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Abstract

In large language models (LLMs), the chal-
lenge of catastrophic forgetting remains a
formidable obstacle to building an omniscient
model. Despite the pioneering research on task-
level forgetting in LLM fine-tuning, there is
scant focus on sample-level forgetting during
this phase, where models often see each dat-
apoint only once. We systematically explore
the existence, essence, and measurement of for-
getting in LLM pre-training, questioning tra-
ditional metrics such as perplexity (PPL) and
introducing new metrics to better detect entity
memory retention, which is the indicator of for-
getting. Taking inspiration from human mem-
ory patterns, we propose and refine memory
replay techniques to combat the phenomenon
of forgetting in LLMs. Extensive evaluations
and analyses on forgetting of pre-training could
facilitate future research on LLMs.

1 Introduction

Catastrophic forgetting (McCloskey and Cohen,
1989; Ratcliff, 1990) poses a significant challenge
to the development of models that are capable
of continuous learning, which is also observed
in LLMs. Traditionally, the challenge of catas-
trophic forgetting in neural networks is especially
pronounced when models are tasked with retaining
knowledge across diverse datasets (Sun et al., 2020;
Jin et al., 2021; de Masson D’ Autume et al., 2019;
Wang et al., 2020; Qin et al., 2022), necessitating
a delicate balance between the acquisition of new
information and the retention of previously learned
knowledge. This issue arises due to the shift in in-
put distribution across different tasks, which leads
to the model’s inability to remember past informa-
tion effectively.

Although pioneer efforts have explored the for-
getting issue in LLM fine-tuning, which primarily
addresses task-specific forgetting, there is a lack
of research on finer-grained forgetting at the sam-
ple level in pre-training. Luo et al. (2023), Wang

et al. (2023b), and Wu et al. (2024) focused on
forgetting in fine-tuning by measuring the perfor-
mance of new tasks with continual tuning. Other ef-
forts (Tirumala et al., 2022; Biderman et al., 2023a)
studied sample-level memorization, where some
experiments imply the existence of forgetting in
LLM pre-training. Nonetheless, these studies have
devoted limited attention to systematically explor-
ing and quantifying the forgetting in pre-training.

Forgetting in LLM pre-training is a critical is-
sue that must be addressed. It is prevalent among
current LLMs and significantly affects their perfor-
mance. Intuitively, after fine-tuning, LLMs may
give unsatisfactory replies to queries, even when
the necessary information was present in the pre-
training data. This indicates forgetting. Despite be-
ing easily noticed, measuring this forgetting in pre-
training is very challenging. In contrast to works
studying forgetting in fine-tuning that measure with
specific task-related metrics (e.g., QA accuracy),
the pre-training stage is not optimized for specific
tasks or datasets. Moreover, the conventional LLM
metrics such as perplexity (PPL) are also shown
to be insensitive in measuring forgetting in pre-
training (Gupta et al., 2023). This raises a pertinent
question: (1) How to correctly recognize and quan-
tify forgetting in pre-training?

As new metrics emerge to quantify forgetting in
pre-training, we draw inspiration from the proven
success of episodic memory replay methods in com-
bating forgetting during dataset shifts, as shown
in (de Masson D’ Autume et al., 2019; Wang et al.,
2020), and delve into the inquiry: (2) Can these
methods also mitigate forgetting during the pre-
training phase?

Starting from the premise that higher review in-
tensity slows down the forgetting rate in human
learning (Loftus, 1985), we notice that traditional
episodic memory replay methods for models em-
ploy a lower intensity of learning for the replayed
samples. This observation prompts the question



of whether models’ forgetting behaviors mirror hu-
man learning patterns to any extent. With this in
mind, we are interested in investigating if increas-
ing the intensity of memory replay could improve
the retention in models. We pose the inquiry: (3)
Do models exhibit forgetting patterns that mirror
human learning curves? Can leveraging these pat-
terns through intensified memory replay mitigate
forgetting during pre-training?

To address the above questions, we first mag-
nify the forgetting issue by building a didactic sce-
nario, and scrutinize the limitation of conventional
metrics (e.g., PPL) in identifying pre-training for-
getting. Next, looking deeper into the essence of
pre-training forgetting, we conclude that the recall
ability of entity-related information is one of the
most explicit and significant indicator of forget-
ting during pre-training. Subsequently, we propose
three novel entity-related metrics and experimen-
tally confirm the existence of forgetting during pre-
training. Within a standard pre-training setting, we
present several simple and effective memory replay
strategies, demonstrating that our straightforward
replay tactics can alleviate the forgetting issue dur-
ing pre-training.

Finally, we explore the impact of repeatedly
learning from replayed samples in a short period.
We examine how the metrics of these recently
learned samples evolve over the course of further
learning. Drawing an analogy to the human mem-
ory curve, we explore the impact of short-term,
high-frequency learning on the model’s memory
retention, shedding light on future pre-training de-
signs aimed at mitigating forgetting.

Our contributions are summarized as follows:
(1) We systematically explore and quantify the phe-
nomenon of forgetting during pre-training through
new entity-focused metrics. (2) We examine the
effectiveness of memory replay in reducing pre-
training forgetting. (3) We further examine how
short-term, high-frequency learning affects the
model’s memory retention.

2 Related Work

Catastrophic Forgetting in Language Models.
Neural networks often experience catastrophic for-
getting when learning new tasks, losing old knowl-
edge due to changes in data distribution (Mc-
Closkey and Cohen, 1989; Ratcliff, 1990). Var-
ious strategies have been proposed to counter
this, such as simultaneous training of new and

old tasks (Sun et al., 2020), incremental life-
long pre-training with continual learning algo-
rithms (Jin et al., 2021), and the incorporation of
episodic memory to handle diverse data distribu-
tions (de Masson D’ Autume et al., 2019). Other ap-
proaches include meta-lifelong frameworks (Wang
et al., 2020) and function-preserved model expan-
sion (Qin et al., 2022). However, most of these
studies do not deeply explore single data distri-
bution scenarios. Our study uniquely focuses the
pre-training phase, offering fresh insights into for-
getting.

Example Forgetting and Forgetting During Pre-
training. Despite significant research on catas-
trophic forgetting, there is limited investigation
into forgetting within the context of a single
task. Toneva et al. (2018) first defined example for-
getting, where certain examples are correctly clas-
sified and later misclassified during training. Tiru-
mala et al. (2022) explored forgetting dynamics
in language models. Biderman et al. (2023a) stud-
ied model behavior forecasting, while Gupta et al.
(2023) examined warm-up strategies in continual
pre-training. However, a detailed formalization of
what is forgotten and how it is quantified using met-
rics has been lacking—this is where our research
steps in.

3 Existence of Pre-training Forgetting

3.1 Intuition on Pre-training Forgetting

First, we explore whether, after pre-trained, an
LLM exhibits a pattern of decreased performance
on earlier samples, suggesting sample-level forget-
ting in pre-training. To test this, we take a direct
approach: after training, we obtain a checkpoint
and then use this exact checkpoint to test on sam-
ples in the sequence they were encountered during
pre-training. This process helps us to assess the
model’s retention of information over time. We aim
to assess if standard metrics like PPL can monitor
forgetting trends throughout training by testing the
model on this set.

3.1.1 Setup and PPL

We shuffled a dataset with 4.9e8 tokens subset
from SlimPajama (Soboleva et al., 2023) for con-
sistency across experiments, conducting standard
and memory-replay pre-training. A test set was cre-
ated by sequentially segmenting the training data
according to the training steps and uniformly sam-
pling 1/100 of each segment, reflecting the model’s
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Figure 1: Perplexity (PPL) of the GPT-2 XL model on
uniformly sampled 1/100 segments of the training data.
Considering forgetting does help the performance.

training progression. PPL is plotted against the
number of training tokens processed, with the test
set’s token count scaled to match the model’s expo-
sure. More details are in Appendix B.1.

Results: The result is shown in Figure 1. Our ob-
servations indicate that: (1) The pre-trained model
shows stable performance across early and late
training data, with comparable perplexity (PPL),
challenging the hypothesis of higher early training
perplexity. This suggests either that forgetting is
not occurring, contrary to our understanding, or
that forgetting exists but is not captured by PPL.
(2) Models with a replay mechanism during pre-
training show better test set performance, with a
notable drop in average PPL (280.66 with replay
vs. 303.63 without), indirectly confirming the exis-
tence of forgetting through performance gains from
repeated sample learning.

3.2 Underestimate of Pre-Training Forgetting

In previous experiments, we realized that detecting
forgetting was challenging in a single pre-training
dataset due to the uniformity of the data. To tackle
this, we implement an A+B dual-dataset strategy,
aiming for datasets A and B to be similar yet
slightly different to magnify forgetting effects, aid-
ing in metric assessment. With dataset A being
much smaller than B, we aim to avoid overfitting
on it. This emulates the scenario in an actual single
pre-training dataset where a portion of the early
data is at risk of being forgotten as the training pro-
gresses with a larger dataset. This is also a common
and practical scenario for continuing pre-training.
Setup: We proceed by uniformly sampling a subset
from dataset A as a test set and then train on dataset
B, evaluating the model to observe forgetting of
dataset A. We conducted two experiments, employ-
ing the OpenWebText (Aaron Gokaslan*, 2019)
dataset (~8B tokens) in its entirety for dataset A

in one experiment, and a uniformly sampled subset
from the Pile (Gao et al., 2020) (~ 13B) for the
other. Dataset B was constituted by a uniformly
sampled subset (~ 49 B) tokens from SlimPajama.
More details are in the Appendix B.2.

(a) PPL on OpenWebText (b) PPL on the Pile

(c) M(f) on the Pile

Figure 2: (a), (b): Perplexity (PPL) of the eval of dataset
A in relation to the number of trained tokens. B is a
subset from SlimPajama. A is a subset of OpenWeb-
Text(a) or the Pile(b). The fluctuating PPL is not a good
indicator of pre-training forgetting. (c): M(f) of the
eval for the Pile. At the A-to-B dataset transition, M(f)
shows negligible changes, and then M(f) consistently
increases, where we capture the subtle signal of pre-
training forgetting.

Results of PPL: The results in Figure 2 (a)(b) re-
veal an unexpected trend: contrary to expectations
of increasing PPL for dataset A as a sign of forget-
ting during dataset B’s training, the PPL for dataset
A actually decreased in both setups. Even during
the transition between datasets, PPL showed mini-
mal signs of catastrophic forgetting.

3.2.1 M(f) Metric

Recognizing the shortcomings of perplexity in ac-
curately measuring forgetting, we have turned to
the M(f) metric introduced by Tirumala et al. (2022)
for evaluation. The detailed definition of M(f) is:

Definition 1 (Tirumala et al., 2022) Let V' denote
the vocabulary size. The set C' consists of contexts
(s,y), where s is an incomplete text and y is the cor-
rect token index. S contains all input contexts, and
f: S — RY isalanguage model. A context c is
memorized if f(s)’s maximum value corresponds to
y, i.e., argmax,,cgpv f(s) = y. We assess the frac-

tion of contexts memorized by the model f using

the metric M (f) = 2 (sa)€0 l{a‘rgnax(ﬂs)):y}.




Results of M(f): In this experiment, we contin-
ued to employ the A (the Pile) + B (SlimPajama)
dataset setup and evaluated the model throughout
the entire training process. We also continue to
use a uniformly sampled 1/1000 part of A as the
eval set. We observed that at the transition from
dataset A to dataset B, M(f) exhibited negligible
fluctuations. Subsequently, as training progressed
on dataset B, the evaluation set’s performance, as
measured by M(f), demonstrated a continuous im-
provement. The results are given in Figure 2.

It is plausible to hypothesize that PPL’s proba-
bilistic averaging inherent may not accurately re-
flect forgetting for common tokens due to their high
prediction accuracy, potentially masking informa-
tion loss for less frequent elements. In contrast, the
M(f) metric’s binary evaluation is more sensitive
to memory errors, offering a clearer view of the
model’s retention of critical information, essential
for understanding catastrophic forgetting.

3.2.2 Limitation Leads to Underestimate

Certainly, it is important to acknowledge that both
the PPL and M(f) metrics have limitations in fully
capturing the model’s forgetting behavior. Our
observations indicate that throughout the training
process, after the model has completed training on
dataset A and transitions to dataset B, both met-
rics show a continuous improvement, with minimal
signs of forgetting at the transition point. This
suggests a plausible hypothesis: The metrics’ in-
ability to account for the variability in data and
token difficulty lead to an underestimation of
forgetting, as they are dominated by features
that are inherently resistant to forgetting, such as
common tokens and simple, everyday text. These
features may not exhibit significant prediction er-
rors when the dataset changes, thereby obscuring
the true extent of the model’s forgetting.

Takeaway 1: PPL and M(f) metrics poten-
tially mask true forgetting, as their bias to-
wards easy-to-remember elements can un-
derestimate the model’s memory decline
across dataset shifts.

4 New Entity-related Metrics for
Measuring Pre-training Forgetting
4.1 The Essence of Pre-training Forgetting

Building upon the findings presented, a pertinent
inquiry emerges: Which segments of the dataset

(¢) PPLenc (d) M(f)ent

Figure 3: Training dynamics across setting A (Pile) —
B (SlimPajama) datasets: entity-focused evaluation set
from A reveals marked metric degradation during the
A-to-B transition. Despite this, traditional metrics on
entity-focused samples such as PPL., and M(f)cp ex-
hibit partial recovery during dataset B training. This
implies that even for entity-related evaluations, conven-
tional metrics still largely focus on information that is
less related to entities, which can continue to improve
with further learning. Therefore, PPL.,; and M(f).p are
not that sensitive and accurate as M., and M;, in mea-
suring pre-training forgetting.

should be scrutinized to gain a comprehensive un-
derstanding of the forgetting phenomenon?

We argue that during pre-training, the focus
should be on the forgetting associated with entity-
related information. We posit that the capabilities
imparted to a model by a dataset can be broadly cat-
egorized into two components: information related
to entities and task-specific competencies. (1) As
demonstrated by Sorscher et al. (2022), the power
law scaling of error shows that many training ex-
amples are redundant, and in data-rich scenarios,
pruning should focus on retaining challenging ex-
amples. Entity-related information, which is less
frequent (Penedo et al., 2023), is crucial for users’
perception of forgetting in LLMs, as it’s harder
to determine if the loss of abstract capabilities is
due to model limitations or forgetting, making en-
tity information key in pre-training. (2) We have
also considered the approach of Supervised Fine-
Tuning (SFT), which involves training pre-trained
models on instructional data. This phase of training
enhances the model’s capabilities for downstream
tasks, and we view it as a stage where the emphasis
is on augmenting the model’s competencies. Never-



theless, for the pre-training phase, our focus is more
directed towards the acquisition of entity informa-
tion. (3) Comparing with the forgetting of entities,
the forgetting of other content, such as capabilities
related to downstream tasks, is more challenging
to define and remains ambiguous. Entities serve as
an optimal vehicle for exploring the phenomenon
of forgetting within our cognitive framework.

4.2 Our Proposed Entity-related Metrics

To evaluate the model’s forgetting of entities, we
follow the memorization score (Biderman et al.,
2023a) and introduce additional metrics for pre-
training forgetting. These additional metrics resem-
ble entity-focused question answering. For further
elaboration on the design and illustrative examples
of our metrics, please refer to Appendix B.3.

(1) Mj,: Intuitively, this evaluates the model’s
capacity to recall entity-related to an entity details
given its context. We select all samples .S contain-
ing a set of entities C. For each sample s; € S,
we locate the entities and use the 32 preceding to-
kens as input, ensuring the entity c; € C'is at the
end. With this input s;, we then greedily decode
32 tokens 6 = (01, 09, ..., 032). Following this, we
consider the next 32 tokens (1, t2, ..., t32) as our

target output. We calculate the accuracy of the

Yeies iy Loi=ti}
tokens, defined as M, = —3° 32|;\ :

(2) M¢y: Intuitively, this metric tests if the model
can recall an entity from the context where the en-
tity is implied but not directly mentioned. Similar
to M;y,, for each sample s; containing entity c;, we
use the preceding 32 tokens as input (excluding c;)
and the following 32 tokens as target output (start-
ing with c;). After greedy decoding of 32 tokens o,

D s c g is_substring(c;,6)
we calculate M., = =3 3] !

, where
is_substring(ay, ag) returns 1 if a; is a substring
of as and 0O otherwise.

Besides, we also adopt two entity-centric met-
rics PPL¢y¢ and M(f)ent, which measure existing
metrics PPL and M(f) on entity-involved samples.
Setup: In this section, we continue to leverage
the A+B dataset configuration to accentuate the
phenomenon of forgetting, employing the A (the
Pile) + B (SlimPajama) dataset setup and training
the model on both datasets. Testing is conducted
during the training of dataset B.

We focused on entity-level forgetting by analyz-
ing entity frequencies in datasets A and B, identi-
fying a set of entities more frequently found in A.
Using this set, we curated an evaluation set from

A and monitored its metrics during B’s training to
measure the forgetting effect due to less exposure
in B. See Appendix B.3 for details on the experi-
ments.

Results: In Figure 3, we have demonstrated the fol-
lowing: (1) When evaluating forgetting on entity-
related data, a significantly more pronounced de-
cline is noted, with a notably slow recovery of
metrics even during continued training. (2) In eval-
uations focusing on a subset of data that is rich
in samples from source A compared to B, tradi-
tional metrics like PPL. and M(f) suggest a recov-
ery that may not fully capture the essence of for-
getting. This apparent recovery may be due to
less forgettable elements in the data. (3) Compara-
tively, the newly proposed metrics Mk and M, ex-
hibit a more difficult recovery, which aligns closely
with our expected manifestation of forgetting. This
makes them more suitable for indicating forgetting.

Takeaway 2: Our newly proposed entity-
related metrics, M. and M;,, exhibit a
more noticeable decline and difficult re-
bound, offering a clearer reflection of the
forgetting phenomenon.

5 Memory Replay: A Simple Method for
Alleviating Pre-training Forgetting

Inspired by the work of de Masson D’ Autume et al.
(2019), we introduce novel methods for episodic
memory replay. We incorporate a module that re-
tains a record of examples from the pre-training
phase. During the learning period, we periodically
draw a uniform sample from the memory’s stored
examples to conduct gradient updates.

5.1 Key Factors in Memory Replay

We have considered several potential design di-
mensions within the replay process, including the
following:

Replay Frequency. Following de Mas-
son D’Autume et al. (2019), we match the
size of our retrieved memory batches to our
training batches. Given the computational intensity
of replay, we execute a retrieval and gradient
update every 100 steps, achieving an efficient 1%
replay rate.

What to Store into Memory. We consider strate-
gies for memory sample storage: (1) including all
samples encountered during pre-training, (2) prior-
itizing samples with entities for forgetting analysis,



and (3) choosing high-loss samples that may be
more susceptible to forgetting. Advanced selection
methods are reserved for future research.
Retrieve Strategy. We’ve introduced two basic
but impactful retrieval methods: random sampling
and similarity-based sampling. Unlike de Mas-
son D’ Autume et al. (2019), who used a pre-trained
BERT (Devlin et al., 2018) model for the latter, we
opted for BM25 (Robertson et al., 2009), following
its efficiency shown in TLM (Yao et al., 2022).
Exit Mechanism. Given the fixed intervals of
memory replay, the number of replayable samples
is inherently limited. Simple replay strategies may
lead to an imbalance in the samples being replayed,
such as every replay batch coincidentally focusing
on a few samples within the memory. Thus, we’ve
implemented an exit mechanism to limit replay
times, excluding them from further learning once
they reach a set replay threshold.

5.2 Experimental Settings

In the previous section, we used two datasets, A
and B, to study the forgetting effect. Now, to mimic
a realistic pre-training setup, we’ve mixed and shuf-
fled A with B into one complete set. We trained
GPT?2 from scratch using this combined set. To
measure forgetting across the dataset, we took 1/5
of A+B, selected samples with entities, and made
an evaluation set(~ 200,000 samples). We then use
the aforementioned 4 metrics to assess the results.

Although the ability to relearn past samples is
beneficial, a significant drawback of the replay
method is its increased training cost. Considering
computational constraints and the need for simplic-
ity, we have selected the following straightforward
strategies, while leaving more sophisticated replay
methods for future work:

Vanilla pre-training. We use standard pre-training
as a baseline.

Upper Bound.We train from the vanilla pre-
training checkpoint on the eval set, evaluating im-
mediately to determine the model’s peak memory
retention.

BM25. We leverage Elasticsearch (Elasticsearch,
2018) to maintain a memory of all encountered
samples. At designated replay intervals, we match
the current batch with stored samples based on
similarity for retrieval, subsequently employing
this data for replay.

BM25 + Samples with entities only. During learn-
ing, we evaluate each sample for the presence of

entities and only keep those in our memory for
replay.

Focused Stochasticity: Constrained Entity Sam-
pling with Exit Limit. In this experiment, we shift
from similarity-based retrieval to random sampling
of previously learned samples at regular intervals.
To prevent overlearning, we monitor replay fre-
quency, excluding samples after they have been
replayed 5 times.

Intensive Focused Stochasticity: This variant of
Focused Stochasticity intensifies the replay process,
subjecting replayed samples to multiple epochs
of learning. Further details on this method are
elaborated in Section 6.2.2.

Method ‘PPLC,,[ M(fent Mex (x1073) M, (x1072)

Vanilla pre-training 26.03 0.4093 5.273 3.988
Upper Bound 23.74 0.4182 14.46 4.162
BM25 2795 0.4015 4.586 3.895
BM25 + Samples with entities only | 28.09 0.4013 4.575 3.941
Focused Stochasticity 25.79 0.4101 5.496 3.980
Intensive Focused Stochasticity 2540 04121 5.450 4.003

Table 1: Evaluation results for replay strategies.

5.3 Effectiveness of Memory Replay

We display the evaluation in Table 1. The data in-
dicates that similarity-based replay methods do not
outperform the baseline, no matter if all samples
or only those related to entities are kept in memory.
We think this could be because these methods don’t
spread replay evenly; replaying all samples might
focus too much on non-entity ones, while focusing
only on entity-related samples could lead to too
much attention on a specific subset, exaggerating
the forgetting of other samples.

On the other hand, a simple sampling method im-
proves upon the baseline, hinting that replay helps
reduce forgetting during pre-training. However,
there’s still a big gap between the replay methods
and the best possible performance, which means
there’s a lot of room to improve how we handle
forgetting in pre-training.

Takeaway 3: Our memory replay methods
have shown potential in alleviating forget-
ting in the pre-training phase, while a gap
persists relative to the upper bound, signi-
fying the necessity for further research.

6 Explorations on Forgetting Curves

Observing the limitations of replay methods like
Focused Stochasticity in the last section, we are
led to explore opportunities for enhancing their
efficacy. This exploration is motivated by the



renowned forgetting curve from human psychol-
ogy (Loftus, 1985), which underscores the link
between the intensity of learning and the pace of
forgetting.

Recognizing that current methods involve sam-
ples being learned uniformly and at equal intervals
with low intensity, we question the impact of tran-
sitioning to a strategy of intensive learning that
focuses on specific information. We aim to explore
the effect of short-term, high-frequency learning
on the forgetting curve of large models, pondering
whether models follow the same patterns as hu-
mans—where increasing the frequency of review
slows down forgetting. With this understanding, we
anticipate guiding the research on replay methods
to enhance memory retention in models.

6.1 Setup

Exploring the nuances of memory retention and for-
getting in LLMs, we focus on two critical inquiries:
(1) Learning intensity’s impact: We explore the
hypothesis that increased initial learning intensity
may result in more robust memory retention, po-
tentially flattening the forgetting curve. (2) Memo-
rability and memory durability: We determine
if challenging samples, post-intensive learning, re-
main at risk of forgetting during pre-training.

6.2 Results on LLMs’ Forgetting Curves

To tackle these inquiries, we first select samples
related to entities of interest. After the model un-
dergoes an initial epoch of pre-training, we subject
these samples to intensive training across several
epochs. The purpose of the initial pre-training
epoch is to ensure the model reaches a baseline
level of language proficiency. This step is crucial
to prevent general language ability improvements
from confounding the experiment, allowing for a
clear focus on the forgetting phenomenon rather
than overall model enhancement.

Post the intensive learning phase, these entity-
related samples serve as our evaluation set. As we
proceed with pre-training, we continuously assess
this set using our established metrics to monitor
the forgetting curve. This ongoing evaluation al-
lows us to track how the memory of these samples
evolves and to understand the interplay between
initial learning intensity and long-term retention
within the context of LLM pre-training. For further
details on this experimental design, please refer to
the Appendix B.4.

6.2.1 [Initial Learning Intensity and
Forgetting Curves

As shown in Figure 4, our experiments indicate
that higher initial learning intensity results in better
performance across various metrics, yet as further
pre-training occurs, the results from experiments
with lower initial learning intensity tend to catch up.
This pattern mirrors human learning curves (Lof-
tus, 1985), and we offer a detailed comparison in
Appendix C. Over the learning period, a divergence
is observed; experiments with a very high initial
learning intensity maintain a gap compared to those
with a lower initial intensity. This gap is more
pronounced for less difficult data, while for more
challenging data, the effects of learning even out.
This suggests that data that are more difficult to
memorize benefit from more intensive learning to
achieve enhanced memory retention.

6.2.2 Periodic Intensive Replay

Building on our findings and the human ability to
reduce forgetting through periodic, intense learn-
ing, we aim to (1) assess the impact of periodic,
intensive replay on a model’s forgetting curve, and
(2) determine if this can enhance aforementioned
memory replay methods. To delve deeper into
these effects, we have focused our experiments
on the most challenging samples. After the initial
phase of high-intensity learning, we have intro-
duced a replay process in the ongoing pre-training.
This process involves revisiting the samples every
1000 steps, with each replay session consisting of
5 epochs of learning.

In this experiment, the replay intervals were rel-
atively large, which was acceptable in terms of effi-
ciency. Moreover, the replay method outperformed
the baseline. Although there was a temporary de-
cline after each replay, the overall performance
saw improvement over time. We discovered that
periodic, high-intensity replay on the forgetting
curve leads to an enhancement of both the upper
and lower bounds. Moreover, this approach proved
more effective and cost-efficient than directly re-
play with 100 epochs.

Thus, we believe that such human-like strategies
could guide the design of replay mechanisms in
pre-training. To test this hypothesis, we conducted
an experiment and enhanced the Focused Stochas-
ticity method in Section 5.2. Specifically, we in-
tensified the learning process for each replay batch,
with each batch undergoing five epochs of learn-
ing. The approach, denoted as Intensive Focused
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Figure 4: Metrics of samples categorized by difficulty level, with columns representing distinct difficulty levels and

rows indicating different initial learning intensities.

Stochasticity in Table 1, surpasses the baseline in
every metric, indicating its potential in reducing
pre-training forgetting.

Takeaway 4: The parallels in forgetting
patterns between humans and LLMs sug-
gest that periodic, intensive replay could
be key to mitigating memory loss. Exper-
iments conducted during the pre-training

7 Conclusion and Future Work

Our research sheds new light on catastrophic for-
getting in LLMs during pre-training. We scruti-
nized traditional metrics, introduced novel ones
for a clearer analysis of forgetting, and proposed
memory-replay techniques to bolster knowledge
retention. Additionally, we explored the forgetting
curve post-intense, short-term learning, uncovering
similarities with human memory decay, offering

phase have also confirmed this point.

insights into information retention dynamics.



8 Limitations

Our investigation into catastrophic forgetting
within the pre-training phase of LLMs, while pio-
neering, is bounded by computational limitations.
The experimental requirements, estimated at ap-
proximately 10,000 GPU hours for execution on 8
NVIDIA A100 GPUs with 40 GiB VRAM, present
a significant challenge. This constraint inevitably
limits the scale of our experiments, making it chal-
lenging to verify with larger models and different
datasets.

Informed by the scaling law (Kaplan et al., 2020),
we recognize that our findings from a smaller
model may provide valuable insights for larger-
scale experiments. This framework indicates that
our study could contribute to the design of future
research, acknowledging the limitations in scaling
our results.

Our approach to memory replay has shown po-
tential in alleviating catastrophic forgetting, but
there is still room for improvement in terms of
its effectiveness. Our investigation did not delve
deeply into the granular effects of each variable
on the experimental outcomes. The complexity of
memory replay mechanisms requires a more nu-
anced analysis to fully understand how different
factors interplay and influence the results.

Additionally, the concentrated learning of mem-
ory replay, while beneficial, may engender trade-
offs that affect the model’s generalizability. We
hypothesize that the focused emphasis of certain
data subsets could lead to a diminished capacity
for the model to adapt to tasks beyond the focused
areas, such as numerical data processing or other
cognitively distinct downstream tasks.

We recognize that forgetting in pre-training dif-
fers from that in SFT, each requiring distinct met-
rics and methods for mitigation. Yet, there are
connections between them. In future work, we
also aim to explore the impact of our methods on
forgetting in downstream tasks.

Despite these limitations, our study exemplifies
the scientific endeavor to confront complex prob-
lems with rigor and without reservation. Our work
is a courageous step towards understanding the
intricate processes of memory retention and forget-
ting in LLMs, reflecting a sincere commitment to
advancing our collective knowledge, even in the
face of substantial challenges.
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A Further Discussions on Pre-training
Forgetting

In this section, we discuss the intuition and method-
ology behind the paper, as well as potential issues.

. Why should we be concerned about model for-
getting at the sample level during pre-training?
Developers and researchers have frequently ob-
served that large models, despite their extensive
deployment, are prone to errors in factual do-
mains, especially concerning entity-related infor-
mation (Wang et al., 2023a). These discrepancies
can substantially affect user perception and trust.
However, there is a scarcity of research on the in-
fluence of learning during the pre-training phase
on this type of information, and even less on how
models remember and forget information during
pre-training. The phenomenon of sample-level for-
getting in pre-training is also difficult to define
clearly, analyze, and further explore.

. How should we understand entity-related met-
rics, and why is it important to focus on forget-
ting at the entity level?

(1) Forgetting across the entire pre-training dataset
is extremely difficult to define and study, hence we
concentrate on a specific subset. Errors related to
entity information are easily noticeable in model
applications and significantly impact user experi-
ence. (2) Beyond the model’s memory of entity
information, we also consider its capabilities dur-
ing pre-training, especially since the Supervised
Fine-Tuning (SFT) phase places more emphasis on
instructional data. This phase enhances the model’s
competencies for downstream tasks, and we see it
as a stage for augmenting the model’s capabilities.
Therefore, we believe the pre-training phase should
place greater emphasis on exploring entity informa-
tion. (3) In Section 3.2, we demonstrate that overall
data forgetting is hard to evaluate, as there is no
clear decline in model performance when switch-
ing training data (we deliberately selected parts of
data from A to ensure minimal repetition in B), and
almost no change in metrics is observed during the
switch. Instead, during training in B, the model’s
capabilities continue to improve, even surpassing
the metrics achieved during training in A, which
contradicts the intuition of forgetting. PPL does
not intuitively reflect the model’s forgetting; in
contrast, the metrics concentrated on entities show
significant changes on entity-related data, with al-
most no recovery, facilitating the direct study of
the forgetting phenomenon.

3.

4.
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Since the model may leak verbatim sequences of
personal information, is sample-level forgetting
harmful?

In our study, we focus on learning and the reten-
tion of factual information related to entities, which
models should not forget and that is prevalent in the
pre-training data. We diverge from concerns about
leaking verbatim personal information. There is ex-
tensive literature on machine unlearning (Wu et al.,
2020; Bourtoule et al., 2021; Chen et al., 2022),
which typically addresses scenarios involving pri-
vacy protection and changes in user information.
These scenarios fall outside the scope of our work,
although our research might offer insights into the
design of machine unlearning methods.

Is this study primarily addressing hallucina-
tions, or is it actually more focused on the
model’s tendency to forget entity-related infor-
mation rather than producing false outputs?
Our research concentrates on the model’s inclina-
tion to forget information pertaining to entities,
diverging from the generation of erroneous outputs,
commonly known as hallucinations. However, it
is true that our work offers a perspective on the
concept of hallucinations, where the two newly de-
signed metrics, Mcx and M;i,, can be interpreted as
potential false negatives and false positives in the
pre-training model’s responses: the model, given
relevant information, fails to identify the correct
entity; or the model provides an entity and some
information but is unable to supply the related con-
text.

. Should we expect an LLM to reproduce exact

training text, given it’s not a lossless compres-
sion model?

In our study, we do not anticipate LLMs to repro-
duce the exact training text. Specifically, our Mex
metric solely assesses whether the ground truth en-
tity is included in the output; while capturing the
formalization of information related to the entity
presents challenges. For the Mj, metric, we follow
the design of Biderman et al. (2023a), calculating
accuracy for each token. We consider that alter-
native design schemes might be possible, such as
utilizing a BERT model (Devlin et al., 2018) to cal-
culate the similarity between the generated tokens
and the ground truth tokens. We have reserved this
exploration for future research.



B Setup Details

In this section, we outline our experimental setup.
We selected a batch size of 576, informed by our
use of § NVIDIA A100 GPUs with 40 GiB VRAM,
and aligned with GPT-2‘s (Radford et al., 2019) hy-
perparameter recommendations for optimal perfor-
mance on our hardware configuration. A consistent
sequence length of 1024 was applied across all ex-
periments. Training is executed in half-precision
format using BF16, and we capitalize on the Zero
Redundancy Optimizer (ZeRO) Stage 2 (Rajbhan-
dari et al., 2020) to enable efficient scaling across
multiple machines. We draw inspiration from the
works of Biderman et al. (2023b); Gupta et al.
(2023); Radford et al. (2019), employing a cosine
learning rate decay that reduces to a minimum of
0.1 times the Maximum Learning Rate (MaxLr),
with the MaxLr itself set at 6 x 1074

B.1 Setup for Section 3.1

We utilized the GPT-2 XL model (1.5B) (Radford
et al., 2019) and trained it on a dataset sampled
from SlimPajama (Soboleva et al., 2023), consist-
ing of 4.9e8 tokens. Prior to training, we shuf-
fled the data to ensure that the order of training
instances was consistent across different experi-
ments. We conducted two experiments: a stan-
dard pre-training and a pre-training with a replay
mechanism that retrieves a batch of data, equiva-
lent in size to the training batch. (where we stored
all trained data using Elasticsearch (Elasticsearch,
2018) and performed a replay every 10 steps). At
each replay step, we use the current batch‘s training
data to uniformly sample an equal amount of data
from the completed training data based on similar-
ity. This ensures a uniform replay throughout the
entire data training process, with an additional 1/10
increase in computational budget. For evaluation,
we constructed a test set by sequentially segment-
ing the training data according to the training steps
and uniformly sampling 1/100 of each segment.
The samples were then reassembled in their orig-
inal stepwise order to ensure uniform distribution
across the training steps, thus creating a test set that
mirrors the model‘s training progression. We plot-
ted perplexity (PPL) against the number of training
tokens processed, with the evaluation set‘s token
count scaled proportionally to reflect the model‘s
exposure to the training data.

B.2 Setup for Section 3.2

To ensure computational feasibility in our experi-
ments, we choose GPT-2 (0.1B) in this section. We
uniformly sample 1/1000 of dataset A to consti-
tute a eval set, and perform evaluations every 1000
training steps during the training process of dataset
B.

B.3 Setup for Section 4.2

Sampled entities

¢ Terrel Bell, ¢ BIST®, * The Great Hunt‘, * Best in
Drag Show*, © Stella Maris‘, * William Knighton*,
¢ Italian campaign‘, * The Octopus Project’, ‘ Light
Cycle®, ¢ Clark Street‘, ‘ Paulette Hamilton*, °
Robert Mack®, ¢ Nusrat‘, ¢ Soul Catcher, ‘ Lord
of Light‘, * Bieger‘, ‘ Foreach loop°‘, ¢ Choruss®,
¢ Screen space ambient occlusion‘, ¢ Florida De-
partment of Environmental Protection®, * USA Ul-
timate‘, ¢ Historical Association‘, ¢ Robert Holt*,
¢ Willie Nile‘, ¢ Fiordland National Park®,  Star
Wars: The Clone Wars*, ¢ Crouch End‘, ‘ Tracy
Ham’, ‘ Jimmy Chamberlin®, ¢ Journal of Food Sci-
ence‘, * Comet Tempel‘, © AirMed International‘, *
CanWaCH", ‘ Pumapunku®, ¢ Pre-law*, ¢ Arovane°,
‘ Diex‘, * Her Escape‘, * Voltige*, ‘ Triadelphia®,
¢ Florian Zeller‘, * The Busy World of Richard
Scarry*, ¢ Texting while driving*, * Amir Wilson’, *
Julie White*, ‘ Lenox‘, * GNPDA2‘, * Cammie Dun-
away‘, ‘ Session Man®, ‘ Charoen Krung Road®, *
James Raine‘, ¢ Archie Andrews‘, ¢ The Picture
of Dorian Gray‘, ¢ Theresa Caputo‘, * Schauins-
landbahn‘, ‘ Japanese relocation®, * O.C. Handa’, *
Afula‘, ‘ The Secrets, ‘ Sonnet 61°,  Daniel Bell®, *
The Dawn®, * Bob Berry*, © Bigger Life‘, * Jamaica
Wine House*, ¢ Conica‘, ¢ Renuar‘, ‘ Plantation,
Florida‘, ‘ Fasser®, * Al-Qadi‘,  Vassy‘, ‘* Tom
Dempsey*, ‘ Department of Agriculture, Environ-
ment and Rural Affairs‘, ¢ Abdallah Djaballah®, *
Silent Hill 2¢, * Bill Ayres®, ‘ Jeremy Howe*, ‘ J15°,
¢ Jake Ryan‘, ¢ Black Mafia‘, ¢ Nicholas Fox*, *
Interstate 78¢, ¢ Mark Stein®, ‘ Pietro Torri‘, ¢ Wet
sump*, ‘ Centre national des arts plastiques®, ‘ Nitro
Express‘, - Wyvill‘, - WSRA*, © Whitewater River*,
‘ Merry Christmas Mr. Lawrence®, © Jon Jansen®, *
Le Message*, * Mavrommati‘, ‘ Tourouvre®, * Bob
Peterson®, ¢ America Again‘, ¢ Livernois‘, ¢ The
Shepherd Express®, ‘ Hypercalcaemia‘

Table 2: Sampled entities from English Wikipedia.

We followed Biderman et al. (2023a), selecting a
sequence length of 32 for both the input and output



Prompt

True Continuation

Greedily Generated Sequence

M,

The Amazon Rainforest ,

known as the Earth’s lungs known as the

The Amazon Rainforest ,

known as the Earth’s lungs

The Colosseum in Rome, also known as the Flavian Amphitheatre ,

Moon’s

known |as |the Moons legs

lungs LI g

ESESET TSy

is an iconic symbol of the Roman Empire’s architectural prowess.

is ‘an iconic symbol of the Russian Federation’s scientific |prowess .

[ENESENES N S
10 =0

Table 3: Examples of M, calculation with different prompts. These samples are provided for illustrative purposes

and are not from the real training data.

Entity Prompt

True Continuation

Leonardo da Vinci | The Mona Lisa, painted by

Greedily Generated Sequence

Leonardo da Vinci , is renowned for its elusive

Mex

Leonardo da Vinci , is renowned for its elusive

Leonardo da Vinci | The Mona Lisa, painted by

Leonardo da Vinci , is renowned for its elusive

a man called Leonardo da Vinci , is renowned for

Leonardo da Vinci | The Mona Lisa, painted by

Leonardo da Vinci , is renowned for its elusive

Donald Trump , is renowned for its elusive

the United States | The Statue of Liberty, a gift from France to

the United States , stands as a symbol

the world, mysteriously appeared on an uninhabited island

the United States | The Statue of Liberty, a gift from France to

the United States , stands as a symbol

—|lolol|l~]|~

tell the enduring friendship with the United States

Table 4: Examples of M. calculation with different prompts. These samples are provided for illustrative purposes

and are not from the real training data.

of our M. and M;, metrics. We collected enti-
ties from English Wikipedia dataset (Foundation).
Some randomly sampled entities are shown in Ta-
ble 2.

To spotlight entity-level forgetting, we evenly
sampled 400,000 English Wikipedia entries, com-
paring entity frequencies in datasets A and B. We
selected the intersection C' of entities that were top
1/2 frequent in A and bottom 1/2 in B to accentuate
the distribution disparity. Samples from A with
entities in C constituted our evaluation set. Follow-
ing the approach of Biderman et al. (2023a), we
retained a subset where M., = 1 post A’s training
to scrutinize their forgetting during B’s training.

We provide illustrative examples in Table 3 and
Table 4 to provide clearer explanations of Mj, and
Mex.

B.4 Setup for Section 6.2

It is evident that M., assigns a binary label to each
sample: a label of 1 is given if the ground truth
entity appears within the generated 32 tokens, and
a 0 is assigned otherwise. Utilizing the challenging
metric of M, we can categorize the difficulty of
data memorization as follows: We performed an
evaluation on the portion of the pre-training data
that includes entities, recorded each entity along-
side the samples that received labels of 1 or 0, and
then calculated the accuracy rate for each entity
based on these labels. We then divided the entities
into groups with roughly equal accuracy rates, en-
suring that during the phase of intensive, short-term
learning, the related samples for certain entities are
the focus of concentrated study. For the data cate-
gorized into different difficulty levels, we carried
out experiments with varying degrees of learning
intensity—specifically, by adjusting the number of
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epochs dedicated to this phase of learning.

C Comparison of Forgetting Curves
between Humans and LLMs

The reproduced human forgetting curve, originally
reported by Craig et al. (1972), is illustrated below,
reflecting the typical decline in memory retention
over time. In their study, 180 undergraduates par-
ticipated in an experiment involving exposure to
magazine advertisements under controlled condi-
tions. They were categorized into three groups
based on the extent of learning: 100%, 200%, and
300%, determined by the number of 5-second rep-
etitions of 12 ads. Following exposure, 15 partic-
ipants from each group were assigned to one of
four retention tests occurring at immediate, 1-day,
7-day, or 28-day intervals. The study utilized a 3
x 4 factorial design, assessing the impact of learn-
ing intensity and retention intervals on the recall
of brand names. It can be observed that there are
similarities between the model’s forgetting curve
and the human forgetting curve, with higher initial
learning intensity resulting in a relatively slower
rate of forgetting.

Delay Time (days)

Figure 5: Human forgetting curve from Craig et al.
(1972).
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