
Published in Transactions on Machine Learning Research (03/2025)

Online Control-Informed Learning

Zihao Liang liang331@purdue.edu
School of Aeronautics and Astronautics
Purdue University

Tianyu Zhou zhou1043@purdue.edu
School of Aeronautics and Astronautics
Purdue University

Zehui Lu lu846@purdue.edu
School of Aeronautics and Astronautics
Purdue University

Shaoshuai Mou mous@purdue.edu
School of Aeronautics and Astronautics
Purdue University

Reviewed on OpenReview: https: // openreview. net/ forum? id= LDzvZEVl5H

Abstract

This paper proposes an Online Control-Informed Learning (OCIL) framework, which employs
the well-established optimal control and state estimation techniques in the field of control to
solve a broad class of learning tasks in an online fashion. This novel integration effectively
handles practical issues in machine learning such as noisy measurement data, online learning,
and data efficiency. By considering any robot as a tunable optimal control system, we propose
an online parameter estimator based on extended Kalman filter (EKF) to incrementally tune
the system in an online fashion, enabling it to complete designated learning or control tasks.
The proposed method also improves the robustness in learning by effectively managing noise
in the data. Theoretical analysis is provided to demonstrate the convergence of OCIL. Three
learning modes of OCIL, i.e. Online Imitation Learning, Online System Identification, and
Policy Tuning On-the-fly, are investigated via experiments, which validate their effectiveness.

1 Introduction

Informed Machine Learning (IML) (Von Rueden et al., 2021) represents an emerging approach that integrates
prior knowledge into the machine learning (ML) process. While classic classification tasks in unsupervised,
semi-supervised, or supervised ML primarily focus on extracting patterns from labeled or unlabeled data
(LeCun et al., 2015), IML leverages prior knowledge such as physical laws, expert knowledge, or existing
models to uncover underlying connections within data (Karniadakis et al., 2021). This integration enables
models to produce more reliable and interpretable predictions, especially when dealing with noisy data. This
approach is especially advantageous in the domains where theoretical understanding is well-established and
thus can guide ML. One notable example of IML is physics-informed machine learning (Wu et al., 2018;
Karniadakis et al., 2021; Kashinath et al., 2021), which is particularly valuable for solving partial differential
equations for computational fluid dynamics.

Control-informed learning (CIL) is a subset of IML tailored for system control, autonomy, and robotics. This
approach merges standard control theory with ML techniques to enhance the capabilities of autonomous
systems. The integration leverages the complementary strengths of control and learning. Control theory
provides model structures and optimization guidance that enable efficient and reliable algorithms for handling
complex tasks. Meanwhile, ML improves these models by learning from data, a capacity that some conventional

1

https://openreview.net/forum?id=LDzvZEVl5H


Published in Transactions on Machine Learning Research (03/2025)

control methods lack (Jin et al., 2020; 2021b). This paper aims to tackle learning tasks in autonomous
systems that are governed by optimal control (OC) systems. An optimal control system usually consists of
dynamics, a control policy, and an objective function. From a uni�ed perspective, learning these components
can be understood as addressing a common problem with unknown parameters in di�erent parts of the
system and using di�erent loss functions. For example, in learning dynamics, the task involves parameterizing
a di�erential equation, with the loss function measuring the prediction error between the model's output
and the target data. In learning policies, the unknown parameters are within the feedback policy and the
control objective itself serves as a loss function. When learning control objective functions, the objective
is parameterized, and the loss measures the discrepancy between the reproduced trajectory and observed
demonstrations.

To tackle these problems, many works in the �eld of so-called Learning for Dynamics and Control aim to
leverage the integration of learning and control but often treat them as separate or sequential tasks. For
example, control theories are used for algorithm development and convergence analysis of online unconstrained
or constrained optimizations (Casti et al., 2023; Bastianello et al., 2024; Lu et al., 2024); model-based
reinforcement learning (Heess et al., 2015; Gu et al., 2016), improves sample e�ciency by using dynamics
models; Koopman-operator control (Proctor et al., 2018; Abraham & Murphey, 2019; Hao et al., 2024),
employs learning to transform nonlinear systems into linear observable space, simplifying control design. In
contrast, CIL integrates these processes, allowing learning algorithms to incorporate control insights directly.
The integration enables ML and control techniques to perform simultaneously, reducing computational
complexity, and improving practical applicability. CIL di�erentiates itself by utilizing Pontryagin's maximum
principle, a foundational concept in OC theory. This principle de�nes the optimality conditions for the state
and input trajectories of an OC system. CIL employs these conditions to provide gradients for machine
learning (Jin et al., 2020; 2021b; Böttcher et al., 2022). CIL integrates these gradients directly into its learning
process, ensuring that machine learning outcomes are e�cient while remaining consistent with established
control theories and physical models. This approach enhances both the reliability and accuracy of the results.

1.1 Related Work

This section presents existing research on learning various components of an autonomous system and explores
related learning frameworks that address these problems from a uni�ed perspective.

Learning dynamics. To learn a nonlinear system with possibly noisy measurement, Markov decision-
process-based methods are widely used, such as linear regression (Haruno et al., 2001), observation-transition
modeling (Finn et al., 2016), latent space modeling (Watter et al., 2015), (deep) neural networks (NN) (Li
et al., 2018; Li & Hao, 2018; Han et al., 2019; Zhang et al., 2019; Benning et al., 2019; Liu & Markowich,
2020; Beintema et al., 2023; Pillonetto et al., 2025), Gaussian processes (Deisenroth & Rasmussen, 2011), and
transition graphs (Zhang et al., 2018). Despite their widespread use, these methods often must balance data
e�ciency with prediction accuracy. To improve both metrics, physics-informed learning approaches Lutter
et al. (2019); Xu et al. (2020); Saemundsson et al. (2020); Sharma et al. (2023) incorporate physical laws into
learning models. Koopman operator theory o�ers a method for lifting states to an in�nite-dimensional linear
observable space (Mauroy et al., 2020; Liang et al., 2023; Hao et al., 2023; Liu et al., 2024).

Learning objective functions. Objective learning is typically referred to as inverse reinforcement learning
(IRL) in the ML community and inverse optimal control (IOC) in the system control community. These
methods aim to deduce a control objective function with observed optimal demonstrations. (Brown et al.,
2019) The objective function is generally represented as a weighted sum of features (Abbeel & Ng, 2004;
Ratli� et al., 2006; Ziebart et al., 2008; Arora & Doshi, 2021). Approaches to �nd these unknown weights
include feature matching (Abbeel & Ng, 2004), maximum entropy (Ziebart et al., 2008), maximum margin
(Ratli� et al., 2006), and approximate variational reward imitation learning (Chan & van der Schaar, 2021).
As for learning nonlinear parameter mapping of objective functions, prior and system-dependent knowledge
is required to further extend the methods above. On the other hand, with system dynamics, IOC aims for
e�cient learning approaches (Mombaur et al., 2010). For example, some methods (Keshavarz et al., 2011;
Jin et al., 2019; 2021a; Jin & Mou, 2021; Liang et al., 2022; 2023) directly calculate unknown weights by
minimizing the violation of optimality conditions by the observed demonstration data, which avoids repeatedly
solving OC problems.

2



Published in Transactions on Machine Learning Research (03/2025)

Learning control policies. Learning policies are generally termed reinforcement learning (RL) and OC
in the ML and control communities, respectively. In the RL community, there are mainly two streams of
research, namely model-free and model-based RL. Model-free RL learns policies by directly interacting with
the environment, without using a model of it (Mnih et al., 2013; 2015; Oh et al., 2016). To improve data
complexity, model-based RL learns a dynamics model before policy learning (Schneider, 1997; Abbeel et al.,
2006; Deisenroth & Rasmussen, 2011; Levine & Abbeel, 2014; Gu et al., 2016). For OC, the �rst strategy
is based on dynamical programming, such as the linear quadratic regulator (LQR) (Scokaert & Rawlings,
1998), which solves the OC problem with linear dynamics and quadratic cost, the linear quadratic Gaussian
(Athans, 1971), which combines LQR with a Kalman �lter to solve OC problem with linear system a�ected
by Gaussian noise, the iterative linear quadratic regulator (iLQR) (Li & Todorov, 2004), which linearizes the
dynamics and quadratizes the value function, and di�erential dynamical programming, which quadratizes the
dynamics and value function. Another strategy relies on Pontryagin's maximum/minimal principle (PMP)
(Pontryagin, 2018), such as shooting methods (Bock & Plitt, 1984) and collocation methods (Patterson &
Rao, 2014). These open-loop methods are further improved by closed-loop methods such as model predictive
control (MPC) (Schwenzer et al., 2021), which repeatedly solves an OC problem over a �nite horizon to
generate control inputs. Recently, Jin et al. (2020) proposed a framework for learning an optimal policy
based on di�erentiating Pontryagin's Maximum Principle.

Many research studies also focus on incremental policy tuning. One of the most popular tracks is transfer
learning, which exploits the generalization of existing knowledge so that it can be transferred across di�erent
domains (Taylor & Stone, 2009). Recently, transfer learning has been implemented to speed up the learning
process in RL (Taylor & Stone, 2009). Another popular method is behavior cloning (Torabi et al., 2018;
Czarnecki et al., 2019; Sasaki & Yamashina, 2021). In the control community, tuning OC systems initially
refers to neighboring extremal optimal control (NEOC) (Bryson, 1975; Ghaemi et al., 2009). There are other
popular methods including adaptive control (Ioannou & Sun, 2012; Bertsekas, 2022; Luo et al., 2023; Guo &
Pan, 2023), which adjusts its parameters in real-time to maintain optimal performance, even in the presence
of uncertainties or changes in system dynamics, and Bayesian optimization for controller tuning, (Khosravi
et al., 2021; Sorourifar et al., 2021; Berkenkamp et al., 2023).

To sum up, there are numerous existing methods focused on individual tasks. These approaches are e�ective
when only one component of the system is unknown. However, in many real-world scenarios, multiple
components may be unavailable or uncertain simultaneously. For instance, in autonomous driving, the
dynamics of the vehicle may be unknown due to changes in road conditions or vehicle wear and tear.
Simultaneously, the control policy may also be unavailable due to a lack of prede�ned rules or data. In such
cases, existing methods often fall short, as they are not designed to handle the joint learning of multiple
interdependent components, limiting their applicability in more complex or incomplete systems.

Uni�ed learning frameworks. Several studies have explored uni�ed learning frameworks to tackle learning
challenges in autonomous systems. These approaches integrate an implicit planner directly within the policy
(Okada et al., 2017; Pereira et al., 2018; Amos et al., 2018; Srinivas et al., 2018). The main challenge in
these methods is learning the OC system, which is very similar to the goal of this work. (Okada et al., 2017;
Pereira et al., 2018) learn a path-integral OC system (Kappen, 2005), which is a special class of OC systems.
(Srinivas et al., 2018) learns an OC system in a latent space. These methods rely on an �unrolling� strategy
to make di�erentiation easier. Essentially, they treat solving an OC problem as an �unrolled� computational
graph created by applying gradient descent repeatedly. This allows automatic di�erentiation tools (Abadi
et al., 2016) to be used directly. This approach faces a few challenges: (i) it requires storing all intermediate
steps, making it memory-intensive, and (ii) the accuracy of the gradients depends on how many steps are
included in the graph, leading to a trade-o� between computational cost and accuracy. To tackle these
issues, Amos et al. (2018) proposed a di�erentiable MPC framework. In the forward pass, it uses an LQR
approximation of the OC system, and in the backward pass, gradients are computed by di�erentiating this
LQR approximation. This framework has a major challenge: di�erentiating LQR requires solving a large
linear equation, involving the inversion of a matrix with size proportional to the time horizon, making it very
costly for long-horizon systems. To address the challenges of the framework mentioned above, Jin et al. (2020)
proposed Pontryagin's di�erential programming (PDP). PDP avoids unrolled computational graphs by only
storing the resulting trajectory without concern about how it is solved. Instead of relying on intermediate

3



Published in Transactions on Machine Learning Research (03/2025)

LQR approximations, it directly di�erentiates through Pontryagin's Maximum Principle (PMP) to obtain
exact gradients. Furthermore, its backward pass uses an auxiliary control system to obtain the gradient,
reducing memory and computational complexity. First, it lacks the ability for online learning, as it relies on
gradient descent to update unknown parameters in the OC system, requiring signi�cant computation time
to reach convergence. This drawback is particularly problematic in applications like autonomous driving,
where quick adaptation to new scenarios is essential for safety and performance. Second, PDP does not
account for noisy measurement data, limiting its e�ectiveness in real-world situations where sensor data is
often unreliable or noisy.

1.2 Contributions

This paper introduces an online learning framework called Online Control-Informed Learning (OCIL). This
framework is designed to be data e�cient for various learning and control tasks while providing robustness
against noisy data. In this paper, we consider an autonomous system as an OC system, which is parameterized
by tunable parameters within di�erent components of the system, including dynamics, policy, and objective
function. By tuning the OC system in an online fashion, the proposed OCIL tackles three learning tasks in
robotics, namely Online Imitation Learning, Online System Identi�cation, and Policy Tuning On-the-�y. The
proposed OCIL consists of two main components, both of which are inspired by control theory. Speci�cally,
the framework �rst proposes an online parameter estimator based on the classic online state estimation
techniques in control theory. The estimator continually updates the parameter estimates in an online fashion
as new data becomes available, aiming to minimize a cumulative loss de�ned for a speci�c task. To do so,
the gradient information for the loss with respect to the tunable parameter is required. Therefore, OCIL
employs a gradient generator (GG) based on Pontryagin Di�erential Programming in OC theory to calculate
the exact gradient.

Notations. k�k denotes the Euclidean norm. Given a matrixA 2 Rn � m , let A0 denotes its transpose. For
positive integers n and m, let I n be the n � n identity matrix; 0n 2 Rn denotes a vector with all value
0; 0n � m denotes an � m matrix with all value 0. Let colf v1; : : : ; vag denote a column stack of elements
v1; : : : ; va , which may be scalars, vectors or matrices, i.e. colf v1; : : : ; vag , [v0

1 : : : v0
a ].

2 Problem Formulation

Consider the following class of OC systems�( � � ), where � � 2 Rp denotes the unknown and constant
parameter. The behavior of �( � � ) is determined by minimizing a control objective function:

f x 1:T (� � ); u 0:T � 1(� � )g = arg min
x 1:T ; u 0:T � 1

J (x 0:T ; u 0:T � 1; � � ) =
P T � 1

t =0 c(x t ; u t ; � � ) + h(x T ; � � ) (1a)

s:t : x t +1 = f (x t ; u t ; � � ); with x 0 given: (1b)

where t = 0 ; 1; 2; � � � ; T is the time index with T being the �nal time; x t 2 Rn and u t 2 Rm denote
the system state and control input, respectively; x 0:T (� � ) , col f x 0(� � ); � � � ; x T (� � )g and u 0:T � 1(� � ) ,
col f u 0(� � ); � � � ; u T � 1(� � )g denote the states and inputs trajectory given parameter� � , respectively; x �

t (� � )
and u �

t (� � ) denote the state and input given � � at time t respectively; f : Rn � Rm � Rp ! Rn denotes a
twice-di�erentiable time-invariant system dynamics; c : Rn � Rm � Rp 7! R and h : Rn � Rp 7! R denote
running cost the �nal cost, respectively, both of which are assumed to be twice-di�erentiable.

Remark 1. Including the parameter � � in the system dynamics allows for the representation of both partially
known and completely unknown dynamics. For partially known dynamics, it is parameterized via a known
physical dynamic model with unknown physical parameters. For example, this could be a quadrotor dynamics
with known structure and unknown inertia and mass (Wang et al., 2014; Jin et al., 2020; Revach et al., 2022).
In the case of completely unknown dynamics, parameterization is done by neural networks. In this case, the
neural network captures the evolution of the state, where the parameter� � represents the weights and biases
of the neural network (Kumpati et al., 1990; Lewis et al., 1998; Nelles & Nelles, 2020).

For notation simplicity, we de�ne the unknown trajectory of the optimal control system �( � � ) as

� (� � ) , colf x 0:T (� � ); u 0:T � 1(� � )g 2 R(T +1) n + T m (2)

4



Published in Transactions on Machine Learning Research (03/2025)

The goal of this paper is to estimate� � . De�ne �̂ 2 Rp as an arbitrary estimation of � � . Then for estimation
purposes, a copy,�( �̂ ), of the autonomous system�( � � ) can be proposed by replacing� � with �̂ in (1), i.e.,

f x 1:T (�̂ ); u 0:T � 1(�̂ )g = arg min
x 1:T ; u 0:T � 1

J (x 0:T ; u 0:T � 1; �̂ ) =
P T � 1

t =0 c(x t ; u t ; �̂ ) + h(x T ; �̂ ) (3a)

s:t : x t +1 = f (x t ; u t ; �̂ ); with x 0 given: (3b)

At each time t, a noisy measurementO t 2 Rr is observed, where

O t = h(� t (� � )) + v t : (4)

Here, h : Rn + m 7! Rr denotes a twice-di�erentiable measurement function; � t (� � ) = f x �
t (� � ); u �

t (� � )g;
v t � N (0r ; R t ) denotes the measurement noise which is a multivariate Gaussian, withR t 2 Rr � r being the
covariance matrices of the measurement noise.

With the measurement equation (4) de�ned, this paper considers a signed residual function:

l (� t (�̂ ); O t ) = O t � h (� t (�̂ )) 2 Rr : (5)

Then, the performance of the entire trajectory can be evaluated by a cumulative loss which is assumed to be
twice-di�erentiable:

L (� (�̂ )) =
P T

t =0 kl (� t (�̂ ); O t )k2: (6)

The problem of interest is to develop an online method to update the estimation�̂ t 2 Rp of � � at every time
t, such that its trajectory � (�̂ t ) from (1) minimizes a task-speci�c cumulative lossL(� (�̂ )) .

To achieve a speci�c learning or control task, one needs to select the most suitable measurementO t . Below,
we will present three modes of the proposed OCIL framework. It is worth noting that in di�erent applications,
adjustments to the con�guration of system �( �̂ ) are required according to the task.

Online SysID: For a SysID problem, the goal is to identify the dynamics model of a physical system from
the state-input trajectory � o = f x o

0:T ; u 0:T � 1g, where the superscripto denotes the observed trajectory. The
trajectory is often generated by persistent excitation of the system without considering any control objectives
(Keesman, 2011). Therefore, we can setJ (x 0:T ; u 0:T � 1; �̂ ) = 0 :

�( �̂ ) :
dynamics: x t +1 = f (x t ; u t ; �̂ ); with x 0 given;

objective: J (x 0:T ; u 0:T � 1; �̂ ) = 0 :
(7)

To identify the model dynamics, namely �nding the � � in the dynamics f (x t ; u t ; � � ), one could design the
signed residual function to represent the discrepancy between the observed trajectory and the trajectory
produced by �̂ , i.e. l (� t (�̂ ); � o

t ) = � o
t � � t (�̂ ), where � o

t is a slice of� o at time t. In the SysID mode, the
measurementO t received at time t is a slice of the trajectory of a physical system� o

t .

Online Imitation Learning: The objective function and the model dynamics are parameterized by
an unknown � � . The OC system follows (3). Suppose one can observe the measurement of the expert
demonstration y �

t at each time t. Then, the signed residual function can be designed asl (� t (�̂ ); y �
t ) =

y �
t � g(x t (�̂ ); u t (�̂ )) . In this case, the measurementO t received at time t is the expert demonstration y �

t .
The optimal demonstration can vary between being continuous or sparse, depending on practical application
scenarios.

Tuning Policy On-the-�y: For an autonomous system, one would like to obtain a control policy such that
the trajectory minimizes certain task loss. This mode considers a feedback controller which is parameterized
by �̂ , i.e. u t = � (x t ; �̂ ). Then the OC system is written as follows:

�( �̂ ) :
dynamics: x t +1 = f (x t ; � (x t ; �̂ )) ; with x 0 given;

objective: J (x 0:T ; u 0:T � 1; �̂ ) =
P T � 1

t =0 c(x t ; � (x t ; �̂ )) + h(x T ):
(8)

Then we can design the signed residual function such that it represents trajectory tracking. For instance, the
signed residual function could bel (� t (�̂ ); � d

t ) = � d
t � � t (�̂ ), where � d

t is a slice of desired trajectory to track at
time t.

5



Published in Transactions on Machine Learning Research (03/2025)

3 Main Results

The proposed OCIL consists of two main components, both of which are inspired by control theory. Speci�cally,
OCIL �rst proposes an online parameter estimator based on the extended Kalman �lter (EKF). Going forward,
we will show the challenge of obtaining the Kalman gain. To tackle this challenge, the gradient information
for the loss with respect to the tunable parameter is required. Therefore, OCIL employs a gradient generator
(GG) based on Pontryagin Di�erential Programming to calculate the exact gradient. Then the proposed
OCIL framework will be introduced and supported with theoretical analysis.

3.1 Online Parameter Estimator

To minimize the cumulative task loss L(� (�̂ )) with measurement O t , which is unavailable until time t, the
optimization problem that needs to be solved in an online fashion is:

min
�

P T
t =0 kl (� t (�̂ ); O t )k2 subject to � (�̂ ) is the trajectory of (3): (9)

The optimization problem (9) is essentially a least squares problem, although under constraints. One of
the most famous methods to solve the least squares problems incrementally is the EKF (Bertsekas, 1996;
Ribeiro, 2004). The EKF was proposed to incrementally estimate the state of a system using measured output
available at each time step. In our problem setting, instead of estimating the state of a system, our goal is to
estimate the parameter � � by utilizing the measurement O t that is available at each time t. Therefore, by
considering the parameter� � as the state to be estimated, one can introduce a new dynamical system:

dynamics: � t +1 = � t ; with � 0 = � � ; measurement:O t = h(� t (� t )) + v t ; (10)

The online estimation of � � via EKF can be done as follows (Ribeiro, 2004):

�̂ �
t := �̂ t � 1; P �

t := Pt � 1 (11a)

K t := P �
t L 0

t (L t P �
t L 0

t + R t ) � 1; Pt := ( I p � K t L t )P �
t ; �̂ t := �̂ �

t + K t (O t � h (� t (�̂ �
t ))) ; (11b)

L t ,
dl (� t (� t ); O t )

d� t
j � t = �̂ �

t
2 Rr � p (12)

where (11a) predicts the dynamics; (11b) updates the parameter estimate. Here, the superscript� means
the term is not yet updated by measurement residual;Pt 2 Rp� p is a positive-de�nite matrix that denotes
the covariance of the estimate;K t 2 Rp� r denotes the Kalman gain. Throughout the estimation process,
all of the terms are known exceptL t . It is challenging to obtain this term as the signed residual function
l (� t (�̂ ); O t ) is not an explicit function of � . In the next subsection, we will present agradient generator
which computes the exact value forL t .

3.2 Gradient Generator

In this section, for notation simplicity, the parameter estimate �̂ �
t is simpli�ed to � ; dl ( � t ( � t ) ;O t )

d� t
j � t = �̂ �

t
is

written as dl ( � t ( � ))
d� . To obtain the gradient dl ( � t ( � ))

d� , one can employ the chain rule by de�nition,

dl (� t (� ))
d�

=
@l (� t (� ))

@� t (� )
@� t (� )

@�
; (13)

where @l ( � t ( � ))
@� t ( � ) is known since the signed residual function is pre-designed. The challenge that remains is to

�nd the partial derivative @� t ( � )
@� , i.e. an analytical relation between trajectory � t and the tunable parameter

� . To tackle this challenge, the gradient generator in Jin et al. (2020) is used to obtain the exact value of
@� t ( � )

@� .

Given the OC system (3), one can obtain the Hamiltonian equation

H t = c(x t ; u t ; � ) + f (x t ; u t ; � )0� t +1 (14)

6



Published in Transactions on Machine Learning Research (03/2025)

for all t = 0 ; � � � ; T � 1, where � t 2 Rn denotes the Lagrangian multiplier associated with the equality
constraint of model dynamics. With the de�nition of � (� ), one has @� ( � )

@� = colf @x 1: T ( � )
@� ; @u 0: T � 1 ( � )

@� g. By
de�ning

X t ,
@x t (� )

@�
2 Rn � p; Ut ,

@u t (� )
@�

2 Rm � p; (15)

one can utilize the following lemma from Jin et al. (2020) to obtain the partial derivatives
@� t (� )

@�
:

Lemma 1. Jin et al. (2020) De�ne the Jacobian and Hessian matrices related to� (� ) as:

F t =
@f
@x t

; G t =
@f
@u t

; E t =
@f
@�

; H xx
t =

@2H t

@x t @x t
; H xu

t =
@2H t

@x t @u t
= ( H ux

t )0;

H uu
t =

@2H t

@u t @u t
; H x�

t =
@2H t

@x t @�
; H u�

t =
@2H t

@u t @�
; H xx

T =
@2h

@x T @x T
; H x�

T =
@2h

@x T @�
:

(16)

If H uu
t is invertible for all t = 0 ; � � � ; T � 1, the following recursions from t = T to t = 0 hold:

Vt = C t + A 0
t (I + Vt +1 B t ) � 1Vt +1 A t ;

W t = A 0
t (I + Vt +1 B t ) � 1(W t +1 + Vt +1 M t ) + N t ;

(17)

with VT = H xx
T and W T = H x�

T . Here, A t = F t � G t (H uu
t ) � 1H ux

t , B t = G t (H uu
t ) � 1G0

t , M t = E t �
G t (H uu

t )0H u�
t , C t = H xx

t � H xu
t (H uu

t ) � 1H ux
t , N t = H x�

t � H xu
t (H uu

t )0H u�
t are all known given (16).

Then, the partial derivative
@� (� )

@�
can be obtained by recursively solving the following equations fromt = 0 to

T � 1 with X 0(� ) = 0:

U t = � (H uu
t )-1(H ux

t X t + H u�
t + G0

t (I + Vt +1 B t )-1(Vt +1 A t X t + Vt +1 M t + W t +1 )) ;

X t +1 = F t X t + G t U t + E t :
(18)

The terms in (16) are based on the trajectory� (� ) and the associated Lagrangian multiplier� 0:T � 1. According
to the discrete-time Pontryagin Maximum Principle (Jin et al., 2020), the trajectory of the Lagrangian
multiplier can be obtained by

� T =
@h

@x T
; � t ,

@Ht

@x t
=

@c
@x t

+
@h
@x t

� t +1 ; for t = T � 1; � � � ; 1: (19)

Remark 2. Lemma 1 proposes a recursive way to obtain the exact gradient of the trajectory� (� ) with respect
to the parameter � , i.e. @� ( � )

@� .

3.3 OCIL Framework

With the online parameter estimator and the gradient generator, we propose the Online Control-Informed
Learning framework in Fig. 1. The framework is summarized in Algorithm 2.

Figure 1: Framework of Online Control-Informed Learning.

7



Published in Transactions on Machine Learning Research (03/2025)

As shown in Fig. 1, at each time step, the prede�ned OC system�( �̂ t ) generates a system trajectory
� (�̂ t ) by performing optimal control with given x 0 and �̂ t . The trajectory � (�̂ t ) is then fed into the signed
residual function l (� t (�̂ t ); O t ) and the gradient generator. Along with the information O t obtained at time t,

the signed residual function generates@l ( � t ( �̂ �
t ) ;O t )

@� t ( �̂ �
t )

, while @� t ( �̂ �
t )

@̂� �
t

is generated by the gradient generator in

Algorithm 1. The chain rule is then performed to obtain the Jacobian matrix L t , which is then passed into
the online parameter estimator for the estimation of � � .

Algorithm 1: Gradient Generator (GG)

Input: Trajectory � (�̂ �
t ) from �( �̂ �

t )
1 Compute the coe�cient matrices in (16) ;
2 Set VT = H xx

T and W T = H x�
T ;

3 for t  T to 0 by � t do
4 Update Vt and W t using (17)

5 Set X 0(�̂ �
t ) = 0;

6 for t  0 to T by � t do
7 Update X t (�̂ �

t ) and U t (�̂ �
t ) using (18)

Output:
@� ( �̂ �

t )

@̂� �
t

= f X 1:T (�̂ �
t ); U0:T � 1(�̂ �

t )g

Algorithm 2: Online Control-Informed Learning

System and Residual: �( �̂ ) and l (� t (�̂ ); O t )
Initialize: �̂ 0 ; P0

1 for t = t0 ; t1 ; � � � do
2 Obtain new information O t ;
3 Solve � (�̂ t ) from current OC system �( �̂ t );

4 Obtain
@� t ( �̂ �

t )

@̂� �
t

with GG in Algorithm 1;

5 Obtain
@l ( � t ( �̂ �

t ) ;O t )

@� t ( �̂ �
t )

from l (� t (�̂ �
t ); O t );

6 Obtain L t via the chain rule (13);
7 Update �̂ t using the estimator (11);

3.4 Convergence Analysis

This subsection presents the convergence analysis of the online parameter estimator. The analysis employs
a candidate Lyapunov function and introduces how the measurement covariance matrixR t a�ects the
convergence of the cumulative lossL(� (�̂ )) . In this section, for brevity, the signed residual function
l (� t (�̂ ); O t ) is written as l (� t (�̂ )) . Suppose for a speci�c task, the optimal cumulative lossL(� (� � )) = 0 .
Then, we de�ne the estimation error as ~� t = � � � �̂ t . Furthermore, we de�ne

Measurement error: et = l (� (� � )) � l (� (�̂ �
t ))

Prediction error: ~� �
t = � � � �̂ �

t :
(20)

To perform the convergence analysis, a candidate Lyapunov function is employed:

Vt = ~� 0
t P

� 1
t

~� t : (21)

The goal here is to determine conditions for which the candidate Lyapunov functionf Vt gt =1 ;2;::: is a decreasing
sequence, i.e.Vt +1 � Vt � 0; 8t. For rigorous analysis of the candidate Lyapunov function, as proposed in
Boutayeb et al. (1997), unknown diagonal matricesF t 2 Rr � r and Gt 2 Rp� p are introduced to model the
measurement and prediction error de�ned in (20):

F t et = L t
~� �

t ; ~� �
t = Gt

~� t � 1: (22)

To ensure convergence of the proposed estimator, the following assumptions need to be made.

Assumption 1. The derivative L t = dl ( � t ( �̂ �
t ))

d�̂ �
t

is of full rank for every �̂ �
t .

Remark 3. The discrete-time dynamical system (10) satis�es the observability rank condition, i.e., for

every �̂ �
t , rank(colf dl ( � t ( �̂ �

t ))

d�̂ �
t

; dl ( � t ( �̂ �
t ))

d�̂ �
t

I p; � � � ; dl ( � t ( �̂ �
t ))

d�̂ �
t

I p� 1
p g) = p (Song & Grizzle, 1992). That means if

Assumption 1 is satis�ed for every �̂ �
t , the system (10) is observable for everŷ� �

t . The observability condition
assures thatPt is a bounded matrix from above and below (Song & Grizzle, 1992; Boutayeb & Aubry, 1999).

As common in the EKF analysis, we adopt the following assumption:

Assumption 2. L t is a uniformly bounded matrix.

We have the following lemma to show how the measurement covariance matrixR t a�ects the convergence of
the tunable parameter. The proof can be found in Appendix A.

8



Published in Transactions on Machine Learning Research (03/2025)

Lemma 2. Let Assumptions 1 and 2 hold. If the following inequalities are satis�ed:

(F t � I s)2 � R t (L t P �
t L 0

t + R t ) � 1; (23)

G0
t P

� 1
t Gt � P � 1

t � 0; (24)

Then the proposed estimator (11), when used as an observer for the system (10), ensures local asymptotic
convergence, i.e. lim t !1

~� t = 0.

Remark 4. Lemma 2 provides su�cient conditions for the convergence of�̂ t . As the diagonal matricesF t

and Gt are unknown, one can design the matrixR t to satisfy inequalities (23). For example, one can set the
matrix R t to be su�ciently large, i.e. much larger than L t P �

t L 0
t , so that (23) is satis�ed, which means the

parameter estimator can tolerate arbitrary large initial prediction error. It is worth to note that as long as
(23) and (24) are satis�ed, �̂ t converges to� � and consequentlyF t and Gt become identity matrix. In the
case when there is no measurement noise, i.e.R t = 0s� s, F t and Gt can only be identity matrices to satisfy
the inequalities (23) and (24), indicating the convergence of̂� t to � � .

Remark 5. Equation (23) and (24) indicate one of the limitations of the estimator, which is the selection of
initial guess. If the initial guess of � � results in F 0 and G0 that do not satisfy (23) and (24), the value of
the Lyapunov function (21) becomes larger, which leads to even largerF t and Gt , causing the estimation to
diverge.

We have the following main theorem shows how the measurement covariance matrixR t a�ects the convergence
of cumulative lossL(� (�̂ )) by utilizing the inequalities introduced in Lemma 2. The proof can be found in
Appendix B.

Theorem 1. Let Assumptions 1 and 2 hold. If the inequalities in Lemma 2 are met, then estimating� �

with the proposed estimator (11) employing the gradient generator in (17)-(18) ensures local asymptotic
convergence of the cumulative lossL in (6) to 0 , i.e. lim t !1 L(� (�̂ )) = 0 .

4 Applications to Di�erent Online Learning Modes and Experiments

This section demonstrates the capability of the proposed OCIL framework with its three modes by three
applications, Online Imitation Learning, Online System Identi�cation, and Learning Policy on-the-�y. This
section includes a performance comparison with some state-of-the-art frameworks for three environments that
are summarized in Table 1. LetO �

t = h(� t (� � )) denotes the measurement without noise. The measurement
noise is subject to a multivariate Gaussian distribution N (O �

t ; � 2I r ).

To highlight the �exibility of OCIL, each experiment includes two phases: 1) online phase, where OCIL keeps
learning the unknown parameter while new data comes in before the �nal timeT; 2) o�ine phase, where
OCIL keeps learning the parameter given the learned parameter at timeT and the entire trajectory obtained
from time t = 0 to time T. For each environment and task, a terminal time T 2 Z is de�ned to represent a
desired time duration where the system shall �nish the task.

To unify the data visualization of both online and o�ine phases, the horizontal axis represents the number
of data points, where a vertical red line corresponds to the �nal time T, i.e. the end of the online phase.
The number of data points re�ects the number of iterations multiplied by the total number of time steps for
each iteration. The solid blue curves indicate the online portion of OCIL, whereas the dashed blue curves
indicate the o�ine portion. For every environment and every method, 5 trials are performed given random
initial conditions due to the high computational cost for other methods. The computational performance and
analysis for OCIL are shown in Section 5 of the Appendix.

Online Imitation Learning. The control objective is parameterized as a weighted distance to the goal. Set
the signed residual function of imitation learning l(� t (�̂ ); y �

t ) = y �
t � g(x t (�̂ ); u t (�̂ )) . The optimal cumulative

loss is zero, i.e.L (� (� � )) = 0 , with full knowledge of the parameter. Four existing methods are used for
comparisons: (i) inverse KKT (Englert et al., 2017) (ii) neural policy cloning (Bojarski et al., 2016) and (iii)
PDP (Jin et al., 2020). These methods don't handle measurement noise well because of their limitations, so
we performed the experiments without including measurement noise for these methods. For OCIL,� = 0 :1
for all of the systems.

9



Published in Transactions on Machine Learning Research (03/2025)

Table 1: Experiment Environments

Systems Dynamics parameter � dyn Objective parameter � obj

Cartpole cart mass, pole mass and length
c(x ; u ) = � obj kx � x gk2 + kuk2

h(x ) = � obj kx � x gk26-DoF Quadrotor mass, wing length, inertia matrix
6-DoF Rocket mass, rocket length, inertia matrix

Fig. 2a-2c summarize the comparison result, where OCIL converges faster and obtains lower loss than the
other o�ine methods, in both online and o�ine phases. The initial loss for each method is di�erent because
the learning representation (parameterization) is di�erent. Thus, it is hard to guarantee that an initial neural
network has the same loss as another initial parameter vector. Nevertheless, the initial representation of each
method is adjusted such that OCIL does not take advantage of good initialization. Fig. 2a-2c validate the
e�ectiveness of OCIL's both online and o�ine performance, even with measurement noise.

(a) Cartpole (b) Quadrotor (c) Rocket

Figure 2: Imitation loss v.s. number of data points

Figure 3: Trajectories of the cartpole in online imitation learning. Blue solid lines: learned trajectory. Green
solid lines: observed noisy trajectory. Red dashed lines: ground truth.

Online System Identi�cation The signed residual function is set to bel(� t (�̂ ); � o
t ) = � o

t � � t (�̂ ). The
optimal cumulative loss is zero, i.e.L (� (� � )) = 0 , with full knowledge of the parameter. Three other methods
are used for comparison: (i) Pytorch Adam solver (Pillonetto et al., 2025), (ii) DMDc (Proctor et al., 2016),
and (iii) PDP (Jin et al., 2020). No measurement noise are injected into observed data for existing methods
due to their inherent limitations. For OCIL, � = 0 :05 for all of the systems.

Fig. 5a-5c summarize the result, where OCIL outperforms PDP for faster convergence and lower loss, in both
online and o�ine phases. Di�erent than Online Imitation Learning, OCIL does not decrease its SysID loss
signi�cantly at �rst because the number of data points is not su�cient for online learning. Once the number
of data points becomes su�cient, the SysID loss starts decreasing signi�cantly. This phenomenon can also be
observed in the other methods, but their critical number of data points is signi�cantly larger than OCIL's.
In Fig. 5d-5f, OCIL and other methods are applied to learn the neural dynamics using the same observed

10




	Introduction
	Related Work
	Contributions

	Problem Formulation
	Main Results
	Online Parameter Estimator
	Gradient Generator
	OCIL Framework
	Convergence Analysis

	Applications to Different Online Learning Modes and Experiments
	Online Computational Performance
	Limitations.
	Conclusions
	Proof of Lemma 2
	Proof of Theorem 1
	Experiment Details
	System/Environment Setups
	Online Imitation Learning
	Online System Identification
	Policy Tuning On-the-fly


