unseen models. To that end, we must split M into train, validation
and test sets, each consisting of performance metrics acquired from different models (e.g. train
→ ResNet50, ViT-Base, CLIP, and val → ResNext50, DINO, DeIT), and explicitly optimize the
inner loop test loss rather than the training loss, while we use the validation loss to select the best
meta-model for test. Hence the loss we wish to minimize is:

Ltest
EEV EE = MSE(M test, g(M test

selected, θ)) (2)

We need a non-differentiable method for choosing the k benchmarks in Mselected, since brute
force becomes intractable very quickly, so we employ evolutionary methods to learn the k selected
benchmarks.

This results in a bi-level optimization, with an evolutionary method on the outer loop e(Bselected),
where e is the evolutionary method, and Bselected are the benchmarks being selected – or indeed, the
genes being optimized, and a small meta-model parameterized as a neural network g(θ) that receives
a train/val split from Bselected and trains itself to do the task described in Equation 1, after which
process it is scored using the val set using the loss in Equation 2. Then, once a given candidate of
benchmarks Bselected is scored, in this way, the outer loop performs a tournament selection where
only the top 50 candidates are preserved and mutated by removing one benchmark at random, and
adding another at random. Each winning candidate mutates into 10 children, and the parent is
also preserved in the gene pool, producing a gene pool with 550 candidates for every cycle. At
initialization, we sample 1000 random combinations. We have found that 1000 is a good starting
population that is both tractable to score and facilitates the necessary diversity that enables limited
variation in results across several runs, showcasing convergent behaviour. We include full pseudocode
showcasing all the details related to how we performed EEVEE for our experiments in Algorithm 1,
2 and 3 in Figure 1.

Balancing the different metrics: In a given set of tasks, domains and datasets there can be an
imbalance in terms of how many metrics each one has and what types of metrics. Some metrics
are higher-is-better, while others are lower-is-better. We follow a simple way to balance this out,
which is, for a given metric that is higher-is-better we simply apply standard normalisation, and for
those lower is better, we first reverse their polarity and apply standard normalization. Then, for a
given dataset with meny metrics, we take the mean of those metrics, and, for a task containing many
datasets, we take the mean of the mean of the per-dataset metrics. Therefore optimizing for what can
be considered a per-task equally weighted reward. There are many other ways to do this, and those
can depend on the context and what one is trying to achieve, but we chose this general one, since our
context was such.
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Algorithm 1 Scoring
Require: Performance metrics M , Input metrics Mselected, Epochs

E = 20, Hidden dimension dhidden = 100, Learning rate α =
0.01, Weight decay λ = 0.01, Optimizer type ω = "AdamW"

Ensure: Evaluation score mean(scores)
1: Convert data to tensors x = Mselected and y = M
2: Normalize x and y
3: Initialize ShuffleSplit cross-validation kf
4: Initialize empty list scores
5: for each train, val split in kf do
6: Divide x into xtrain and xval; y into ytrain and yval
7: Build meta-model g(θ) with hidden dimension dhidden
8: Train g(θ) on xtrain and ytrain for E epochs with learning

rate α, weight decay λ, and optimizer ω
9: Predict ypred = g(xval, θ)

10: Compute mean squared error score = MSE(ypred, yval)

11: Append score to scores
12: end for
13: return mean(scores)

Algorithm 2 Mutation
Require: Bselected ⊂ B, B = {b1, b2, . . . , bK}
Ensure: New B′

selected
1: Select bremove ∈ Bselected
2: Select badd ∈ B
3: while badd ∈ Bselected do
4: Select another badd ∈ B
5: end while
6: Create B′

selected by replacing bremove with badd
7: return B′

selected

Algorithm 3 Evolution
Require: Performance metrics M = {m1

1,m
2
1, . . . ,m

N
K},

Benchmark set B, Combination size k, Number of winners
W , Number of children per winner C, Number of generations
G, Initial combinations size I , Training epochs E, Hidden di-
mension dhidden = 100, Learning rate α = 0.01, Weight decay
λ = 0.01, Optimizer type ω = "AdamW"

Ensure: Evolved benchmark combinations Bwinners
1: Initialize initial combinations Binitial with I random samples

from B of size k
2: Evaluate performance of Binitial using SCOR-

ING(M,Binitial, E, dhidden, α, λ, ω) and store scores in
S

3: Select top W combinations from S as Bwinners
4: for generation g = 1 to G do
5: Initialize a new set of combinations Bnew
6: for each combination Bselected ∈ Bwinners do
7: Add Bselected to Bnew
8: for each child c = 1 to C do
9: Mutate Bselected using MUTATION(Bselected, B) to

create a new combination B′
selected

10: Add B′
selected to Bnew

11: end for
12: end for
13: Evaluate performance of Bnew using SCOR-

ING(M,Bnew, E, dhidden, α, λ, ω) and store scores
in S

14: Select top W combinations from S as Bwinners
15: end for
16: return Bwinners

Figure 1: (a) EEVEE Scoring algorithm, Mutation algorithm, and (b) Evolution algorithm.
Architecture of Meta-Model: We attempted deeper and shallower MLPs and transformers with
various activations and hidden sizes but the chosen network balances speed of training with general-
ization. We have run experiments using 1-5 layer MLPs and transformers, with varying activation
functions and hidden sizes ranging from 8-256. We found that a 2 layer MLP with 128 hidden size
and leaky relu activation function offered the best generalization performance as a 2 layer transformer,
but was much cheaper to train. Therefore, we used the 2-layer MLP throughout.

Applying EEVEE on Model Encoder Generalization

Why Model Encoder Evaluation? A common practice across machine learning applications involves
augmenting general model encoders with task-oriented heads (13). The adaption of this paradigm
can be attributed to the computational efficiency associated with training model encoders, over
more expensive setups. Much of computer vision, as well as vision to text search and retrieval
happen using model encoders (15; 77). Similarly, various applications requiring translation from one
domain/modality/task to another require an encoder of some sort (34). Even the “decoder-only” LLM
models that have demonstrated incredible capabilities in the last few years, internally can be seen as a
series of representation encoders, a series of refinement before they reach the decoding stage (63).

Multi-modal early fusion is another topic closely related with model encoders – as research in early
fusion can be done most efficiently when trying to learn data encoders rather than a full encoder-
decoder, or decoder-only models (35). World model research in multi-modal dimensions can also take
place most efficiently within a model-encoder context. Recent works like I/VJEPA (2) for example
have paved the way for self-supervised learning which functions using model encoders, and has been
demonstrated to be more efficient and more generalizable than full pixel decoding variants.

The goal of focusing on Model Encoder Evaluation: By applying EEVEE to search for a pareto-
optimal set of benchmarks, and packaging it up in a unified framework that is built for the researcher
in mind from the ground up, one which offers out of the box automated downloading, pipeline
building, task adapters, and a very mature training and eval loop. Within this framework, we facilitate,
all relevant logging information, including key training and eval metrics, rich gradient information,
power and computational information, as well as visualizations where relevant. Finally, we support
easy switching of model encoders, no matter what source modality they come from – our framework

6
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Figure 2: GATE Framework Pipeline

dubbed GATE is a one stop shop for ones model representation research needs, both during research,
debugging, as well as at the evaluation phase.

GATE comes in three tiers small, base and big-GATE. Each having 8, 15 and 21 benchmarks within it,
and targetted towards 12/24 and 36 GPU hours on a A100 40GB. We hope that by making it very easy
for the end user and offering such rich signal for machine learning research, many researchers will
choose to use GATE, to enhance their research signal, whilst keeping the compute budgets relatively
feasible.

Preparations: Choosing Models, Benchmarks and Adaptation Processes: EEVEE will yield
better results if the space of models, benchmarks and adaptation processes we use is diverse, but also
thorough in numbers. A. Adaptation Process We wanted GATE to cover multiple domains, tasks
and modalities when shifting from the source to the target setting. For that reason we decided that if
a model encoder has an input layer that does not fit the target modality, we simply remove that input
layer and replace it with a relevant ViT-like patchification (12) followed by a linear combination for
each patch. For tasks where we have text, we would tokenize the text using BPE (54), and for tasks
where we have video we would use the model encoder on each image, to acquire an image-level
vector representation, and then follow that up with a simple 4 layer transformer that receives a
sequence of image-vector tokens, to produce a video-level embedding, on top of which we apply the
task-specific head at hand. The task-adapters we used leaned on established methods, and where
possible we just used a transformer head, which includes segmentation, relational reasoning and
video classification, with everything just using a linear head, full details available at H. After these
modifications, described in Figure 2, we use a fine tuning scheme – this decision was informed by
preliminary experiments on both full fine tuning and linear probe with a frozen backbone, in which
we found that there was a clear superiority of fine tuning over linear probing for the benchmarks we
chose in our pool. Full details of these preliminary experiments can be found in Appendix C.1. In our
preliminary experiments we were able to identify three recipes, one for ConvNet-style architectures,
one for ViT-style architectures and one for Hybrid architectures such as ConvNext and ResNext that
worked well for all tasks, details in C.1.

B. Model Pool We wanted the space of models used to cover many important pretraining schemes,
architectures, and source modalities. The details of these choices are provided next: 1. Pre-
training Task and Dataset Variation: With a consistent architecture, models were subjected
to various pretraining tasks and datasets. Model instances representing this category include
CLIPViT (46), ConvNextV2 (38), Siglip, FlexViT (7), LaionViT, ImageNet1K ViT
(11) with Random Augment, SAM-ViT, DiNoViT, EfficientFormerV2 (33) and DeiT3
(62). Further to these, we include models initialized from scratch, specifically, ViT, ResNet50
(19), FlexViT, EfficientNetV2 (60), and then fine-tuned on the GATE tasks. 2. Archi-
tectural Variation: We explored models having the same pretraining dataset (ImageNet), but
differing in their architecture. This group encompassed a mix of standard CNN models such as
EffNetV2, ResNet50, ResNext50 (71), ConvNextV2_Base (38) and transformer-based
models like EfficientFormer (33) and FlexViT (7). 3. Modality and Dataset Variation:
This axis comprised models trained on modalities other than vision such as Whisper, coming from

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

ade20k
flickr30k
nycc
coco-10k
fungi
aircraft
coco-164k
clevr
ucf
vgg
pascal
cubirds
kinetics
food101
cifar100
im

agenet1k
clevr-m

ath
om

niglot
ham

10k
dtextures
m

ini
hm

db51
chexpert
diabetic
places365
iw

ildcam
happy
acdc
nyu
w

inoground

0

0.5

1

1.5

2

Dataset Name

M
S
E 

(l
ow

er
 is

 b
et

te
r)

Figure 3: The EEVEE MSE Loss (k=1)
shows "predictiveness over the whole," with
lower values being better. Benchmarks like
iWildcam, HappyWhale, and WinoGround
test unique capabilities and may not predict
all tasks, yet EEVEE often includes at least
two of these in its top combinations along
with a “natural-image representative” such
as CIFAR100, ADE20K or Flickr30K.

an audio to text task and Bert (10), Bart (32) and Mpnet (58) coming from various text-based
tasks. These models had their original input processing systems replaced by a Vision Transformer
style embedding and were subsequently fine-tuned on the GATE tasks.

C. Benchmark Pool The benchmark pool, detailed in the Appendix, includes Image Classification
(ImageNet1k (9), CIFAR100 (29), Places365 (79), Food101 (39), HappyWhale (18)), Few Shot
Image Classification (Aircraft (40), Fungi (53), MiniImageNet (66), CUB200 (67), Describable
Features (73)), Zero Shot Text-Image Classification (Flickr30K (44), New Yorker Caption Context
(21), Winoground (61)), Visual Relational Reasoning (CLEVR (24), CLEVRMath (37)), Image
Semantic Segmentation (ADE20K (80), COCO10K (36), COCO164K (36), NYU-Depth-v2 (57),
PascalContext (41), Cityscapes (8)), Medical Image Classification (Chexpert (22), Diabetic Retinopa-
thy (17), HAM10000 (64)), Medical Segmentation (ACDC (5)), Video Classification (HMDB51 (31),
UCF-101 (59), Kinetics400 (25)) and Video Regression (iWildcam (4)).

Producing Diverse Model Performance Metrics: We apply our adaptation process on each and
every model chosen, on every benchmark in the benchmark pool. To acquire test results we ensemble
by averaging logits of the top 1, 3 and 5 validation models to produce three separate ensemble results.

D. Experimental Approach We wanted our research environment to reflect the end user, so we
can properly understand their needs, and to offer a pragmatic experimental setup of in-the-wild
researchers with little time to hyperparameter optimize, and which have to make decisions on small
amounts of preliminary experiments – someone choosing a model encoder off the shelf and adapting
it to downstream setting. For that reason, we kept any hyperparameter tuning, or human attention
when it came to specific models to a minimum. Instead, we relied on existing good recipes, and
did some preliminary experiments as explained in detail in C.1. Briefly, we discovered specific
adjustments for each architecture type: for Convolutional Architectures, we used AdamW with a
learning rate of 1e-3, and 6e-4 for segmentation tasks; for Vision Transformer Architectures, AdamW
with a learning rate of 1e-5; and for Convolutional + Transformer Hybrid Architectures, AdamW
with a learning rate of 2e-5. A plateau learning rate scheduler was configured with parameters like
mode "min", factor 0.5, patience 1000, and threshold 1e-4, allowing models to effectively choose
their own schedules based on their learning progress. This adaptive scheduling facilitated “good
enough” learning rates and enhanced performance across different architectures.

4 RESULTS

Single Benchmark Predictiveness: As demonstrated in Figure 3, using EEVEE we quantified the
predictive power of each benchmark on its own, when not in a combination with others. We have
found that ADE20K, Flickr30K, and the New York Caption Competition lead in their predictive
power, with few-shot tasks, and relational reasoning, being very close to the best in predictive power.
ImageNet1K sits squarely in the middle of the competition. Furthermore, some of the most “novel”
benchmarks like iwildcam, happy whale, ACDC, NYU and Winoground are the least predictive tasks,
Winoground being magnitudes less predictive. We argue that this is mainly due to the tasks being
“harder”, and our models being less designed for those. The results in WinoGround were bearly better
than chance for example. However, when once we move to combinations of benchmarks, these ’less’
predictive benchmarks become key contributors to better predictive power, as they represent edge
cases, as can be seen in Figures 6g 7c, 7i in Appendix J, where these have the highest importance
when removed from a given set.
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Figure 4: Degradation of predictive power when a given benchmark is removed and the meta-model
trained from scratch, for different GATE tiers.
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Figure 5: Performance of Models build with K-
best datasets: We do a search over the space of all
k for EEVEE and box plot the population summary
statistics of the top 50 combination candidates.

Predictiveness of Discovered Combinations In
Figure 5, we can see how the top-50 performing
candidate combinations perform as we vary the
number of benchmarks per combination from
1 to 26. We can see that there is a point of di-
minishing returns around the k = 8 point, after
which there appears to be some “overfitting” oc-
curing. We verified that the overfitting was a
result of having a small sample number of 20
models, to train, val and test our meta-models
with. We tried our level best to find the best
architecture and regularization schemes for our
meta-model, and this was the best we could do given available compute and (human) time. We
chose 8, 15, and 21 as the combination-threshold to make our packs out of as they satisfied the
computational budgets we set for ourselves, and they have very diverse and predictive tasks, as
can be seen in Figures 6g 7c, 7i. For full details on all the discovered top-k combinations please
look at Appendix Section J.1. Best Models based on GATE: As can be seen in Table 2, or the
Appendix extended Table 3, the best overall models are ConvNextV2, SigLIP and CLIP in that
order, with SigLIP and CLIP often exchanging ranks between themselves. However, it is worth noting
that EfficientNetV2 demonstrated exceptional performance/compute across all tasks, and even
outperformed all models in many medical tasks. Finally, ConvNet based models, and particularly
ResNext50 seem to have done exceptionally well in the edge-case scenarios of ACDC, Happy Whale
Individual identification, and general medical tasks, which indicates perhaps some sort of learning
efficiency advantages related to their inductive biases.

Limitations: We empirically evaluatd EEVEE on a relatively large pool of models and benchmarks,
however, with more models, and benchmarks it could yield much more general results. Especially
with benchmarks targetting the text and audio modalities, as well as potentially offline RL.

5 CONCLUSION

In this paper, we propose EEVEE, an evolutionary-method-based search algorithm that can discover
out of a large collection of benchmarks, the ones that can offer the most predictive value on the
original collection, for a given set of models. We apply EEVEE on the task of model-encoder
evaluation in the context of images, image-text, videos, and medical domains. As a result, we obtain
the GATE Benchmark, which consists of 3 tiers, each targeted to a particular GPU budget, from 12,
24 and 36 GPU hours, per model evaluation. We then introduce the GATE engine, which takes these
benchmarks, and offers a researcher-designed environment in which one can easily port their own
model encoder, and run the full GATE tiers, and automatically produce a variety of performance,
energy/power, hardware utilization metrics and task visualizations. We evaluated 20 representative
models ranging from image, image-text, text and audio pretrained models, on the GATE tiers, and we
discovered that ConvNextV2 and SigLIP seem to lead the pack overall, with EfficientNetV2 being an
exceptional, efficient alternative for the medical domain and for unique scenario tasks, such as Happy
Whale, ACDC and WinoGround. Finally, ConvNet based models, and ResNext50 in particular, seem

9
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Metric ↓ | Model → cvnxtv2 siglip clip flex deit laion vit dino smvit rnx50 effv2 r50a1 effrmr seffv2 sflex svit whspr sr50a1 bert bart mpnet
Img Class
CIFAR-100 Acc@1 84.2 74.6 76.9 75.1 66.7 75.1 66.6 55.7 50.3 69.3 67.3 34.3 15.6 37.6 10.3 7.8 11.0 15.9 14.5 9.0 1.0
Food-101 Acc@1 92.9 91.6 93.3 89.1 87.3 91.4 86.5 84.8 75.7 86.1 86.4 69.4 61.6 36.5 24.5 25.8 17.0 16.3 18.7 11.6 8.5
HWhale Individual Acc@1 75.6 31.7 35.2 48.4 23.7 21.0 27.5 9.1 3.6 78.7 77.1 5.2 4.4 33.2 2.8 2.5 2.2 2.1 2.3 1.7 1.5
HWhale Species Acc@1 99.8 99.8 99.7 99.8 99.5 99.7 99.7 99.2 95.4 99.7 99.7 92.1 92.8 96.5 76.5 74.5 64.3 65.8 71.2 59.3 62.9
ImageNet-1K Acc@1 85.3 81.9 76.0 82.3 82.1 74.1 68.3 77.9 75.5 77.6 73.5 72.5 44.6 16.9 3.2 2.4 2.2 1.3 1.5 0.8 0.2
ImageNet-1K Acc@5 96.8 95.8 93.7 95.5 94.7 93.1 89.1 93.0 90.8 93.3 91.4 90.5 72.5 37.3 10.1 8.2 7.7 4.7 5.2 3.2 1.2
Places365 Acc@1 54.7 53.5 54.1 52.1 49.0 53.7 47.5 47.3 27.1 51.8 51.5 40.9 25.2 26.6 9.0 8.6 7.5 5.0 5.2 3.0 2.2
Task Mean 84.2 75.6 75.6 77.5 71.8 72.6 69.3 66.7 59.8 79.5 78.1 57.8 45.2 40.7 19.5 18.6 16.0 15.9 17.0 12.6 11.1
Few-Shot Img Class
Aircraft Acc@1 96.7 96.6 97.4 95.9 95.3 96.7 96.3 94.4 92.9 91.6 90.6 86.2 78.2 59.2 54.9 50.4 55.1 58.2 61.2 60.8 57.2
CUBirds Acc@1 98.0 97.9 97.2 96.4 96.2 96.6 95.9 94.4 93.4 92.8 92.1 89.4 86.3 52.5 50.0 45.2 44.4 31.9 48.4 50.3 48.5
DTextures Acc@1 85.0 85.2 88.6 78.9 81.9 86.1 80.8 79.4 81.9 77.7 60.3 77.2 68.5 46.6 50.2 50.5 50.0 33.1 44.6 49.8 38.3
Fungi Acc@1 85.8 85.6 85.7 83.7 80.6 85.2 81.3 77.4 77.7 74.1 73.7 67.1 59.2 27.6 38.0 37.0 33.9 28.2 32.9 33.8 7.6
Mini-Imagenet Acc@1 97.0 96.2 93.1 99.1 98.8 90.8 89.9 98.7 92.9 94.1 63.2 93.2 90.9 36.7 45.9 47.2 44.8 34.2 39.7 37.3 36.8
Omniglot Acc@1 98.6 98.9 99.0 98.9 98.7 98.9 98.8 98.6 98.6 98.5 98.7 95.5 95.8 98.2 93.4 93.6 82.9 80.5 90.2 84.1 90.7
VGG Flowers Acc@1 99.7 98.9 98.6 96.7 96.2 97.0 95.9 95.5 93.4 87.9 91.3 89.3 90.6 59.6 69.4 69.4 63.0 53.4 59.1 59.4 60.8
Task Mean 94.4 94.2 94.2 92.8 92.5 93.1 91.3 91.2 90.1 88.1 81.4 85.4 81.4 54.3 57.4 56.2 53.4 45.6 53.7 53.6 48.6
Img Seg
ADE20K mIoU 46.8 47.1 44.0 43.7 37.8 43.4 33.2 33.3 25.9 18.2 14.2 11.7 9.8 1.5 0.5 0.4 0.6 0.4 0.4 0.5 0.4
Cityscapes mIoU 62.3 69.8 67.6 67.5 63.9 67.7 63.9 61.4 59.5 40.8 64.2 40.2 2.5 46.7 22.8 23.5 17.1 18.6 2.7 2.0 2.7
COCO-10K mIoU 26.9 39.5 35.6 35.1 32.8 33.6 29.8 31.0 28.6 18.4 10.2 5.7 14.0 1.1 0.9 0.8 0.4 1.6 0.1 1.3 0.1
COCO-164K mIoU 32.7 36.7 33.8 33.0 30.5 32.4 27.0 28.9 25.7 16.8 9.7 4.7 13.7 1.0 0.7 0.7 0.5 0.7 0.1 1.1 0.1
NYU mIoU 7.5 7.7 7.8 6.9 12.2 5.7 6.1 12.1 11.0 5.9 8.3 6.4 10.5 6.8 3.5 3.7 2.9 7.2 5.4 5.0 5.4
Pascal mIoU 32.8 34.8 35.7 30.6 31.4 28.3 27.5 29.8 24.0 16.6 11.7 6.8 14.0 1.7 1.3 1.1 1.4 2.3 1.0 1.4 0.9
Task Mean 34.8 39.3 37.4 36.2 34.8 35.2 31.3 32.8 29.1 19.5 19.7 12.6 10.8 9.8 4.9 5.0 3.8 5.1 1.6 1.9 1.6
Img Relational
CLEVR Acc@1 52.5 52.7 52.7 52.1 52.6 52.6 52.8 52.8 51.6 50.1 40.6 49.3 45.2 39.3 46.1 45.9 46.4 44.9 42.6 42.5 41.2
CLEVR Colour 35.4 36.1 36.4 35.0 35.5 35.6 35.3 36.1 34.2 26.8 15.7 24.7 14.7 12.5 25.7 29.4 28.8 22.8 13.2 13.0 13.2
CLEVR Count 45.8 45.8 45.8 45.9 45.8 45.7 45.7 45.6 45.6 45.3 39.0 45.1 44.8 37.9 45.1 44.7 44.8 44.9 44.7 44.7 43.0
CLEVR Material 60.5 60.6 60.5 60.0 60.5 60.6 61.4 61.3 60.2 58.6 52.1 57.5 53.7 49.8 53.7 51.7 54.0 53.0 49.8 50.5 49.9
CLEVR Shape 52.1 52.4 52.5 51.1 52.2 52.4 52.9 51.2 49.9 50.2 34.3 50.2 44.8 33.3 35.8 34.9 36.1 34.6 34.6 33.7 33.4
CLEVR Size 61.0 61.1 61.3 60.7 61.1 60.8 62.0 62.3 60.9 59.6 53.5 58.3 55.7 50.6 56.2 55.2 55.2 54.6 54.2 54.1 50.1
CLEVR Yes/No 60.7 60.5 60.8 60.6 60.5 60.7 60.4 60.4 60.2 59.8 53.3 59.9 59.6 51.4 60.1 59.2 59.5 59.8 59.5 59.3 58.6
CLEVR-Math Acc@1 79.3 65.9 68.8 59.9 73.7 62.9 60.5 59.3 58.3 55.6 44.0 56.0 56.6 30.2 46.9 46.5 46.2 45.7 44.8 42.1 36.4
Task Mean 55.9 54.4 54.9 53.1 55.2 53.9 53.9 53.6 52.6 50.8 41.6 50.1 46.9 38.1 46.2 45.9 46.4 45.0 42.9 42.5 40.7
Medical Class
Chexpert APS Macro 61.6 61.0 61.2 62.6 62.3 60.9 61.2 59.9 61.5 59.8 60.2 54.1 55.2 48.0 33.9 34.1 34.3 35.7 36.9 33.7 33.0
Chexpert AUC Macro 82.5 82.5 82.3 83.2 82.9 82.5 82.4 81.8 82.8 81.1 81.9 79.1 79.9 74.7 64.7 65.1 65.5 67.0 67.6 65.3 64.9
Chexpert BS Macro 84.3 84.4 84.5 85.1 86.2 84.6 84.9 85.6 87.0 86.3 84.8 86.1 86.4 84.6 82.9 82.9 83.0 83.1 83.1 82.8 82.8
Diabetic APS Macro 56.9 57.2 56.4 56.3 54.2 56.4 54.4 51.9 45.2 55.6 58.7 35.5 36.6 20.6 21.6 21.5 22.5 23.3 22.4 21.2 21.3
Diabetic AUC Macro 87.5 86.7 86.0 85.7 85.0 85.3 84.7 83.8 81.2 85.6 86.1 76.0 79.0 53.4 55.7 55.7 57.8 61.3 59.4 55.1 54.0
Diabetic BS Macro 94.5 94.0 93.9 93.9 93.8 93.6 93.7 93.6 93.0 93.9 94.2 92.3 92.6 91.6 91.3 91.4 91.4 91.5 91.8 91.6 91.6
HAM10K APS Macro 94.5 93.3 91.4 92.2 91.3 92.1 91.6 90.8 83.4 87.9 87.1 43.7 46.9 38.8 38.0 35.9 32.2 48.5 50.6 37.6 32.6
HAM10K AUC Macro 99.1 98.6 98.7 98.5 98.6 98.6 98.7 98.5 97.8 97.9 97.5 89.3 90.1 85.6 86.1 84.6 82.8 91.0 91.1 85.9 83.3
HAM10K BS Macro 98.4 98.1 97.8 98.1 98.0 97.9 97.9 97.9 97.2 97.6 97.2 95.2 95.5 94.6 94.5 94.4 94.3 95.0 95.2 94.4 94.2
Task Mean 84.4 84.0 83.6 83.9 83.6 83.6 83.3 82.6 81.0 82.9 83.1 72.4 73.6 65.8 63.2 62.9 62.6 66.3 66.4 63.1 62.0
Medical Seg
ACDC Dice Score 63.1 48.1 51.3 45.9 43.8 48.0 50.4 47.7 44.6 44.2 61.0 40.2 18.7 46.0 16.5 18.5 32.2 28.7 23.2 26.2 25.3
Task Mean 63.1 48.1 51.3 45.9 43.8 48.0 50.4 47.7 44.6 44.2 61.0 40.2 18.7 46.0 16.5 18.5 32.2 28.7 23.2 26.2 25.3
Img to Txt ZS
Flickr30K Img2Txt 6.3 6.3 7.0 5.9 5.6 6.8 5.9 5.2 4.5 4.1 3.7 4.7 4.2 1.6 1.8 2.0 1.9 2.0 1.9 1.8 1.6
Flickr30K Txt2Img 5.7 5.9 6.0 5.3 5.1 6.5 6.0 5.1 5.0 3.8 4.0 4.2 3.9 1.7 1.8 2.0 2.2 2.3 1.9 1.7 1.6
NYCC Img2Txt 6.9 6.6 6.9 5.8 6.5 6.9 6.4 6.0 4.7 4.9 4.1 4.6 4.2 1.6 2.1 1.8 1.9 2.1 2.0 1.6 1.6
NYCC Txt2Img 6.1 5.9 6.4 5.5 6.0 6.2 6.4 5.8 4.8 4.3 4.1 3.9 3.7 1.6 2.0 1.7 2.0 2.4 1.9 1.8 1.6
Winoground Img2Txt 51.0 53.4 59.5 49.7 50.0 50.3 49.5 43.5 53.8 61.9 50.0 48.9 47.3 43.9 50.0 41.3 50.0 53.2 49.6 50.1 50.4
Winoground Txt2Img 50.0 55.2 56.2 53.1 50.0 55.5 48.3 54.2 48.6 54.8 50.0 49.6 52.4 52.8 50.0 54.2 51.8 52.2 51.8 48.8 52.1
Task Mean 21.0 22.2 23.7 20.9 20.5 22.0 20.4 20.0 20.2 22.3 19.3 19.3 19.3 17.2 18.0 17.2 18.3 19.0 18.2 17.6 18.1
Video Class
HMDB-51 Acc@1 52.5 40.7 40.6 32.2 39.3 24.9 27.4 32.8 33.1 5.6 11.5 1.8 2.1 3.8 8.3 7.9 6.1 5.4 6.4 7.5 4.0
Kinetics Acc@1 48.8 44.2 51.4 43.7 40.3 44.6 33.2 36.4 25.8 2.7 1.0 0.2 0.3 0.4 2.0 1.6 1.0 0.5 0.3 0.3 0.3
UCF-101 Acc@1 84.4 75.1 69.9 63.2 75.0 63.4 58.8 66.6 48.7 19.7 11.1 2.8 0.8 2.1 15.2 13.3 6.6 8.7 6.5 7.0 2.7
Task Mean 61.9 53.3 54.0 46.4 51.5 44.3 39.8 45.2 35.9 9.4 7.8 1.6 1.1 2.1 8.5 7.6 4.6 4.9 4.4 4.9 2.3
Video Reg
IWildCam MAE Score 55.2 53.1 56.0 54.9 54.1 46.1 52.1 49.1 45.3 34.6 35.8 37.3 13.9 29.6 41.3 39.3 36.3 40.3 27.5 38.7 29.2
Task Mean 55.2 53.1 56.0 54.9 54.1 46.1 52.1 49.1 45.3 34.6 35.8 37.3 13.9 29.6 41.3 39.3 36.3 40.3 27.5 38.7 29.2
GATE
Full GATE Mean 69.0 66.8 66.8 64.6 64.3 63.4 62.1 62.2 58.5 56.3 54.4 48.4 42.8 39.6 37.5 37.2 36.2 36.9 35.0 34.9 31.8
Big GATE Mean 76.6 74.5 74.4 72.8 72.0 71.9 70.6 70.0 66.8 66.7 64.8 58.5 53.1 46.8 43.8 43.4 41.9 41.5 40.9 39.8 37.1
Base GATE Mean 68.3 65.6 65.7 62.6 63.7 60.7 60.2 60.7 58.6 55.1 53.5 48.2 42.8 38.0 36.5 36.3 35.4 36.6 34.8 34.8 30.4
Small GATE Mean 77.7 74.9 74.6 73.3 72.4 71.2 68.9 69.1 65.3 65.7 61.7 58.5 49.3 40.5 35.7 35.4 35.9 35.3 34.1 34.4 30.4
Full GATE Rank 1.0 3.0 2.0 4.0 5.0 6.0 8.0 7.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 18.0 17.0 19.0 20.0 21.0
Big GATE Rank 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0
Base GATE Rank 1.0 3.0 2.0 5.0 4.0 7.0 8.0 6.0 9.0 10.0 11.0 12.0 13.0 14.0 16.0 17.0 18.0 15.0 20.0 19.0 21.0
Small GATE Rank 1.0 2.0 3.0 4.0 5.0 6.0 8.0 7.0 10.0 9.0 11.0 12.0 13.0 14.0 16.0 17.0 15.0 18.0 20.0 19.0 21.0

Table 2: Summary of experiments: Black/Bold best model, Green second best, Blue third best, and
red the worst performing model. Models prefixed with ’s’ refer to ’from scratch’ trained models,
rather than pretrained. For the full table look at Appendix Table 3

to have a lot more learning efficiency, as they are the best adapted models on very novel domains,
such as Happy Whale individual prediction challenge, ACDC and medical tasks.
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A END-USER GUIDELINES

For an end-user to use GATE, they need to:

1. Install the GATE framework python package, as described in the Github repo’s readme page.

2. Choose a path for implementing the new foundation model encoder they wish to evaluate.
This is either cloning the full GATE repo and modifying existing components directly,
or, importing the GATEncoder and GATEModel classes from GATE, and wrapping up
their model within it. Doing so requires the researcher to implement a relevant forward
function that can take in the modalities their model needs to process, as well as defining a
configuration that tells GATE what modalities a model can receive and output features on,
as well as any transforms needed for a batch to be ready for their model.

3. The user chooses a GATE tier to use (from smallGATE, baseGATE and bigGATE).
Based on the configuration defined by the user in step 2.

4. GATE generates a list of commands, each representing an experiment that needs to be run,
and can then run these commands on your local GPU box, parallelizing the tasks, one on
each available GPU, or, can provide a list of commands or json file that one can use to run
these commands on a GPU cluster, or other hardware.

5. GATE emits a wandb project, with metrics, visualizations and other measures, allowing easy
tracking of experiments, and sharing thereof, as well as huggingface model weights for each
model being trained – which is also used to achieve a stateless execution.

6. Once the experiments are completed, one can invoke the produce-analysis.py file
within GATE to get tables and figures that analyse the data, similar to what appears in
this paper. Those results can then be used to report results in a paper, or, be used to make
decisions for production models.

This process ensures the GATE framework is aware of what a model’s supported modalities are, as
well as how to produce modality-specific features, given the model. Once this is completed, the user,
with a single line of code, can select a GATE tier, and launch all jobs needed to produce results for that
tier. Importantly, GATE is made to facilitate and encourage foundation models that are diverse in their
capabilities, and allow the researchers to focus on what matters – that is, designing and training their
foundation model – rather than spending the majority of their time building and optimizing evaluation
boilerplate. Furthermore, the diversity of signal that GATE provides allows better understanding of a
given model’s strengths and weaknesses, which as a result makes the research, review and iteration
process of the field as a whole more efficient. This is because there is a consistent boilerplate that
runs all models, with broad signal that reduces probability of making erroneous conclusions – both in
the overly optimistic, or overly pessimistic side of things.

A.1 PRINCIPAL USE CASES

1. Model Development and Iteration: GATE serves as a valuable tool during the model
research and development phase. By integrating the model into GATE and running either
the smallGATE or baseGATE tiers, developers can obtain a comprehensive and robust
performance evaluation of their model across diverse domains, tasks, and modalities. Worth
noting that GATE allows easy inclusion of foundation models pretrained on images, video,
audio, text, etc, to be fine-tuned on pixel-based tasks. It achieves this by replacing a
model’s root layer / embedding layer, with one appropriate for a given task’s modality, and
adding on top a relevant task adapter head.

2. Model Evaluation for Machine Learning Research: GATE enhances the communication
of research findings and their potential applications, a vital aspect of scientific collabo-
ration. By using GATE as a benchmark, even at the most cost-efficient GPU hour level
of smallGATE, the clarity and depth of future ML papers can be significantly improved.
GATE’s explicit evaluation of modality, domain, and task shifts in a given foundation model
provides a nuanced and informative perspective on a model’s true capabilities, offering a
more detailed understanding of a model’s strengths and weaknesses than optimizing a single
metric, such as ImageNet validation error.
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B RESULT EXTRAS

The results were logged in WandB, and then further processed after all experiments were completed
to generate the tables and figures in this paper. Much of the logged information outside of testing
metrics were not used for any of the figures and tables in this paper. The full set of experiments and
all the logged results can be found at our wandb gate project repo2.

B.1 RESULT PROCESSING

Once all experiments were completed, we queried our wandb project repository and returned test
results from all our experiments, if an experiment name was duplicated, we used the latest entries,
and, for each experiment type there existed three independent runs. We averaged the results of any
metrics across such independent runs to acquire a better approximation to the true performance of
those models.

C PRELIMINARY EXPERIMENTS DETAILS

C.1 PRELIMINARY EXPERIMENTS

First, we trained models on ImageNet1k, CIFAR100, CLEVR, ADE20K, CityScapes, and, ACDC
for 5K iterations, using cosine annealing learning schedule or plateau annealing, with AdamW,
weight decays varying from 0.1 - 0.0001, and applied models from each major architecture category –
specifically, the CLIPViT, ImageNet pretrained ViT, ResNext, ResNet and ConvNextV2. The results
from these experiments pointed to the fact that there exists one general and good recipe for each
architecture style. The recipes that we discovered were as follows:

C.1.1 ACROSS ARCHITECTURE SETTINGS

Unless otherwise stated, the settings here are applied universally in all experiments.

Optimizer: AdamW, weight decay 0.01, plateau annealing with patience 1000, relative scaling and
scale factor 0.5, and, threshold 0.0001.

Training Details: Training iterations: 10K, validate every 500 iterations.

Test Details: Top-3 validation models (across all validated checkpoints) are ensembled by prediction
averaging.

C.1.2 ARCHITECTURE SPECIFIC SETTINGS

Convolutional Architectures: Optimizer: AdamW, learning rate 1e-3, and for segmentation tasks
only, we used learning rate 6e-4

Vision Transformer Architectures: Optimizer: AdamW, learning rate 1e-5

Convolutional + Transformer Hybrid Architectures Optimizer: AdamW, learning rate 2e-5

The above recipes were what we used throughout all our experiments unless otherwise stated.

D GATE GUIDING PRINCIPLES

The fundamental values driving the design decisions behind GATE are the following:

1. Maximizing Generalization Signal: GATE is designed to provide a high signal-to-noise
ratio concerning a model’s ability to generalize in diverse downstream contexts, that vary in
domain, task and modality. This allows for a more robust assessment of a model’s capacity
for adaptation and versatility. By noise here we refer to how clear a given signal response is.
For example, an image classification test accuracy signal on ImageNet, would provide clear

2omitted until double blind is over
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signal with respect to the natural domain and the classification task, but would be blurry for
more compositional, object disentanglement and relational tasks, such as segmentation, or,
visual question answering.

2. Time Efficiency: Acknowledging the importance of computational resources and time,
GATE operates within set benchmarks of 12, 24, and 36 GPU hours (established on A100 @
40GB). These set timeframes ensure GATE’s assessments are both thorough and expedient.

3. Minimizing Usage Friction: The framework supporting GATE is designed to be user-friendly,
enabling easy integration of new backbones and facilitating smooth experimentation. This
low-friction approach ensures a streamlined experience when using GATE, making the
process of evaluation more efficient.

We argue that a good balance of the above can generate a pragmatic, yet thorough foundation model
evaluation suite, that will, importantly, be of real use to most researchers in the field.

E DEFINING THE GATE BENCHMARK

GATE is a comprehensive evaluation engine designed to advance the development of more general
machine learning models. It improves on existing benchmarks by enabling the evaluation of models
across diverse modalities, domains, and tasks.

GATE is composed of three key components. The first is a benchmark pool, a broad collection of
datasets, tasks, and processes that measure a model’s performance across various domains, tasks,
and modalities. The second component is a set of benchmark tiers, which are meticulously curated
subsets from the GATE benchmark pool, tailored to specific compute budgets and project phases.
The final, and is a software framework, designed to seamlessly integrate new foundation models and
execute the GATE tiers, thereby enabling efficient performance evaluation across a diverse range of
downstream modalities, domains, and tasks. Practically, GATE is directed towards machine learning
researchers and developers as a means to efficiently, and with little friction, get broad signal about
how their model performs after transfer in diverse contexts, specifically selected for their empirically
evaluated high signal-to-noise ratio with respect to predictive power in how a model performs in
previously unseen contexts.

Building GATE was a careful balancing act. We needed to respect specific time budgets while also
aiming for a wide variety of evaluation scenarios. Our approach was as follows:

1. Select a diverse set of learning contexts, spanning multiple domains, tasks and modalities.
We refer this as the Benchmark Pool.

2. Select a broad set of key foundation models, varying in their architecture, pretraining scheme
and source modality. We refer to this as the Model Pool.

3. Fine tune each of the models in the model pool, on each of the contexts in the benchmark
pool. Evaluate trained models on each context’s test sets.

4. Use the test set results acquired to quantify the predictive power each benchmark holds with
respect to previously unseen benchmarks, both at the individual level and the collection
level. We call this measure, the downstream generalization predictability measure (DGPM).

5. Use the DGPM values of the various combinations of benchmarks to build the three GATE
tiers, selecting combinations of benchmarks that can provide the most information within a
target time budget.

We elaborate on each of the above steps in the following subsections.

F BENCHMARK POOL SELECTION DETAILS

Medical Image Classification: Medical data are known to present a substantial shift in both domain
and even modality depending on their format. We have selected datasets that not only pose significant
challenges for foundation models but also align with the broader imperative to deliver real-world
benefits downstream.
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Chexpert: A dataset comprising a challenging array of chest x-rays annotated with findings critical to
diagnosing thoracic diseases. It tests models on their ability to navigate complex, multi-label medical
data, encapsulating the kind of nuanced decision-making that AI must augment in clinical settings.

Diabetic Retinopathy Classification: Early detection of diabetic retinopathy from retinal images
is a public health priority; models fine-tuned on this dataset can have immediate implications for
preventing vision loss on a global scale. This dataset requires models to decipher fine-grained,
progressive changes indicative of the disease, reflecting the precision necessary for medical AI
applications.

HAM10000 (Human Against Machine with 10000 dermatoscopic images): The dataset provides
a diverse spectrum of skin lesion images vital for differentiating between benign and malignant
conditions. Incorporating this dataset not only challenges the pattern recognition prowess of AI but
also contributes to the advancement of dermatology through machine learning technologies.

Metrics: We collect Average Precision Score (APS), Area Under the Receiver Operating Char-
acteristics Curve (AUC), and Brier Score (BS) both overall (i.e. macro) as well as for individual
pathologies/classes.

Medical Segmentation: This category evaluates foundational models’ ability to generalize from
natural to medical image modalities and to perform domain-specific tasks that require precision and
complex spatial understanding:

ACDC (Automated Cardiac Diagnosis Challenge): This dataset is aimed at assessing models’
generalization to the medical domain, particularly the transferability of representations for segmenting
anatomical structures in cardiac MRI images. By focusing on the heart’s intricate anatomy, ACDC
tests the models’ ability to adapt to clinically relevant shapes and patterns—a shift from common
visual recognition tasks to precise medical delineation. Metrics: We collect dice loss, mIoU, mean
accuracy and overall accuracy.

G BENCHMARK POOL DETAILS

Having a set of diverse benchmarks ranging in challenge factor, as well as modality, task and domain
shift was key. We explain in more detail why why consider these factors important in Appendix in
more detail. We refer to this as our benchmark pool, and it consists of the following:

Image Classification: We employ ImageNet1k (9), CIFAR100 (29), Places365 (79), and Food101
(39) to cover diverse natural image domains. Additionally, we include HappyWhale (18) for a more
challenging domain shift, aiding in wildlife research and providing an interesting test case for model
evaluation.

Few Shot Image Classification: We use the MetaDataset task recipe on the Aircraft (40), Fungi
(53), MiniImageNet (66), CUB200 (67), and Describable Features (73) datasets to evaluate task
and domain shift robustness for an evaluation model.

Zero Shot Text-Image Classification: Another key setting is that of zero-shot text-image classifica-
tion, on which many current key models were trained and evaluated (46). We utilize Flickr30K, New
Yorker Caption Context (a challenging humor task), and Winoground–a task requiring the model
to match two texts with their corresponding images, focusing on compositional differences.

Visual Relational Reasoning: A context where earlier models, such as ResNet50 (19) had low
performance without layers with associative inductive biases (e.g., relational neural networks or
transformers (52; 65)). This ensures we are aware of any trade-offs in relational compositional
abilities in our models. We use CLEVR (24) and CLEVRMath (37).

Image Semantic Segmentation: Essential for various real-world applications, serving as an indicator
of a model’s ability to retain spatial information and identify objects at a per-pixel level. ADE20K
(80), COCO10K (36), COCO164K (36), NYU-Depth-v2 (57), PascalContext (41), and Cityscapes
(8).

Medical Image Classification: Medical data exhibit substantial domain and modality shifts, posing
significant challenges for machine learning models while aligning with the imperative to deliver
real-world benefits.Chexpert (22) (chest X-rays annotated for thoracic disease diagnosis), Dia-
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betic Retinopathy Classification (17) (retinal images for early detection of diabetic retinopathy),
HAM10000 (64) (dermatoscopic images for differentiating skin lesions).

Medical Segmentation → ACDC (Automated Cardiac Diagnosis Challenge) (5): This dataset as-
sesses models’ generalization to the medical domain, particularly the transferability of representations
for segmenting anatomical structures in cardiac MRI images. By focusing on the heart’s intricate
anatomy, ACDC tests the models’ ability to adapt to clinically relevant shapes and patterns.

Video Classification: Video classification tasks test models on their temporal generalization abilities
and require an understanding of not only individual frame content but also the transition and context
between frames. HMDB51 (Human Motion Database) (31), UCF-101 (University of Central
Florida - 101 action categories) (59), Kinetics400 (25).

Video Regression: Where classification tasks gauge categorical distinctions, video regression tasks
assess models’ ability to make continuous numerical predictions from temporal data, serving as an
indicator of a model’s capability to process and quantify dynamic content. iWildcam (International
Wildlife Camera Trap Challenge) (4): This dataset targets estimating animal species abundance from
videos and is a direct test of modality and task shift, and showcases a models’ potential impact on
ecological monitoring and species conservation efforts.

1. Modality shifting contexts: Contexts where the foundation model is asked to learn to do
well at a task that requires understanding of a previously unseen modality. More specifically,
assuming a foundation model has been trained on natural images, this would be transferring
to medical imaging, video, audio and test contexts. This would shed light on the performance
of a model’s middle layers.

2. Task shifting contexts: Contexts where a model is tasked with performing a previously
unseen task, for example, transferring from classification to segmentation or relational
reasoning.

3. Domain shifting contexts: Contexts where a model is required to perform a task on a
domain that is different from the one it was trained on. For example moving from natural
images on ImageNet at 224x224 resolution to black and white Omniglot characters at 28x28
resolution, or, moving from ImageNet to images of fungi. More extreme domain shifts
would be going from natural images to medical images for example.

H TASK ADAPTER DETAILS

Classification: For classification after a given encoder’s output features we apply a linear layer as is
standard.

Segmentation: We extract features after every stage within an encoder, i.e. before each pooling layer
in conv-net architectures, and, after a transformer block in ViT-derivative encoders. We then upscale
those to 64x64 before we concatenate and feed to a transformer decoder.

Relational Reasoning: We process images with our designated encoder, and text with a CLIP text
encoder. We then concatenate the features, and feed into a transformer that considers receives as
tokens each feature map of the image encoder and each token in the CLIP text encoder output,
therefore allowing relational associations between these to be learned. After the transformer, we take
the mean of the output tokens and apply a linear layer.

Few Shot Img Classification: We use the encoders as they are and employ a prototypical network as
our method of achieving few shot learning.

Image to Text Zero Shot: We use the standard CLIP cosine distance-based matching, and we employ
BERT embeddings for text and for images we apply our chosen encoder.

Video Classification and Regression: We process each frame with our chosen encoder which
produce one vector per frame, and then use a 4-layer transformer to process the temporal axis before
we apply a linear layer mapping to our classes or our single value output.
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I EXPERIMENTAL DETAILS

Experimental Environment Details: GPUs: 4 x A6000 Ada @ 48GB, CPUs: 128 Core AMD
EPYC 7713 64-Core Processor, RAM: 1 TB, HD: 15TB NVME. All experiments were done with
BF16 precision.

J ADDITIONAL RESULTS

J.1 FULL DETAILS ON DISCOVERED COMBINATIONS
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Figure 6: Degradation of predictive power when a given benchmark is removed and the meta-model
trained from scratch, for different best combinations in varying k.
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Metric ↓ | Model → cvnxtv2 siglip clip flex deit laion vit dino smvit rnx50 effv2 r50a1 effrmr seffv2 sflex svit whspr sr50a1 bert bart mpnet

Img Class
CIFAR-100 Acc@1 84.2 74.6 76.9 75.1 66.7 75.1 66.6 55.7 50.3 69.3 67.3 34.3 15.6 37.6 10.3 7.8 11.0 15.9 14.5 9.0 1.0
CIFAR-100 Acc@5 97.4 93.8 95.1 94.4 90.9 93.9 89.7 83.6 80.1 91.9 90.7 65.9 42.3 67.6 30.6 25.5 31.6 40.2 38.1 29.2 5.0
CIFAR-100 Loss 0.6 0.9 0.8 0.9 1.2 0.9 1.2 1.6 1.9 1.2 1.3 2.5 3.5 2.4 3.9 4.1 3.9 3.6 3.7 4.0 4.6
Food-101 Acc@1 92.9 91.6 93.3 89.1 87.3 91.4 86.5 84.8 75.7 86.1 86.4 69.4 61.6 36.5 24.5 25.8 17.0 16.3 18.7 11.6 8.5
Food-101 Acc@5 99.0 98.7 99.1 98.1 97.8 98.7 97.4 97.0 93.5 97.2 97.1 91.0 86.6 66.1 51.0 52.8 41.1 38.9 43.0 32.2 26.1
Food-101 Loss 0.3 0.3 0.2 0.4 0.4 0.3 0.5 0.5 1.0 0.6 0.6 1.1 1.5 2.6 3.2 3.1 3.6 3.6 3.5 3.9 4.1
HWhale Individual Acc@1 75.6 31.7 35.2 48.4 23.7 21.0 27.5 9.1 3.6 78.7 77.1 5.2 4.4 33.2 2.8 2.5 2.2 2.1 2.3 1.7 1.5
HWhale Individual Acc@5 84.6 49.5 53.9 64.5 40.9 37.9 46.0 22.0 11.0 86.7 83.6 14.8 11.9 52.5 9.2 8.1 6.9 6.8 7.6 5.7 5.4
HWhale Individual Loss 1.6 4.6 4.3 3.6 4.9 5.1 4.7 5.9 6.7 1.3 1.5 6.4 6.6 3.9 7.0 7.1 7.3 7.3 7.2 7.5 7.4
HWhale Species Acc@1 99.8 99.8 99.7 99.8 99.5 99.7 99.7 99.2 95.4 99.7 99.7 92.1 92.8 96.5 76.5 74.5 64.3 65.8 71.2 59.3 62.9
HWhale Species Acc@5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.6 100.0 100.0 98.9 99.1 99.8 96.1 95.8 92.0 92.6 94.2 89.8 91.1
HWhale Species Loss 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.3 0.2 0.1 0.8 0.8 1.2 1.1 0.9 1.4 1.2
ImageNet-1K Acc@1 85.3 81.9 76.0 82.3 82.1 74.1 68.3 77.9 75.5 77.6 73.5 72.5 44.6 16.9 3.2 2.4 2.2 1.3 1.5 0.8 0.2
ImageNet-1K Acc@5 96.8 95.8 93.7 95.5 94.7 93.1 89.1 93.0 90.8 93.3 91.4 90.5 72.5 37.3 10.1 8.2 7.7 4.7 5.2 3.2 1.2
ImageNet-1K Loss 0.6 0.8 1.0 0.8 0.8 1.1 1.3 1.0 2.3 1.0 1.2 1.1 2.8 4.3 6.0 6.1 6.1 6.5 6.4 6.6 6.8
Places365 Acc@1 54.7 53.5 54.1 52.1 49.0 53.7 47.5 47.3 27.1 51.8 51.5 40.9 25.2 26.6 9.0 8.6 7.5 5.0 5.2 3.0 2.2
Places365 Acc@5 85.3 84.1 84.7 83.3 80.8 84.3 79.9 79.5 59.9 82.9 82.6 73.5 55.2 55.5 26.3 25.0 22.4 16.4 16.4 11.0 9.0
Places365 Loss 1.7 1.7 1.7 1.8 1.9 1.7 2.0 2.0 3.1 1.8 1.8 2.3 3.3 3.2 4.5 4.6 4.6 5.0 5.0 5.3 5.3
Task Mean 88.0 79.6 80.1 81.9 76.1 76.9 74.8 70.8 63.5 84.6 83.4 62.4 51.0 52.2 29.1 28.1 25.5 25.5 26.5 21.4 17.8
Few-Shot Img Class
Aircraft Acc@1 96.7 96.6 97.4 95.9 95.3 96.7 96.3 94.4 92.9 91.6 90.6 86.2 78.2 59.2 54.9 50.4 55.1 58.2 61.2 60.8 57.2
Aircraft Loss 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.4 1.2 0.4 311.5 44.1 2.1 2.1 1.6 2.3 2.5 1.2 1.6
CUBirds Acc@1 98.0 97.9 97.2 96.4 96.2 96.6 95.9 94.4 93.4 92.8 92.1 89.4 86.3 52.5 50.0 45.2 44.4 31.9 48.4 50.3 48.5
CUBirds Loss 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.3 0.4 0.5 0.4 33.7 2.5 3.6 3.5 2.3 8.8 3.2 2.0 1.6
DTextures Acc@1 85.0 85.2 88.6 78.9 81.9 86.1 80.8 79.4 81.9 77.7 60.3 77.2 68.5 46.6 50.2 50.5 50.0 33.1 44.6 49.8 38.3
DTextures Loss 0.9 0.7 0.5 1.1 0.9 0.7 1.1 1.2 0.9 0.7 14.3 0.6 3.6 1.8 2.5 2.7 2.4 5.0 2.0 1.9 1.4
Fungi Acc@1 85.8 85.6 85.7 83.7 80.6 85.2 81.3 77.4 77.7 74.1 73.7 67.1 59.2 27.6 38.0 37.0 33.9 28.2 32.9 33.8 7.6
Fungi Loss 0.6 0.6 0.6 0.7 0.8 0.6 0.8 0.9 0.8 1.1 5.8 1.1 1031.2 2.6 2.2 2.2 2.2 2.4 2.4 2.3 2.9
Mini-Imagenet Acc@1 97.0 96.2 93.1 99.1 98.8 90.8 89.9 98.7 92.9 94.1 63.2 93.2 90.9 36.7 45.9 47.2 44.8 34.2 39.7 37.3 36.8
Mini-Imagenet Loss 0.1 0.1 0.3 0.0 0.0 0.3 0.4 0.1 0.2 0.3 23.7 0.3 0.6 2.4 1.6 1.6 1.6 2.1 1.8 1.9 1.9
Omniglot Acc@1 98.6 98.9 99.0 98.9 98.7 98.9 98.8 98.6 98.6 98.5 98.7 95.5 95.8 98.2 93.4 93.6 82.9 80.5 90.2 84.1 90.7
Omniglot Loss 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.3 0.2 0.6 0.7 0.4 0.6 0.3
VGG Flowers Acc@1 99.7 98.9 98.6 96.7 96.2 97.0 95.9 95.5 93.4 87.9 91.3 89.3 90.6 59.6 69.4 69.4 63.0 53.4 59.1 59.4 60.8
VGG Flowers Loss 0.1 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.4 0.5 0.4 0.3 1.6 1.8 1.6 1.4 4.2 2.5 1.6 1.5
Task Mean 94.4 94.2 94.2 92.8 92.5 93.1 91.3 91.2 90.1 88.1 81.4 85.4 81.4 54.3 57.4 56.2 53.4 45.6 53.7 53.6 48.6
Img Seg
ADE20K CE Loss 1.1 1.0 1.1 1.1 1.3 1.0 1.3 1.4 1.7 2.0 2.2 2.8 2.8 3.3 3.8 3.8 3.7 3.7 3.7 3.7 3.8
ADE20K Focal Loss 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.6 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9
ADE20K Mean Acc@ 59.8 60.8 57.5 56.0 49.1 57.3 44.2 45.1 36.3 26.8 20.4 17.9 15.2 3.6 1.6 1.6 1.8 1.8 1.8 1.8 1.8
ADE20K Overall Acc@ 71.8 74.4 72.6 71.4 66.9 72.4 64.2 63.5 57.5 49.6 43.9 34.6 39.7 21.3 11.7 11.9 13.1 14.1 14.0 14.4 14.2
ADE20K mIoU 46.8 47.1 44.0 43.7 37.8 43.4 33.2 33.3 25.9 18.2 14.2 11.7 9.8 1.5 0.5 0.4 0.6 0.4 0.4 0.5 0.4
Cityscapes CE Loss 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.4 4.1 0.3 0.7 0.7 0.9 0.9 3.9 4.0 3.8
Cityscapes Focal Loss 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 1.0 0.0 0.1 0.1 0.1 0.1 0.9 0.9 0.9
Cityscapes Overall Acc@ 92.5 94.2 93.9 93.6 93.1 93.7 93.4 93.1 92.8 88.5 93.2 87.4 41.5 90.4 78.1 78.6 72.2 75.4 47.4 37.7 47.3
Cityscapes mIoU 62.3 69.8 67.6 67.5 63.9 67.7 63.9 61.4 59.5 40.8 64.2 40.2 2.5 46.7 22.8 23.5 17.1 18.6 2.7 2.0 2.7
COCO-10K CE Loss 3.0 1.3 1.5 1.4 1.5 1.4 1.5 1.6 1.6 2.1 2.6 3.3 3.5 3.6 4.5 3.8 4.0 3.6 4.1 3.7 4.1
COCO-10K Focal Loss 0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.6 0.8 0.8 0.8 1.1 0.9 0.9 0.8 1.0 0.9 1.0
COCO-10K Mean Acc@ 38.8 50.6 47.2 46.0 43.4 44.9 41.2 43.5 40.7 27.0 15.8 8.2 20.9 2.2 1.7 1.9 1.3 2.9 0.6 2.5 0.6
COCO-10K Overall Acc@ 57.9 69.8 66.4 66.0 64.4 65.9 62.8 63.1 61.2 51.3 40.1 23.3 45.2 20.9 15.2 20.5 14.7 24.6 9.4 22.5 9.3
COCO-10K mIoU 26.9 39.5 35.6 35.1 32.8 33.6 29.8 31.0 28.6 18.4 10.2 5.7 14.0 1.1 0.9 0.8 0.4 1.6 0.1 1.3 0.1
COCO-164K CE Loss 1.9 1.4 1.5 1.5 1.6 1.5 1.6 1.7 1.8 2.2 2.7 3.5 7.0 3.7 4.3 3.9 4.0 4.0 4.2 3.7 4.2
COCO-164K Focal Loss 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5 0.6 0.8 1.7 0.9 1.0 0.9 0.9 0.9 1.0 0.9 1.0
COCO-164K Mean Acc@ 45.9 50.1 46.9 45.3 42.6 44.5 38.6 43.0 38.7 25.4 14.7 7.0 21.3 2.0 1.5 1.9 1.5 1.8 0.6 2.5 0.7
COCO-164K Overall Acc@ 60.9 65.8 63.5 63.0 60.3 63.2 59.5 59.1 55.6 47.9 39.3 20.3 39.3 19.2 13.6 19.4 15.6 18.3 9.5 21.7 9.6
COCO-164K mIoU 32.7 36.7 33.8 33.0 30.5 32.4 27.0 28.9 25.7 16.8 9.7 4.7 13.7 1.0 0.7 0.7 0.5 0.7 0.1 1.1 0.1
NYU CE Loss 2.5 1.5 2.0 2.3 1.5 2.5 2.3 1.5 1.6 1.6 1.8 1.6 1.4 1.6 1.6 1.6 1.7 1.5 1.5 1.5 1.5
NYU Dice Score 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.8 0.8 0.8
NYU Focal Loss 0.5 0.2 0.4 0.5 0.3 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2
NYU Mean Acc@ 19.7 21.5 13.0 19.6 22.7 19.4 19.7 23.0 22.9 18.5 18.3 12.7 18.9 14.1 10.0 10.1 10.2 13.0 11.9 11.7 12.0
NYU Overall Acc@ 19.0 37.2 30.8 30.0 42.8 25.2 27.3 34.7 31.2 33.4 30.7 33.4 39.1 31.9 34.6 34.6 34.3 36.3 37.2 37.1 37.4
NYU mIoU 7.5 7.7 7.8 6.9 12.2 5.7 6.1 12.1 11.0 5.9 8.3 6.4 10.5 6.8 3.5 3.7 2.9 7.2 5.4 5.0 5.4
Pascal CE Loss 1.0 0.5 0.5 0.6 0.9 0.5 0.8 0.8 0.9 1.4 1.5 2.2 3.1 2.3 2.4 2.4 2.4 2.4 2.6 2.5 2.6
Pascal Dice Loss 0.8 0.6 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.4 0.5 0.5 0.2 0.4 0.4 0.4 0.4 0.5 0.5 0.4
Pascal Focal Loss 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.3 0.4 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Pascal Loss 1.4 0.5 0.1 0.3 0.3 0.4 0.3 0.6 0.6 0.5 0.4 1.4 4.2 1.6 1.6 1.6 1.6 1.6 3.4 1.7 3.5
Pascal Mean Acc@ 42.2 43.5 44.2 39.6 38.8 37.4 34.7 40.3 29.1 20.7 16.2 10.6 18.0 3.5 3.1 2.8 3.3 4.5 2.6 3.3 2.5
Pascal Overall Acc@ 75.1 87.6 87.2 86.6 77.5 86.6 78.9 79.5 76.7 68.2 60.6 49.7 66.6 37.3 34.2 35.4 37.4 39.6 34.4 35.3 32.3
Pascal mIoU 32.8 34.8 35.7 30.6 31.4 28.3 27.5 29.8 24.0 16.6 11.7 6.8 14.0 1.7 1.3 1.1 1.4 2.3 1.0 1.4 0.9
Task Mean 44.1 49.6 47.1 46.4 45.1 45.7 41.8 43.6 39.9 31.9 28.5 21.2 24.0 17.0 13.1 13.9 12.7 14.7 10.0 11.2 9.9
Img Relational
CLEVR Acc@1 52.5 52.7 52.7 52.1 52.6 52.6 52.8 52.8 51.6 50.1 40.6 49.3 45.2 39.3 46.1 45.9 46.4 44.9 42.6 42.5 41.2
CLEVR Colour Acc@1 35.4 36.1 36.4 35.0 35.5 35.6 35.3 36.1 34.2 26.8 15.7 24.7 14.7 12.5 25.7 29.4 28.8 22.8 13.2 13.0 13.2
CLEVR Colour Loss 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.9 2.1 2.0 2.1 2.1 2.0 1.9 1.9 2.0 2.1 2.1 2.1
CLEVR Count Acc@1 45.8 45.8 45.8 45.9 45.8 45.7 45.7 45.6 45.6 45.3 39.0 45.1 44.8 37.9 45.1 44.7 44.8 44.9 44.7 44.7 43.0
CLEVR Count Loss 1.1 1.2 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.2 1.2 1.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2
CLEVR Material Acc@1 60.5 60.6 60.5 60.0 60.5 60.6 61.4 61.3 60.2 58.6 52.1 57.5 53.7 49.8 53.7 51.7 54.0 53.0 49.8 50.5 49.9
CLEVR Material Loss 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
CLEVR Shape Acc@1 52.1 52.4 52.5 51.1 52.2 52.4 52.9 51.2 49.9 50.2 34.3 50.2 44.8 33.3 35.8 34.9 36.1 34.6 34.6 33.7 33.4
CLEVR Shape Loss 0.9 0.9 0.9 1.0 0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
CLEVR Size Acc@1 61.0 61.1 61.3 60.7 61.1 60.8 62.0 62.3 60.9 59.6 53.5 58.3 55.7 50.6 56.2 55.2 55.2 54.6 54.2 54.1 50.1
CLEVR Size Loss 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
CLEVR Yes/No Acc@1 60.7 60.5 60.8 60.6 60.5 60.7 60.4 60.4 60.2 59.8 53.3 59.9 59.6 51.4 60.1 59.2 59.5 59.8 59.5 59.3 58.6
CLEVR Yes/No Loss 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.6 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6
CLEVR-Math Acc@1 79.3 65.9 68.8 59.9 73.7 62.9 60.5 59.3 58.3 55.6 44.0 56.0 56.6 30.2 46.9 46.5 46.2 45.7 44.8 42.1 36.4
CLEVR-Math Acc@5 99.8 99.5 99.6 98.9 99.7 99.3 99.2 98.9 98.9 98.8 97.7 98.8 98.8 86.1 98.1 98.1 98.1 97.7 97.5 96.9 92.8
CLEVR-Math Loss 0.5 0.8 0.7 0.9 0.6 0.8 0.9 0.9 1.0 1.0 1.3 1.0 1.0 1.7 1.2 1.2 1.2 1.2 1.3 1.3 1.5
Task Mean 60.8 59.4 59.8 58.2 60.2 59.0 58.9 58.7 57.8 56.1 47.8 55.5 52.7 43.5 52.0 51.7 52.1 50.9 49.0 48.5 46.5
Medical Class
Chexpert 0 APS 75.7 76.5 76.6 76.8 76.8 74.7 76.0 75.8 76.3 75.1 75.2 69.1 70.3 65.3 20.6 22.3 21.9 29.4 31.6 25.2 23.2
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Chexpert 0 AUC 91.3 92.1 92.5 92.3 92.6 91.4 92.2 92.3 92.6 91.0 91.6 89.9 90.5 88.5 61.5 64.0 65.2 71.3 72.3 66.4 65.9
Chexpert 0 BS 7.8 7.4 7.3 7.4 7.0 7.5 7.3 7.3 6.9 7.9 7.3 7.9 7.7 8.4 12.6 12.5 12.5 11.9 12.1 12.4 12.4
Chexpert 1 APS 55.3 55.2 55.5 55.8 54.2 54.4 54.2 52.1 55.9 53.1 53.3 44.2 43.0 33.5 28.9 30.1 31.0 28.9 30.1 29.9 28.5
Chexpert 1 AUC 75.7 76.0 75.3 77.0 75.4 75.3 75.3 73.8 76.1 74.9 75.2 69.4 69.8 64.1 56.3 56.9 57.7 57.1 57.6 57.5 57.0
Chexpert 1 BS 18.8 18.5 19.4 20.2 18.7 20.6 20.6 18.6 16.3 17.6 20.3 17.2 17.2 18.3 18.7 18.6 18.6 18.6 18.5 18.6 18.6
Chexpert 2 APS 43.8 43.8 43.5 45.1 45.5 44.8 43.9 42.3 43.6 43.5 44.4 41.8 42.8 35.3 30.1 31.1 30.4 32.3 32.6 31.2 30.8
Chexpert 2 AUC 71.8 71.2 71.8 72.4 72.1 72.0 71.7 71.3 71.7 70.5 71.1 69.9 70.9 63.1 58.6 59.0 58.7 60.7 60.5 60.1 58.9
Chexpert 2 BS 18.5 17.8 21.0 21.1 18.6 21.2 20.5 19.1 17.0 16.0 20.4 16.2 16.2 17.4 18.4 18.2 18.1 17.9 17.9 17.8 17.9
Chexpert 3 APS 80.7 80.9 80.8 82.1 81.7 80.5 79.7 78.6 79.1 79.2 80.6 73.5 75.3 58.6 51.7 50.3 52.4 53.2 54.0 48.8 49.4
Chexpert 3 AUC 86.8 86.8 86.5 87.9 87.2 86.6 85.9 84.6 85.8 84.9 87.0 82.3 83.5 73.0 65.6 65.5 65.2 65.6 67.2 64.2 64.2
Chexpert 3 BS 17.4 16.4 16.4 15.6 15.3 16.2 16.9 17.2 15.9 17.6 16.3 18.1 17.1 23.5 26.1 26.0 26.0 25.2 24.8 26.1 26.1
Chexpert 4 APS 53.4 49.5 50.1 53.4 54.5 50.9 52.6 50.8 52.3 49.9 50.7 41.7 44.9 47.3 38.4 36.7 36.0 39.2 37.9 35.9 33.2
Chexpert 4 AUC 87.5 86.7 87.0 88.1 88.0 87.0 87.3 86.8 87.7 86.0 86.4 84.1 85.1 84.8 81.7 80.3 80.8 81.5 81.3 79.4 79.3
Chexpert 4 BS 10.4 10.0 10.9 10.2 9.1 10.9 10.2 9.9 8.8 9.4 11.6 10.1 9.6 9.4 9.7 10.0 9.9 9.9 10.7 10.1 10.4
Chexpert APS Macro 61.6 61.0 61.2 62.6 62.3 60.9 61.2 59.9 61.5 59.8 60.2 54.1 55.2 48.0 33.9 34.1 34.3 35.7 36.9 33.7 33.0
Chexpert AUC Macro 82.5 82.5 82.3 83.2 82.9 82.5 82.4 81.8 82.8 81.1 81.9 79.1 79.9 74.7 64.7 65.1 65.5 67.0 67.6 65.3 64.9
Chexpert BS Macro 15.7 15.6 15.5 14.9 13.8 15.4 15.1 14.4 13.0 13.7 15.2 13.9 13.6 15.4 17.1 17.1 17.0 16.9 16.9 17.2 17.2
Chexpert Loss 0.3 0.4 0.5 0.3 0.3 0.3 0.4 0.4 0.3 0.3 0.4 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.4 0.5 0.5
Diabetic 0 APS 93.0 91.8 91.5 91.3 90.9 91.3 90.6 90.4 88.3 90.8 91.5 85.4 87.2 75.5 76.3 75.6 77.4 79.8 79.4 76.4 77.2
Diabetic 0 AUC 86.3 84.6 84.0 83.9 83.0 83.6 81.7 80.9 77.2 83.9 84.3 72.2 75.1 52.4 54.3 53.6 56.5 60.4 58.6 54.7 55.3
Diabetic 0 BS 10.7 11.9 12.3 12.4 12.6 12.6 13.0 13.0 14.6 12.1 11.7 16.5 15.7 19.0 19.5 19.4 19.3 19.1 18.6 19.0 19.0
Diabetic 1 APS 14.0 13.6 14.0 13.0 13.0 12.9 14.5 10.8 9.0 12.6 13.5 8.4 9.0 7.2 8.4 8.8 8.9 8.4 7.7 7.4 7.3
Diabetic 1 AUC 69.6 67.2 67.4 66.0 65.3 66.1 66.5 65.3 59.7 66.5 66.4 54.4 59.5 51.4 54.9 56.9 54.5 53.9 54.9 52.1 53.3
Diabetic 1 BS 6.1 6.4 6.5 6.1 6.0 6.8 6.4 5.8 5.8 6.0 6.4 6.9 5.3 6.5 6.7 6.5 6.9 6.4 6.3 6.4 6.3
Diabetic 2 APS 65.5 61.6 60.7 61.4 58.4 57.1 54.2 51.1 44.3 59.7 63.1 28.9 32.2 14.6 17.0 16.7 17.9 20.2 17.8 17.0 17.3
Diabetic 2 AUC 88.5 86.9 86.3 86.0 84.7 85.3 84.3 82.5 79.6 85.5 87.4 71.6 73.8 50.9 53.4 52.2 55.8 61.2 57.7 54.1 55.5
Diabetic 2 BS 8.0 8.5 9.0 9.3 9.7 9.0 9.5 9.9 10.7 9.2 8.3 11.7 11.7 12.1 12.7 12.8 12.6 12.7 11.9 12.4 12.5
Diabetic 3 APS 41.6 49.7 47.6 48.4 45.3 53.1 46.5 38.8 37.1 47.2 50.7 22.4 32.0 2.8 3.1 3.1 4.1 4.6 4.0 3.4 2.6
Diabetic 3 AUC 94.8 96.5 95.7 95.6 93.9 95.1 95.0 94.1 93.5 95.1 96.2 87.2 92.3 56.0 56.1 57.2 59.1 64.2 64.9 58.4 52.3
Diabetic 3 BS 1.9 1.6 1.6 1.6 1.7 1.9 1.7 1.8 1.8 1.7 1.5 2.0 2.1 2.4 2.4 2.5 2.3 2.2 2.3 2.1 2.1
Diabetic 4 APS 73.9 74.3 73.0 75.3 67.5 68.7 70.2 72.3 47.5 67.5 74.6 32.4 23.7 2.9 3.1 3.0 4.4 3.9 3.7 2.5 2.6
Diabetic 4 AUC 98.7 98.2 97.7 98.7 98.0 97.4 98.4 98.3 96.9 97.2 97.9 94.7 94.3 56.4 60.1 58.6 63.0 68.1 64.3 56.9 57.8
Diabetic 4 BS 1.0 1.1 1.0 0.9 1.1 1.1 0.9 0.9 1.3 1.1 0.8 1.4 1.8 1.9 1.9 1.8 1.7 1.7 1.8 1.9 1.8
Diabetic APS Macro 56.9 57.2 56.4 56.3 54.2 56.4 54.4 51.9 45.2 55.6 58.7 35.5 36.6 20.6 21.6 21.5 22.5 23.3 22.4 21.2 21.3
Diabetic AUC Macro 87.5 86.7 86.0 85.7 85.0 85.3 84.7 83.8 81.2 85.6 86.1 76.0 79.0 53.4 55.7 55.7 57.8 61.3 59.4 55.1 54.0
Diabetic BS Macro 5.5 6.0 6.1 6.1 6.2 6.4 6.3 6.4 7.0 6.1 5.8 7.7 7.4 8.4 8.7 8.6 8.6 8.5 8.2 8.4 8.4
Diabetic Loss 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.2 0.3
HAM10K 0 APS 94.3 90.0 90.3 88.7 89.2 90.9 89.8 89.0 83.3 88.2 84.1 47.4 58.0 30.4 32.8 25.8 25.0 41.2 46.2 34.4 33.8
HAM10K 0 AUC 99.1 98.2 98.3 97.6 97.8 98.2 97.7 98.0 96.7 97.6 97.0 89.0 91.7 80.6 81.2 78.5 79.4 85.2 86.9 82.1 79.7
HAM10K 0 BS 2.1 2.9 3.5 2.8 3.1 3.1 3.1 3.4 3.8 3.4 4.0 7.0 6.3 8.2 8.1 8.5 8.6 7.6 7.3 8.1 8.3
HAM10K 1 APS 99.2 99.2 99.1 99.2 99.2 99.1 99.1 99.2 98.7 98.9 98.1 96.2 96.5 94.2 93.9 93.7 93.1 95.5 96.0 94.0 93.7
HAM10K 1 AUC 98.9 98.7 98.4 98.5 98.4 98.4 98.4 98.4 97.3 98.1 97.1 92.7 93.5 89.7 88.7 88.1 87.8 91.0 91.9 88.3 87.3
HAM10K 1 BS 3.1 3.7 4.5 4.2 4.5 4.4 4.6 4.4 6.2 5.0 6.3 10.0 9.4 11.7 12.5 12.8 12.9 11.3 10.7 13.0 13.9
HAM10K 2 APS 95.5 98.6 89.0 94.4 88.7 92.1 92.4 95.3 69.7 81.6 89.0 11.3 5.0 5.7 5.2 8.1 2.2 19.5 12.2 7.4 3.6
HAM10K 2 AUC 99.9 100.0 99.7 99.9 99.7 99.8 99.8 99.9 99.3 98.4 99.8 81.1 75.6 79.4 79.6 73.0 68.2 90.8 87.2 81.2 78.3
HAM10K 2 BS 0.3 0.3 0.4 0.3 0.5 0.3 0.3 0.3 0.8 0.5 0.4 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.3 1.3 1.3
HAM10K 3 APS 88.0 85.5 83.9 85.2 86.2 83.0 84.0 82.5 74.2 80.8 74.3 41.9 46.7 34.7 35.1 33.2 31.5 42.5 48.4 42.4 35.2
HAM10K 3 AUC 96.7 95.5 95.6 95.9 96.1 95.3 95.9 96.1 94.4 95.4 92.5 83.8 84.9 81.7 80.0 80.3 80.7 85.9 88.1 84.2 82.6
HAM10K 3 BS 3.5 3.7 4.2 3.9 3.5 4.1 4.2 4.4 5.0 4.7 5.1 7.9 7.6 8.4 8.4 8.4 8.5 7.7 7.2 8.0 8.2
HAM10K 4 APS 99.5 100.0 99.7 98.2 100.0 98.5 100.0 98.5 98.7 96.4 96.9 26.8 21.9 33.6 32.3 24.6 26.4 52.8 73.8 34.8 11.5
HAM10K 4 AUC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 92.3 94.5 84.2 89.0 89.5 87.1 97.7 97.6 92.0 78.7
HAM10K 4 BS 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.2 0.1 0.2 1.1 1.2 1.2 1.0 1.1 1.2 0.9 0.5 1.1 1.2
HAM10K 5 APS 95.6 94.8 94.5 91.5 90.3 93.7 91.6 90.8 83.2 88.0 91.4 54.1 67.0 41.8 36.4 36.8 22.3 48.1 41.3 36.6 26.8
HAM10K 5 AUC 99.7 99.7 99.6 99.5 99.2 99.5 99.4 99.0 98.8 98.0 99.4 94.7 96.6 92.9 92.0 91.5 87.5 94.0 92.5 90.3 88.2
HAM10K 5 BS 1.1 1.1 1.1 1.1 1.3 1.0 1.2 1.3 1.7 1.5 1.4 3.4 2.8 3.8 3.9 3.9 4.4 3.6 3.9 4.2 4.3
HAM10K 6 APS 89.2 85.2 83.9 86.3 88.0 87.6 84.7 83.3 75.8 81.3 83.2 28.4 33.4 31.4 30.5 29.5 24.5 39.6 36.6 25.8 23.5
HAM10K 6 AUC 99.3 98.3 99.1 98.6 98.9 99.1 99.3 98.6 98.0 98.0 98.6 91.6 93.6 91.2 91.9 91.4 89.1 92.3 93.4 90.5 88.5
HAM10K 6 BS 1.0 1.5 1.5 1.1 1.1 1.3 1.4 1.3 1.7 1.4 1.6 3.0 2.9 3.0 3.0 3.0 3.2 2.8 2.9 3.2 3.2
HAM10K APS Macro 94.5 93.3 91.4 92.2 91.3 92.1 91.6 90.8 83.4 87.9 87.1 43.7 46.9 38.8 38.0 35.9 32.2 48.5 50.6 37.6 32.6
HAM10K AUC Macro 99.1 98.6 98.7 98.5 98.6 98.6 98.7 98.5 97.8 97.9 97.5 89.3 90.1 85.6 86.1 84.6 82.8 91.0 91.1 85.9 83.3
HAM10K BS Macro 1.6 1.9 2.2 1.9 2.0 2.1 2.1 2.1 2.8 2.4 2.8 4.8 4.5 5.4 5.5 5.6 5.7 5.0 4.8 5.6 5.8
HAM10K Loss 0.3 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Task Mean 57.0 56.7 56.5 56.7 56.2 56.4 56.2 55.5 53.6 55.3 56.0 45.0 46.0 39.4 37.4 37.0 36.7 40.6 40.8 37.7 36.2
Medical Seg
ACDC Dice Score 0.6 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.4 0.4 0.6 0.4 0.2 0.5 0.2 0.2 0.3 0.3 0.2 0.3 0.3
ACDC Mean Acc@ 86.3 85.8 83.4 78.5 75.5 78.0 76.9 79.4 74.0 93.4 94.1 71.7 67.6 76.0 46.7 53.7 54.5 60.3 56.1 50.8 50.9
ACDC Overall Acc@ 86.5 86.2 83.2 78.7 75.1 78.3 77.0 79.0 73.5 93.5 94.2 71.5 67.5 76.0 47.2 53.4 54.2 60.3 55.5 51.4 51.4
ACDC mIoU 57.9 57.0 57.4 53.1 50.2 53.0 47.7 54.3 50.1 66.9 67.2 47.5 47.9 50.8 27.6 30.4 35.6 35.1 32.1 24.3 26.9
Task Mean 57.8 57.3 56.1 52.7 50.3 52.4 50.5 53.3 49.5 63.6 64.0 47.8 45.8 50.8 30.4 34.4 36.2 39.0 36.0 31.7 32.4
Img to Txt ZS
Flickr30K Img2Txt Acc@1 6.3 6.3 7.0 5.9 5.6 6.8 5.9 5.2 4.5 4.1 3.7 4.7 4.2 1.6 1.8 2.0 1.9 2.0 1.9 1.8 1.6
Flickr30K Img2Txt Acc@5 20.9 21.3 21.0 20.0 19.3 22.1 20.4 18.8 18.0 16.0 16.1 16.9 15.5 8.1 8.6 8.4 8.9 9.1 9.1 8.5 8.4
Flickr30K Img2Txt Loss 3.8 3.8 3.8 3.8 3.9 3.7 3.8 3.9 3.9 3.9 3.9 4.0 4.0 4.2 4.1 4.1 4.1 4.1 4.1 4.2 4.1
Flickr30K Txt2Img Acc@1 5.7 5.9 6.0 5.3 5.1 6.5 6.0 5.1 5.0 3.8 4.0 4.2 3.9 1.7 1.8 2.0 2.2 2.3 1.9 1.7 1.6
Flickr30K Txt2Img Acc@5 20.9 22.1 21.6 20.8 20.0 23.0 21.0 19.8 18.9 16.5 17.3 17.1 15.5 7.8 8.9 8.4 9.2 9.4 9.5 8.8 8.3
Flickr30K Txt2Img Loss 3.8 3.8 3.8 3.9 3.9 3.8 3.8 3.9 3.9 3.9 4.0 4.0 4.0 4.2 4.2 4.2 4.1 4.1 4.1 4.2 4.2
NYCC Img2Txt Acc@5 21.4 21.4 22.0 20.0 21.2 22.1 21.4 20.0 17.8 17.1 17.0 15.9 15.8 7.9 8.7 8.9 8.7 9.5 8.9 8.5 7.9
NYCC Img2Txt Loss 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.9 3.9 3.9 4.0 4.0 4.2 4.1 4.1 4.1 4.1 4.1 4.1 4.2
NYCC Img2Txt 6.9 6.6 6.9 5.8 6.5 6.9 6.4 6.0 4.7 4.9 4.1 4.6 4.2 1.6 2.1 1.8 1.9 2.1 2.0 1.6 1.6
NYCC Loss 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.9 3.9 3.9 4.0 4.0 4.9 4.1 4.1 4.1 4.1 4.1 4.2 4.2
NYCC Txt2Img Acc@5 21.9 21.6 22.5 20.2 21.9 21.9 22.7 20.7 18.4 17.3 17.4 16.0 15.3 7.9 9.4 8.3 9.4 9.9 8.9 8.9 7.9
NYCC Txt2Img Loss 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.9 3.9 3.9 3.9 4.0 4.0 5.5 4.1 4.1 4.1 4.1 4.1 4.2 4.2
NYCC Txt2Img 6.1 5.9 6.4 5.5 6.0 6.2 6.4 5.8 4.8 4.3 4.1 3.9 3.7 1.6 2.0 1.7 2.0 2.4 1.9 1.8 1.6
Winoground Img2Txt Loss 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Winoground Img2Txt 51.0 53.4 59.5 49.7 50.0 50.3 49.5 43.5 53.8 61.9 50.0 48.9 47.3 43.9 50.0 41.3 50.0 53.2 49.6 50.1 50.4
Winoground Txt2Img Loss 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Winoground Txt2Img 50.0 55.2 56.2 53.1 50.0 55.5 48.3 54.2 48.6 54.8 50.0 49.6 52.4 52.8 50.0 54.2 51.8 52.2 51.8 48.8 52.1
Task Mean 21.1 22.0 22.9 20.6 20.6 22.1 20.8 19.9 19.4 20.0 18.4 18.2 17.8 13.5 14.3 13.7 14.6 15.2 14.6 14.1 14.1
Video Class
HMDB-51 Acc@1 52.5 40.7 40.6 32.2 39.3 24.9 27.4 32.8 33.1 5.6 11.5 1.8 2.1 3.8 8.3 7.9 6.1 5.4 6.4 7.5 4.0
HMDB-51 Acc@5 81.4 70.0 70.5 60.9 68.6 54.2 58.5 59.8 63.8 23.0 28.8 10.4 10.2 13.6 26.4 25.3 17.8 23.6 24.4 24.9 15.6
HMDB-51 Loss 2.1 2.8 3.1 3.4 2.7 3.8 3.3 3.1 3.0 4.7 4.4 4.7 4.1 3.9 4.2 4.3 4.4 3.7 3.8 3.7 3.9
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Kinetics Acc@1 48.8 44.2 51.4 43.7 40.3 44.6 33.2 36.4 25.8 2.7 1.0 0.2 0.3 0.4 2.0 1.6 1.0 0.5 0.3 0.3 0.3
Kinetics Acc@5 75.5 70.9 77.9 70.7 67.6 71.7 59.9 63.0 51.8 9.7 4.3 1.3 1.4 1.7 7.0 6.5 3.5 2.2 1.3 1.3 1.3
Kinetics Loss 2.4 2.6 2.1 2.5 2.7 2.5 3.2 3.0 3.5 5.5 6.1 6.1 6.1 6.1 5.7 5.8 6.0 6.1 6.1 6.1 6.1
UCF-101 Acc@1 84.4 75.1 69.9 63.2 75.0 63.4 58.8 66.6 48.7 19.7 11.1 2.8 0.8 2.1 15.2 13.3 6.6 8.7 6.5 7.0 2.7
UCF-101 Acc@5 95.4 92.5 89.1 82.3 91.6 86.2 81.7 86.3 75.3 42.2 28.9 8.5 5.0 8.2 35.5 33.8 17.9 25.2 23.1 20.2 11.2
UCF-101 Loss 0.6 1.0 1.3 1.7 1.0 1.5 1.7 1.4 2.3 4.3 5.0 4.8 4.7 4.6 3.7 3.8 4.5 4.0 4.2 4.2 4.5
Task Mean 73.0 65.6 66.6 58.8 63.7 57.5 53.3 57.5 49.8 17.2 14.3 4.2 3.3 5.0 15.7 14.7 8.8 10.9 10.3 10.2 5.8
Video Reg
IWildCam MAE Score 1.3 1.4 1.3 1.4 1.4 1.6 1.4 1.5 1.6 2.0 1.9 1.9 2.6 2.1 1.8 1.8 1.9 1.8 2.2 1.8 2.1
IWildCam MSE Loss 3.7 4.4 4.0 4.0 4.1 5.4 4.3 5.0 5.9 7.1 6.5 6.2 12.5 8.5 5.1 6.3 6.0 6.2 8.6 6.4 8.4
Task Mean 1.3 1.4 1.3 1.4 1.4 1.6 1.4 1.5 1.6 2.0 1.9 1.9 2.6 2.1 1.8 1.8 1.9 1.8 2.2 1.8 2.1
GATE
Full GATE Mean 69.0 66.8 66.8 64.6 64.3 63.4 62.1 62.2 58.5 56.3 54.4 48.4 42.8 39.6 37.5 37.2 36.2 36.9 35.0 34.9 31.8
Big GATE Mean 76.6 74.5 74.4 72.8 72.0 71.9 70.6 70.0 66.8 66.7 64.8 58.5 53.1 46.8 43.8 43.4 41.9 41.5 40.9 39.8 37.1
Base GATE Mean 68.3 65.6 65.7 62.6 63.7 60.7 60.2 60.7 58.6 55.1 53.5 48.2 42.8 38.0 36.5 36.3 35.4 36.6 34.8 34.8 30.4
Small GATE Mean 77.7 74.9 74.6 73.3 72.4 71.2 68.9 69.1 65.3 65.7 61.7 58.5 49.3 40.5 35.7 35.4 35.9 35.3 34.1 34.4 30.4
Full GATE Rank 1.0 3.0 2.0 4.0 5.0 6.0 8.0 7.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 18.0 17.0 19.0 20.0 21.0
Big GATE Rank 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0
Base GATE Rank 1.0 3.0 2.0 5.0 4.0 7.0 8.0 6.0 9.0 10.0 11.0 12.0 13.0 14.0 16.0 17.0 18.0 15.0 20.0 19.0 21.0
Small GATE Rank 1.0 2.0 3.0 4.0 5.0 6.0 8.0 7.0 10.0 9.0 11.0 12.0 13.0 14.0 16.0 17.0 15.0 18.0 20.0 19.0 21.0

Table 3: Full experiments table: Black/Bold best model, Green second best, Blue third best, and red
the worst performing model. Models prefixed with ’s’ refer to ’from scratch’ trained models, rather
than pretrained. This table showcases the full set of data we use to evolve GATE using EEVEE.
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Figure 7: Degradation of predictive power when a given benchmark is removed and the meta-model
trained from scratch, for different best combinations in varying k.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 0.01 0.02 0.03
places365

omniglot

food101

acdc

flickr30k

ucf

nycc

imagenet1k

cubirds

dtextures

mini

iwildcam

Performance Loss 
 (Higher means more important)

D
at

as
et

 N
am

e

(a) Best k=24 discovered combina-
tion

0 0.01 0.02 0.03
flickr30k

dtextures

pascal

mini

omniglot

food101

winoground

nyu

vgg

acdc

iwildcam

cifar100

chexpert

Performance Loss 
 (Higher means more important)

D
at

as
et

 N
am

e

(b) Best k=25 discovered combina-
tion

0 0.01 0.02 0.03
kinetics

ade20k

clevr-math

imagenet1k

ucf

hmdb51

vgg

omniglot

acdc

nycc

pascal

fungi

winoground

Performance Loss 
 (Higher means more important)

D
at

as
et

 N
am

e

(c) Best k=26 discovered combina-
tion

0 0.01 0.02
clevr-math

happy

diabetic

winoground

nyu

hmdb51

mini

acdc

coco-164k

kinetics

iwildcam

ade20k

vgg

clevr

Performance Loss 
 (Higher means more important)

D
at

as
et

 N
am

e

(d) Best k=27 discovered combina-
tion

Figure 8: Degradation of predictive power when a given benchmark is removed and the meta-model
trained from scratch, for different best combinations in varying k.

Figure 9: Ranking Heatmap for bigGATE We show how the various models on the y-axis rank on the
metrics on the x-axis, where brighter is higher/better rank. From left to right we apply a spearman
correlation sorting to capture tasks more similar to imagenet1k more towards the leftmost side, and,
dissimilar ones towards the rightmost side. From top to bottom we rank models based on average
rank.
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Figure 10: Ranking Heatmap for baseGATE: We show how the various models on the y-axis rank on
the metrics on the x-axis, where brighter is higher/better rank. From left to right we apply a spearman
correlation sorting to capture tasks more similar to imagenet1k more towards the leftmost side, and,
dissimilar ones towards the rightmost side. From top to bottom we rank models based on average
rank.
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Figure 11: Ranking Heatmap for smallGATE: We show how the various models on the y-axis rank on
the metrics on the x-axis, where brighter is higher/better rank. From left to right we apply a spearman
correlation sorting to capture tasks more similar to imagenet1k more towards the leftmost side, and,
dissimilar ones towards the rightmost side. From top to bottom we rank models based on average
rank.
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Figure 12: Architecture Variation: Results of keeping the pretraining method the same as ImageNet1k
classification and varying the architecture across various key task domains.
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Figure 13: Pretraining Scheme Variation: Results of varying the pretraining method and keeping the
architecture as ViT B16 across various key task domains.
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Figure 14: Modality Variation: Results of attempting modality shifting from audio and text to vision
tasks.
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Figure 15: Modality Variation: Results of attempting modality shifting from audio and text to vision
tasks.

32


	Introduction
	Related Work
	EEVEE Methodology
	Results
	Conclusion
	End-user Guidelines
	Principal Use Cases

	Result Extras
	Result Processing

	Preliminary Experiments Details
	Preliminary Experiments
	Across Architecture Settings
	Architecture Specific Settings


	GATE Guiding Principles
	Defining the GATE Benchmark
	Benchmark Pool Selection Details
	Benchmark Pool Details
	Task Adapter Details
	Experimental Details
	Additional Results
	Full details on discovered combinations


