
Exploring Forgetting in Large Language Model Pre-Training

Anonymous ACL submission

Abstract
In large language models (LLMs), the chal-001
lenge of catastrophic forgetting remains a002
formidable obstacle to building an omniscient003
model. Despite the pioneering research on task-004
level forgetting in LLM fine-tuning, there is005
scant focus on sample-level forgetting during006
this phase, where models often see each dat-007
apoint only once. We systematically explore008
the existence, essence, and measurement of for-009
getting in LLM pre-training, questioning tra-010
ditional metrics such as perplexity (PPL) and011
introducing new metrics to better detect entity012
memory retention, which is the indicator of for-013
getting. Taking inspiration from human mem-014
ory patterns, we propose and refine memory015
replay techniques to combat the phenomenon016
of forgetting in LLMs. Extensive evaluations017
and analyses on forgetting of pre-training could018
facilitate future research on LLMs.019

1 Introduction020

Catastrophic forgetting (McCloskey and Cohen,021

1989; Ratcliff, 1990) poses a significant challenge022

to the development of models that are capable023

of continuous learning, which is also observed024

in LLMs. Traditionally, the challenge of catas-025

trophic forgetting in neural networks is especially026

pronounced when models are tasked with retaining027

knowledge across diverse datasets (Sun et al., 2020;028

Jin et al., 2021; de Masson D’Autume et al., 2019;029

Wang et al., 2020; Qin et al., 2022), necessitating030

a delicate balance between the acquisition of new031

information and the retention of previously learned032

knowledge. This issue arises due to the shift in in-033

put distribution across different tasks, which leads034

to the model’s inability to remember past informa-035

tion effectively.036

Although pioneer efforts have explored the for-037

getting issue in LLM fine-tuning, which primarily038

addresses task-specific forgetting, there is a lack039

of research on finer-grained forgetting at the sam-040

ple level in pre-training. Luo et al. (2023), Wang041

et al. (2023b), and Wu et al. (2024) focused on 042

forgetting in fine-tuning by measuring the perfor- 043

mance of new tasks with continual tuning. Other ef- 044

forts (Tirumala et al., 2022; Biderman et al., 2023a) 045

studied sample-level memorization, where some 046

experiments imply the existence of forgetting in 047

LLM pre-training. Nonetheless, these studies have 048

devoted limited attention to systematically explor- 049

ing and quantifying the forgetting in pre-training. 050

Forgetting in LLM pre-training is a critical is- 051

sue that must be addressed. It is prevalent among 052

current LLMs and significantly affects their perfor- 053

mance. Intuitively, after fine-tuning, LLMs may 054

give unsatisfactory replies to queries, even when 055

the necessary information was present in the pre- 056

training data. This indicates forgetting. Despite be- 057

ing easily noticed, measuring this forgetting in pre- 058

training is very challenging. In contrast to works 059

studying forgetting in fine-tuning that measure with 060

specific task-related metrics (e.g., QA accuracy), 061

the pre-training stage is not optimized for specific 062

tasks or datasets. Moreover, the conventional LLM 063

metrics such as perplexity (PPL) are also shown 064

to be insensitive in measuring forgetting in pre- 065

training (Gupta et al., 2023). This raises a pertinent 066

question: (1) How to correctly recognize and quan- 067

tify forgetting in pre-training? 068

As new metrics emerge to quantify forgetting in 069

pre-training, we draw inspiration from the proven 070

success of episodic memory replay methods in com- 071

bating forgetting during dataset shifts, as shown 072

in (de Masson D’Autume et al., 2019; Wang et al., 073

2020), and delve into the inquiry: (2) Can these 074

methods also mitigate forgetting during the pre- 075

training phase? 076

Starting from the premise that higher review in- 077

tensity slows down the forgetting rate in human 078

learning (Loftus, 1985), we notice that traditional 079

episodic memory replay methods for models em- 080

ploy a lower intensity of learning for the replayed 081

samples. This observation prompts the question 082
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of whether models’ forgetting behaviors mirror hu-083

man learning patterns to any extent. With this in084

mind, we are interested in investigating if increas-085

ing the intensity of memory replay could improve086

the retention in models. We pose the inquiry: (3)087

Do models exhibit forgetting patterns that mirror088

human learning curves? Can leveraging these pat-089

terns through intensified memory replay mitigate090

forgetting during pre-training?091

To address the above questions, we first mag-092

nify the forgetting issue by building a didactic sce-093

nario, and scrutinize the limitation of conventional094

metrics (e.g., PPL) in identifying pre-training for-095

getting. Next, looking deeper into the essence of096

pre-training forgetting, we conclude that the recall097

ability of entity-related information is one of the098

most explicit and significant indicator of forget-099

ting during pre-training. Subsequently, we propose100

three novel entity-related metrics and experimen-101

tally confirm the existence of forgetting during pre-102

training. Within a standard pre-training setting, we103

present several simple and effective memory replay104

strategies, demonstrating that our straightforward105

replay tactics can alleviate the forgetting issue dur-106

ing pre-training.107

Finally, we explore the impact of repeatedly108

learning from replayed samples in a short period.109

We examine how the metrics of these recently110

learned samples evolve over the course of further111

learning. Drawing an analogy to the human mem-112

ory curve, we explore the impact of short-term,113

high-frequency learning on the model’s memory114

retention, shedding light on future pre-training de-115

signs aimed at mitigating forgetting.116

Our contributions are summarized as follows:117

(1) We systematically explore and quantify the phe-118

nomenon of forgetting during pre-training through119

new entity-focused metrics. (2) We examine the120

effectiveness of memory replay in reducing pre-121

training forgetting. (3) We further examine how122

short-term, high-frequency learning affects the123

model’s memory retention.124

2 Related Work125

Catastrophic Forgetting in Language Models.126

Neural networks often experience catastrophic for-127

getting when learning new tasks, losing old knowl-128

edge due to changes in data distribution (Mc-129

Closkey and Cohen, 1989; Ratcliff, 1990). Var-130

ious strategies have been proposed to counter131

this, such as simultaneous training of new and132

old tasks (Sun et al., 2020), incremental life- 133

long pre-training with continual learning algo- 134

rithms (Jin et al., 2021), and the incorporation of 135

episodic memory to handle diverse data distribu- 136

tions (de Masson D’Autume et al., 2019). Other ap- 137

proaches include meta-lifelong frameworks (Wang 138

et al., 2020) and function-preserved model expan- 139

sion (Qin et al., 2022). However, most of these 140

studies do not deeply explore single data distri- 141

bution scenarios. Our study uniquely focuses the 142

pre-training phase, offering fresh insights into for- 143

getting. 144

Example Forgetting and Forgetting During Pre- 145

training. Despite significant research on catas- 146

trophic forgetting, there is limited investigation 147

into forgetting within the context of a single 148

task. Toneva et al. (2018) first defined example for- 149

getting, where certain examples are correctly clas- 150

sified and later misclassified during training. Tiru- 151

mala et al. (2022) explored forgetting dynamics 152

in language models. Biderman et al. (2023a) stud- 153

ied model behavior forecasting, while Gupta et al. 154

(2023) examined warm-up strategies in continual 155

pre-training. However, a detailed formalization of 156

what is forgotten and how it is quantified using met- 157

rics has been lacking—this is where our research 158

steps in. 159

3 Existence of Pre-training Forgetting 160

3.1 Intuition on Pre-training Forgetting 161

First, we explore whether, after pre-trained, an 162

LLM exhibits a pattern of decreased performance 163

on earlier samples, suggesting sample-level forget- 164

ting in pre-training. To test this, we take a direct 165

approach: after training, we obtain a checkpoint 166

and then use this exact checkpoint to test on sam- 167

ples in the sequence they were encountered during 168

pre-training. This process helps us to assess the 169

model’s retention of information over time. We aim 170

to assess if standard metrics like PPL can monitor 171

forgetting trends throughout training by testing the 172

model on this set. 173

3.1.1 Setup and PPL 174

We shuffled a dataset with 4.9e8 tokens subset 175

from SlimPajama (Soboleva et al., 2023) for con- 176

sistency across experiments, conducting standard 177

and memory-replay pre-training. A test set was cre- 178

ated by sequentially segmenting the training data 179

according to the training steps and uniformly sam- 180

pling 1/100 of each segment, reflecting the model’s 181
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Figure 1: Perplexity (PPL) of the GPT-2 XL model on
uniformly sampled 1/100 segments of the training data.
Considering forgetting does help the performance.

training progression. PPL is plotted against the182

number of training tokens processed, with the test183

set’s token count scaled to match the model’s expo-184

sure. More details are in Appendix B.1.185

Results: The result is shown in Figure 1. Our ob-186

servations indicate that: (1) The pre-trained model187

shows stable performance across early and late188

training data, with comparable perplexity (PPL),189

challenging the hypothesis of higher early training190

perplexity. This suggests either that forgetting is191

not occurring, contrary to our understanding, or192

that forgetting exists but is not captured by PPL.193

(2) Models with a replay mechanism during pre-194

training show better test set performance, with a195

notable drop in average PPL (280.66 with replay196

vs. 303.63 without), indirectly confirming the exis-197

tence of forgetting through performance gains from198

repeated sample learning.199

3.2 Underestimate of Pre-Training Forgetting200

In previous experiments, we realized that detecting201

forgetting was challenging in a single pre-training202

dataset due to the uniformity of the data. To tackle203

this, we implement an A+B dual-dataset strategy,204

aiming for datasets A and B to be similar yet205

slightly different to magnify forgetting effects, aid-206

ing in metric assessment. With dataset A being207

much smaller than B, we aim to avoid overfitting208

on it. This emulates the scenario in an actual single209

pre-training dataset where a portion of the early210

data is at risk of being forgotten as the training pro-211

gresses with a larger dataset. This is also a common212

and practical scenario for continuing pre-training.213

Setup: We proceed by uniformly sampling a subset214

from dataset A as a test set and then train on dataset215

B, evaluating the model to observe forgetting of216

dataset A. We conducted two experiments, employ-217

ing the OpenWebText (Aaron Gokaslan*, 2019)218

dataset (∼8B tokens) in its entirety for dataset A219

in one experiment, and a uniformly sampled subset 220

from the Pile (Gao et al., 2020) (∼ 13B) for the 221

other. Dataset B was constituted by a uniformly 222

sampled subset (∼ 49 B) tokens from SlimPajama. 223

More details are in the Appendix B.2.
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Figure 2: (a), (b): Perplexity (PPL) of the eval of dataset
A in relation to the number of trained tokens. B is a
subset from SlimPajama. A is a subset of OpenWeb-
Text(a) or the Pile(b). The fluctuating PPL is not a good
indicator of pre-training forgetting. (c): M(f) of the
eval for the Pile. At the A-to-B dataset transition, M(f)
shows negligible changes, and then M(f) consistently
increases, where we capture the subtle signal of pre-
training forgetting.

224
Results of PPL: The results in Figure 2 (a)(b) re- 225

veal an unexpected trend: contrary to expectations 226

of increasing PPL for dataset A as a sign of forget- 227

ting during dataset B’s training, the PPL for dataset 228

A actually decreased in both setups. Even during 229

the transition between datasets, PPL showed mini- 230

mal signs of catastrophic forgetting. 231

3.2.1 M(f) Metric 232

Recognizing the shortcomings of perplexity in ac- 233

curately measuring forgetting, we have turned to 234

the M(f) metric introduced by Tirumala et al. (2022) 235

for evaluation. The detailed definition of M(f) is: 236

Definition 1 (Tirumala et al., 2022) Let V denote 237

the vocabulary size. The set C consists of contexts 238

(s, y), where s is an incomplete text and y is the cor- 239

rect token index. S contains all input contexts, and 240

f : S → RV is a language model. A context c is 241

memorized if f(s)’s maximum value corresponds to 242

y, i.e., argmaxw∈RV f(s) = y. We assess the frac- 243

tion of contexts memorized by the model f using 244

the metric M(f) =
∑

(s,y)∈C 1{argmax(f(s))=y}
|C| . 245
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Results of M(f): In this experiment, we contin-246

ued to employ the A (the Pile) + B (SlimPajama)247

dataset setup and evaluated the model throughout248

the entire training process. We also continue to249

use a uniformly sampled 1/1000 part of A as the250

eval set. We observed that at the transition from251

dataset A to dataset B, M(f) exhibited negligible252

fluctuations. Subsequently, as training progressed253

on dataset B, the evaluation set’s performance, as254

measured by M(f), demonstrated a continuous im-255

provement. The results are given in Figure 2.256

It is plausible to hypothesize that PPL’s proba-257

bilistic averaging inherent may not accurately re-258

flect forgetting for common tokens due to their high259

prediction accuracy, potentially masking informa-260

tion loss for less frequent elements. In contrast, the261

M(f) metric’s binary evaluation is more sensitive262

to memory errors, offering a clearer view of the263

model’s retention of critical information, essential264

for understanding catastrophic forgetting.265

3.2.2 Limitation Leads to Underestimate266

Certainly, it is important to acknowledge that both267

the PPL and M(f) metrics have limitations in fully268

capturing the model’s forgetting behavior. Our269

observations indicate that throughout the training270

process, after the model has completed training on271

dataset A and transitions to dataset B, both met-272

rics show a continuous improvement, with minimal273

signs of forgetting at the transition point. This274

suggests a plausible hypothesis: The metrics’ in-275

ability to account for the variability in data and276

token difficulty lead to an underestimation of277

forgetting, as they are dominated by features278

that are inherently resistant to forgetting, such as279

common tokens and simple, everyday text. These280

features may not exhibit significant prediction er-281

rors when the dataset changes, thereby obscuring282

the true extent of the model’s forgetting.283

Takeaway 1: PPL and M(f) metrics poten-
tially mask true forgetting, as their bias to-
wards easy-to-remember elements can un-
derestimate the model’s memory decline
across dataset shifts.

284

4 New Entity-related Metrics for285

Measuring Pre-training Forgetting286

4.1 The Essence of Pre-training Forgetting287

Building upon the findings presented, a pertinent288

inquiry emerges: Which segments of the dataset289
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Figure 3: Training dynamics across setting A (Pile) →
B (SlimPajama) datasets: entity-focused evaluation set
from A reveals marked metric degradation during the
A-to-B transition. Despite this, traditional metrics on
entity-focused samples such as PPLent and M(f)ent ex-
hibit partial recovery during dataset B training. This
implies that even for entity-related evaluations, conven-
tional metrics still largely focus on information that is
less related to entities, which can continue to improve
with further learning. Therefore, PPLent and M(f)ent are
not that sensitive and accurate as Mex and Min in mea-
suring pre-training forgetting.

should be scrutinized to gain a comprehensive un- 290

derstanding of the forgetting phenomenon? 291

We argue that during pre-training, the focus 292

should be on the forgetting associated with entity- 293

related information. We posit that the capabilities 294

imparted to a model by a dataset can be broadly cat- 295

egorized into two components: information related 296

to entities and task-specific competencies. (1) As 297

demonstrated by Sorscher et al. (2022), the power 298

law scaling of error shows that many training ex- 299

amples are redundant, and in data-rich scenarios, 300

pruning should focus on retaining challenging ex- 301

amples. Entity-related information, which is less 302

frequent (Penedo et al., 2023), is crucial for users’ 303

perception of forgetting in LLMs, as it’s harder 304

to determine if the loss of abstract capabilities is 305

due to model limitations or forgetting, making en- 306

tity information key in pre-training. (2) We have 307

also considered the approach of Supervised Fine- 308

Tuning (SFT), which involves training pre-trained 309

models on instructional data. This phase of training 310

enhances the model’s capabilities for downstream 311

tasks, and we view it as a stage where the emphasis 312

is on augmenting the model’s competencies. Never- 313
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theless, for the pre-training phase, our focus is more314

directed towards the acquisition of entity informa-315

tion. (3) Comparing with the forgetting of entities,316

the forgetting of other content, such as capabilities317

related to downstream tasks, is more challenging318

to define and remains ambiguous. Entities serve as319

an optimal vehicle for exploring the phenomenon320

of forgetting within our cognitive framework.321

4.2 Our Proposed Entity-related Metrics322

To evaluate the model’s forgetting of entities, we323

follow the memorization score (Biderman et al.,324

2023a) and introduce additional metrics for pre-325

training forgetting. These additional metrics resem-326

ble entity-focused question answering. For further327

elaboration on the design and illustrative examples328

of our metrics, please refer to Appendix B.3.329

(1) Min: Intuitively, this evaluates the model’s330

capacity to recall entity-related to an entity details331

given its context. We select all samples S contain-332

ing a set of entities C. For each sample si ∈ S,333

we locate the entities and use the 32 preceding to-334

kens as input, ensuring the entity cj ∈ C is at the335

end. With this input si, we then greedily decode336

32 tokens ô = (o1, o2, ..., o32). Following this, we337

consider the next 32 tokens (t1, t2, ..., t32) as our338

target output. We calculate the accuracy of the339

tokens, defined as Min =

∑
sj∈S

∑32
i=1 1{oi=ti}
32|S| .340

(2) Mex: Intuitively, this metric tests if the model341

can recall an entity from the context where the en-342

tity is implied but not directly mentioned. Similar343

to Min, for each sample si containing entity cj, we344

use the preceding 32 tokens as input (excluding cj)345

and the following 32 tokens as target output (start-346

ing with cj). After greedy decoding of 32 tokens ô,347

we calculate Mex =

∑
si∈S is_substring(cj,ô)

|S| , where348

is_substring(a1,a2) returns 1 if a1 is a substring349

of a2 and 0 otherwise.350

Besides, we also adopt two entity-centric met-351

rics PPLent and M(f)ent, which measure existing352

metrics PPL and M(f) on entity-involved samples.353

Setup: In this section, we continue to leverage354

the A+B dataset configuration to accentuate the355

phenomenon of forgetting, employing the A (the356

Pile) + B (SlimPajama) dataset setup and training357

the model on both datasets. Testing is conducted358

during the training of dataset B.359

We focused on entity-level forgetting by analyz-360

ing entity frequencies in datasets A and B, identi-361

fying a set of entities more frequently found in A.362

Using this set, we curated an evaluation set from363

A and monitored its metrics during B’s training to 364

measure the forgetting effect due to less exposure 365

in B. See Appendix B.3 for details on the experi- 366

ments. 367

Results: In Figure 3, we have demonstrated the fol- 368

lowing: (1) When evaluating forgetting on entity- 369

related data, a significantly more pronounced de- 370

cline is noted, with a notably slow recovery of 371

metrics even during continued training. (2) In eval- 372

uations focusing on a subset of data that is rich 373

in samples from source A compared to B, tradi- 374

tional metrics like PPL and M(f) suggest a recov- 375

ery that may not fully capture the essence of for- 376

getting. This apparent recovery may be due to 377

less forgettable elements in the data. (3) Compara- 378

tively, the newly proposed metrics Mex and Min ex- 379

hibit a more difficult recovery, which aligns closely 380

with our expected manifestation of forgetting. This 381

makes them more suitable for indicating forgetting. 382

Takeaway 2: Our newly proposed entity-
related metrics, Mex and Min, exhibit a
more noticeable decline and difficult re-
bound, offering a clearer reflection of the
forgetting phenomenon.

383

5 Memory Replay: A Simple Method for 384

Alleviating Pre-training Forgetting 385

Inspired by the work of de Masson D’Autume et al. 386

(2019), we introduce novel methods for episodic 387

memory replay. We incorporate a module that re- 388

tains a record of examples from the pre-training 389

phase. During the learning period, we periodically 390

draw a uniform sample from the memory’s stored 391

examples to conduct gradient updates. 392

5.1 Key Factors in Memory Replay 393

We have considered several potential design di- 394

mensions within the replay process, including the 395

following: 396

• Replay Frequency. Following de Mas- 397

son D’Autume et al. (2019), we match the 398

size of our retrieved memory batches to our 399

training batches. Given the computational intensity 400

of replay, we execute a retrieval and gradient 401

update every 100 steps, achieving an efficient 1% 402

replay rate. 403

• What to Store into Memory. We consider strate- 404

gies for memory sample storage: (1) including all 405

samples encountered during pre-training, (2) prior- 406

itizing samples with entities for forgetting analysis, 407
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and (3) choosing high-loss samples that may be408

more susceptible to forgetting. Advanced selection409

methods are reserved for future research.410

• Retrieve Strategy. We’ve introduced two basic411

but impactful retrieval methods: random sampling412

and similarity-based sampling. Unlike de Mas-413

son D’Autume et al. (2019), who used a pre-trained414

BERT (Devlin et al., 2018) model for the latter, we415

opted for BM25 (Robertson et al., 2009), following416

its efficiency shown in TLM (Yao et al., 2022).417

• Exit Mechanism. Given the fixed intervals of418

memory replay, the number of replayable samples419

is inherently limited. Simple replay strategies may420

lead to an imbalance in the samples being replayed,421

such as every replay batch coincidentally focusing422

on a few samples within the memory. Thus, we’ve423

implemented an exit mechanism to limit replay424

times, excluding them from further learning once425

they reach a set replay threshold.426

5.2 Experimental Settings427

In the previous section, we used two datasets, A428

and B, to study the forgetting effect. Now, to mimic429

a realistic pre-training setup, we’ve mixed and shuf-430

fled A with B into one complete set. We trained431

GPT2 from scratch using this combined set. To432

measure forgetting across the dataset, we took 1/5433

of A+B, selected samples with entities, and made434

an evaluation set(∼ 200,000 samples). We then use435

the aforementioned 4 metrics to assess the results.436

Although the ability to relearn past samples is437

beneficial, a significant drawback of the replay438

method is its increased training cost. Considering439

computational constraints and the need for simplic-440

ity, we have selected the following straightforward441

strategies, while leaving more sophisticated replay442

methods for future work:443

• Vanilla pre-training. We use standard pre-training444

as a baseline.445

• Upper Bound.We train from the vanilla pre-446

training checkpoint on the eval set, evaluating im-447

mediately to determine the model’s peak memory448

retention.449

• BM25. We leverage Elasticsearch (Elasticsearch,450

2018) to maintain a memory of all encountered451

samples. At designated replay intervals, we match452

the current batch with stored samples based on453

similarity for retrieval, subsequently employing454

this data for replay.455

• BM25 + Samples with entities only. During learn-456

ing, we evaluate each sample for the presence of457

entities and only keep those in our memory for 458

replay. 459

• Focused Stochasticity: Constrained Entity Sam- 460

pling with Exit Limit. In this experiment, we shift 461

from similarity-based retrieval to random sampling 462

of previously learned samples at regular intervals. 463

To prevent overlearning, we monitor replay fre- 464

quency, excluding samples after they have been 465

replayed 5 times. 466

• Intensive Focused Stochasticity: This variant of 467

Focused Stochasticity intensifies the replay process, 468

subjecting replayed samples to multiple epochs 469

of learning. Further details on this method are 470

elaborated in Section 6.2.2. 471

Method PPLent M(f)ent Mex (×10−3) Min (×10−2)

Vanilla pre-training 26.03 0.4093 5.273 3.988
Upper Bound 23.74 0.4182 14.46 4.162
BM25 27.95 0.4015 4.586 3.895
BM25 + Samples with entities only 28.09 0.4013 4.575 3.941
Focused Stochasticity 25.79 0.4101 5.496 3.980
Intensive Focused Stochasticity 25.40 0.4121 5.450 4.003

Table 1: Evaluation results for replay strategies.

5.3 Effectiveness of Memory Replay 472

We display the evaluation in Table 1. The data in- 473

dicates that similarity-based replay methods do not 474

outperform the baseline, no matter if all samples 475

or only those related to entities are kept in memory. 476

We think this could be because these methods don’t 477

spread replay evenly; replaying all samples might 478

focus too much on non-entity ones, while focusing 479

only on entity-related samples could lead to too 480

much attention on a specific subset, exaggerating 481

the forgetting of other samples. 482

On the other hand, a simple sampling method im- 483

proves upon the baseline, hinting that replay helps 484

reduce forgetting during pre-training. However, 485

there’s still a big gap between the replay methods 486

and the best possible performance, which means 487

there’s a lot of room to improve how we handle 488

forgetting in pre-training. 489

Takeaway 3: Our memory replay methods
have shown potential in alleviating forget-
ting in the pre-training phase, while a gap
persists relative to the upper bound, signi-
fying the necessity for further research.

490

6 Explorations on Forgetting Curves 491

Observing the limitations of replay methods like 492

Focused Stochasticity in the last section, we are 493

led to explore opportunities for enhancing their 494

efficacy. This exploration is motivated by the 495
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renowned forgetting curve from human psychol-496

ogy (Loftus, 1985), which underscores the link497

between the intensity of learning and the pace of498

forgetting.499

Recognizing that current methods involve sam-500

ples being learned uniformly and at equal intervals501

with low intensity, we question the impact of tran-502

sitioning to a strategy of intensive learning that503

focuses on specific information. We aim to explore504

the effect of short-term, high-frequency learning505

on the forgetting curve of large models, pondering506

whether models follow the same patterns as hu-507

mans—where increasing the frequency of review508

slows down forgetting. With this understanding, we509

anticipate guiding the research on replay methods510

to enhance memory retention in models.511

6.1 Setup512

Exploring the nuances of memory retention and for-513

getting in LLMs, we focus on two critical inquiries:514

(1) Learning intensity’s impact: We explore the515

hypothesis that increased initial learning intensity516

may result in more robust memory retention, po-517

tentially flattening the forgetting curve. (2) Memo-518

rability and memory durability: We determine519

if challenging samples, post-intensive learning, re-520

main at risk of forgetting during pre-training.521

6.2 Results on LLMs’ Forgetting Curves522

To tackle these inquiries, we first select samples523

related to entities of interest. After the model un-524

dergoes an initial epoch of pre-training, we subject525

these samples to intensive training across several526

epochs. The purpose of the initial pre-training527

epoch is to ensure the model reaches a baseline528

level of language proficiency. This step is crucial529

to prevent general language ability improvements530

from confounding the experiment, allowing for a531

clear focus on the forgetting phenomenon rather532

than overall model enhancement.533

Post the intensive learning phase, these entity-534

related samples serve as our evaluation set. As we535

proceed with pre-training, we continuously assess536

this set using our established metrics to monitor537

the forgetting curve. This ongoing evaluation al-538

lows us to track how the memory of these samples539

evolves and to understand the interplay between540

initial learning intensity and long-term retention541

within the context of LLM pre-training. For further542

details on this experimental design, please refer to543

the Appendix B.4.544

6.2.1 Initial Learning Intensity and 545

Forgetting Curves 546

As shown in Figure 4, our experiments indicate 547

that higher initial learning intensity results in better 548

performance across various metrics, yet as further 549

pre-training occurs, the results from experiments 550

with lower initial learning intensity tend to catch up. 551

This pattern mirrors human learning curves (Lof- 552

tus, 1985), and we offer a detailed comparison in 553

Appendix C. Over the learning period, a divergence 554

is observed; experiments with a very high initial 555

learning intensity maintain a gap compared to those 556

with a lower initial intensity. This gap is more 557

pronounced for less difficult data, while for more 558

challenging data, the effects of learning even out. 559

This suggests that data that are more difficult to 560

memorize benefit from more intensive learning to 561

achieve enhanced memory retention. 562

6.2.2 Periodic Intensive Replay 563

Building on our findings and the human ability to 564

reduce forgetting through periodic, intense learn- 565

ing, we aim to (1) assess the impact of periodic, 566

intensive replay on a model’s forgetting curve, and 567

(2) determine if this can enhance aforementioned 568

memory replay methods. To delve deeper into 569

these effects, we have focused our experiments 570

on the most challenging samples. After the initial 571

phase of high-intensity learning, we have intro- 572

duced a replay process in the ongoing pre-training. 573

This process involves revisiting the samples every 574

1000 steps, with each replay session consisting of 575

5 epochs of learning. 576

In this experiment, the replay intervals were rel- 577

atively large, which was acceptable in terms of effi- 578

ciency. Moreover, the replay method outperformed 579

the baseline. Although there was a temporary de- 580

cline after each replay, the overall performance 581

saw improvement over time. We discovered that 582

periodic, high-intensity replay on the forgetting 583

curve leads to an enhancement of both the upper 584

and lower bounds. Moreover, this approach proved 585

more effective and cost-efficient than directly re- 586

play with 100 epochs. 587

Thus, we believe that such human-like strategies 588

could guide the design of replay mechanisms in 589

pre-training. To test this hypothesis, we conducted 590

an experiment and enhanced the Focused Stochas- 591

ticity method in Section 5.2. Specifically, we in- 592

tensified the learning process for each replay batch, 593

with each batch undergoing five epochs of learn- 594

ing. The approach, denoted as Intensive Focused 595
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Figure 4: Metrics of samples categorized by difficulty level, with columns representing distinct difficulty levels and
rows indicating different initial learning intensities.

Stochasticity in Table 1, surpasses the baseline in596

every metric, indicating its potential in reducing597

pre-training forgetting.598

Takeaway 4: The parallels in forgetting
patterns between humans and LLMs sug-
gest that periodic, intensive replay could
be key to mitigating memory loss. Exper-
iments conducted during the pre-training
phase have also confirmed this point.

599

7 Conclusion and Future Work 600

Our research sheds new light on catastrophic for- 601

getting in LLMs during pre-training. We scruti- 602

nized traditional metrics, introduced novel ones 603

for a clearer analysis of forgetting, and proposed 604

memory-replay techniques to bolster knowledge 605

retention. Additionally, we explored the forgetting 606

curve post-intense, short-term learning, uncovering 607

similarities with human memory decay, offering 608

insights into information retention dynamics. 609
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8 Limitations610

Our investigation into catastrophic forgetting611

within the pre-training phase of LLMs, while pio-612

neering, is bounded by computational limitations.613

The experimental requirements, estimated at ap-614

proximately 10,000 GPU hours for execution on 8615

NVIDIA A100 GPUs with 40 GiB VRAM, present616

a significant challenge. This constraint inevitably617

limits the scale of our experiments, making it chal-618

lenging to verify with larger models and different619

datasets.620

Informed by the scaling law (Kaplan et al., 2020),621

we recognize that our findings from a smaller622

model may provide valuable insights for larger-623

scale experiments. This framework indicates that624

our study could contribute to the design of future625

research, acknowledging the limitations in scaling626

our results.627

Our approach to memory replay has shown po-628

tential in alleviating catastrophic forgetting, but629

there is still room for improvement in terms of630

its effectiveness. Our investigation did not delve631

deeply into the granular effects of each variable632

on the experimental outcomes. The complexity of633

memory replay mechanisms requires a more nu-634

anced analysis to fully understand how different635

factors interplay and influence the results.636

Additionally, the concentrated learning of mem-637

ory replay, while beneficial, may engender trade-638

offs that affect the model’s generalizability. We639

hypothesize that the focused emphasis of certain640

data subsets could lead to a diminished capacity641

for the model to adapt to tasks beyond the focused642

areas, such as numerical data processing or other643

cognitively distinct downstream tasks.644

We recognize that forgetting in pre-training dif-645

fers from that in SFT, each requiring distinct met-646

rics and methods for mitigation. Yet, there are647

connections between them. In future work, we648

also aim to explore the impact of our methods on649

forgetting in downstream tasks.650

Despite these limitations, our study exemplifies651

the scientific endeavor to confront complex prob-652

lems with rigor and without reservation. Our work653

is a courageous step towards understanding the654

intricate processes of memory retention and forget-655

ting in LLMs, reflecting a sincere commitment to656

advancing our collective knowledge, even in the657

face of substantial challenges.658

References 659

Ellie Pavlick Stefanie Tellex Aaron Gokaslan*, 660
Vanya Cohen*. 2019. Openwebtext corpus. 661

Stella Biderman, USVSN Sai Prashanth, Lintang 662
Sutawika, Hailey Schoelkopf, Quentin Anthony, 663
Shivanshu Purohit, and Edward Raf. 2023a. Emer- 664
gent and predictable memorization in large language 665
models. arXiv preprint arXiv:2304.11158. 666

Stella Biderman, Hailey Schoelkopf, Quentin Gregory 667
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal- 668
lahan, Mohammad Aflah Khan, Shivanshu Purohit, 669
USVSN Sai Prashanth, Edward Raff, et al. 2023b. 670
Pythia: A suite for analyzing large language models 671
across training and scaling. In International Confer- 672
ence on Machine Learning. PMLR. 673

Lucas Bourtoule, Varun Chandrasekaran, Christopher A 674
Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu 675
Zhang, David Lie, and Nicolas Papernot. 2021. Ma- 676
chine unlearning. In 2021 IEEE Symposium on Secu- 677
rity and Privacy (SP). IEEE. 678

Min Chen, Zhikun Zhang, Tianhao Wang, Michael 679
Backes, Mathias Humbert, and Yang Zhang. 2022. 680
Graph unlearning. In Proceedings of the 2022 ACM 681
SIGSAC conference on computer and communica- 682
tions security. 683

C Samuel Craig, Brian Sternthal, and Karen Olshan. 684
1972. The effect of overlearning on retention. Jour- 685
nal of General Psychology. 686

Cyprien de Masson D’Autume, Sebastian Ruder, Ling- 687
peng Kong, and Dani Yogatama. 2019. Episodic 688
memory in lifelong language learning. NeurIPS. 689

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 690
Kristina Toutanova. 2018. Bert: Pre-training of deep 691
bidirectional transformers for language understand- 692
ing. arXiv preprint arXiv:1810.04805. 693

BV Elasticsearch. 2018. Elasticsearch. software], ver- 694
sion. 695

Wikimedia Foundation. Wikimedia downloads. 696

Leo Gao, Stella Biderman, Sid Black, Laurence Gold- 697
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho- 698
race He, Anish Thite, Noa Nabeshima, et al. 2020. 699
The Pile: An 800GB dataset of diverse text for lan- 700
guage modeling. arXiv preprint arXiv:2101.00027. 701

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim, 702
Mats L Richter, Quentin Anthony, Eugene Belilovsky, 703
Irina Rish, and Timothée Lesort. 2023. Continual pre- 704
training of large language models: How to (re) warm 705
your model? arXiv preprint arXiv:2308.04014. 706

Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao, 707
Shang-Wen Li, Xiaokai Wei, Andrew Arnold, and 708
Xiang Ren. 2021. Lifelong pretraining: Continu- 709
ally adapting language models to emerging corpora. 710
arXiv preprint arXiv:2110.08534. 711

9

http://Skylion007.github.io/OpenWebTextCorpus
https://dumps.wikimedia.org


Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B712
Brown, Benjamin Chess, Rewon Child, Scott Gray,713
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.714
Scaling laws for neural language models. arXiv715
preprint arXiv:2001.08361.716

Geoffrey R Loftus. 1985. Evaluating forgetting curves.717
Journal of Experimental Psychology: Learning,718
Memory, and Cognition.719

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie720
Zhou, and Yue Zhang. 2023. An empirical study721
of catastrophic forgetting in large language mod-722
els during continual fine-tuning. arXiv preprint723
arXiv:2308.08747.724

Michael McCloskey and Neal J Cohen. 1989. Catas-725
trophic interference in connectionist networks: The726
sequential learning problem. In Psychology of learn-727
ing and motivation. Elsevier.728

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,729
Ruxandra Cojocaru, Alessandro Cappelli, Hamza730
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,731
and Julien Launay. 2023. The refinedweb dataset732
for falcon llm: outperforming curated corpora with733
web data, and web data only. arXiv preprint734
arXiv:2306.01116.735

Yujia Qin, Jiajie Zhang, Yankai Lin, Zhiyuan Liu, Peng736
Li, Maosong Sun, and Jie Zhou. 2022. Elle: Effi-737
cient lifelong pre-training for emerging data. arXiv738
preprint arXiv:2203.06311.739

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,740
Dario Amodei, Ilya Sutskever, et al. 2019. Language741
models are unsupervised multitask learners. OpenAI742
blog.743

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,744
and Yuxiong He. 2020. Zero: Memory optimizations745
toward training trillion parameter models. In SC20:746
International Conference for High Performance Com-747
puting, Networking, Storage and Analysis. IEEE.748

Roger Ratcliff. 1990. Connectionist models of recog-749
nition memory: constraints imposed by learning and750
forgetting functions. Psychological review.751

Stephen Robertson, Hugo Zaragoza, et al. 2009. The752
probabilistic relevance framework: Bm25 and be-753
yond. Foundations and Trends® in Information Re-754
trieval.755

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-756
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.757
SlimPajama: A 627B token cleaned and deduplicated758
version of RedPajama.759

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya760
Ganguli, and Ari Morcos. 2022. Beyond neural scal-761
ing laws: beating power law scaling via data pruning.762
NeurIPS.763

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao 764
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie 2.0: 765
A continual pre-training framework for language un- 766
derstanding. In AAAI. 767

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, 768
and Armen Aghajanyan. 2022. Memorization with- 769
out overfitting: Analyzing the training dynamics of 770
large language models. NeurIPS. 771

Mariya Toneva, Alessandro Sordoni, Remi Tachet des 772
Combes, Adam Trischler, Yoshua Bengio, and Geof- 773
frey J Gordon. 2018. An empirical study of exam- 774
ple forgetting during deep neural network learning. 775
arXiv preprint arXiv:1812.05159. 776

Cunxiang Wang, Xiaoze Liu, Yuanhao Yue, Xian- 777
gru Tang, Tianhang Zhang, Cheng Jiayang, Yunzhi 778
Yao, Wenyang Gao, Xuming Hu, Zehan Qi, et al. 779
2023a. Survey on factuality in large language models: 780
Knowledge, retrieval and domain-specificity. arXiv 781
preprint arXiv:2310.07521. 782

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong 783
Bao, Rui Zheng, Qi Zhang, Tao Gui, and Xuanjing 784
Huang. 2023b. Orthogonal subspace learning for 785
language model continual learning. arXiv preprint 786
arXiv:2310.14152. 787

Zirui Wang, Sanket Vaibhav Mehta, Barnabás Póczos, 788
and Jaime Carbonell. 2020. Efficient meta lifelong- 789
learning with limited memory. arXiv preprint 790
arXiv:2010.02500. 791

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao 792
Wang, Ye Feng, Ping Luo, and Ying Shan. 2024. 793
Llama pro: Progressive llama with block expansion. 794
arXiv preprint arXiv:2401.02415. 795

Yinjun Wu, Edgar Dobriban, and Susan Davidson. 2020. 796
Deltagrad: Rapid retraining of machine learning mod- 797
els. In International Conference on Machine Learn- 798
ing. PMLR. 799

Xingcheng Yao, Yanan Zheng, Xiaocong Yang, and 800
Zhilin Yang. 2022. Nlp from scratch without large- 801
scale pretraining: A simple and efficient framework. 802
PMLR. 803

10

https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B


A Further Discussions on Pre-training804

Forgetting805

In this section, we discuss the intuition and method-806

ology behind the paper, as well as potential issues.807

1. Why should we be concerned about model for-808

getting at the sample level during pre-training?809

Developers and researchers have frequently ob-810

served that large models, despite their extensive811

deployment, are prone to errors in factual do-812

mains, especially concerning entity-related infor-813

mation (Wang et al., 2023a). These discrepancies814

can substantially affect user perception and trust.815

However, there is a scarcity of research on the in-816

fluence of learning during the pre-training phase817

on this type of information, and even less on how818

models remember and forget information during819

pre-training. The phenomenon of sample-level for-820

getting in pre-training is also difficult to define821

clearly, analyze, and further explore.822

2. How should we understand entity-related met-823

rics, and why is it important to focus on forget-824

ting at the entity level?825

(1) Forgetting across the entire pre-training dataset826

is extremely difficult to define and study, hence we827

concentrate on a specific subset. Errors related to828

entity information are easily noticeable in model829

applications and significantly impact user experi-830

ence. (2) Beyond the model’s memory of entity831

information, we also consider its capabilities dur-832

ing pre-training, especially since the Supervised833

Fine-Tuning (SFT) phase places more emphasis on834

instructional data. This phase enhances the model’s835

competencies for downstream tasks, and we see it836

as a stage for augmenting the model’s capabilities.837

Therefore, we believe the pre-training phase should838

place greater emphasis on exploring entity informa-839

tion. (3) In Section 3.2, we demonstrate that overall840

data forgetting is hard to evaluate, as there is no841

clear decline in model performance when switch-842

ing training data (we deliberately selected parts of843

data from A to ensure minimal repetition in B), and844

almost no change in metrics is observed during the845

switch. Instead, during training in B, the model’s846

capabilities continue to improve, even surpassing847

the metrics achieved during training in A, which848

contradicts the intuition of forgetting. PPL does849

not intuitively reflect the model’s forgetting; in850

contrast, the metrics concentrated on entities show851

significant changes on entity-related data, with al-852

most no recovery, facilitating the direct study of853

the forgetting phenomenon.854

3. Since the model may leak verbatim sequences of 855

personal information, is sample-level forgetting 856

harmful? 857

In our study, we focus on learning and the reten- 858

tion of factual information related to entities, which 859

models should not forget and that is prevalent in the 860

pre-training data. We diverge from concerns about 861

leaking verbatim personal information. There is ex- 862

tensive literature on machine unlearning (Wu et al., 863

2020; Bourtoule et al., 2021; Chen et al., 2022), 864

which typically addresses scenarios involving pri- 865

vacy protection and changes in user information. 866

These scenarios fall outside the scope of our work, 867

although our research might offer insights into the 868

design of machine unlearning methods. 869

4. Is this study primarily addressing hallucina- 870

tions, or is it actually more focused on the 871

model’s tendency to forget entity-related infor- 872

mation rather than producing false outputs? 873

Our research concentrates on the model’s inclina- 874

tion to forget information pertaining to entities, 875

diverging from the generation of erroneous outputs, 876

commonly known as hallucinations. However, it 877

is true that our work offers a perspective on the 878

concept of hallucinations, where the two newly de- 879

signed metrics, Mex and Min, can be interpreted as 880

potential false negatives and false positives in the 881

pre-training model’s responses: the model, given 882

relevant information, fails to identify the correct 883

entity; or the model provides an entity and some 884

information but is unable to supply the related con- 885

text. 886

5. Should we expect an LLM to reproduce exact 887

training text, given it’s not a lossless compres- 888

sion model? 889

In our study, we do not anticipate LLMs to repro- 890

duce the exact training text. Specifically, our Mex 891

metric solely assesses whether the ground truth en- 892

tity is included in the output; while capturing the 893

formalization of information related to the entity 894

presents challenges. For the Min metric, we follow 895

the design of Biderman et al. (2023a), calculating 896

accuracy for each token. We consider that alter- 897

native design schemes might be possible, such as 898

utilizing a BERT model (Devlin et al., 2018) to cal- 899

culate the similarity between the generated tokens 900

and the ground truth tokens. We have reserved this 901

exploration for future research. 902
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B Setup Details903

In this section, we outline our experimental setup.904

We selected a batch size of 576, informed by our905

use of 8 NVIDIA A100 GPUs with 40 GiB VRAM,906

and aligned with GPT-2‘s (Radford et al., 2019) hy-907

perparameter recommendations for optimal perfor-908

mance on our hardware configuration. A consistent909

sequence length of 1024 was applied across all ex-910

periments. Training is executed in half-precision911

format using BF16, and we capitalize on the Zero912

Redundancy Optimizer (ZeRO) Stage 2 (Rajbhan-913

dari et al., 2020) to enable efficient scaling across914

multiple machines. We draw inspiration from the915

works of Biderman et al. (2023b); Gupta et al.916

(2023); Radford et al. (2019), employing a cosine917

learning rate decay that reduces to a minimum of918

0.1 times the Maximum Learning Rate (MaxLr),919

with the MaxLr itself set at 6× 10−4.920

B.1 Setup for Section 3.1921

We utilized the GPT-2 XL model (1.5B) (Radford922

et al., 2019) and trained it on a dataset sampled923

from SlimPajama (Soboleva et al., 2023), consist-924

ing of 4.9e8 tokens. Prior to training, we shuf-925

fled the data to ensure that the order of training926

instances was consistent across different experi-927

ments. We conducted two experiments: a stan-928

dard pre-training and a pre-training with a replay929

mechanism that retrieves a batch of data, equiva-930

lent in size to the training batch. (where we stored931

all trained data using Elasticsearch (Elasticsearch,932

2018) and performed a replay every 10 steps). At933

each replay step, we use the current batch‘s training934

data to uniformly sample an equal amount of data935

from the completed training data based on similar-936

ity. This ensures a uniform replay throughout the937

entire data training process, with an additional 1/10938

increase in computational budget. For evaluation,939

we constructed a test set by sequentially segment-940

ing the training data according to the training steps941

and uniformly sampling 1/100 of each segment.942

The samples were then reassembled in their orig-943

inal stepwise order to ensure uniform distribution944

across the training steps, thus creating a test set that945

mirrors the model‘s training progression. We plot-946

ted perplexity (PPL) against the number of training947

tokens processed, with the evaluation set‘s token948

count scaled proportionally to reflect the model‘s949

exposure to the training data.950

B.2 Setup for Section 3.2 951

To ensure computational feasibility in our experi- 952

ments, we choose GPT-2 (0.1B) in this section. We 953

uniformly sample 1/1000 of dataset A to consti- 954

tute a eval set, and perform evaluations every 1000 955

training steps during the training process of dataset 956

B. 957

B.3 Setup for Section 4.2 958

Sampled entities

‘ Terrel Bell‘, ‘ BIST‘, ‘ The Great Hunt‘, ‘ Best in
Drag Show‘, ‘ Stella Maris‘, ‘ William Knighton‘,
‘ Italian campaign‘, ‘ The Octopus Project‘, ‘ Light
Cycle‘, ‘ Clark Street‘, ‘ Paulette Hamilton‘, ‘
Robert Mack‘, ‘ Nusrat‘, ‘ Soul Catcher‘, ‘ Lord
of Light‘, ‘ Bieger‘, ‘ Foreach loop‘, ‘ Choruss‘,
‘ Screen space ambient occlusion‘, ‘ Florida De-
partment of Environmental Protection‘, ‘ USA Ul-
timate‘, ‘ Historical Association‘, ‘ Robert Holt‘,
‘ Willie Nile‘, ‘ Fiordland National Park‘, ‘ Star
Wars: The Clone Wars‘, ‘ Crouch End‘, ‘ Tracy
Ham‘, ‘ Jimmy Chamberlin‘, ‘ Journal of Food Sci-
ence‘, ‘ Comet Tempel‘, ‘ AirMed International‘, ‘
CanWaCH‘, ‘ Pumapunku‘, ‘ Pre-law‘, ‘ Arovane‘,
‘ Diex‘, ‘ Her Escape‘, ‘ Voltige‘, ‘ Triadelphia‘,
‘ Florian Zeller‘, ‘ The Busy World of Richard
Scarry‘, ‘ Texting while driving‘, ‘ Amir Wilson‘, ‘
Julie White‘, ‘ Lenox‘, ‘ GNPDA2‘, ‘ Cammie Dun-
away‘, ‘ Session Man‘, ‘ Charoen Krung Road‘, ‘
James Raine‘, ‘ Archie Andrews‘, ‘ The Picture
of Dorian Gray‘, ‘ Theresa Caputo‘, ‘ Schauins-
landbahn‘, ‘ Japanese relocation‘, ‘ O.C. Handa‘, ‘
Afula‘, ‘ The Secrets‘, ‘ Sonnet 61‘, ‘ Daniel Bell‘, ‘
The Dawn‘, ‘ Bob Berry‘, ‘ Bigger Life‘, ‘ Jamaica
Wine House‘, ‘ Conica‘, ‘ Renuar‘, ‘ Plantation,
Florida‘, ‘ Fasser‘, ‘ Al-Qadi‘, ‘ Vassy‘, ‘ Tom
Dempsey‘, ‘ Department of Agriculture, Environ-
ment and Rural Affairs‘, ‘ Abdallah Djaballah‘, ‘
Silent Hill 2‘, ‘ Bill Ayres‘, ‘ Jeremy Howe‘, ‘ J15‘,
‘ Jake Ryan‘, ‘ Black Mafia‘, ‘ Nicholas Fox‘, ‘
Interstate 78‘, ‘ Mark Stein‘, ‘ Pietro Torri‘, ‘ Wet
sump‘, ‘ Centre national des arts plastiques‘, ‘ Nitro
Express‘, ‘ Wyvill‘, ‘ WSRA‘, ‘ Whitewater River‘,
‘ Merry Christmas Mr. Lawrence‘, ‘ Jon Jansen‘, ‘
Le Message‘, ‘ Mavrommati‘, ‘ Tourouvre‘, ‘ Bob
Peterson‘, ‘ America Again‘, ‘ Livernois‘, ‘ The
Shepherd Express‘, ‘ Hypercalcaemia‘

Table 2: Sampled entities from English Wikipedia.

We followed Biderman et al. (2023a), selecting a 959

sequence length of 32 for both the input and output 960
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Prompt True Continuation Greedily Generated Sequence Min

The Amazon Rainforest , known as the Earth’s lungs known as the Moon’s lungs 1+1+1+0+1
5 = 0.8

The Amazon Rainforest , known as the Earth’s lungs known as the Moon’s legs 1+1+1+0+1
5 = 0.6

The Colosseum in Rome, also known as the Flavian Amphitheatre , is an iconic symbol of the Roman Empire’s architectural prowess. is an iconic symbol of the Russian Federation’s scientific prowess . 1+1+1+1+1+1+0+0+0+1
10 = 0.7

Table 3: Examples of Min calculation with different prompts. These samples are provided for illustrative purposes
and are not from the real training data.

Entity Prompt True Continuation Greedily Generated Sequence Mex

Leonardo da Vinci The Mona Lisa, painted by Leonardo da Vinci , is renowned for its elusive Leonardo da Vinci , is renowned for its elusive 1

Leonardo da Vinci The Mona Lisa, painted by Leonardo da Vinci , is renowned for its elusive a man called Leonardo da Vinci , is renowned for 1

Leonardo da Vinci The Mona Lisa, painted by Leonardo da Vinci , is renowned for its elusive Donald Trump , is renowned for its elusive 0

the United States The Statue of Liberty, a gift from France to the United States , stands as a symbol the world, mysteriously appeared on an uninhabited island 0

the United States The Statue of Liberty, a gift from France to the United States , stands as a symbol tell the enduring friendship with the United States 1

Table 4: Examples of Mex calculation with different prompts. These samples are provided for illustrative purposes
and are not from the real training data.

of our Mex and Min metrics. We collected enti-961

ties from English Wikipedia dataset (Foundation).962

Some randomly sampled entities are shown in Ta-963

ble 2.964

To spotlight entity-level forgetting, we evenly965

sampled 400,000 English Wikipedia entries, com-966

paring entity frequencies in datasets A and B. We967

selected the intersection C of entities that were top968

1/2 frequent in A and bottom 1/2 in B to accentuate969

the distribution disparity. Samples from A with970

entities in C constituted our evaluation set. Follow-971

ing the approach of Biderman et al. (2023a), we972

retained a subset where Mex = 1 post A’s training973

to scrutinize their forgetting during B’s training.974

We provide illustrative examples in Table 3 and975

Table 4 to provide clearer explanations of Min and976

Mex.977

B.4 Setup for Section 6.2978

It is evident that Mex assigns a binary label to each979

sample: a label of 1 is given if the ground truth980

entity appears within the generated 32 tokens, and981

a 0 is assigned otherwise. Utilizing the challenging982

metric of Mex, we can categorize the difficulty of983

data memorization as follows: We performed an984

evaluation on the portion of the pre-training data985

that includes entities, recorded each entity along-986

side the samples that received labels of 1 or 0, and987

then calculated the accuracy rate for each entity988

based on these labels. We then divided the entities989

into groups with roughly equal accuracy rates, en-990

suring that during the phase of intensive, short-term991

learning, the related samples for certain entities are992

the focus of concentrated study. For the data cate-993

gorized into different difficulty levels, we carried994

out experiments with varying degrees of learning995

intensity—specifically, by adjusting the number of996

epochs dedicated to this phase of learning. 997

C Comparison of Forgetting Curves 998

between Humans and LLMs 999

The reproduced human forgetting curve, originally 1000

reported by Craig et al. (1972), is illustrated below, 1001

reflecting the typical decline in memory retention 1002

over time. In their study, 180 undergraduates par- 1003

ticipated in an experiment involving exposure to 1004

magazine advertisements under controlled condi- 1005

tions. They were categorized into three groups 1006

based on the extent of learning: 100%, 200%, and 1007

300%, determined by the number of 5-second rep- 1008

etitions of 12 ads. Following exposure, 15 partic- 1009

ipants from each group were assigned to one of 1010

four retention tests occurring at immediate, 1-day, 1011

7-day, or 28-day intervals. The study utilized a 3 1012

× 4 factorial design, assessing the impact of learn- 1013

ing intensity and retention intervals on the recall 1014

of brand names. It can be observed that there are 1015

similarities between the model’s forgetting curve 1016

and the human forgetting curve, with higher initial 1017

learning intensity resulting in a relatively slower 1018

rate of forgetting.
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Figure 5: Human forgetting curve from Craig et al.
(1972).
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