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Abstract

Open-vocabulary object detection (OVD), detecting specific classes of objects using1

only their linguistic descriptions (e.g., class names) without any image samples,2

has garnered significant attention. However, in real-world applications, the target3

class concepts is often hard to describe in text and the only way to specify target4

objects is to provide their image examples, yet it is often challenging to obtain a5

good number of samples. Thus, there is a high demand from practitioners for few-6

shot object detection (FSOD). A natural question arises: Can the benefits of OVD7

extend to FSOD for object classes that are difficult to describe in text? Compared8

to traditional methods that learn only predefined classes (referred to in this paper9

as closed-set object detection, COD), can the extra cost of OVD be justified? To10

answer these questions, we propose a method to quantify the “text-describability”11

of object detection datasets using the zero-shot image classification accuracy12

with CLIP. This allows us to categorize various OD datasets with different text-13

describability and emprically evaluate the FSOD performance of OVD and COD14

methods within each category. Our findings reveal that: i) there is little difference15

between OVD and COD for object classes with low text-describability under equal16

conditions in OD pretraining; and ii) although OVD can learn from more diverse17

data than OD-specific data, thereby increasing the volume of training data, it can be18

counterproductive for classes with low-text-describability. These findings provide19

practitioners with valuable guidance amidst the recent advancements of OVD20

methods.21

1 Introduction22

Object detection plays a central role in research field of computer vision with a wide range of23

real-world applications [25, 33, 23, 38, 3, 53, 1, 54, 49, 20]. Historically, the problem is considered24

within a closed-set setting, where detectors are designed to identify only the predefined categories25

of objects encountered during the training process. Recently, the interest in open-vocabulary object26

detection (OVD) has been growing significantly. Leveraging large models [4, 26, 32, 10] that have27

learned a large amount of text or image-text pairs, it allows for the detection of specific classes of28

objects based solely on their linguistic descriptions (e.g., class names) without the need for image29

samples, making it “zero-shot” [48, 19, 24, 52, 42, 14, 11].30
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However, in real-world applications of object detection, there are often scenarios where the target31

classes are difficult to describe with words, such as various types of anomalies in industrial anomaly32

detection, or lesions that are difficult to identify in medical images. In these cases, it is only possible33

to specify the target objects by showing image examples, presenting a problem not directly addressed34

by OVD.35

In reality, there is often the additional challenge of not having enough samples available; if sufficient36

samples were available, the standard supervised learning would work well. Therefore, there are high37

expectations from practitioners for few-shot object detection (few-shot OD), which can learn to detect38

objects from only a few examples.39

While various approaches have been tried so far, the best approach to FSOD to date is a rather40

mediocre one that relies on transfer learning, where a detector pre-trained on some OD data is41

finetuned with a few-shot examples of the target objects [39, 36, 31]. This applies to the traditional42

OD in the closed setting as well as OVD; while OVD is originally designed for zero-shot detection,43

existing studies have also attempted to apply their OVD methods to few-shot OD settings, where the44

same finetuning is the standard [19, 24, 28, 45]. It should be noted that recent studies have tried to45

extend OVD to deal with visual prompts— examples to convey concepts that are hard to describe46

with words [11, 50, 14], but broadly speaking, this can be considered a type of few-shot OD.47

Considering the above demands for FSOD and the recent advancements of OVD, a natural question48

that arises is whether the benefits of OVD extend to few-shot OD for object classes that are difficult49

to describe with words. Is it superior enough to justify the higher computational costs compared to50

traditional object detection methods that only learn predetermined classes (referred to as closed-set51

OD, or COD, in this paper)? What specific advantages do OVD methods offer, which are characterized52

by similarity calculations in the feature space enabling open-set recognition, the introduction of53

knowledge from large models (like BERT [4] or CLIP [32]), and the increased volume and variety of54

training data they enable?55

To answer these questions, it is essential to understand the difficulty of describing object classes56

in text. In this paper, we propose a method to quantify the “text-describability” of OD datasets57

based on the zero-shot image classification accuracy of target object classes using CLIP. Using58

this method, we categorize various OD datasets by their text-describability; see Fig. 2. We then59

experimentally evaluate the performance of OVD and COD methods in FSOD across the introduced60

dataset categories.61

The results of our experiments show that while OVD significantly outperforms COD under few-shot62

conditions for easily text-describable classes as expected, there is little difference between the two for63

classes that are hard to describe in text. Moreover, while OVD can learn from more diverse data, its64

utility is significant for easily describable classes but can be counterproductive for harder-to-describe65

classes. These findings are expected to provide some guidance to practitioners amidst the recent66

advances in various OD methods.67

2 Related Works68

2.1 Open-vocabulary Object Detection69

Open-vocabulary object detection (OVD) is an emerging framework for object detection [48, 8, 51, 19,70

24, 47, 52, 15, 42] that has seen significant progress in recent years. Unlike traditional methods (i.e.,71

closed-set object detection (COD)), which can only identify predefined object categories [33, 1, 3],72

OVD allows the detection of objects not seen during training. This is achieved using linguistic73

knowledge from large models such as BERT [4] and CLIP [32]. To facilitate this capability, existing74

methods establish a shared feature space between vision and language modalities. They achieve this75

either by distilling outputs from text encoders [48, 8] or by applying text embeddings from pre-trained76

vision-language models (VLMs) to the classification weights for each category [52, 29, 15, 42].77
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2.2 Few-shot Object Detection78

As it is often difficult to acquire large volumes of training data for object detection [21, 34, 9, 16],79

training a detector with only a few examples of target objects, known as few-shot object detection80

(FSOD) [13, 46, 40, 39, 31, 36], has garnered considerable attention. Existing methods for FSOD can81

be categorized into two approaches: meta-learning [13, 46, 40, 43] and finetuning [39, 41, 31, 7, 36].82

The former approach originally attempts to acquire a “meta-skill” to detect new object classes from83

only a few samples through the learning of base classes. The latter approach simply involves pre-84

training on base classes and subsequently training on novel classes, expecting the usual benefits85

of transfer learning. Recent studies have reported that the finetuning-based approach outperforms86

the meta-learning-based despite its simplicity [39, 36, 31]. Additionally, Wang et al. reported that87

freezing model parameters except for the final task-specific heads yielded improvements [39]. Sun et88

al. improved this frozen-based approach by employing cosine similarity as classification scores and89

further added contrastive loss for a RoI head [36].90

FSOD has primarily been studied within the framework of COD. However, in the research of OVD, it91

has become a norm to report the FSOD performance of OVD methods, in addition to their primary92

application in zero-shot scenarios [19, 24]. In this context, utilizing both textual information and93

few-shot labeled image examples is expected to improve performance compared to using either one94

alone. The above insight gained from FSOD in COD seems also applicable to FSOD in OVD. In fact,95

existing research has shown that finetuning with few-shot examples (where all models, including the96

text encoder, are subject to training) has become the standard method.97

2.3 Recent FSOD Benchmarks98

Existing FSOD has historically repurposed popular datasets like VOC [6] and COCO [21] as its99

benchmarks [13, 40, 46, 39, 31, 36], dividing them into disjoint two splits: base categories and novel100

categories. Specifically, PASCAL VOC is partitioned into 15 base and 5 novel categories, while101

COCO is divided into 60 base and 20 novel categories. Whereas these are well-maintained and102

useful benchmarks, the base and novel categories are sampled from the same dataset, which may be103

inadequate for evaluating model behaviors in real-world applications with varied target domains. To104

explore FSOD effectiveness in more diverse scenarios, recent studies have developed Cross-Domain105

FSOD (CD-FSOD), assessing performance across multiple image domains [17, 44]1. Lee et al.106

[17] and Xiong et al. [44] compiled 10 and 3 datasets from different image domains, respectively,107

evaluating state-of-the-art FSOD methods. They reported traditional FSOD approaches [39, 36, 31]108

underperformed in the domains distinct from their base category training, highlighting the importance109

of diverse domain benchmarks. Their studies provided detailed evaluations using various detectors,110

but OVD were not investigated.111

3 Exploring Best Practice for Few-shot Object Detection112

3.1 Closed-set and Open-vocabulary Object Detection113

The conventional approach to object detection, referred to as closed-set object detection (COD),114

operates in the setting where detectors are trained to identify only predefined object categories present115

in the training data [33, 38, 1, 3, 49, 20]. Figure 1(a) illustrates the model architecture for COD,116

which features a trainable layer as the final classification head, with dimensions corresponding to the117

number of target categories.118

In contrast, open-vocabulary object detection (OVD) [48, 8, 52, 19, 29, 47, 42] operates in an open-set119

setting, leveraging a text encoder, usually derived from pre-trained large models such as BERT [4]120

or CLIP [32]. Figure 1(b) depicts the general architecture of OVD methods. OVD is characterized121

by the similarity calculation at the classification head, where text and image features are compared,122

1While Lee et al. [17] introduced a similar concept and called it as Multi-domain Few-shot Object Detection
(MoFSOD), we consider it identical to CD-FSOD.
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Figure 1: An overview of model architectures for (a) closed-set object detection (COD) and (b)
open-vocabulary object detection (OVD).

facilitating open-set recognition. This structure enables the incorporation of textual knowledge into123

detection and increases the volume and variety of training data, as the models can be trained with124

more general datasets, such as image-caption pairs [35, 30], rather than data specifically designed for125

object detection.126

3.2 Limitations with Existing OVD Benchmarks127

We are investigating which is more suitable for FSOD between COD and OVD, particularly in128

cases where object categories are difficult to describe in text and the only option is to present image129

examples—situations where OVD may not have a significant advantage. If there is an advantage,130

we expect it to stem from one or more of the three characteristics of OVD mentioned earlier. These131

questions are critical for practitioners tackling real-world FSOD problems, especially given the recent132

surge in OVD research.133

It is important to note that existing research on OVD has already reported on the performance of134

FSOD [19, 24]. However, these studies do not include comparisons of COD and OVD under the135

same conditions. More importantly, there is an issue with how datasets for training and testing are136

selected in current OVD studies, which is crucial for addressing the questions above.137

OVD is characterized by pre-training on web-scale data, such as by using BERT or CLIP. In such138

cases, preventing train-test leakage for common object categories frequently found on the web is139

extremely difficult. This means that the object categories for which zero-shot/few-shot performance140

is being tested may have already been pre-trained. As a result, existing OVD research often does141

not avoid leakage and takes the stance that if the “dataset” is different—even if the same object142

class is being trained—it meets the zero-shot/few-shot requirements. Although this may seem143

counterintuitive, it is acceptable (or even advantageous) if the goal is to deploy detectors in scenarios144

with similar image domains and object categories as the training data; the aim is to create a detector145

that can identify any object as long as it is named.146

However, we are focused on detecting object classes that are hard to describe and are necessarily rare147

on the web, either because the images themselves are rare or because they are not linked to useful text148

information. This means there is little to no leakage between train and test. Consequently, the few-149

shot performance for easily describable object categories reported in existing research is likely not150

useful for predicting the performance of the same detectors under our conditions of interest—where151

object categories are difficult to describe and there is no leakage between train and test. In other152

words, we cannot answer the aforementioned questions with the results of existing research.153

3.3 Categorizing Datasets with Their Text Describability154

To address the aforementioned limitations, it is essential to assess how easily the object classes155

in an individual object detection dataset2 can be described by text. Only then can we explore the156

relationship between detector performance and the text-describability of the object classes. For157

2To be precise, it is more about the tasks, i.e., the target object class list. For clarity, we refer to them as
datasets here.
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Figure 2: Datasets (35 in total from ODinW [18]) sorted by our metric for the difficulty of describing
object classes in text. The datasets are categorized and ranked from S1 to S3, indicating decreasing
text-describability.

example, we can experimentally determine which OVD or COD methods perform better on datasets158

that are challenging to describe in text.159

How can we measure the text-describability of a single dataset? We propose using the zero-shot160

performance of CLIP as a “proxy indicator.” This method involves preparing a collection of datasets161

{Di}i=1...n and calculating the zero-shot classification accuracy for each dataset Di in a comparable162

manner, thereby relativizing its text-describability.163

Specifically, for the image input to CLIP, we use the image regions specified by the ground truth164

bounding boxes for each object class provided by the respective datasets. For text input, we first165

extract the list Ci of object class names from each dataset Di, create their union ∩Ci, consolidate166

duplicates, and compile a class list C spanning all datasets. We then use prompts (e.g., “an image of167

{class name}”) based on these classes as text inputs. For each dataset Di, we perform classification168

on the common class set C using CLIP. The average classification accuracy ai on the dataset-specific169

classes Ci (treating classifications into classes in C \ Ci as errors) is used as the verbalizability170

indicator for Di. Considering a classification problem on the common class set C aims to provide a171

comparable indicator even among datasets with different class counts.172

In our experiments, we use ODinW (Object Detection in the Wild) [18] for dataset collection, which173

is a standard approach in recent OVD research [19, 24]3. This collection includes 35 diverse datasets174

selected from the 100 available in Roboflow [2], each of which simulates a distinct real-world175

application of object detection.176

Figure 2 shows how the 35 datasets are sorted using the proposed CLIP-based measure. For statistical177

evaluation of the detectors’ performance, we divided the 35 datasets into three splits (12/12/11 each),178

labeled S1, S2, and S3, as detailed in the supplementary material. The datasets in S1, S2, and S3179

exhibit decreasing CLIP performance, indicating they become less text-describable. As shown in180

Fig. 2, Split S1 includes datasets with common objects, such as the 20 categories of PASCAL VOC181

[6] and common vehicle categories in Open Images [16]. Split S2 comprises datasets with lower182

CLIP performance, such as aquatic life in underwater images and fine-grained plant diseases. Split S3183

3Existing OVD research typically selects 13 out of 35 datasets and uses the average detection accuracy on
these to compare methods. Most of these datasets belong to S1 and S2 in our classification, indicating they are
easily verbalizable and do not effectively measure performance on less verbalizable datasets.
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contains datasets like blood cell detection in medical images and sign language detection represented184

by alphabetical strings.185

Remark It should be noted that CLIP’s zero-shot performance does not directly correspond to186

the difficulty of verbalizing target objects. The significant variation in CLIP’s zero-shot accuracy187

across different image classification datasets, as reported in the original paper [32], is likely due188

to whether the target object classes are included in CLIP’s training data. In other words, CLIP’s189

zero-shot performance depends on the abundance of image and class name text pairs in its training190

data.191

CLIP’s training data is widely collected from the web. When data for a particular object class is192

scarce, there can be two reasons: either the object is difficult to describe, making image-text pairs193

less likely to exist, or the images themselves are rare due to their specialized domain. Thus, CLIP’s194

performance indicators may combine the difficulty of verbalization and the rarity of images, resulting195

in only a partial correlation with verbalizability.196

However, considering our objective, this might be acceptable. We are interested in how OVD methods197

perform on data types they have not pre-trained on. Since CLIP’s training data is broadly sourced198

from the web, the training data for OVD should be similar to some extent. Therefore, despite the199

aforementioned issues, we believe that linking CLIP’s performance to the evaluation of OVD methods’200

performance is useful. Further analyses will be left for future study.201

4 Experiments202

To answer the above questions, we experimentally evaluate several representative OVD and COD203

methods in the standard few-shot setting. To ensure the reproducibility of our results, we will make204

all the code used in our experiments publicly available; see the supplementary material.205

4.1 Compared Methods206

Base Detectors We consider four state-of-the-art object detectors: two designed for closed-set207

object detection (COD)—Dynamic Head (DyHead) [3] and Faster RCNN [33], and two for open-208

vocabulary object detection (OVD)—GLIP(A) [19] and F-ViT [42]. DyHead [3] and Faster RCNN209

[33] are simple yet effective methods for COD, representing one-stage and two-stage detectors,210

respectively. We use Swin-T [27] with Feature Pyramid Network (FPN) [22] as their backbones.211

GLIP(A) [19] is an open-vocabulary detector based on DyHead. It leverages BERT [4] as a pre-trained212

text encoder, to employ its text embeddings as the classification head of the detector. Following the213

original paper [19], we utilize Swin-T with FPN as the image encoder. In Sec. 4.3.3, we additionally214

evaluate GLIP, built on the GLIP(A) architecture but with two modifications over GLIP(A). 1) GLIP215

is pre-trained on a more extensive data that includes resources for phrase grounding (GoldG [12])216

and image-caption pairs (CC [35] and SBU [30]). 2) GLIP incorporates deep fusion modules to217

enhance the integration of image and text information through cross-attention. These enhancements218

expectedly expand the vocabulary of visual concepts and allow the model to learn visual features219

more effectively conditioned on text inputs, both leading to improved OVD performance.220

F-ViT [42] is an open-vocabulary detector based on Faster RCNN, using frozen CLIP [32, 5] both for221

the image and text encoders. Before being frozen, the image encoder employs contrastive learning to222

align dense features of local regions with global features of corresponding crop images. This enables223

tailored region-level representations for object detection tasks, improving the use of pre-trained CLIP.224

Following the original paper [42], we use EVA-CLIP [37] for the image and text encoders.225

Methods for FSOD Finetuning Fully finetuning all trainable layers (Full-FT) serves as a baseline226

in many FSOD studies [46, 39, 31, 36]. Additionally, we evaluate two state-of-the-art finetuning227

approaches for FSOD: TFA [39] and FSCE [36]. TFA (Two-stage Fine-tuning Approach) [39] initially228

trains all parameters on pre-training phase as usual. Subsequently, only the last prediction heads229

6



(i.e., the last layers for classification, regression, centerness, and a projection for text embeddings)230

are finetuned with few training samples, while the remaining parameters are kept frozen. FSCE231

(Few-Shot object detection via Contrastive proposals Encoding) [36] builds upon a frozen-based232

approach similar to TFA. It enhances TFA by 1) unfreezing Region Proposal Network (RPN) and RoI233

head, 2) increasing the number of proposals in RPN passed to RoI head, 3) using cosine similarity234

as classification scores, and 4) adding contrastive proposal encoding loss to its prediction head. We235

apply FSCE only to Faster RCNN and F-ViT, considering that it is tailored for two-stage detectors as236

it adjust the number of RPN proposals.237

4.2 Datasets and Evaluation Protocols238

Object Detection Pre-training Unless stated otherwise, we utilize Object365-V1 (O365) [34],239

which comprises 0.61M images across 365 general object categories, as the pre-training dataset for240

all the detectors4. For GLIP(A) and GLIP, we use their publicly available pre-trained weights from241

the official repository5. Note that this pre-training process is distinctly separate from backbone-level242

training performed in CLIP [32], BERT [4], etc.243

Evaluation of FSOD Performance As previously mentioned, we use the ODinW dataset [18],244

which consists of 35 individual object detection (OD) datasets, to evaluate the FSOD performance of245

the above OD methods; see Sec. 3.3 for details of ODinW. We report the average precision (AP) for246

each method over the intersection over union (IoU) range [0.50:0.95], averaged across datasets within247

each of the three splits—S1, S2, and S3—each characterized by different levels of text-describability.248

For the few-shot configuration, we follow a sampling method employed in previous studies [19, 13].249

Specifically, in K-shot settings, we randomly sample the target dataset to ensure that there are at250

least K images containing one or more ground truth bounding boxes for each category. We consider251

K = [1, 3, 5, 10] settings. In all experiments, we repeat this sampling process five times using252

different random seeds and report the averaged performance.253

4.3 Results254

4.3.1 Comparison of COD and OVD Methods255

Table 1 shows the performance of the compared four OD methods on the proposed three splits of256

ODinW, each with varying numbers K of shots. All methods employ the full-FT approach for FSOD.257

It is observed that OVD methods (highlighted in the table) significantly outperform COD methods258

in the S1 and S2 splits. This is consistent for both one-stage methods (i.e., DyHead and GLIP(A))259

and two-stage methods (i.e., Faster RCNN and F-ViT). This result is expected, as OVD methods are260

designed to detect objects described in text in a zero-shot setting, a capability that also benefits the261

few-shot setting. Although the performance gap between OVD and COD narrows as K increases,262

OVD methods consistently show superior performance in S1 and S2 with K = 10.263

Another observation is that the performance gap between OVD and COD methods narrows in the264

S3 split. Figure 3 illustrates the AP ratios of an OVD method compared to its counterpart COD265

method, highlighting this trend. Specifically, it shows that for S3, GLIP(A)’s performance relative to266

DyHead’s drops to around 1.0, indicating nearly equivalent performance; their APs differ by only267

about 1.0 AP with K ≥ 3 (e.g., 39.7 vs. 39.2 at K = 3).268

Moreover, Faster RCNN clearly outperforms its counterpart, F-ViT, with K = 10 in the S2 split and269

with K ≥ 3 in the S3 split. Recall that the datasets in S3 are characterized by low text-describability,270

such as sign language detection and OCR tasks to identify font names. On these datasets, the271

superiority of the OVD methods seen in S1 and S2 diminishes. In fact, the COD methods perform272

even better by a noticeable margin.273

4GLIP [19] reported the number of training images for O365 as 0.66M, but the provided dataset links have
expired and cannot be verified. We will use a † symbol to indicate this in the results below.

5https://github.com/microsoft/GLIP
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Table 1: Few-shot OD performance of COD (closed-set object detection) and OVD (open-vocabulary
object detection) methods on the S1, S2, and S3 splits of the 35 ODinW datasets with different
numbers K of shots. The values represent the average precision, averaged over the datasets within
each split. OVD methods are shaded in gray; IE and TE represent image encoder and text encoder,
respectively.

Method
Backbone (#param.) K = 1 K = 3

IE TE S1 S2 S3 S1 S2 S3
DyHead Swin-T(28M) - 29.0 ±0.8 22.2 ±0.6 23.8 ±1.1 39.2 ±1.6 33.9 ±1.4 39.7 ±0.8

GLIP(A) Swin-T(28M) BERT(110M) 37.4 ±1.7 28.5 ±0.8 25.6 ±1.3 44.6 ±0.7 37.1 ±0.7 39.2 ±0.5

Faster RCNN Swin-T(28M) - 21.7 ±2.7 19.8 ±1.1 21.9 ±1.1 36.2 ±1.6 31.4 ±1.2 38.1 ±0.8

F-ViT CLIP-ViT-B/16(86M) CLIP(63M) 40.1 ±1.1 24.6 ±0.9 22.9 ±1.3 45.5 ±2.5 32.9 ±0.8 32.0 ±0.9

Method
Backbone (#param.) K = 5 K = 10

IE TE S1 S2 S3 S1 S2 S3
DyHead Swin-T(28M) - 42.5 ±1.6 36.3 ±1.1 42.9 ±1.7 48.1 ±1.2 41.2 ±1.5 48.7 ±1.1

GLIP(A) Swin-T(28M) BERT(110M) 49.0 ±0.5 40.2 ±0.7 43.6 ±0.7 52.3 ±1.1 44.5 ±1.0 49.9 ±0.7

Faster RCNN Swin-T(28M) - 40.1 ±2.0 36.0 ±0.6 42.8 ±0.5 45.7 ±1.0 39.9 ±0.9 48.9 ±1.7

F-ViT CLIP-ViT-B/16(86M) CLIP(63M) 47.7 ±2.6 36.6 ±1.4 35.2 ±1.3 49.6 ±1.5 40.2 ±0.9 38.7 ±1.2
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Figure 3: AP ratio of OVD/COD. Dy-
Head vs. GLIP(A) (top) and Faster
RCNN vs. F-ViT (bottom).

Table 2: Detection accuracy of state-of-the-art finetuning
approaches for FSOD. Results on a K = 3 are shown. OVD
methods are shaded in gray.

Method Finetuning S1 S2 S3

DyHead
Full-FT 39.2 ±1.6 33.9 ±1.4 39.7 ±0.8

TFA [39] 36.3 ±0.7 23.1 ±1.0 16.0 ±0.7

Full-FT 44.6 ±0.7 37.1 ±0.7 39.2 ±0.5
GLIP(A)

TFA [39] 34.5 ±0.5 19.2 ±0.6 10.7 ±0.5

Faster RCNN
Full-FT 36.2 ±1.6 31.4 ±1.2 38.1 ±0.8

TFA [39] 29.9 ±1.3 22.0 ±1.1 15.4 ±0.9

FSCE [36] 36.7 ±0.6 28.1 ±2.4 30.5 ±1.9

Full-FT 45.5 ±2.5 32.9 ±0.8 32.0 ±0.9

TFA [39] 23.6 ±0.6 8.8 ±0.2 5.0 ±0.1F-ViT
FSCE [36] 44.7 ±1.1 32.4 ±1.2 34.3 ±0.4

4.3.2 Impact of Few-shot Finetuning Methods274

We next examine the impact of the fine-tuning methods employed for few-shot learning. Table 2275

presents the results for K = 3 using the same four OD methods with different FSOD fine-tuning276

approaches. It is observed that TFA [39] performs the worst regardless of OVD or COD. No-277

tably, its performance gap compared to Full-FT (i.e., fine-tuning all trainable parameters) increases278

progressively from S1 to S3.279

FSCE [36], applicable to both Faster RCNN and F-ViT, exhibits similar behavior to TFA, except280

that F-ViT performs better on S3 with FSCE than with Full-FT. These findings suggest that TFA281

and FSCE, both recent FSOD fine-tuning methods, do not outperform the standard Full-FT. This282

holds true regardless of whether the method is COD or OOD and the level of text-describability. This283

result extends the findings of Lee et al.’s study [17] from COD to OVD, showing that fine-tuning only284

high-layer parameters improves FSOD performance only when the domain gap between train and285

test datasets is minimal; otherwise, it negatively impacts performance, and fine-tuning all parameters286

yields the best results.287

4.3.3 Impact of Pre-training Data288

In FSOD, the detector is initially trained on OD tasks, typically using a large OD dataset and then289

finetuned with few-shot samples for the target OD task. We examined the impact of this pretraining290

stage on FSOD with different levels of text-describability.291
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Table 3: Detection accuracy across varying amounts of pre-training data. All models are finetuned
with Full-FT under a K = 3 setting. G and C represents grounding datasets (GoldG [12]) and
image-caption pairs (CC [35] and SBU [30]), respectively. OVD methods are shaded in gray. See
Sec. 4.2 for the † indicator.

Method Backbone (#param.) Pre-training #Images S1 S2 S3
IE TE

2K (1%) 29.6 ±1.8 27.0 ±0.6 31.1 ±0.5

20K (10%) 35.1 ±1.0 29.8 ±1.3 33.7 ±0.8

0.10M (50%) 40.1 ±1.4 33.6 ±0.8 36.6 ±0.4DyHead
COCO+O365

0.20M (100%) 40.8 ±1.0 34.0 ±1.2 37.9 ±0.3

Swin-T(28M) -

O365 0.61M 39.2 ±1.6 33.9 ±1.4 39.7 ±0.8

GLIP(A) Swin-T(28M) BERT(110M) O365† 0.66M 44.6 ±0.7 37.1 ±0.7 39.2 ±0.5

GLIP Swin-T(28M) BERT(110M) O365†+G+C 5.46M 50.4 ±0.4 39.6 ±1.2 34.9 ±0.6

Specifically, we used DyHead from COD and studied the effects of the amount of pre-training OD292

data. We randomly selected 0.10M images from the COCO dataset (0.12M in total) and 0.61M293

images from the Objects365 (O365) dataset, combining them to create a 0.20M image dataset. We294

then created scaled subsets by extracting x% of images from this combined dataset, maintaining a295

consistent 1:1 image ratio between COCO and O365. DyHead was trained on these subsets, followed296

by few-shot adaptation on the S1, S2, and S3 subsets.297

The results, shown in Table 3, indicate that generally, more pre-training data leads to better FSOD298

performance. However, a closer examination reveals that the effect is more pronounced for S1 and299

less so for S3. This likely occurs because the overlap (in terms of object categories and image300

domains) with the pre-training data decreases in the order of S1, S2, and S3. When targeting S3,301

although more pre-training data is beneficial, the performance gains diminish compared to S1.302

OVD has an advantage over COD in that it can utilize more general image-text pair data, not limited303

to OD-specific data. We have observed that OVD significantly outperforms COD in S1 and S2 (rows304

5 and 6 of the table, copied from Table 1). This performance gap is expected to widen with the305

inclusion of non-OD data. However, can this advantage be observed in S3 as well?306

To answer this question, we expanded the training data for GLIP(A) under the same conditions for307

FSOD, resulting in a model referred to as GLIP; see Sec. 4.1 for details. The results, shown in row 7308

of Table 3, indicate improved accuracy in S1 and S2. Since this method is exclusively applicable to309

OVD, OVD demonstrates a clear advantage over COD here. However, intriguingly, Table 3 shows310

that for S3, GLIP performs worse than GLIP(A) and even falls behind DyHead, a COD method. This311

suggests that it is safer to use COD for datasets with characteristics like S3. This further supports the312

above conclusion that FSOD on S3 shows no significant difference between OVD and COD, thus not313

justifying the extra cost of OVD.314

5 Summary and Conclusion315

In this paper, we have addressed the problem of few-shot object detection (FSOD), focusing on the316

comparison between open-vocabulary object detection (OVD) and closed-set object detection (COD).317

We first proposed a method to quantify the difficulty of describing target object classes in text using318

zero-shot image classification accuracy with CLIP. This has enabled us to empirically evaluate COD319

and OVD methods under equal conditions on various datasets with varying levels of text-describability.320

Our results provide several key findings. Firstly, for datasets with high text-describability, OVD321

significantly outperforms COD, as expected. However, when the classes are difficult to describe in322

text, the superiority of OVD diminishes. Additionally, pre-training on a larger amount of data, which323

is uniquely beneficial for OVD, can be counterproductive for datasets with low text-describability.324

These results suggest that for FSOD on datasets where object classes are hard to describe in text,325

COD methods are recommended over OVD methods. This guidance is valuable for practitioners326

who are navigating the recent advancements in OVD methods and seeking to optimize their FSOD327

approaches for specific datasets.328
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