
Published in Transactions on Machine Learning Research (03/2025)

Online Control-Informed Learning

Zihao Liang liang331@purdue.edu
School of Aeronautics and Astronautics
Purdue University

Tianyu Zhou zhou1043@purdue.edu
School of Aeronautics and Astronautics
Purdue University

Zehui Lu lu846@purdue.edu
School of Aeronautics and Astronautics
Purdue University

Shaoshuai Mou mous@purdue.edu
School of Aeronautics and Astronautics
Purdue University

Reviewed on OpenReview: https: // openreview. net/ forum? id= LDzvZEVl5H

Abstract

This paper proposes an Online Control-Informed Learning (OCIL) framework, which employs
the well-established optimal control and state estimation techniques in the field of control to
solve a broad class of learning tasks in an online fashion. This novel integration effectively
handles practical issues in machine learning such as noisy measurement data, online learning,
and data efficiency. By considering any robot as a tunable optimal control system, we propose
an online parameter estimator based on extended Kalman filter (EKF) to incrementally tune
the system in an online fashion, enabling it to complete designated learning or control tasks.
The proposed method also improves the robustness in learning by effectively managing noise
in the data. Theoretical analysis is provided to demonstrate the convergence of OCIL. Three
learning modes of OCIL, i.e. Online Imitation Learning, Online System Identification, and
Policy Tuning On-the-fly, are investigated via experiments, which validate their effectiveness.

1 Introduction

Informed Machine Learning (IML) (Von Rueden et al., 2021) represents an emerging approach that integrates
prior knowledge into the machine learning (ML) process. While classic classification tasks in unsupervised,
semi-supervised, or supervised ML primarily focus on extracting patterns from labeled or unlabeled data
(LeCun et al., 2015), IML leverages prior knowledge such as physical laws, expert knowledge, or existing
models to uncover underlying connections within data (Karniadakis et al., 2021). This integration enables
models to produce more reliable and interpretable predictions, especially when dealing with noisy data. This
approach is especially advantageous in the domains where theoretical understanding is well-established and
thus can guide ML. One notable example of IML is physics-informed machine learning (Wu et al., 2018;
Karniadakis et al., 2021; Kashinath et al., 2021), which is particularly valuable for solving partial differential
equations for computational fluid dynamics.

Control-informed learning (CIL) is a subset of IML tailored for system control, autonomy, and robotics. This
approach merges standard control theory with ML techniques to enhance the capabilities of autonomous
systems. The integration leverages the complementary strengths of control and learning. Control theory
provides model structures and optimization guidance that enable efficient and reliable algorithms for handling
complex tasks. Meanwhile, ML improves these models by learning from data, a capacity that some conventional
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control methods lack (Jin et al., 2020; 2021b). This paper aims to tackle learning tasks in autonomous
systems that are governed by optimal control (OC) systems. An optimal control system usually consists of
dynamics, a control policy, and an objective function. From a unified perspective, learning these components
can be understood as addressing a common problem with unknown parameters in different parts of the
system and using different loss functions. For example, in learning dynamics, the task involves parameterizing
a differential equation, with the loss function measuring the prediction error between the model’s output
and the target data. In learning policies, the unknown parameters are within the feedback policy and the
control objective itself serves as a loss function. When learning control objective functions, the objective
is parameterized, and the loss measures the discrepancy between the reproduced trajectory and observed
demonstrations.

To tackle these problems, many works in the field of so-called Learning for Dynamics and Control aim to
leverage the integration of learning and control but often treat them as separate or sequential tasks. For
example, control theories are used for algorithm development and convergence analysis of online unconstrained
or constrained optimizations (Casti et al., 2023; Bastianello et al., 2024; Lu et al., 2024); model-based
reinforcement learning (Heess et al., 2015; Gu et al., 2016), improves sample efficiency by using dynamics
models; Koopman-operator control (Proctor et al., 2018; Abraham & Murphey, 2019; Hao et al., 2024),
employs learning to transform nonlinear systems into linear observable space, simplifying control design. In
contrast, CIL integrates these processes, allowing learning algorithms to incorporate control insights directly.
The integration enables ML and control techniques to perform simultaneously, reducing computational
complexity, and improving practical applicability. CIL differentiates itself by utilizing Pontryagin’s maximum
principle, a foundational concept in OC theory. This principle defines the optimality conditions for the state
and input trajectories of an OC system. CIL employs these conditions to provide gradients for machine
learning (Jin et al., 2020; 2021b; Böttcher et al., 2022). CIL integrates these gradients directly into its learning
process, ensuring that machine learning outcomes are efficient while remaining consistent with established
control theories and physical models. This approach enhances both the reliability and accuracy of the results.

1.1 Related Work

This section presents existing research on learning various components of an autonomous system and explores
related learning frameworks that address these problems from a unified perspective.

Learning dynamics. To learn a nonlinear system with possibly noisy measurement, Markov decision-
process-based methods are widely used, such as linear regression (Haruno et al., 2001), observation-transition
modeling (Finn et al., 2016), latent space modeling (Watter et al., 2015), (deep) neural networks (NN) (Li
et al., 2018; Li & Hao, 2018; Han et al., 2019; Zhang et al., 2019; Benning et al., 2019; Liu & Markowich,
2020; Beintema et al., 2023; Pillonetto et al., 2025), Gaussian processes (Deisenroth & Rasmussen, 2011), and
transition graphs (Zhang et al., 2018). Despite their widespread use, these methods often must balance data
efficiency with prediction accuracy. To improve both metrics, physics-informed learning approaches Lutter
et al. (2019); Xu et al. (2020); Saemundsson et al. (2020); Sharma et al. (2023) incorporate physical laws into
learning models. Koopman operator theory offers a method for lifting states to an infinite-dimensional linear
observable space (Mauroy et al., 2020; Liang et al., 2023; Hao et al., 2023; Liu et al., 2024).

Learning objective functions. Objective learning is typically referred to as inverse reinforcement learning
(IRL) in the ML community and inverse optimal control (IOC) in the system control community. These
methods aim to deduce a control objective function with observed optimal demonstrations. (Brown et al.,
2019) The objective function is generally represented as a weighted sum of features (Abbeel & Ng, 2004;
Ratliff et al., 2006; Ziebart et al., 2008; Arora & Doshi, 2021). Approaches to find these unknown weights
include feature matching (Abbeel & Ng, 2004), maximum entropy (Ziebart et al., 2008), maximum margin
(Ratliff et al., 2006), and approximate variational reward imitation learning (Chan & van der Schaar, 2021).
As for learning nonlinear parameter mapping of objective functions, prior and system-dependent knowledge
is required to further extend the methods above. On the other hand, with system dynamics, IOC aims for
efficient learning approaches (Mombaur et al., 2010). For example, some methods (Keshavarz et al., 2011;
Jin et al., 2019; 2021a; Jin & Mou, 2021; Liang et al., 2022; 2023) directly calculate unknown weights by
minimizing the violation of optimality conditions by the observed demonstration data, which avoids repeatedly
solving OC problems.
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Learning control policies. Learning policies are generally termed reinforcement learning (RL) and OC
in the ML and control communities, respectively. In the RL community, there are mainly two streams of
research, namely model-free and model-based RL. Model-free RL learns policies by directly interacting with
the environment, without using a model of it (Mnih et al., 2013; 2015; Oh et al., 2016). To improve data
complexity, model-based RL learns a dynamics model before policy learning (Schneider, 1997; Abbeel et al.,
2006; Deisenroth & Rasmussen, 2011; Levine & Abbeel, 2014; Gu et al., 2016). For OC, the first strategy
is based on dynamical programming, such as the linear quadratic regulator (LQR) (Scokaert & Rawlings,
1998), which solves the OC problem with linear dynamics and quadratic cost, the linear quadratic Gaussian
(Athans, 1971), which combines LQR with a Kalman filter to solve OC problem with linear system affected
by Gaussian noise, the iterative linear quadratic regulator (iLQR) (Li & Todorov, 2004), which linearizes the
dynamics and quadratizes the value function, and differential dynamical programming, which quadratizes the
dynamics and value function. Another strategy relies on Pontryagin’s maximum/minimal principle (PMP)
(Pontryagin, 2018), such as shooting methods (Bock & Plitt, 1984) and collocation methods (Patterson &
Rao, 2014). These open-loop methods are further improved by closed-loop methods such as model predictive
control (MPC) (Schwenzer et al., 2021), which repeatedly solves an OC problem over a finite horizon to
generate control inputs. Recently, Jin et al. (2020) proposed a framework for learning an optimal policy
based on differentiating Pontryagin’s Maximum Principle.

Many research studies also focus on incremental policy tuning. One of the most popular tracks is transfer
learning, which exploits the generalization of existing knowledge so that it can be transferred across different
domains (Taylor & Stone, 2009). Recently, transfer learning has been implemented to speed up the learning
process in RL (Taylor & Stone, 2009). Another popular method is behavior cloning (Torabi et al., 2018;
Czarnecki et al., 2019; Sasaki & Yamashina, 2021). In the control community, tuning OC systems initially
refers to neighboring extremal optimal control (NEOC) (Bryson, 1975; Ghaemi et al., 2009). There are other
popular methods including adaptive control (Ioannou & Sun, 2012; Bertsekas, 2022; Luo et al., 2023; Guo &
Pan, 2023), which adjusts its parameters in real-time to maintain optimal performance, even in the presence
of uncertainties or changes in system dynamics, and Bayesian optimization for controller tuning, (Khosravi
et al., 2021; Sorourifar et al., 2021; Berkenkamp et al., 2023).

To sum up, there are numerous existing methods focused on individual tasks. These approaches are effective
when only one component of the system is unknown. However, in many real-world scenarios, multiple
components may be unavailable or uncertain simultaneously. For instance, in autonomous driving, the
dynamics of the vehicle may be unknown due to changes in road conditions or vehicle wear and tear.
Simultaneously, the control policy may also be unavailable due to a lack of predefined rules or data. In such
cases, existing methods often fall short, as they are not designed to handle the joint learning of multiple
interdependent components, limiting their applicability in more complex or incomplete systems.

Unified learning frameworks. Several studies have explored unified learning frameworks to tackle learning
challenges in autonomous systems. These approaches integrate an implicit planner directly within the policy
(Okada et al., 2017; Pereira et al., 2018; Amos et al., 2018; Srinivas et al., 2018). The main challenge in
these methods is learning the OC system, which is very similar to the goal of this work. (Okada et al., 2017;
Pereira et al., 2018) learn a path-integral OC system (Kappen, 2005), which is a special class of OC systems.
(Srinivas et al., 2018) learns an OC system in a latent space. These methods rely on an “unrolling” strategy
to make differentiation easier. Essentially, they treat solving an OC problem as an “unrolled” computational
graph created by applying gradient descent repeatedly. This allows automatic differentiation tools (Abadi
et al., 2016) to be used directly. This approach faces a few challenges: (i) it requires storing all intermediate
steps, making it memory-intensive, and (ii) the accuracy of the gradients depends on how many steps are
included in the graph, leading to a trade-off between computational cost and accuracy. To tackle these
issues, Amos et al. (2018) proposed a differentiable MPC framework. In the forward pass, it uses an LQR
approximation of the OC system, and in the backward pass, gradients are computed by differentiating this
LQR approximation. This framework has a major challenge: differentiating LQR requires solving a large
linear equation, involving the inversion of a matrix with size proportional to the time horizon, making it very
costly for long-horizon systems. To address the challenges of the framework mentioned above, Jin et al. (2020)
proposed Pontryagin’s differential programming (PDP). PDP avoids unrolled computational graphs by only
storing the resulting trajectory without concern about how it is solved. Instead of relying on intermediate
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LQR approximations, it directly differentiates through Pontryagin’s Maximum Principle (PMP) to obtain
exact gradients. Furthermore, its backward pass uses an auxiliary control system to obtain the gradient,
reducing memory and computational complexity. First, it lacks the ability for online learning, as it relies on
gradient descent to update unknown parameters in the OC system, requiring significant computation time
to reach convergence. This drawback is particularly problematic in applications like autonomous driving,
where quick adaptation to new scenarios is essential for safety and performance. Second, PDP does not
account for noisy measurement data, limiting its effectiveness in real-world situations where sensor data is
often unreliable or noisy.

1.2 Contributions

This paper introduces an online learning framework called Online Control-Informed Learning (OCIL). This
framework is designed to be data efficient for various learning and control tasks while providing robustness
against noisy data. In this paper, we consider an autonomous system as an OC system, which is parameterized
by tunable parameters within different components of the system, including dynamics, policy, and objective
function. By tuning the OC system in an online fashion, the proposed OCIL tackles three learning tasks in
robotics, namely Online Imitation Learning, Online System Identification, and Policy Tuning On-the-fly. The
proposed OCIL consists of two main components, both of which are inspired by control theory. Specifically,
the framework first proposes an online parameter estimator based on the classic online state estimation
techniques in control theory. The estimator continually updates the parameter estimates in an online fashion
as new data becomes available, aiming to minimize a cumulative loss defined for a specific task. To do so,
the gradient information for the loss with respect to the tunable parameter is required. Therefore, OCIL
employs a gradient generator (GG) based on Pontryagin Differential Programming in OC theory to calculate
the exact gradient.

Notations. ∥·∥ denotes the Euclidean norm. Given a matrix A ∈ Rn×m, let A′ denotes its transpose. For
positive integers n and m, let In be the n × n identity matrix; 0n ∈ Rn denotes a vector with all value
0; 0n×m denotes a n × m matrix with all value 0. Let col{v1, . . . ,va} denote a column stack of elements
v1, . . . ,va, which may be scalars, vectors or matrices, i.e. col{v1, . . . ,va} ≜ [v′

1 . . .v′
a].

2 Problem Formulation

Consider the following class of OC systems Σ(θ∗), where θ∗ ∈ Rp denotes the unknown and constant
parameter. The behavior of Σ(θ∗) is determined by minimizing a control objective function:

{x1:T (θ∗),u0:T −1(θ∗)} = arg min
x1:T ,u0:T −1

J(x0:T ,u0:T −1,θ∗) =
∑T −1

t=0 c(xt,ut,θ
∗) + h(xT ,θ∗) (1a)

s.t. xt+1 = f(xt,ut,θ
∗), with x0 given. (1b)

where t = 0, 1, 2, · · · , T is the time index with T being the final time; xt ∈ Rn and ut ∈ Rm denote
the system state and control input, respectively; x0:T (θ∗) ≜ col {x0(θ∗), · · · ,xT (θ∗)} and u0:T −1(θ∗) ≜
col {u0(θ∗), · · · ,uT −1(θ∗)} denote the states and inputs trajectory given parameter θ∗, respectively; x∗

t (θ∗)
and u∗

t (θ∗) denote the state and input given θ∗ at time t respectively; f : Rn × Rm × Rp → Rn denotes a
twice-differentiable time-invariant system dynamics; c : Rn × Rm × Rp 7→ R and h : Rn × Rp 7→ R denote
running cost the final cost, respectively, both of which are assumed to be twice-differentiable.
Remark 1. Including the parameter θ∗ in the system dynamics allows for the representation of both partially
known and completely unknown dynamics. For partially known dynamics, it is parameterized via a known
physical dynamic model with unknown physical parameters. For example, this could be a quadrotor dynamics
with known structure and unknown inertia and mass (Wang et al., 2014; Jin et al., 2020; Revach et al., 2022).
In the case of completely unknown dynamics, parameterization is done by neural networks. In this case, the
neural network captures the evolution of the state, where the parameter θ∗ represents the weights and biases
of the neural network (Kumpati et al., 1990; Lewis et al., 1998; Nelles & Nelles, 2020).

For notation simplicity, we define the unknown trajectory of the optimal control system Σ(θ∗) as

ξ(θ∗) ≜ col{x0:T (θ∗),u0:T −1(θ∗)} ∈ R(T +1)n+T m (2)
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The goal of this paper is to estimate θ∗. Define θ̂ ∈ Rp as an arbitrary estimation of θ∗. Then for estimation
purposes, a copy, Σ(θ̂), of the autonomous system Σ(θ∗) can be proposed by replacing θ∗ with θ̂ in (1), i.e.,

{x1:T (θ̂),u0:T −1(θ̂)} = arg min
x1:T ,u0:T −1

J(x0:T ,u0:T −1, θ̂) =
∑T −1

t=0 c(xt,ut, θ̂) + h(xT , θ̂) (3a)

s.t. xt+1 = f(xt,ut, θ̂), with x0 given. (3b)

At each time t, a noisy measurement Ot ∈ Rr is observed, where

Ot = h(ξt(θ∗)) + vt. (4)

Here, h : Rn+m 7→ Rr denotes a twice-differentiable measurement function; ξt(θ∗) = {x∗
t (θ∗),u∗

t (θ∗)};
vt ∼ N (0r,Rt) denotes the measurement noise which is a multivariate Gaussian, with Rt ∈ Rr×r being the
covariance matrices of the measurement noise.

With the measurement equation (4) defined, this paper considers a signed residual function:

l(ξt(θ̂),Ot) = Ot − h(ξt(θ̂)) ∈ Rr. (5)

Then, the performance of the entire trajectory can be evaluated by a cumulative loss which is assumed to be
twice-differentiable:

L(ξ(θ̂)) =
∑T

t=0 ∥l(ξt(θ̂),Ot)∥2. (6)

The problem of interest is to develop an online method to update the estimation θ̂t ∈ Rp of θ∗ at every time
t, such that its trajectory ξ(θ̂t) from (1) minimizes a task-specific cumulative loss L(ξ(θ̂)).

To achieve a specific learning or control task, one needs to select the most suitable measurement Ot. Below,
we will present three modes of the proposed OCIL framework. It is worth noting that in different applications,
adjustments to the configuration of system Σ(θ̂) are required according to the task.

Online SysID: For a SysID problem, the goal is to identify the dynamics model of a physical system from
the state-input trajectory ξo = {xo

0:T ,u0:T −1}, where the superscript o denotes the observed trajectory. The
trajectory is often generated by persistent excitation of the system without considering any control objectives
(Keesman, 2011). Therefore, we can set J(x0:T ,u0:T −1, θ̂) = 0:

Σ(θ̂) :
dynamics: xt+1 = f(xt,ut, θ̂), with x0 given,

objective: J(x0:T ,u0:T −1, θ̂) = 0.
(7)

To identify the model dynamics, namely finding the θ∗ in the dynamics f(xt,ut,θ
∗), one could design the

signed residual function to represent the discrepancy between the observed trajectory and the trajectory
produced by θ̂, i.e. l(ξt(θ̂), ξo

t ) = ξo
t − ξt(θ̂), where ξo

t is a slice of ξo at time t. In the SysID mode, the
measurement Ot received at time t is a slice of the trajectory of a physical system ξo

t .

Online Imitation Learning: The objective function and the model dynamics are parameterized by
an unknown θ∗. The OC system follows (3). Suppose one can observe the measurement of the expert
demonstration y∗

t at each time t. Then, the signed residual function can be designed as l(ξt(θ̂),y∗
t ) =

y∗
t − g(xt(θ̂),ut(θ̂)). In this case, the measurement Ot received at time t is the expert demonstration y∗

t .
The optimal demonstration can vary between being continuous or sparse, depending on practical application
scenarios.

Tuning Policy On-the-fly: For an autonomous system, one would like to obtain a control policy such that
the trajectory minimizes certain task loss. This mode considers a feedback controller which is parameterized
by θ̂, i.e. ut = µ(xt, θ̂). Then the OC system is written as follows:

Σ(θ̂) :
dynamics: xt+1 = f(xt,µ(xt, θ̂)), with x0 given,

objective: J(x0:T ,u0:T −1, θ̂) =
∑T −1

t=0 c(xt,µ(xt, θ̂)) + h(xT ).
(8)

Then we can design the signed residual function such that it represents trajectory tracking. For instance, the
signed residual function could be l(ξt(θ̂), ξd

t ) = ξd
t − ξt(θ̂), where ξd

t is a slice of desired trajectory to track at
time t.
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3 Main Results

The proposed OCIL consists of two main components, both of which are inspired by control theory. Specifically,
OCIL first proposes an online parameter estimator based on the extended Kalman filter (EKF). Going forward,
we will show the challenge of obtaining the Kalman gain. To tackle this challenge, the gradient information
for the loss with respect to the tunable parameter is required. Therefore, OCIL employs a gradient generator
(GG) based on Pontryagin Differential Programming to calculate the exact gradient. Then the proposed
OCIL framework will be introduced and supported with theoretical analysis.

3.1 Online Parameter Estimator

To minimize the cumulative task loss L(ξ(θ̂)) with measurement Ot, which is unavailable until time t, the
optimization problem that needs to be solved in an online fashion is:

min
θ

∑T
t=0 ∥l(ξt(θ̂),Ot)∥2 subject to ξ(θ̂) is the trajectory of (3). (9)

The optimization problem (9) is essentially a least squares problem, although under constraints. One of
the most famous methods to solve the least squares problems incrementally is the EKF (Bertsekas, 1996;
Ribeiro, 2004). The EKF was proposed to incrementally estimate the state of a system using measured output
available at each time step. In our problem setting, instead of estimating the state of a system, our goal is to
estimate the parameter θ∗ by utilizing the measurement Ot that is available at each time t. Therefore, by
considering the parameter θ∗ as the state to be estimated, one can introduce a new dynamical system:

dynamics: θt+1 = θt, with θ0 = θ∗, measurement: Ot = h(ξt(θt)) + vt, (10)

The online estimation of θ∗ via EKF can be done as follows (Ribeiro, 2004):

θ̂−
t := θ̂t−1, P−

t := Pt−1 (11a)
Kt := P−

t L
′
t(LtP

−
t L

′
t +Rt)−1, Pt := (Ip −KtLt)P−

t , θ̂t := θ̂−
t +Kt(Ot − h(ξt(θ̂−

t ))), (11b)

Lt ≜
dl(ξt(θt),Ot)

dθt
|θt=θ̂−

t
∈ Rr×p (12)

where (11a) predicts the dynamics; (11b) updates the parameter estimate. Here, the superscript − means
the term is not yet updated by measurement residual; Pt ∈ Rp×p is a positive-definite matrix that denotes
the covariance of the estimate; Kt ∈ Rp×r denotes the Kalman gain. Throughout the estimation process,
all of the terms are known except Lt. It is challenging to obtain this term as the signed residual function
l(ξt(θ̂),Ot) is not an explicit function of θ. In the next subsection, we will present a gradient generator
which computes the exact value for Lt.

3.2 Gradient Generator

In this section, for notation simplicity, the parameter estimate θ̂−
t is simplified to θ; dl(ξt(θt),Ot)

dθt
|θt=θ̂−

t
is

written as dl(ξt(θ))
dθ . To obtain the gradient dl(ξt(θ))

dθ , one can employ the chain rule by definition,

dl(ξt(θ))
dθ

= ∂l(ξt(θ))
∂ξt(θ)

∂ξt(θ)
∂θ

, (13)

where ∂l(ξt(θ))
∂ξt(θ) is known since the signed residual function is pre-designed. The challenge that remains is to

find the partial derivative ∂ξt(θ)
∂θ , i.e. an analytical relation between trajectory ξt and the tunable parameter

θ. To tackle this challenge, the gradient generator in Jin et al. (2020) is used to obtain the exact value of
∂ξt(θ)

∂θ .

Given the OC system (3), one can obtain the Hamiltonian equation

Ht = c(xt,ut,θ) + f(xt,ut,θ)′λt+1 (14)
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for all t = 0, · · · , T − 1, where λt ∈ Rn denotes the Lagrangian multiplier associated with the equality
constraint of model dynamics. With the definition of ξ(θ), one has ∂ξ(θ)

∂θ = col{ ∂x1:T (θ)
∂θ , ∂u0:T −1(θ)

∂θ }. By
defining

Xt ≜
∂xt(θ)

∂θ
∈ Rn×p, Ut ≜

∂ut(θ)
∂θ

∈ Rm×p, (15)

one can utilize the following lemma from Jin et al. (2020) to obtain the partial derivatives ∂ξt(θ)
∂θ

:

Lemma 1. Jin et al. (2020) Define the Jacobian and Hessian matrices related to ξ(θ) as:

Ft = ∂f

∂xt
, Gt = ∂f

∂ut
, Et = ∂f

∂θ
,Hxx

t = ∂2Ht

∂xt∂xt
, Hxu

t = ∂2Ht

∂xt∂ut
= (Hux

t )′,

Huu
t = ∂2Ht

∂ut∂ut
,Hxθ

t = ∂2Ht

∂xt∂θ
, Huθ

t = ∂2Ht

∂ut∂θ
, Hxx

T = ∂2h

∂xT ∂xT
, Hxθ

T = ∂2h

∂xT ∂θ
.

(16)

If Huu
t is invertible for all t = 0, · · · , T − 1, the following recursions from t = T to t = 0 hold:

Vt = Ct +A′
t(I + Vt+1Bt)−1Vt+1At,

Wt = A′
t(I + Vt+1Bt)−1(Wt+1 + Vt+1Mt) +Nt,

(17)

with VT = Hxx
T and WT = Hxθ

T . Here, At = Ft − Gt(Huu
t )−1Hux

t , Bt = Gt(Huu
t )−1G′

t, Mt = Et −
Gt(Huu

t )′Huθ
t , Ct = Hxx

t − Hxu
t (Huu

t )−1Hux
t , Nt = Hxθ

t − Hxu
t (Huu

t )′Huθ
t are all known given (16).

Then, the partial derivative ∂ξ(θ)
∂θ

can be obtained by recursively solving the following equations from t = 0 to
T − 1 with X0(θ) = 0:

Ut = −(Huu
t )-1(Hux

t Xt +Huθ
t +G′

t(I + Vt+1Bt)-1(Vt+1AtXt + Vt+1Mt +Wt+1)),
Xt+1 = FtXt +GtUt +Et.

(18)

The terms in (16) are based on the trajectory ξ(θ) and the associated Lagrangian multiplier λ0:T −1. According
to the discrete-time Pontryagin Maximum Principle (Jin et al., 2020), the trajectory of the Lagrangian
multiplier can be obtained by

λT = ∂h

∂xT
, λt ≜

∂Ht

∂xt
= ∂c

∂xt
+ ∂h

∂xt
λt+1, for t = T − 1, · · · , 1. (19)

Remark 2. Lemma 1 proposes a recursive way to obtain the exact gradient of the trajectory ξ(θ) with respect
to the parameter θ, i.e. ∂ξ(θ)

∂θ .

3.3 OCIL Framework

With the online parameter estimator and the gradient generator, we propose the Online Control-Informed
Learning framework in Fig. 1. The framework is summarized in Algorithm 2.

Figure 1: Framework of Online Control-Informed Learning.
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As shown in Fig. 1, at each time step, the predefined OC system Σ(θ̂t) generates a system trajectory
ξ(θ̂t) by performing optimal control with given x0 and θ̂t. The trajectory ξ(θ̂t) is then fed into the signed
residual function l(ξt(θ̂t),Ot) and the gradient generator. Along with the information Ot obtained at time t,
the signed residual function generates ∂l(ξt(θ̂−

t ),Ot)
∂ξt(θ̂−

t ) , while ∂ξt(θ̂−
t )

∂θ̂−
t

is generated by the gradient generator in
Algorithm 1. The chain rule is then performed to obtain the Jacobian matrix Lt, which is then passed into
the online parameter estimator for the estimation of θ∗.

Algorithm 1: Gradient Generator (GG)

Input: Trajectory ξ(θ̂−
t ) from Σ(θ̂−

t )
1 Compute the coefficient matrices in (16) ;
2 Set VT = Hxx

T and WT = Hxθ
T ;

3 for t← T to 0 by ∆t do
4 Update Vt and Wt using (17)

5 Set X0(θ̂−
t ) = 0;

6 for t← 0 to T by ∆t do
7 Update Xt(θ̂−

t ) and Ut(θ̂−
t ) using (18)

Output: ∂ξ(θ̂−
t

)
∂θ̂−

t

= {X1:T (θ̂−
t ),U0:T −1(θ̂−

t )}

Algorithm 2: Online Control-Informed Learning
System and Residual: Σ(θ̂) and l(ξt(θ̂),Ot)
Initialize: θ̂0,P0

1 for t = t0, t1, · · · do
2 Obtain new information Ot;
3 Solve ξ(θ̂t) from current OC system Σ(θ̂t);

4 Obtain ∂ξt(θ̂−
t

)
∂θ̂−

t

with GG in Algorithm 1;

5 Obtain ∂l(ξt(θ̂−
t

),Ot)
∂ξt(θ̂−

t
)

from l(ξt(θ̂−
t ),Ot);

6 Obtain Lt via the chain rule (13);
7 Update θ̂t using the estimator (11);

3.4 Convergence Analysis

This subsection presents the convergence analysis of the online parameter estimator. The analysis employs
a candidate Lyapunov function and introduces how the measurement covariance matrix Rt affects the
convergence of the cumulative loss L(ξ(θ̂)). In this section, for brevity, the signed residual function
l(ξt(θ̂),Ot) is written as l(ξt(θ̂)). Suppose for a specific task, the optimal cumulative loss L(ξ(θ∗)) = 0.
Then, we define the estimation error as θ̃t = θ∗ − θ̂t . Furthermore, we define

Measurement error: et = l(ξ(θ∗)) − l(ξ(θ̂−
t ))

Prediction error: θ̃−
t = θ∗ − θ̂−

t .
(20)

To perform the convergence analysis, a candidate Lyapunov function is employed:

Vt = θ̃′
tP

−1
t θ̃t. (21)

The goal here is to determine conditions for which the candidate Lyapunov function {Vt}t=1,2,... is a decreasing
sequence, i.e. Vt+1 − Vt ≤ 0, ∀t. For rigorous analysis of the candidate Lyapunov function, as proposed in
Boutayeb et al. (1997), unknown diagonal matrices Ft ∈ Rr×r and Gt ∈ Rp×p are introduced to model the
measurement and prediction error defined in (20):

Ftet = Ltθ̃
−
t , θ̃−

t = Gtθ̃t−1. (22)

To ensure convergence of the proposed estimator, the following assumptions need to be made.

Assumption 1. The derivative Lt = dl(ξt(θ̂−
t ))

dθ̂−
t

is of full rank for every θ̂−
t .

Remark 3. The discrete-time dynamical system (10) satisfies the observability rank condition, i.e., for
every θ̂−

t , rank(col{ dl(ξt(θ̂−
t ))

dθ̂−
t

,
dl(ξt(θ̂−

t ))
dθ̂−

t

Ip, · · · ,
dl(ξt(θ̂−

t ))
dθ̂−

t

Ip−1
p }) = p (Song & Grizzle, 1992). That means if

Assumption 1 is satisfied for every θ̂−
t , the system (10) is observable for every θ̂−

t . The observability condition
assures that Pt is a bounded matrix from above and below (Song & Grizzle, 1992; Boutayeb & Aubry, 1999).

As common in the EKF analysis, we adopt the following assumption:
Assumption 2. Lt is a uniformly bounded matrix.

We have the following lemma to show how the measurement covariance matrix Rt affects the convergence of
the tunable parameter. The proof can be found in Appendix A.
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Lemma 2. Let Assumptions 1 and 2 hold. If the following inequalities are satisfied:

(Ft − Is)2 ≤ Rt(LtP
−
t L

′
t +Rt)−1, (23)

G′
tP

−1
t Gt − P−1

t ≤ 0, (24)
Then the proposed estimator (11), when used as an observer for the system (10), ensures local asymptotic
convergence, i.e. limt→∞ θ̃t = 0.
Remark 4. Lemma 2 provides sufficient conditions for the convergence of θ̂t. As the diagonal matrices Ft

and Gt are unknown, one can design the matrix Rt to satisfy inequalities (23). For example, one can set the
matrix Rt to be sufficiently large, i.e. much larger than LtP

−
t L

′
t, so that (23) is satisfied, which means the

parameter estimator can tolerate arbitrary large initial prediction error. It is worth to note that as long as
(23) and (24) are satisfied, θ̂t converges to θ∗ and consequently Ft and Gt become identity matrix. In the
case when there is no measurement noise, i.e. Rt = 0s×s, Ft and Gt can only be identity matrices to satisfy
the inequalities (23) and (24), indicating the convergence of θ̂t to θ∗.
Remark 5. Equation (23) and (24) indicate one of the limitations of the estimator, which is the selection of
initial guess. If the initial guess of θ∗ results in F0 and G0 that do not satisfy (23) and (24), the value of
the Lyapunov function (21) becomes larger, which leads to even larger Ft and Gt, causing the estimation to
diverge.

We have the following main theorem shows how the measurement covariance matrix Rt affects the convergence
of cumulative loss L(ξ(θ̂)) by utilizing the inequalities introduced in Lemma 2. The proof can be found in
Appendix B.
Theorem 1. Let Assumptions 1 and 2 hold. If the inequalities in Lemma 2 are met, then estimating θ∗

with the proposed estimator (11) employing the gradient generator in (17)-(18) ensures local asymptotic
convergence of the cumulative loss L in (6) to 0 , i.e. limt→∞ L(ξ(θ̂)) = 0.

4 Applications to Different Online Learning Modes and Experiments

This section demonstrates the capability of the proposed OCIL framework with its three modes by three
applications, Online Imitation Learning, Online System Identification, and Learning Policy on-the-fly. This
section includes a performance comparison with some state-of-the-art frameworks for three environments that
are summarized in Table 1. Let O∗

t = h(ξt(θ∗)) denotes the measurement without noise. The measurement
noise is subject to a multivariate Gaussian distribution N (O∗

t , σ2Ir).

To highlight the flexibility of OCIL, each experiment includes two phases: 1) online phase, where OCIL keeps
learning the unknown parameter while new data comes in before the final time T ; 2) offline phase, where
OCIL keeps learning the parameter given the learned parameter at time T and the entire trajectory obtained
from time t = 0 to time T . For each environment and task, a terminal time T ∈ Z is defined to represent a
desired time duration where the system shall finish the task.

To unify the data visualization of both online and offline phases, the horizontal axis represents the number
of data points, where a vertical red line corresponds to the final time T , i.e. the end of the online phase.
The number of data points reflects the number of iterations multiplied by the total number of time steps for
each iteration. The solid blue curves indicate the online portion of OCIL, whereas the dashed blue curves
indicate the offline portion. For every environment and every method, 5 trials are performed given random
initial conditions due to the high computational cost for other methods. The computational performance and
analysis for OCIL are shown in Section 5 of the Appendix.

Online Imitation Learning. The control objective is parameterized as a weighted distance to the goal. Set
the signed residual function of imitation learning l(ξt(θ̂),y∗

t ) = y∗
t − g(xt(θ̂),ut(θ̂)). The optimal cumulative

loss is zero, i.e. L(ξ(θ∗)) = 0, with full knowledge of the parameter. Four existing methods are used for
comparisons: (i) inverse KKT (Englert et al., 2017) (ii) neural policy cloning (Bojarski et al., 2016) and (iii)
PDP (Jin et al., 2020). These methods don’t handle measurement noise well because of their limitations, so
we performed the experiments without including measurement noise for these methods. For OCIL, σ = 0.1
for all of the systems.

9
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Table 1: Experiment Environments

Systems Dynamics parameter θdyn Objective parameter θobj

Cartpole cart mass, pole mass and length
c(x,u) = θobj∥x− xg∥2 + ∥u∥2

h(x) = θobj∥x− xg∥26-DoF Quadrotor mass, wing length, inertia matrix
6-DoF Rocket mass, rocket length, inertia matrix

Fig. 2a-2c summarize the comparison result, where OCIL converges faster and obtains lower loss than the
other offline methods, in both online and offline phases. The initial loss for each method is different because
the learning representation (parameterization) is different. Thus, it is hard to guarantee that an initial neural
network has the same loss as another initial parameter vector. Nevertheless, the initial representation of each
method is adjusted such that OCIL does not take advantage of good initialization. Fig. 2a-2c validate the
effectiveness of OCIL’s both online and offline performance, even with measurement noise.

(a) Cartpole (b) Quadrotor (c) Rocket

Figure 2: Imitation loss v.s. number of data points
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Figure 3: Trajectories of the cartpole in online imitation learning. Blue solid lines: learned trajectory. Green
solid lines: observed noisy trajectory. Red dashed lines: ground truth.

Online System Identification The signed residual function is set to be l(ξt(θ̂), ξo
t ) = ξo

t − ξt(θ̂). The
optimal cumulative loss is zero, i.e. L(ξ(θ∗)) = 0, with full knowledge of the parameter. Three other methods
are used for comparison: (i) Pytorch Adam solver (Pillonetto et al., 2025), (ii) DMDc (Proctor et al., 2016),
and (iii) PDP (Jin et al., 2020). No measurement noise are injected into observed data for existing methods
due to their inherent limitations. For OCIL, σ = 0.05 for all of the systems.

Fig. 5a-5c summarize the result, where OCIL outperforms PDP for faster convergence and lower loss, in both
online and offline phases. Different than Online Imitation Learning, OCIL does not decrease its SysID loss
significantly at first because the number of data points is not sufficient for online learning. Once the number
of data points becomes sufficient, the SysID loss starts decreasing significantly. This phenomenon can also be
observed in the other methods, but their critical number of data points is significantly larger than OCIL’s.
In Fig. 5d-5f, OCIL and other methods are applied to learn the neural dynamics using the same observed
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Figure 4: Trajectories of the quadrotor in online imitation learning. Blue solid lines: learned trajectory.
Green solid lines: observed noisy trajectory. Red dashed lines: ground truth.

trajectory. It can be seen that OCIL outperforms other methods for lower loss. Fig. 6 demonstrates the
capability of OCIL to deal with neural dynamics that have different sizes of NN.

(a) Cartpole (b) Quadrotor (c) Rocket

(d) Cartpole, offline, NN dynamics (e) Quadrotor, offline, NN dynamics (f) Rocket, offline, NN dynamics

Figure 5: SysID loss v.s. number of data points

Policy Tuning On-the-fly. The parameterized OC system in 8 is used here, where the policy is in a
state-feedback form and parameterized by the tunable parameter θ̂. The signed residual function is set to be
l(ξt(θ̂), ξ∗

t ) = ξ∗
t − ξt(θ̂), where ξ∗

t is the trajectory that needs to be tracked. The optimal cumulative loss

11



Published in Transactions on Machine Learning Research (03/2025)

(a) Cartpole w/o noise (b) Quadrotor w/o noise (c) Rocket w/o noise

Figure 6: SysID Loss v.s. number of data points, given different sizes of neural dynamics

is zero, i.e. L(ξ(θ∗)) = 0, with full knowledge of the parameter. Other methods are used for comparison
(i) iLQR (Li & Todorov, 2004) (ii) GPS (Levine & Abbeel, 2014), and (iii) PDP (Jin et al., 2020). No
measurement noise is included for existing methods due to their limitations. For OCIL, σ = 0.1 for cartpole
and quadrotor; σ = 0.25 for rocket.

Fig. 9a-9c summarize the result, where the loss and its variation of OCIL converge very quickly. The buffers
in Fig. 9a-9f indicate 3 times of standard deviation. Fig. 9d-9f presents the online phase of OCIL given 1000
random trials, which further validates the effectiveness and robustness of OCIL given measurement noise.
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Figure 7: Trajectories of the cartpole in policy tuning on-the-fly. Blue solid lines: learned trajectory. Green
solid lines: observed noisy trajectory. Red dashed lines: ground truth.

In general, OCIL from all figures does not have a smooth loss trajectory as the other offline methods. This
is because at the online phase, an optimal gain matrix Kt from (11a) is computed to update θ̂t, whereas
the other methods either use a constant or iteration-dependent step size. The optimal gain is conceptually
similar to searching an optimal step size in the line-search optimization algorithms. Thus, it is observed that
the loss variation, as represented by blue buffers, is relatively high initially but starts decreasing significantly
as new data comes in because Kt is continually updated. In contrast, the loss variation barely changes for
the other offline methods after some data points.

5 Online Computational Performance

The experiments with OCIL were performed on a desktop with one Intel Core i7-8700k CPU with 8GB RAM.
No GPU was used. The experiments with other methods were performed on a desktop with one AMD Ryzen
9 5900X CPU, one Nvidia Geforce RTX 4070ti, and 32 GB RAM. A more powerful PC was selected for the
other methods because of their high computational cost. As noted at the beginning of Section 4, only 5 trials
were conducted due to the computational expense.
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Figure 8: Trajectories of the quadrotor in policy tuning on-the-fly. Blue solid lines: learned trajectory. Green
solid lines: observed noisy trajectory. Red dashed lines: ground truth.

(a) Cartpole (b) Quadrotor (c) Rocket

(d) Cartpole, online phase, with
noise

(e) Quadrotor, online phase, with
noise (f) Rocket, online phase, with noise

Figure 9: Policy Tuning Loss v.s. number of data points. Buffers represent loss variation under 3σ with
random initial conditions.

To demonstrate that the computational performance of OCIL is enough to be used in an online fashion, we
recorded the computational time for OCIL in different modes for 100 trials. The code is implemented in
Python, utilizing the CasADi library with the IPOPT solver to solve the OC problem. Table 3 summarizes
the OCIL’s computational performance for the system identification task for three environments, where OCIL
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Time indicates the computational time of running OCIL at each time t, i.e. the iteration within the for-loop
of Algorithm 2; GG Time indicates the computational time of running gradient generator (GG) at each
time t, i.e. Algorithm 1; Estimator Time indicates the computational time of updating θ̂, i.e. Line 7 of
Algorithm 2; ∆ indicates the time step of each environment, i.e., the time duration between two consecutive
data measurements or the maximum allowed time duration of online algorithms to perform computation;
Percentage indicates the percentage of the average OCIL time with respect to ∆. The header of Table 4
and Table 2 are the same. Roughly speaking, OCIL time = GG time + Estimator time + Optimal Control
computation time.

Table 3 illustrates that OCIL can estimate the dynamical system with neural network representation in an
online fashion, within the system frequency of getting new data. Table 4 illustrates that OCIL can tune
the neural policy online. As indicated in Line 2 of Algorithm 2, the most computationally heavy part is
solving optimal control trajectory in an online fashion, instead of GG and the parameter estimator. As
demonstrated at the beginning of this section, OCIL does not require huge computational resources, such as
GPU. Therefore, OCIL has the capability to run in an online fashion.

Table 2: Computational Performance for Online Imitation Learning

Env. OCIL Time [ms] GG Time [ms] Estimator Time [ms] ∆ [ms] Percentage
Cartpole 62.10 ± 6.63 7.47 ± 0.25 0.031 ± 0.0023 100 62.10 %

Quadrotor 81.70 ± 2.51 21.72 ± 0.84 0.058 ± 0.039 100 81.70 %
Rocket 72.25 ± 13.91 19.77 ± 6.26 0.060 ± 0.012 100 72.25%

Table 3: Computational Performance for SysID with Neural System

Env. OCIL Time [ms] GG Time [ms] Estimator Time [ms] ∆ [ms] Percentage
Cartpole 17.18 ± 5.15 6.05 ± 2.59 1.93 ± 0.85 50 34.36 %

Quadrotor 35.53 ± 8.98 12.18 ± 4.77 16.18 ± 6.11 100 35.53 %
Rocket 29.54 ± 8.29 11.25 ± 4.67 12.89 ± 5.29 200 14.77 %

Table 4: Computational Performance for Policy Tuning with Neural Policy

Env. OCIL Time [ms] GG Time [ms] Estimator Time [ms] ∆ [ms] Percentage
Cartpole 16.41 ± 5.35 7.72 ± 3.07 3.96 ± 1.91 50 32.82 %

Quadrotor 62.67 ± 9.51 30.86 ± 2.25 22.47 ± 8.33 100 62.67 %
Rocket 59.02 ± 7.25 33.99 ± 2.98 12.94 ± 5.62 100 59.02 %

6 Limitations.

This section discusses the major limitations of the proposed framework from three perspectives.

Local convergence: Since OCIL is based on first-order gradients, it can only achieve local minima for
general non-convex optimal control problems in (3). Furthermore, the general problem proposed in this paper
belongs to a bi-level optimization framework. Under certain assumptions such as convexity and smoothness
on models (e.g., dynamics model, policy, loss function, and control objective function), global convergence of
the bi-level optimization can be established. However, such conditions are too restrictive in the context of
dynamic control systems. Therefore, the local convergence analysis based on general nonlinear optimization
is enough.
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Parameterization matters for global convergence: When performing experiments, we find that how
models are parameterized matters for good convergence performance. For example, in online SysID mode,
we observe that using a neural network dynamics (in Fig. 5d-5f) is more likely to get trapped in local
minima than using the true dynamics with unknown parameters (in Fig. 5a-5c)). In general, more complex
parameterization will bring extreme non-convexity to the optimization problem, making the algorithm more
easily trapped in local minima. Determining the parameterization of an object to be learned requires prior or
expert knowledge, which is common in ML.

Initialization matters: As OCIL borrows how optimal gain updates from EKF, they share the same
drawback that convergence depends on the selection of initialization. As shown in Remark 5, a bad initial
guess might cause the estimator to diverge according to Lemma 2. Therefore, if a relatively good initial guess
is hard to retrieve, one might need to use other methods to cold start OCIL.

7 Conclusions

This paper proposes Online Control-Informed Learning (OCIL), an online learning method tailored for diverse
learning tasks. By considering an optimal control system with a tunable parameter, OCIL is a unified learning
framework that effectively addresses tasks such as online imitation learning, online system identification,
and tuning policy on-the-fly. By designing a signed residual function specific to each task and treating the
parameter as a state of a new system, we employ the online parameter estimator to estimate the parameter
online and minimize the signed residual at each time step. Theoretical analysis establishes the convergence
conditions for OCIL, while experiments on various environments, tasks, and existing methods are done to
validate its data efficiency, versatility, and robustness against measurement noise.
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Appendix

A Proof of Lemma 2

Since the matrices Pt and Lt are bounded according to Assumption 1 and 2, from (11b), one will have:

Kt = PtL
′
tR

−1
t (25)

= P−
t L

′
t(LtP

−
t L

′
t +Rt)−1. (26)

Then, by taking the inverse of (25) and (26), one will get:

P−1
t = (P−

t )−1 +L′
tR

−1
t Lt. (27)

Substituting (25) into (11b) and subtracting both sides from θt, one will have:

θ̃t = θ̃−
t − PtL

′
tR

−1
t et. (28)

Then, plug (28) into the Lyapunov function (21):

Vt = θ̃′
tP

−1
t θ̃t (29)

= (θ̃−
t − PtL

′
tR

−1
t et)′P−1

t (θ̃−
t − PtL

′
tR

−1
t et) (30)

= (θ̃−
t )′P−1

t θ̃−
t − (θ̃−

t )′L′
tR

−1
t et − e′

tR
−1
t Ltθ̃

−
t + e′

tR
−1
t LtPtL

′
tR

−1
t et (31)

Next, we plug (27) into (31):

Vt = (θ̃−
t )′((P−

t )−1 +L′
tR

−1
t Lt)θ̃−

t − (θ̃−
t )′L′

tR
−1
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tR
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t et (32)
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tR
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t et, (33)

where

V −
t = (θ̃−

t )′(P−
t )−1θ̃−

t (34)
= (θ̃t−1)′G′

tP
−1
t−1Gtθ̃t−1. (35)

Using (22), (33) becomes:

Vt = V −
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t )′L′
tR
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To ensure that the Lyapunov function {Vt}t=1,2,... is a decreasing sequence, Vt − Vt−1 ≤ 0.

Vt−Vt−1 (39)
= e′

t(FtR
−1
t Ft − FtR

−1
t −R−1

t Ft +R−1
t LtPtL

′
tR

−1
t )et (40)

+ (θ̃t−1)′(G′
tP

−1
t−1Gt − P−1

t−1)θ̃t−1 ≤ 0. (41)

Therefore, to ensure the Lyapunov function is a decreasing sequence,

FtR
−1
t Ft − FtR

−1
t −R−1

t Ft +R−1
t LtPtL

′
tR

−1
t ≤ 0, (42)

and
G′

tP
−1
t−1Gt − P−1

t−1 ≤ 0. (43)
With some manipulations:

(Ft − Is)R−1
t (Ft − Is) −R−1

t +R−1
t LtPtL

′
tR

−1
t ≤ 0, (44)

(Ft − Is)R−1
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t (Is −LtP
−
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′
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By letting Is = (LtP
−
t L

′
t +Rt)(LtP

−
t L

′
t +Rt)−1, we have

(Ft − Is)R−1
t (Ft − Is) − (LtP

−
t L

′
t +Rt)−1 ≤ 0. (46)

Since Ft and Rt are diagonal matrices, we will have

R−1
t (Ft − Is)2 − (LtP

−
t L

′
t +Rt)−1 ≤ 0, (47)

which at the end yields:
(Ft − Is)2 ≤ Rt(LtP

−
t L

′
t +Rt)−1, (48)

therefore the proof is completed.

B Proof of Theorem 1

This proof is straightforward once Lemma 2 is provided. Consider the assumptions 1 and 2 are met, according
to Lemma 2, with the exact gradient generated by the gradient generator in (17)-(18), limt→∞ θ̃t = 0. As the
estimated θ̂t converges to the true θ∗, where the true parameter gives zero cumulative loss, the cumulative
loss L(ξ(θ̂)) goes to 0.

C Experiment Details

C.1 System/Environment Setups

Cartpole. We consider the following continuous dynamics of the cartpole


ṗ
p̈

θ̇

θ̈

 =


ṗ

(F + mplθ̇2 sin(θ)
mt

) − mplθ̈ cos(θ)
mt

θ̇

g sin(θ)−cos(θ)(F + mplθ̇2 sin(θ)
mt

)

l( 4
3 − mp cos(θ)2

mt
)

 , (49)

where p ∈ R is the horizontal displacement of the cart; θ ∈ R is the pole angle; F ∈ R denotes the horizontal
force applied to the cart which is between −1 and +1; l ∈ R is the length of the pole; mp, mt ∈ R are the
masses of the pole and total cartpole, respectively. By defining the states and control inputs of the cartpole

x ≜
[
p ṗ θ θ̇

]′ and u ≜ F (50)

respectively.

Quadrotor UAV. We consider a quadrotor UAV with the following dynamics

ṗI = vI ,

mv̇I = mgI + FI ,

q̇B/I = 1
2Ω(ωB)qB/I ,

JBω̇B = MB − ω × JBωB .

(51)

Here, the subscription B and I denote a quantity expressed in the body frame and inertial (world) frame,
respectively; m and JB ∈ R3×3 are the mass and moment of inertia with respect to the body frame of the
UAV, respectively. g is the gravitational constant (g = 10 m/s2), gI = [0, 0, g]′. p ∈ R3 and v ∈ R3 are the
position and velocity vector of the UAV; ωB ∈ R3 is the angular velocity vector of the UAV; qB/I ∈ R4 is
the unit quaternion Kuipers (1999) that describes the attitude of the UAV with respect to the inertial frame;
Ω(ωB) is defined as:

Ω(ωB) =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 , (52)
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MB ∈ R3 is the torque applied to the UAV; FI ∈ R3 is the force vector applied to the UAV center of mass.
The total force magnitude f = ∥FI∥ ∈ R (along z-axis of the body frame) and torque MB = [Mx, My, Mz]′
are generated by thrust from four rotating propellers [T1, T2, T3, T4]′, their relationship can be expressed as:


f

Mx

My

Mz

 =


1 1 1 1
0 −lw/2 0 lw/2

−lw/2 0 lw/2 0
c −c c −c




T1
T2
T3
T4

 , (53)

where lw is the wing length of the UAV and c is a fixed constant. The state and input vectors of the UAV
are defined as:

x ≜
[
p′ v′ q′ ω′]′ ∈ R13,

u ≜
[
T1 T2 T3 T4

]′ ∈ R4.
(54)

Rocket. The rocket is treated as a rigid body subject to constant gravitational acceleration, gI ∈ R3, and
neglects aerodynamic forces. The vehicle is assumed to actuate a single gimbaled rocket engine to generate a
thrust vector within a feasible range of magnitudes and gimbal angles. We assume that at the landing phase,
the depletion of fuel is insignificant. Therefore, we omit the dynamics of rocket mass. The rocket has the
following dynamics:

ṗI = vI ,

v̇I = 1
m

CI/BTB + gI ,

q̇B/I = 1
2Ω(ωB)qB/I ,

JBω̇B = MB − [ωB×]JBωB.

(55)

Here, the subscription B and I denote a quantity expressed in the body frame and inertial (world) frame,
respectively; m and JB ∈ R3×3 are the mass and moment of inertia with respect to body frame of the rocket,
respectively. p ∈ R3 and v ∈ R3 are the position and velocity vector of the rocket; ωB ∈ R3 is the angular
velocity vector of the rocket; qB/I = [q0, q1, q2, q3] is the unit quaternion that describes the attitude of rocket
with respect to the inertial frame; TB ∈ R3 is the commanded thrust vector; MB ∈ R3 is the torque applied
to the rocket; CB/I is the direction cosine matrix that encodes the attitude transformation from body frame
to inertia frame and related to qB/I by the following relationship:

CB/I =

1 − 2(q2
2 + q2

3) 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) 1 − 2(q2

1 + q2
3) 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) 1 − 2(q2
1 + q2

1)

 ,

The inverse transformation is denoted as CI/B = CT
B/I ;

The skew-symmetric matrices [ωB×] and Ω(ωB) are defined as follow:

[ωB×] ≜

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 , Ω(ωB) ≜


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 ,

The state and input vectors of the rocket are defined as:

x =
[
p′

I v′
I q′

B/I ω′
B

]′
∈ R13,

u = TB =
[
Tx Ty Tz

]′ ∈ R3,
(56)

Discretization. Discretization is done by the following discrete-time form

xt+1 ≈ xt + ∆ · g(xt,ut) ≜ f(xt,ut), (57)
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where ∆ is the discretization interval.

C.2 Online Imitation Learning

Data acquisition. The dataset of expert demonstrations is generated by solving an optimal control system
with the true dynamics and control objective parameter θ∗ = {θdyn,θobj} given. We generate five trajectories
with different initial conditions x0 and time horizons T .

PDP. We employed the PDP in Jin et al. (2020) to solve this problem. The learning rate is η = 10−4. Five
trials were run given random initial θ0.

Inverse KKT method. We choose the inverse KKT method Englert et al. (2017) for comparison because
it is suitable for learning objective functions for high-dimensional continuous-space systems. We adopt
the inverse KKT method and define the KKT loss as the norm-2 violation of the KKT condition by the
demonstration data:

min
θ,λ1:T

(∥∥∥∥ ∂L

∂x0:T
(x∗

0:T ,u∗
0:T −1)

∥∥∥∥2
+
∥∥∥∥ ∂L

∂u0:T −1
(x∗

0:T ,u∗
0:T −1)

∥∥∥∥2
)

.

Neural policy cloning. For the neural policy cloning, we directly learn a neural network policy u = µ(x,θ)
from the dataset using supervised learning, that is

min
θ

T −1∑
t=0

∥u∗
t − µ(x∗

t ,θ)∥2 (58)

C.3 Online System Identification

Data acquisition. In the system identification experiment, we collect a total number of five trajectories
from systems with dynamics known, wherein different trajectories ξo = {xo

0:T ,u0:T −1} have different initial
conditions x0 and horizons T (T ranges from 10 to 20 depending on different environment and task), with
random inputs u0:T −1 drawn from uniform distribution.

PDP. We employed the PDP in Jin et al. (2020) to solve this problem. The learning rate is η = 10−4. Five
trials were run given random initial θ0. For the neural dynamics case, the learning rate is η = 10−5.

Pytorch Adam to learn neural dynamics. We consider the dynamics of each system (cartpole, quadrotor,
and rocket) are represented by a fully-connected feed-forward neural network f̂(xt,ut,θ). The neural network
has a layer structure of (n + m)-2(n + m)-n with tanh activation functions, i.e., there is an input layer with
(n + m) neurons equal to the dimension of state, one hidden layer with 2(n + m) neurons and one output
layer with n neurons. The ξo = {xo

0:T ,u0:T −1} obtained previously are used in stage loss. We conducted
five trials for each method with different initial θ. We use Pytorch Adam to train the neural network by
minimizing the following residual

min
θ

T −1∑
t=0

∥xo
t+1 − f̂(xo

t ,ut,θ)∥2. (59)

DMDc. The DMDc method Proctor et al. (2016) is a method that is based on Koopman theory to represent
nonlinear dynamics with linear dynamics of observables. Observables ψ(xt) are some basis functions of states.
The observable space has a much higher dimension compared to state space. The estimation of the dynamics
is achieved by the following optimization:

min
A,B

T −1∑
t=0

∥ψ(xo
t+1) −Aψ(xo

t ) −But∥2. (60)

C.4 Policy Tuning On-the-fly

Neural State Feedback Policy. In this application, we learn the parameters of a neural state feedback
policy by minimizing given control objective functions. Specifically, we use a fully connected feed-forward
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neural network that has a layer structure of 3n-3n-m with tanh activation functions, i.e., there is an input
layer with 3n neurons equal to the dimension of state, one hidden layer with 3n neurons and one output layer
with m neurons. The policy parameter θ is the neural network parameter. For comparison, we apply the
guided policy search (GPS) method Levine & Abbeel (2014) and iLQR Li & Todorov (2004) to solve the
same problem.

PDP. We employed the PDP in Jin et al. (2020) to solve this problem. The learning rate is set to be η = 10−4

or = 10−6. Five trials were run given random initial θ0. For the neural objective function case, the learning
rate is η = 10−5.
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